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Abstract

Synchronization is a fundamental property of biological neural networks, playing a mechanistic role

in both healthy and disease brain states. The medullary pacemaker nucleus of the weakly electric fish

is a synchronized network of high-frequency neurons, weakly coupled via gap junctions. Synchrony in

the pacemaker is behaviourally modulated on millisecond timescales, but how gap junctional connec-

tivity enables such rapid resynchronization speeds is poorly understood. Here, we use a computational

model of the pacemaker, along with graph theory and predictive analyses, to investigate how network

properties, such as randomness and the directionality of coupling (bidirectional/non-rectifying versus di-

rectional/rectifying gap junctions) characterize the fast synchronization of the pacemaker network. Our

results provide predictions about connectivity in the pacemaker and insight into the relationship between

structural network properties and synchronization dynamics in neural systems more generally.

Introduction

Synchronization between neurons is a dynamical process that underlies normative cognitive phenomena and

disease states alike. In the healthy brain, synchronization of neural oscillations is believed to drive long-range

communication between regions [35], enabling memory formation [27] and attentional modulation [39]. In

the diseased brain, synchronization can hijack large networks resulting in epileptic seizures [24]. It follows

that synchronization must be tightly regulated, balancing the coordination of neural activity with the loss

of information seen when many neurons produce the same output. An important aspect of this regulation

is temporal [7, 15, 28, 40]; neural systems must be able to switch between synchronized and desynchronized

states in a time-efficient fashion. The mechanisms that allow such transient shifts in synchrony are not clear.

The Pacemaker Network (PN) of weakly electric fish controls the timing of the Electric Organ Discharge

(EOD) produced by the fish to sense their environment [19]. Though the EOD is one of the most temporally

precise oscillations known to biology [22], its dynamics are actively modulated by the fish on millisecond

timescales to produce communication signals [44, 36]. Because tight spike-time synchronization and rapid-
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resynchronization in PN cells underlies the unique dynamic phenomena of these EOD modulations, the PN

represents an intriguing model system for the study of the temporal modulation of neural synchrony.

The PN is a medullary nucleus composed of roughly 100-150 neurons [20, 21]. The majority of these

cells are the gap-junctionally coupled “pacemaker cells”, intrinsic to the PN, that form a sub-network of

synchronized endogenous oscillators responsible for EOD timing [21, 32, 17]. Pacemaker cells are apparently

connected in a random fashion to approximately 3 to 7 neighbours [6, 21] via rectifying electrical gap junctions

[20]. Interestingly, the molecular properties of rectifying gap junctions have been recently identified [30] and,

while they are found in a number of systems, their functional roles are not well-understood [16]. We wish

to identify the impact of such network features on PN synchronization dynamics. Indeed, graph theoretic

metrics related to the nature of network connectivity can be associated with the speed and robustness of

oscillator synchronization [3, 2, 10, 26, 25, 42]. As a first step towards generating testable hypotheses about

PN structure-function and synchronization dynamics, we investigate how network connectivity influences

speed of spike-time synchronization in a biologically-detailed model of the PN [29, 17]. Our results are

divided into two main sections. First, we ask how different network parameters interact to produce the

rapid synchronization times observed in the PN. Second, we ask how predictive network structure alone,

rather than individual neuron properties, is in determining synchronization speed. To do this, we quantify

synchronization time using the Kuromoto coefficient [1] and connectivity using graph theoretic properties

and the Laplacian, a matrix related to the adjacency matrix of the network [18]. Our results suggest that the

random nature of electrical connectivity in the PN leads to fast synchronization and may be an evolutionary

adaptation to electrocommunication signal generation.

Methods

We begin this section by introducing, in a biological context, the parameters from graph theory that were

used to characterize PN model network structure. We then discuss the model itself, followed by data analysis

methods, before proceeding to the results.

Network Parameters

We focus on three graph-theoretic parameters in this study: (i) randomness of connectivity; (ii) directionality;

(iii) degree homogeneity. These parameters were chosen in light of the suggested network properties of the

PN [6, 21].

Randomness of connectivity, or network randomness, can be thought of as the extent to which a network

differs from a perfectly ordered lattice on one extreme, to a more randomly connected synaptic pattern

on the other [37]. We quantify network randomness by q, the mean ratio of randomly inserted to ordered

connections in a network (Figure 1.A). It has been shown to strongly effect synchronization dynamics in a

wide variety of oscillating systems [11].

Directionality (Figure 1.B) is a central feature of neural communication. Synaptic connections between

two cells can be directional, as for the classic chemical synapse and rectifying gap junctions, or bidirectional,

with non-rectifying gap junctions or a pair of reciprocal chemical synapses.

Degree, the total number of connections into and out of a neuron, can be subdivided into ‘in-degree’, the

number of inputs, and ‘out-degree’, number of out-going synapses (Figure 1.B). As degree is not necessarily

the same for all neurons in a network, networks can be characterized both by average degree and degree

homogeneity, whether or not degree is the same for each neuron in the population. These dimensions are
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Figure 1: Characterizing Network Structure. Network randomness, directionality and degree are struc-
tural features that affect graph spectrum, via the Laplacian matrix, and synchronizaton speed A. Three
networks with increasing levels of randomness: lattice network, q = 0; small world network, q = 0.3; random
network q = 1. B. Degree and directionality: undirected network, with K = Kin = Kout denoting degree for
each node; directed network, with Kin denoting in-degree and Kout out-degree, for each node. C. Matrices
associated with the directed graph in B. Counter-clockwise from top left: adjacency matrix; Laplacian ma-
trix; eigenvalue spectrum of the Laplacian matrix; the second smallest eigenvalue dictates synchronization
speed in linear dynamical systems.
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known to influence the capacity of a collection of coupled oscillators to synchronize [23, 25], or synchroniz-

ability, and mean degree has also been studied with respect to synchronization speed in certain contexts

(e.g. [10]). However, the effect of degree homogeneity on synchronization speed remains, to our knowledge,

unstudied.

Two matrices frequently used to characterize complex networks are the adjacency matrix (also known

as the connection matrix) (Figure 1.C.i) and the graph Laplacian (Figure 1.C.ii). The adjacency matrix

succinctly describes the pattern of connections in the network. It is typically a binary matrix with a 1 at

the i, jth element denoting a synapse from neuron j to i, and a 0 denoting a lack of synapse. The Laplacian

matrix is significant for its eigenspectrum, which is used to characterize the spectral properties of a graph in

much the same way that the Fourier components characterize a time series [31]. There are several variants

of the Laplacian; in this paper we use the Graph Laplacian definition, L = D −A, where D is the diagonal

in-degree matrix and A is the adjacency matrix. The Laplacian’s spectrum is known to be important for

dynamical processes on a graph [18, 9]. In particular, the algebraic connectivity, or smallest absolute value

non-zero eigenvalue of the Laplacian, which we denote λ2, can be shown to determine the time scale of

synchronization for many systems of coupled oscillators [3, 10] (Figure 1.D), likely due to its connection with

the sparsest cut of the network’s graph [8, 41].

We note that making comparisons between directed and undirected circuits is not clear-cut. Specifically,

matching number of synapses in the biological systems being modelled, the number of ’physiological’ synapses,

or matching adjacency matrix elements both seem like reasonable options but lead to a comparison of different

networks. In the first case, the total number of graph edges are matched while the second case can allow

mean in/out-degree to be matched. In our case, we chose to match adjacency matrix elements and mean

in/out degree. We outline the implications of this in the discussion.

Model

The simulated network was comprised of Hodgkin-Huxley neurons with parameters fit to PN pacemaker

dynamics, as described in [29]. Cells were connected by linear voltage coupling to model gap-junctions with

a coupling strength of gc = 5× 10−6 mS, in accordance with experimental knowledge of PN synapses [21].

The equation for a single cell was given by

C
dvi
dt

= −gL
(
vi(t)− EL

)
−
∑
ion

gion[vi(t)]
(
vi(t)− Eion

)
+ gc

N∑
j=1

aij
(
vj(t)− vi(t)

)
where aij represents the i, jth element of the N ×N adjacency matrix A and N is the number of cells in the

network. For a full list of parameters see parameters and equations for canonical model (model A) in [29]

To test the effects of degree variability and directionality five matrix types were created, those with:

(1) directed (rectifying) synapses and fixed (homogeneous) in/out-degree, (2) directed synapses and fixed

in-degree only, (3) directed synapses and variable (heterogeneous) degree, (4) bidirectional (non-rectifying)

synapses and fixed degree and, (5) bidirectional synapses and variable degree. Adjacency matrices (n=20)

of each type were generated at 20 levels of connection randomness, q and 2 levels of mean in/out-degree,

K := K̄in = K̄out = 4 and K = 6 (see following), where x̄ denotes mean of x. In/out-degree were precisely

equal to mean degree in the fixed cases and were randomly distributed with the same total number of

synapses and same mean degree as the fixed degree networks in the cases where in, out, or in/out, degree
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Figure 2: Quantifying Synchronization Speed. Synchronization times are calculated by mapping mem-
brane voltages to phase space, calculating the Kuromoto coefficient, r(t), of the network and recording
the time it takes r(t) to reach a threshold. A. Synchronization of membrane potentials as a function of
time. B. Synchronization of spike times as a function of time. C. Example r(t) tragectory and recorded
synchronization time for threshold r value of 0.975.
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was variable. In the variable case in/out-degree distributions evolved from a dirac delta function, at q = 0,

to hypergeometric distributions, when both in and out degree were variable, and binomial distributions,

when only one of in or out degree was allowed to vary, at q = 1. Experimental work suggests the PN to be

sparsely connected, with each neuron connected to roughly 5% of the total network size [21] but the degree

distribution of a given cell is not known.

To assign randomness of connectivity we followed a process where each graph started as a lattice, with

every node connected to K/2 of its neighbours on each side. Each connection was then randomly chosen to be

removed with a probability equal to q. The number of synapses removed was recorded and the same number

was then “rewired”, randomly, back into the network in a manner satisfying the constraints of the given

graph. Beyond keeping degree fixed, where necessary, and keeping undirected adjacency matrices symmetric,

we also enforced no self-loops; that is, a single neuron was not allowed to synapse with itself, and no more

than one connection of a given direction was allowed between two neurons. For the fixed in/out-degree

networks not every re-wiring satisfied these last two properties; to find appropriate connectivity patterns

we repeatedly tested random rewirings until the two properties were satisfied. Our method is inspired by

the classic method for generation of small world graphs employed by Watts and Strogatz [37, 5]. Lastly, all

networks in the study were required to be complete (fully connected) as disconnected networks would never

synchronize because certain neurons or sub-networks would be isolated. To ensure completeness, Tarjan’s

algorithm [33] was used to locate any isolated sub-networks in each graph. The isolated components, typically

single neurons, were then deleted from the network. All resulting networks contained more than 90 neurons,

98.6% contained more than 95 and 69.2% contained all 100 neurons. Notably, 100% of the directed fixed

in/out-degree networks were fully connected.

Because of the randomness inherent in the network generation process, any single combination of N , K

and q would generate slightly different network shapes. We thus randomly generated 20 networks for each

unique combination of parameters. Initial conditions for each model pacemaker cell were chosen randomly

from points on the isolated cell’s limit cycle. Simulations were run for a total of 400 ms as most networks

that exhibited convergence to particular phase locked states appeared to do so over this time period. For

full package specification and implementation see code availability section.

Data Analysis and Synchronization Time Prediction

Quantifying Synchronization Time

We computed synchrony with a Kuramoto order parameter (r) [1]. Since the simulations were noiseless,

spike peak could be reliably determined and used to indicate cycle time (phase = 0, 2π); phase increases

linearly between two spike peaks. Considering the phase of each neuron as a vector on the unit circle, the

Kuramoto order parameter is the magnitude of the average of these vectors, giving a value of 0 for complete

asynchrony and a value of 1 for perfect synchrony.

Using this order parameter the time-to-synchronization was calculated for all simulations. A threshold

value of R = 0.975 was used to indicate that the network was ‘synchronized’. To be sure that results were

not influenced by choice of threshold, a variety of thresholds between R = 0.75 and R = 1 were explored

and all yielded qualitatively similar results. A bisection search in concert with interpolation was used to

determine the time at which R = 0.975

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.325613doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.325613
http://creativecommons.org/licenses/by/4.0/


Predicting Synchronization Time

To predict synchronization time from different subsets of eigenvalues from the graph Laplacian’s spectrum, we

fit four different statistical models: a simple inverse function with parameter C (C/λ), inspired by previous

theoretical work [3, 10], and three feed-forward artificial neural networks. The inverse function was fit by min-

imizing the sum of squared error (SSE) between the function and the data points (scipy.optimize.curve fit).

All artificial neural networks were implemented using PyTorch (PyTorch.org), and were composed of an

input layer with as many units as the eigenvalues used for prediction in the given model, a hidden layer of

100 units and an output layer of 1 unit. Optimization used ADAM [13], with a learning rate of 0.000002,

a mean square error loss function with L2 regularization (regularization coefficient = 0.05) and batch sizes

of 16 samples. This training procedure was run for 60 epochs for all networks. Cross-validation on held-out

data was performed, and the models did not appear to be over-fit.

Code Availability

All simulation and analyses were performed in Python 3.7. The full set of libraries used along with code for

the project is available at: https://github.com/aaronshifman/Williams et al Pacemaker Synchronization.

Results

Network Randomness Dictates Ability to Synchronize

The real PN robustly and rapidly returns to a synchronized, phase-locked oscillation, following behavioural

modulations, without ever falling into a stable asynchronous state or exhibiting continued non-periodic

or non-phase-locked behaviour [17]. However, even within the set of strongly connected graphs we have

considered here, certain connectivity patterns will not exhibit this ’synchronizability’. Thus, a necessary

preliminary step was to determine which networks within this study’s parameter-space were synchronizable.

For the purpose of this paper we defined synchronizable networks to be those that reached a synchronous

state in less than 400 ms, as synchronization times relevant for the PN must be on the order of tens of

milliseconds.

A large body of literature demonstrates the importance of network randomness for synchronization in

complex networks [3, 4, 14, 12, 34], a phenomenon which we confirm in our model PN (Figure 3). Many

networks with low randomness exhibited Kuromoto coefficients that did not converge towards 1 during the

simulation (Figure 3.A). However, the proportion of synchronized networks (Figure 3.C) increased rapidly

as a function of randomness, with all networks synchronizing during the simulation time even for relatively

low q (Figure 3.B).

While randomness was the primary determinant of synchronization ability, other parameters played a

small role. The network type with the highest proportion of synchronizing graphs for low randomness

was directed-fixed degree, followed by directed variable degree. Both undirected network types performed

equivalently across q values. Because this ordering closely reflects the synchronization speed related behavior

we describe in the following (Figure 4), it is possible that these minor synchronizability differences could

be a result of a few slow networks not converging to synchrony in the allotted timeframe, making them

synchronizable in a more general sense, but not synchronizable according to our 400 ms threshold.

In conclusion, the observation of greater randomness of connectivity supporting better synchronizability

in our model PN is consistent with past theoretical work and suggests that the apparently high randomness
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Figure 3: Synchronizability Depends on Network Randomness. Whether a network will synchronize
depends heavily on q and weakly on the other structural parameters tested A. r(t) traces for q = 0.05; many
networks do not synchronize B. r(t) traces for q = 0.2; most networks synchronize C. Proportion of networks
in which at least 19 of the 20 tested initial conditions lead to synchrony before the end of the simulation,
as a function of network randomness, q, for each network type (different colour denotes different network
type). Note the minor differences between network types and large effect of low randomness. D. Proportion
of initial conditions in which at least 19 of the 20 tested graph structures lead to synchrony before the end
of the simulation, as a function of network randomness, q, for each network type (same colour scheme as C).
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in the real PN enables the robust synchronization observed. How randomness might influence the rate of

synchronization is one of the questions we will address in the following section.

Network Parameters Interact to Determine Synchronization Speed

In this section, we address the question of how connectivity parameters influence synchronization speed.

Every parameter dimension explored (i.e. directedness, degree homogeneity, degree magnitude and connec-

tivity randomness) affected time-to-synchronization, Tsync, in our model PN. For the most part, the effects

of these parameters were interdependent, meaning that changing multiple parameters influenced synchro-

nization speed in a way that was different than the sum of the influence of each dimension separately. These

phenomena can be distilled into four main effects on synchronization time: (i) the consistent reduction

from network randomness; (ii) the benefit of directed connections (iii) an interaction between degree homo-

geneity and directedness; (iv) the decrease with increasing mean degree. We will address these four points

sequentially.

Network randomness consistently and monotonically decreases synchronization time in our model PN

(Figure 4). As in the case of synchronizability, the effect of small changes in network randomness is most

notable for low q and decreases asymptotically as q increases. Past work has found this monotonic relationship

between network randomness and synchronization time in a variety of coupled oscillators [10, 26]; our study

extends these results to our biologically detailed PN model.

For a given value of mean in/out-degree, directed networks consistently outperformed undirected networks

in our model (Figure 4.A-B). As directed synapses model rectifying gap junctions, this result suggests

that rectifying electrical synapses in the PN [20] could play a functional role in the observed rapid re-

synchronization dynamics.

Interestingly, we observed an interaction between degree heterogeneity and directedness in determining

synchronization speed. In undirected networks in-degree distribution has no effect on synchronization speed.

In directed networks, changing from variable to fixed in-degree doubles the decrease in Tsync relative to

undirected networks (Figure 4.A). In directed networks, degree heterogeneity can be split into heterogeneity

associated with in-degree and that associated with out-degree. Notably, homogeneity only effects synchro-

nization speed via in-degree (Figure 4.C), which is due to the fact that, in rectified networks, only the

in-degree directly influences cell potentials. Degree heterogeneity increasing synchronization time is particu-

larly intriguing given that network randomness strictly decreases synchronization time. Nishikawa et al. [25]

observed opposing effects of these two forms of randomness previously, but in the case of synchronizability

rather than synchronization time. They suggest this paradox could be explained by heterogeneity resulting

in a smaller set of graph nodes, in this case PN neurons, monopolizing more connections and thus introducing

a bottleneck in the flow of information across the network.

Finally, we find that increasing average degree not only decreases synchronization time, as expected, but

also reduced the influence of other network parameters on Tsync (Figure 4.B). Thus, the key role of degree

homogeneity and rectified connections in rapid synchronization may be particularly important for sparse

neural networks like the PN.

In summary, if we assume that the PN must use the full toolbox of connectivity tricks to enable its rapid

synchronization times, our results along with the observed sparseness of the PN suggest that the PN should

have a highly random structure, with relatively homogeneous degree distribution if its synapses are indeed

rectifying.

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.325613doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.325613
http://creativecommons.org/licenses/by/4.0/


Figure 4: Interaction Between Degree Variability and Directedness Drive Synchronization
Speed. Mean, over initial condition and graph instance, of time to synchronization, Tsync, as a function of
randomness, q, for different network types. Network randomness and an interaction between directedness
and degree distribution exert the strongest influence on synchronization time. A. Comparison of four main
network types; for a given mean in/out-degree, directed, fixed in-degree synchronize fastest for most q. B.
Comparison of different mean in/out-degree, K; increasing degree speeds synchronization and reduces effect
of directedness but not randomness. C. Comparison of fixed vs. variable degree; networks with fixed in-
degree synchronize the fastest. Error bars for all figures are the standard deviation of the means over initial
conditions, to give a sense of the variability due to changes in graph structure.
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Network Structural Parameters are Reflected in Laplacian Spectrum

Given the interdependence of individual network parameters in determining synchronization in our model

PN, a natural follow up question is whether there exists a more global descriptor of network structure

through which all parameters could be related to synchronization speed. The natural candidate statistic

for this problem is the spectrum of the graph Laplacian, which characterizes, in a vector of eigenvalues,

the structure of a complex network [18] and relates it to dynamics on the network [2, 10]. Recent work

has described the smallest and largest eigenvalues of the Laplacian as a function of network parameters [9].

However, how the set of biologically relevant parameters explored in this study (e.g. synaptic rectification,

degree homogeneity) relates to the full Laplacian spectrum has not, to our knowledge, been characterized;

understanding how these individual parameters influence the Laplacian might enable concise quantification of

PN structure in future experimental work, in a language that is directly related to synchronization dynamics.

To investigate how our parameter dimensions influence Laplacian spectrum, we plotted the mean, magnitude-

ordered spectrum for different network types. Interestingly, we found that certain parameters are better

encoded in distributional changes of different subsets of eigenvalues (Figure 5). Most notably, changes in

average degree were better reflected in mid to large-valued eigenvalues, as can be seen from the greater

separation in mean eigenvalue in the upper-right portion of Figure 5.D, while changes in our other three

parameters were better encoded in the smaller and the larger magnitude eigenvalues, as is observed by the

separated mean traces at left/right ends of Figure 5.A-C versus intersections in the middle portions of the

plots.

Given the significance of the algebraic connectivity, we plotted its distribution (Figure 5, insets) and found

that its mean encoded network parameters in a way that is consistent with the observed relationships between

network parameters and Tsync. We explore this further in the following section in which the separation of

parameter effects on the Laplacian spectrum motivated our analysis of K = 4 and K = 6 mean degree

networks separately.

Graph Spectrum Predicts Synchronization Speed in Model Pacemaker Network

To explore how network structure alone dictates synchronization time, we characterized the relationship

between Tsync and elements of the Laplacian’s spectrum. Studies exploring dynamics in other networks

of coupled neurons, and oscillating systems more generally, have observed an inverse relationship between

the eigenvalue of the Laplacian with second smallest absolute magnitude and synchronization time [3, 10,

26]. However, the theory developed in these past works relies on a linearization of the system about the

synchronous state, an assumption that is not valid in general.

To address this question, we began by fitting four statistical models to predict synchronization time

from the eigenvalues. First, we checked how well the linearized theory [3, 10, 26] applied by using nonlinear

least-squares to fit the inverse function T̂sync = C
λ2

, where C is the parameter to be fit, λ2 is the second

smallest magnitude eigenvalue, and T̂sync is the estimated synchronization time. Second, we tested whether

some other relationship might better predict synchronization time from λ2 by fitting a feed-forward artificial

neural network to predict synchronization time from this eigenvalue. Finally, we fit two other artificial neural

networks to determine Tsync from the first 20 non-zero eigenvalues and the first non-zero 90 eigenvalues of

the Laplacian, respectively. This was done to determine whether more information about synchronization

dynamics might be contained in a larger subset of eigenvalues than just λ2 alone. Motivated by the qualitative

similarity between mean eigenvalues within networks of a given degree (Figure 5.A-C) versus the distinct
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Figure 5: Laplacian Spectrum Encodes Network Parameters. Real part of each eigenvalue of the
graph Laplacian (mean ± s.d.), for various network classes. X-axis is the rank of the given eigenvalue. Insets
are distributions of the algebraic connectivity, λ2, cut-off at λ2 = 2.5. A. Four main network types. B.
Directed networks with different forms of degree homogeneity. C. Four levels of network randomness. D.
Two levels of average in/out-degree.
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Figure 6: Algebraic Connectivity Predicts Synchronization Time in Model Pacemaker. A.
Scatter plots of synchronization time versus algebraic connectivity, λ2, coloured according to network type
(left column) and network randomness (center column). Top row gives data for mean in/out-degree K = 4
networks (note high variability in scatter plots) and bottom gives data for K = 6 (note comparatively lower
variability). Plotted lines are prediction of models C/λ2 (solid) and an artificial neural net fit on λ2 (dashed).
B. Root Mean Square Error (RMSE) for each model on validation (held-out) dataset. Left to right: C/λ2,
FNN(λ2), FNN({λ2, λ3, ..., λ20}), FNN({λ2, λ3, ..., λ90}).
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differences in mean spectrum between average degree (Figure 5.D), we fit the four models separately to the

K = 4 and K = 6 networks.

We find that very little extra information is contained in the spectrum beyond the algebraic connectiv-

ity, regardless of mean degree (Figure 6.B). However, the effectiveness of the linearization analysis-derived

relationship, the inverse function, at relating algebraic connectivity to synchronization speed depends on

average degree. For K = 4, arbitrary function approximation via the artificial neural network is able to

better predict the nonlinear relationship between eigenvalue and synchronization time, while for K = 6 the

inverse function predicted by linearization performs at essentially the same level of error as the artificial

neural net. We hypothesize that the inverse function doesn’t fit synchronization time on the lower value

of K as well on account of a longer period of nonlinear dynamics, far from the synchronous fixed point, as

observed previously in other systems of coupled oscillators [43, 34]. It bears mentioning that the inability

of the artificial neural network to detect extra information in the Laplacian outside of that contained in

λ2 could be the result of the non-convex optimization process being stuck in a local minimum or the true

function being outside the set of functions that the tested artificial neural network could model, though this

seems unlikely.

For a given mean degree, the different network parameters are all related to synchronization time through

the algebraic connectivity, with ”slower” parameterizations, like undirected networks, falling to the left in

the scatter plot (Figure 6.A.i and B.i) and ”faster” parameterizations, like directed fixed in-degree networks,

falling to the right. The banding of the scatter plots in Figure 6.A is due to the full range of q values being

exhibited in undirected networks and again in directed networks, and provides an alternate view of the result

from Figure 4: that, for a given mean degree, directed networks are capable of matching undirected networks

in synchronization time for much lower network randomness.

Discussion

In this study, we investigated the role of network randomness, synapse directionality and degree homogeneity

on synchronization speed in a model PN. We found that, when mean in/out degree rather than number of

phenomenological synapses is matched, random, directed networks with homogeneous degree synchronize

the fastest. Moreover, we found network structure, as characterized by the second smallest eigenvalue of the

Laplacian, to be predictive of synchronization speed, a relationship suggested by previous studies [10, 3].

However, the accuracy with which the inverse relationship between eigenvalue and synchronization time,

predicted by these studies, depended on the mean degree of the PN model. These results have implications

both for the PN itself and for neural circuits more generally.

For the PN, our work suggests that the characteristic rapid synchronization times could be driven by

high randomness of connectivity and, in the case of rectifying PN gap junctions, a less-variable degree

distribution. These findings provide a quantitative context for past experimental work which has suggested

random connectivity and rectifying synapses to be features of the PN. We also suggest that the homogeneity

of degree should be considered in future experimental studies as a new connectivity-related marker for

rapid synchronization dynamics. Interestingly, our modelling demonstrates that these properties lead to

synchronization times that are close to, but still fall short of, the 5-period synchronization times sometimes

observed in the PN [17]. There are several potential mechanisms that could close the gap between observed

PN synchronization time and times seen in this study. Our work has focused on synchronization of neurons

from initial conditions (random phases) on the neurons’ limit cycle; how the resulting dynamics differ when
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biological desynchronization (e.g. synaptic input) drives neurons off their limit cycles is not clear. Although

it is expected that pacemaker cells alone dictate synchrony in the PN, experimental work has not yet fully

discounted the role of other cells, e.g. relay cells [20, 6], in synchronization dynamics. Finally, it has

also been suggested that electrical field interactions, i.e. ephaptic coupling, could play a role in boosting

synchronization speed in the PN [29, 17]. Determining the precise combination of additional phenomena

that enable the PN to synchronize so rapidly presents an exciting direction for future experimental research.

Another important direction for future research is to further investigate synchronization speeds in directed

versus undirected networks. In this study we compared networks where the number of non-zero elements in

the graph adjacency matrix were matched. This seemed logical because it allowed us to match in/out-degree

between directed and undirected graphs. However, because a single undirected synapse is represented in

the adjacency matrix as two directed synapses of opposing direction, this paradigm meant that the directed

networks had twice as many phenomenological synapses as the undirected kind. Future work is necessary to

determine if directed networks still synchronize faster than undirected when one matches phenomenological

synapses; e.g. if one compared undirected networks with mean in/out-degree of 8 with directed networks of

mean in/out-degree of 4. While our comparison (see Figure 4.B) of K = 4 directed with K = 6 undirected

networks suggest that undirected networks of K = 8 could synchronize more rapidly, a fair comparison

necessitates matching total conductance between graph types and this remains to be done.

An limitation of this study is with regards to network generation: we have been content to use graphs that

satisfy our parameter combinations while, empirically, appearing to exhibit an otherwise random sampling

from the space of potential graph adjacency matrices. A more mathematical analysis of the graph generating

algorithms is warranted to provide context for the results of this study. By exploring the statistics of these

methods, such as the probability distributions on adjacency matrix elements, one could answer questions

such as why the generation of directed, fixed in/out-degree networks almost always resulted in fully connected

graphs, and whether the study results are quite general or may be influenced by an under/over-sampling of

the probability space associated with a given graph type.

Finally, our results have implications for the study of synchronization phenomena outside the PN; namely,

the illumination of network structure-related markers of rapid synchronization dynamics. The ability to

locate neuronal circuits underlying rapid spike-time synchronization may improve detection of brain regions

susceptible to epileptic seizures [38, 24]. Our work provides both qualitative descriptors, e.g. directed

connections with homogeneous degree, and a quantitative approach, artificial neural network fitting to the

algebraic connectivity, for predicting how quick a given network will synchronize via its eigenvalues. In

particular, this study suggests that there may be more predictive information to be gained from the algebraic

connectivity, in sparse networks, than previous studies employing linearized methods might have implied.
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