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28 Abstract

29 The analysis and prediction of complex traits using microbiome data combined with host 

30 genomic information is a topic of utmost interest. However, numerous questions remain 

31 to be answered: How useful can the microbiome be for complex trait prediction? Are 

32 microbiability estimates reliable? Can the underlying biological links between the host’s 

33 genome, microbiome, and the phenome be recovered? Here, we address these issues by 

34 (i) developing a novel simulation strategy that uses real microbiome and genotype data 

35 as input, and (ii) proposing a variance-component approach which, in the spirit of 

36 mediation analyses, quantifies the proportion of phenotypic variance explained by 

37 genome and microbiome, and dissects it into direct and indirect effects. The proposed 

38 simulation approach can mimic a genetic link between the microbiome and SNP data via 

39 a permutation procedure that retains the distributional properties of the data. Results 

40 suggest that microbiome data could significantly improve phenotype prediction accuracy, 

41 irrespective of whether some abundances are under direct genetic control by the host or 

42 not. Overall, random-effects linear methods appear robust for variance components 

43 estimation, despite the highly leptokurtic distribution of microbiota abundances. 

44 Nevertheless, we observed that accuracy depends in part on the number of 

45 microorganisms’ taxa influencing the trait of interest. While we conclude that overall 

46 genome-microbiome-links can be characterized via variance components, we are less 

47 optimistic about the possibility of identifying the causative effects, i.e., individual SNPs 

48 affecting abundances; power at this level would require much larger sample sizes than 

49 the ones typically available for genome-microbiome-phenome data.

50

51 Author summary

52 The microbiome consists of the microorganisms that live in a particular environment, 

53 including those in our organism. There is consistent evidence that these communities play 

54 an important role in numerous traits of relevance, including disease susceptibility or feed 

55 efficiency. Moreover, it has been shown that the microbiome can be relatively stable 

56 throughout an individual’s life and that is affected by the host genome. These reasons 

57 have prompted numerous studies to determine whether and how the microbiome can be 

58 used for prediction of complex phenotypes, either using microbiome alone or in 

59 combination with host’s genome data. However, numerous questions remain to be 

60 answered such as the reliability of parameter estimates, or which is the underlying 

61 relationship between microbiome, genome, and phenotype.  The few available empirical 
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62 studies do not provide a clear answer to these problems. Here we address these issues by 

63 developing a novel simulation strategy and we show that, although the microbiome can 

64 significantly help in prediction, it will be difficult to retrieve the actual biological basis 

65 of interactions between the microbiome and the trait.

66

67 Introduction

68 The relevance of microbial ecosystems associated with humans and animals in health and 

69 production is now widely recognized, e.g., [1–5]. To quantify its influence, the fraction 

70 of variance of a given trait explained by the microbiome has been named ‘microbiability’ 

71 (b2) [6], in symmetry with the classical ‘heritability’ (h2) concept [7]. Previously, the term 

72 "hologenome" had been coined to describe the joint action of genome and microbiome in 

73 explaining an observed phenotype [8]. 

74

75 A consequence of microbiability being typically larger than zero is that it can be used to 

76 predict complex phenotypes, be it a disease or productive traits. This is an important issue 

77 since the use of microbiome data has the potential to alter how medical diagnosis in 

78 humans or breeding decisions agricultural species are performed. Several studies have 

79 demonstrated the potential value of microbiome data for complex-trait prediction. For 

80 example, Rothschild et al. [9] showed that microbiome can be used to improve accuracy 

81 in the prediction of obesity and many other phenotypes in humans. Likewise, Lloyd-Price 

82 et al. showed that microbiome-data was predicted if future outbursts of bowel disease 

83 [10]. In cattle, various studies have shown the predictive power of microbiome for 

84 methane emission from rumen microbiome [4,11], feed efficiency and carcass traits in 

85 pigs [12,13], and various plant phenotypes (e.g., crop yield and diseases predicted from 

86 the microbiota data from the rhizosphere, [14]). On the other hand, since the 

87 groundbreaking study of Meuwissen, Hayes and Goddard [15], the prediction of complex 

88 traits using genome information has been embraced in both plant [16] and animal 

89 breeding [17] as well as in human genetics [18]. Therefore, a natural step further is 

90 combining host’s genome and microbiome information to improve complex-trait 

91 prediction, a topic that is currently receiving much attention [12,19].

92

93 Importantly, microbiome composition can be affected by the host’s genome. For instance,  

94 Wang et al. [20] argue that it is evolutionarily justified that the microbiome is under 

95 partial host genetic control since a non-negligible fraction of cells in an adult body is 
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96 made up of microbes, especially in the gut. Beginning with the seminal work by Pomp’s 

97 team [21], several studies have confirmed the relationship between host’s genotype and 

98 microbiome composition, e.g., [20,22,23]. These microbiome genome-wide association 

99 studies (mGWAS) suggest that microbiome abundances can be treated as any other 

100 complex trait in humans or livestock [22]. For instance, Crespo-Piazuelo et al. [24] or 

101 Ramayo-Caldas et al., [25,26] identified several quantitative trait loci (QTL) that 

102 modulate gut bacterial and eukaryotic communities. In general, although the ‘heritability’ 

103 of each genera or OTU (Operational Taxonomic Unit) is typically weak, considering the 

104 whole microbiome simultaneously should increase power [27]. 

105

106 Large scale studies in humans suggest a predominant role of the environment in shaping 

107 the gut microbiome [9]. However, regardless of the relative importance of genetic and 

108 environmental factors in shaping the microbiota, microbiome composition per se can 

109 have predictive value. Yet, the use of microbiota for prediction of future 

110 phenotypes/disease outcomes, require some level of stability of the microbiome 

111 throughout time. In the case of the gastrointestinal tract, microbiota colonization starts at 

112 birth, where vertical transmission through the mother’s birth canal occurs. Afterward, 

113 microbiota diversity and richness tend to increase as the host ages and reaches stability at 

114 adulthood [28,29]. In ruminants, populations inhabiting the rumen progressively appear 

115 after birth and partly persists throughout life [30].

116                        

117 As noted, the genome-microbiome-phenome is a complex system; understanding the 

118 links between host-genome, microbiota, and phenotypes is an important step towards the 

119 effective use of microbiome data for complex trait prediction. In all, despite published 

120 reports, we still lack detailed guidelines on the joint usage of microbiome and genome 

121 information for complex trait prediction, and on the reliability of parameter inferences. 

122 We are ignorant of the number of genes affecting microorganism abundance that can be 

123 confidently identified, or on how many microorganism taxa can influence a given 

124 phenotype. With this work, we aim to contribute to this important topic focusing on three 

125 inter-related questions: 

126

127 1. How useful can the microbiome be for complex trait prediction? 

128 2. Are microbiability estimates reliable? 
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129 3. Can the underlying biological genome-microbiome-links be inferred at a system-

130 level? In a more refined level, can microbiome groups (e.g., OTUs, genera) with 

131 sizable causal effects on phenotypes be identified with the typical size of 

132 microbiome data sets?

133

134 In this study, we address the questions mentioned above via a novel simulation strategy 

135 that uses real microbiome and genotype data as input and proposing a variance-

136 component approach which, in the spirit of mediation analyses, quantifies the proportion 

137 of phenotypic variance explained by genome and microbiome, and dissects it into direct 

138 and indirect effects. Importantly, the approach allows simulating a partial genetic control 

139 of host’s genome on the microbiome. This is accomplished using a partial permutation 

140 approach that preserves the distribution of the genome and microbiome. We use Bayesian 

141 variable selection models to estimate parameters which contemplate the possibility that 

142 some or all the features available in the genome and/or the microbiome, have no effects 

143 on the trait of interests. We investigate the questions presented above across diverse 

144 scenarios regarding the links between host genomes and microbiomes, and of their 

145 relations with a complex trait.

146

147 Results and Discussion
148

149 The exact nature of the links between genome (G), microbiome (B), and phenotype (y) 

150 are largely unknown and will likely vary from case to case. However, we will use the six 

151 generic causal models (‘scenarios’) depicted in Fig 1 to shed light on the nature of the 

152 genome-microbiome-phenome links. In the ‘Null’ scenario, there is no link between any 

153 of the data-layers; while this is unlikely, it serves as an ‘overall null hypothesis’ and it is 

154 useful to assess potential biases in parameter estimates. Model ‘Genome’ assumes that G 

155 only affects the phenotype. In turn, only B has a direct effect on phenotype in 

156 ‘Microbiome’ and ‘Indirect’ scenarios. The Indirect scenario, however, allows for some 

157 of the causative abundances to be controlled genetically. This would be similar to a 

158 scenario where a phenotype is directly controlled by gene expression levels and 

159 expression in turn is controlled genetically [31,32]. The ‘Joint’ scenario is the simplest 

160 configuration for a trait under the influence of both genes and microbiome. It assumes 

161 microbiome and genome are independent and that their effects on the phenotype are also 

162 independent. The Joint model is the most widely assumed, implicitly, or explicitly, in the 
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163 literature, e.g., [4,9,12]. The ‘Recursive’ model is similar to the Joint model; however, 

164 the Recursive model contemplates the possibility that some causative OTU may be under 

165 partial genetic control by the host. Therefore, in this case, the genome has both direct and 

166 indirect (microbiome-mediated) effects on phenotypes. Note the Recursive model does 

167 not assume that the same loci have simultaneously direct and indirect effects, neither it 

168 assumes that all OTU abundances are under genetic control. 

169

170

171

172
173 Fig 1. Representation of the scenarios evaluated: G, genome, typically comprises marker 
174 data; B, microbiome; y, phenotype of interest; arrows indicate causality. An arrow from 
175 G to y indicates that there is a subset of G elements (causative SNPs) that influence y; an 
176 arrow from G to B indicates there exists a subset of G that influences a subset of 
177 abundances in B which, in turn, may also influence y. An arrow departing from B 
178 indicates there is a subset of microbial abundances (the causative abundances) that 
179 influence y. The SNPs affecting B need not necessarily be the same SNPs affecting y 
180 directly in the Recursive scenario. Note B can contain one or more sets of abundances 
181 such as archaea and bacteria communities, or different time or site sampling points. 
182 Without loss in generality, we assume B is a single community.
183

184 We use the causal models depicted in Fig 1 to simulate genome-microbiome-phenotype 

185 data using different configurations regarding the number of causative loci (QTN) and the 

186 number of OTUs with effects on phenotypes, as well as the number of OTUs that were 
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187 affected by host’s genome. Table 1 summarizes the simulation models and parameter 

188 values.

189

190 Table 1. Definition of scenarios evaluated and parameters chosen: G, genome; B, 

191 microbiome; y, phenotype of interest; NQTN, number of SNPs with a direct causal effect 

192 on y; NOTU, number of OTUs with a direct effect on y; NOTU(g), number of OTUs with a 

193 direct effect on y that are genetically determined, i.e., they are a subset of NOTU; h2 is 

194 heritability, b2 is microbiability, and r2 = h2 + b2.

195

Scenario Abbreviation NQTN NOTU NOTU(g) r2 h2 b2

Null 0 - - - 0 0 0

Joint J 100 25 0 0.25 0.125 0.125

0.50 0.25 0.25

Genome G 100 0 0 0.25 0.25 0.00

 0.50 0.50 0.00

Microbiome M 0 25 0 0.25 0.00 0.25

0.50 0.00 0.25

Recursive R 100 25 25 0.25 0.125 0.125

0.50 0.25 0.25

Indirect I 0 25 25 0.25 0.00 0.25

0.50 0.00 0.50

196

197 Table 2. Scenarios used to evaluate sensitivity to the number of causative OTUs. Symbols 

198 as in Table 1.

199

Scenario Abbreviation NQTN NOTU NOTU(g) r2 h2 b2

Joint J10 100 10 0 0.50 0.25 0.25

J100 100 100 0 0.50 0.25 0.25

J250 100 250 0 0.50 0.25 0.25

Recursive R10 100 10 5 0.50 0.25 0.25

R100 100 100 50 0.50 0.25 0.25

R250 100 250 125 0.50 0.25 0.25

200
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201

202 A novel data-driven strategy to generate microbiome-genome-phenotype 

203 experiments

204 Two facts make it the simulation of scenarios in Fig 1 challenging: (i) microbiome data 

205 follow zero-inflated highly leptokurtic multivariate distributions [33,34], it is not obvious 

206 how to sample from these distributions conditionally on genome data as required in the 

207 Recursive and Indirect scenarios; and (ii) it is difficult to obtain accurate estimates of key 

208 parameters, such as microbiability values, in the absence of large scale published – and 

209 public – datasets. To circumvent, or at least to alleviate, these constraints we use real data 

210 for both G and B. Specifically, we used publicly available data from two of the largest 

211 microbiome studies in livestock, genome data were downloaded from [11] and OTU 

212 abundances from [4]. 

213

214 Fig 2 recapitulates the simulation strategy. Full details are given in Material and Methods 

215 section, and R code to replicate the analyses are in 

216 https://github.com/miguelperezenciso/simubiome). We assume the effects of the 

217 causative microbiome abundances are additive on the log scale. Simulation under the 

218 Joint scenario is straightforward, since G and B act independently: sample a list of 

219 causative SNPs and abundances, simulate their effects, and apply Eqn. 1 (Material and 

220 Methods) to generate phenotype values given observed genotypes and abundances. The 

221 case of Recursive and Indirect scenarios is not that obvious because causative abundances 

222 are under genetic control and a link must exist between G and B (Eqn. 2 in Material and 

223 Methods). We solved this issue by rearranging abundances within individuals such that 

224 the desired correlation between abundance and individual’s genotypes is attained (see 

225 Algorithm in Box 1 and R-code in 

226 https://github.com/miguelperezenciso/Simubiome/blob/master/sortCor.R). This strategy 

227 has the important advantage that the distribution of abundances is not changed.

228
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229
230 Fig 2: Simulation scheme for the Recursive scenario, i.e., the most complex scenario (Fig 
231 1). A) Real input data comprises p genotypes (G matrix) and k taxa abundances (B 
232 matrix). SNPs in grey are neutral, those in red act directly on the phenotype y, and those 
233 in yellow/orange influence some OTU abundances (marked in magenta color in B 
234 matrix); abundances in blue are not genetically controlled. B) Given simulated effects, a 
235 genotypic value controlling the abundances is obtained via Eqn. 2. To fulfill the required 
236 heritability, abundances in magenta are reordered; high abundances (represented by a 
237 darker color) are associated with genotype ‘1’ just to simplify visualization. A single SNP 
238 is shown as causative for each of the two OTUs but there is no limit in practice. C) The 
239 phenotype is simulated by adding the genome and the microbiome contributions plus a 
240 residual. D) The general causal diagram is shown.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.05.325977doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.325977
http://creativecommons.org/licenses/by/4.0/


10

241

242 How useful can microbiome be for complex trait prediction? 

243 This depends on how much phenotypic variance is jointly explained by the genome (h2) 

244 and the microbiome (b2), but also on how efficiently methods capture the relationship 

245 between the microbiome and the phenotype, and on how stable the microbiome is. Note 

246 prediction accuracy is conditionally independent of whether the microbiome itself is 

247 heritable or not. This means that, given observed abundances B and observed genotypes 

248 G, it does not matter whether the biological process generating B is affected by G. In 

249 other words, prediction should not be affected by whether the Joint or Recursive scenarios 

250 hold, for a constant r2 = h2 + b2. The implications for breeding, however, could be 

251 dramatically different. Breeding schemes targeting the microbiome could be designed 

252 provided the Recursive scenario holds but make no sense under the Joint scenario.

253

254 We compared predictive performance of Bayes C [15] when both genome and 

255 microbiome are employed in the model (Bayes Cgb) only genome (Bayes Cg), or only 

256 microbiome data (Bayes Cb). First, we verified the null model resulted in no false 

257 predictive accuracies (Fig S1A). Fig 3 shows simulated predictive accuracies for the two 

258 r2 values considered (0.25 and 0.50) and for each causative scenario (Fig 1). Predictive 

259 accuracies using Bayes Cgb were consistently the best. As expected, this was especially 

260 the case when both h2 and b2 are larger than zero, that is, when Joint or Recursive scenario 

261 hold. In these scenarios, using both sources of variation clearly improved prediction 

262 compared to using only genome (Bayes Cg) or microbiome data (Bayes Cb). Importantly, 

263 predictive accuracy was somewhat lower in Joint and Recursive scenarios than in 

264 Microbiome or Genome scenarios. This indicates that predictive accuracy does not 

265 depend only on total r2, but also on how this variance is split between genome and 

266 microbiome. Although this likely occurs because of the larger noise in Recursive or Joint 

267 scenarios than in Microbiome or Genome scenarios, it also suggests that our analysis 

268 strategy may not be optimum. There is room to develop more efficient tools, especially 

269 when the Recursive scenario holds. Note that variance of prediction was larger in the 

270 Recursive than in the Joint scenario, i.e., the fact that some abundances are inherited is 

271 an additional source of noise.

272

273 It is noticeable that predictions were better when only the microbiome influenced the 

274 phenotype than when the genome was the only source of variation, a phenomenon also 
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275 observed with real data [11,12,19]. In this simulation, this occurs likely because the 

276 number of causative effects and of input variables (SNPs vs. OTUS) is smaller in the 

277 Microbiome or Indirect scenarios than in the Genome scenario. In fact, we do observe a 

278 consistent negative correlation between the number of causative OTUs and predictive 

279 accuracy in both Joint and Recursive scenarios (Fig 4A). 

280

281 In all, our results suggest that predictive accuracy could be increased by ~ 50 % when 

282 considering microbiome data, provided microbiability is of the same order as heritability 

283 (Fig 3). We speculate that this is probably an upper limit, since it will be difficult to have 

284 microbiome data collected homogeneously across time and in different locations. While 

285 individuals can be genotyped at birth, the microbiome in early life is not representative 

286 of adult or later stages. Maltecca et al., for instance, show that early life microbiota is not 

287 a good proxy for carcass composition in pigs [35]. 

288

289 We observed, roughly, a two-fold increase in predictive accuracy when doubling 

290 heritability for Genome, Joint and Recursive scenarios, and a 50% increase for 

291 Microbiome or Indirect scenarios (Fig 3A vs. 3B). 

292

293
294 Fig 3. Predictive accuracy, computed as correlation between predicted and observed 
295 phenotypes across causal scenarios (Fig 1), for each of the Bayes C models: Cgb 
296 considers microbiome and genome; Cg includes genome data only, and Cb includes 
297 microbiome data only. A: r2 = 0.25; B: r2= 0.50. Details of scenarios are in Table 1: G, 
298 Genome; M, Microbiome; I, Indirect; J, Joint; R, Recursive. Results are average of 30 
299 replicates per case.
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300

301
302 Fig 4. Effect of varying number of causative OTUs, r2 = 0.5. A: Predictive accuracy, 
303 computed as correlation between predicted and observed phenotypes, using Bayes Cgb. 
304 B: Heritability and microbiability estimates using Bayes Cgb. Details of scenarios are in 
305 Table 2 and diagrams in Fig 1: Jx, Joint scenario; Rx, Recursive scenario, with x being 
306 the number of causative OTUs (x = 10, 100, 250), half of them under genetic control. 
307 Results shown are the average of 30 replicates.
308

309 Are microbiability estimates reliable?

310 Reliable parameter estimates are needed to optimize the design of breeding schemes or 

311 microbiome wide association studies (MWAS) [36]. They are also needed for 

312 understanding the biology behind the interaction of microbiome and complex phenotypes. 

313 Thus far, microbiability has been usually estimated using ‘standard’ linear methods, e.g., 

314 [4,9,27], much as we have done here. It is of interest then to know how accurate these 

315 estimates could be. 

316

317 Fig 4 shows estimates of variance components for each of the scenarios in Table 1. Bayes 

318 Cgb allows us to assess whether h2 and/or b2 are different from zero: microbiability 

319 estimate is near zero when the data are simulated according to the Genome scenario and 

320 heritability is zero when the Indirect or Microbiome scenarios hold, as it should. 
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321 Similarly, both h2 and b2 estimates are near zero when the null scenario holds (Fig S1B). 

322 An overestimation of b2 is nevertheless evident in Fig 4, and it does not vanish at higher 

323 r2. This upward bias in b2 estimate is accompanied by an underestimation of h2, indicating 

324 that variance estimates are confounded when using Bayes Cgb model. This bias decreases 

325 though when the number of causative OTUs increases. For instance, the bias in b2 

326 estimate is ~ 40% when NOTU = 10 but is reduced to ~10% with NOTU = 250 (Fig 4B). 

327 Therefore, it is likely that the presence of a few causative OTUs, but of large effect, 

328 combined with the presence of highly leptokurtic abundance distributions, may result in 

329 biased parameter estimates. This should be considered when interpreting microbiability 

330 estimates in real experiments. For instance, Difford et al. [4] report estimates h2 = 0.21 

331 and b2 = 0.13 (N = 750), finding G and B to behave independently. Assuming the number 

332 of causative OTUs is small compared to that of SNPs with an effect on abundances 

333 (QTNs), we can presume Difford’s estimate of b2 to be inflated. This means that the actual 

334 microbiome contribution may be too small to improve prediction over that obtained from 

335 using marker data exclusively. Although authors focused on inference and not so much 

336 in prediction, Difford et al reported that no bacteria genera were significantly associated 

337 with methane emissions [4]. Other authors in turn have reported polymicrobial 

338 associations, including members of bacterial, archaeal, fungal, and protozoan 

339 communities, with methane emissions, e.g., [11,25,37–39].

340   

341 For comparison, Fig 5B,D show the estimates obtained with Bayes Cg, when only h2 is 

342 estimated, or Bayes Cb, only b2 is estimated. The most noticeable aspect is that bias in b2 

343 estimates is somewhat reduced relative to that found with Bayes Cgb, signaling again 

344 some confounding between b2 and h2. Bias was reduced overall at higher r2 but did not 

345 vanish.

346
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347
348 Fig 5: Estimates of heritability (h2), microbiability (b2), and correlation between genome 
349 and microbiome (gb) for each of the three Bayes C analysis models: Cgb includes 
350 microbiome and genome in the model (left panels); Cg includes genome only, and Cb 
351 includes microbiome data only (right panels). Upper rows correspond to r2 = 0.25 and 
352 lower rows to r2 = 0.50. Details of simulation scenarios are in Table 1: G, Genome; M, 
353 Microbiome; I, Indirect; J, Joint; R, Recursive. Horizontal dashed lines indicate true h2 
354 or b2 parameter values (0.125, 0.25, 0.5 depending on the scenario and on r2). Results 
355 are average of 30 replicates. A: r2=0.25, Bayes Cgb estimates (h2, b2 and gb); B: r2 = 
356 0.25, Bayes Cg (h2) and Cb (b2) estimates; C: r2 = 0.50, Bayes Cgb estimates; D: r2 = 
357 0.50, Bayes Cg and Cb estimates. Data are average of 30 replicates per case.
358

359 Can the underlying biological scenario be recovered? Can causative OTUs be 

360 identified?

361 An important goal of many experiments is to dissect the biological basis of microbiome 

362 and genome interactions, even if this is not strictly needed for prediction. So far, our 

363 simulations suggest that standard statistical methods can be used to quantify – with some 

364 bias – microbiability contribution to phenotypic variance. It also seems feasible to 

365 distinguish whether the Microbiome or Genome scenario fits real data best. Similarly, it 

366 seems plausible to assess when G and B contribute to the phenotypic variance, i.e. when 

367 Recursive or Joint scenarios are plausible. 

368

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.05.325977doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.325977
http://creativecommons.org/licenses/by/4.0/


15

369 Could Joint vs. Recursive scenarios be distinguished? Can data point to which of Indirect 

370 or Microbiome scenarios is more plausible, if any? Further, can causative OTUs be 

371 identified? These are far more difficult questions to answer than assessing prediction 

372 performance or estimating microbiability. Compare variance component estimates 

373 obtained under the Joint or Recursive scenarios (Fig 5): they are nearly identical for the 

374 same r2. The two scenarios differ in that at least some causative OTUs abundances can 

375 be under partial genetic control in the Recursive scenario. The Recursive scenario should 

376 result in a covariance between G and B. We conjectured that the two scenarios could be 

377 distinguished by analyzing the covariance𝐶𝑜𝑣(𝒖(𝑖), 𝒗(𝑖)) / Var(y) (see methods). 

378 Unfortunately, these estimates are close to zero irrespective of the true scenario (Fig 5A, 

379 C). The likely reason is that the actual fraction of phenotypic variance explained by 

380 indirect effects is conditionally negligible. Note there can be a genetic effect of G on B 

381 but, for our purposes, we are interested only in those genes that affect causative OTUs 

382 (i.e., those that affect the phenotype) and not on the whole microbial system. 

383

384 An alternative approach to infer whether the Recursive causative scenario holds or not is 

385 to run a genome-wide association study (GWAS) for each of the OTU abundances on 

386 each SNP, where the SNP P-values can indicate a genetic basis for some of the 

387 abundances. If we identify significant SNPs for OTUs likely influencing y, we could 

388 conclude that the Recursive scenario is plausible. Unfortunately, this analysis can be 

389 doomed by the large number of tests to be realized, i.e., NOTU x NSNP. To illustrate the 

390 caveats of GWAS on abundances, Fig 6A shows the distribution of -log10 P-values of 

391 neutral SNPs vs. SNPs with an effect on abundances. Assume we take the 5% empirical 

392 threshold of the neutral P-value distribution as indicative of association. Simulations 

393 suggest that only ~3% of causative SNP P-values will be above that threshold, i.e., 

394 approximately what is expected by chance. These P-values depend of course on the actual 

395 number of causative SNPs and on abundance heritabilities, but most evidence so far 

396 points to a weak relationship between genome and microbiome [22]. We warn it is going 

397 to be very difficult to identify abundance causative SNPs using GWAS information alone 

398 [9,20].

399

400 Another question of interest is how many of the OTUs affecting the phenotype can we 

401 expect to discover. One option is to count the frequency of a given OTU entering into the 

402 Bayes C model during sampling. Fig 6B shows the probability of including a causative 
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403 OTU in the Bayes C sampling chain, which varied between ~5% (b2 = 0.125) to ~20% 

404 (b2 = 0.25). About 50% (b2 = 0.25) or 30% (b2 = 0.125) of causative OTUs were among 

405 the 5% most frequently included OTUs in the Bayes C chain, on average. Since the 

406 number of causative OTUs was 25, the rate of false positives was high nevertheless. We 

407 can conjecture that only a few causative OTUs are likely to be identified in medium-sized 

408 experiments, such as this one. 

409

410 An alternative approach is a Microbiome Wide Association Study (MWAS), i.e., to 

411 perform a linear regression of the phenotype on each of OTU abundances and then select 

412 the significant results as potential causative OTUs [4]. Fig 6C shows the average power, 

413 defined as the percentage of true causative OTUs within the 5% most significant results. 

414 Power was ~15% and ~20% for b2 = 0.125 and 0.25, respectively, in the Recursive 

415 scenario. Again, this is not too satisfactory, as we expect a high fraction of false positives. 

416 In this particular scenario, it is perhaps more useful to consider probabilities of inclusion 

417 in the Bayes C chain rather than at P-values since the former are the result of a joint 

418 analysis of all OTUs and can be used directly for prediction.

419

420

421
422 Fig 6: A) Distribution of -log10 P-values of a GWAS of abundances on SNP data; B) 
423 Probability of inclusion in the Bayes Cgb model of causative OTUs for the two levels of 
424 microbiability considered. C) Power of identifying a causative OTU computed as the 
425 probability of exceeding the 95% threshold of the empirical distribution of P-values in 
426 an MWAS for the Recursive scenario. 
427

428 Finally, we investigated the pattern of abundance heritabilities. Fig 7A shows the 

429 simulated heritabilities for the causative, inherited OTUs, which approximately follows a 

430 gamma distribution, together with estimated heritabilities for the causative OTUs in the 

431 Recursive scenario. We observe that both distributions are rather similar although 

432 estimates are somewhat shrunk towards zero, a consequence of using a REML-like prior. 
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433 A problem of course is that we do not know which OTUs are inherited and which are not, 

434 and the true distribution of OTU heritability estimates will be a mixture. Fig 7B illustrates 

435 the heritability distributions of neutral (non-inherited) and causative (inherited) OTUs. In 

436 Fig 7B, we mixed 1.7 neutral OTU per causative OTU. This is completely arbitrary since 

437 we do not know the actual number of OTUs under genetic control, but we did so because 

438 the resulting mixture is similar to the distribution of heritabilities observed by Difford et 

439 al. (Fig 7C). If distributions in Fig 7B were representative of the true state of nature, this 

440 would suggest that about 1/(1+1.7) ~ 40% rumen OTUs could show some genetic additive 

441 variance in the experiment reported by Difford et al.[4].

442

443
444 Fig 7: A: ‘True’ (simulated) and GBLUP estimated distribution of abundance 
445 heritabilities for causative OTUs in the Recursive scenario. B: GBLUP estimated 
446 distribution of abundance heritabilities for neutral and causative OTUs in the Recursive 
447 scenario. C: Actual distribution of OTU abundance heritabilities reported by Difford et 
448 al.[4].
449

450 Discussion

451 Fig 1 represents but highly simplified relationships between the genome, microbiome, 

452 and phenotype. These scenarios are nevertheless important to interpret empirical data and 

453 can help to identify limiting factors in prediction. Further, provided a good fit is found, 

454 they will help in designing experiments that combine microbiome and genetic data. We 

455 chose parameter combinations that represent extreme case scenarios and we found that 

456 results were, qualitatively, robust to parameter choice such as r2. A parameter that can be 

457 relevant though is the number of causative microbiome taxa, i.e., those with an effect on 

458 the phenotype. This number seems to affect the bias of microbiability estimates (Fig 4).

459
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460 Here, we have proposed a new simulation procedure that addresses some important 

461 challenges. First, the algorithm avoids the need for actual phenotype simulation by using 

462 real genotype and abundance data. Although we concede that this procedure may limit 

463 the generality of the study, e.g., in terms of data size, we believe the advantages of using 

464 real data are numerous, since no simulation procedure can accommodate all known and 

465 unknown subtleties of the highly dimensional distributions at hand. Second, we develop 

466 an ingenious permutation procedure (Box 1) that allows linking previously uncorrelated 

467 data to fit a desired genetic hypothesis. By also permuting all OTUs within a given cluster, 

468 we minimize disruption of the whole covariance structure (Fig S2).

469

470 Numerous studies have reported microbiability values for economically important traits 

471 e.g. [4,12,25,39], but their actual reliability is not known. Estimates may be affected by 

472 the estimation procedure. There are numerous alternatives to estimate b2, among them 

473 Bayes C [15], GBLUP [40], Bayesian RKHS regression using either Bray–Curtis 

474 dissimilarities as relationship matrix [25] or with the variance-covariance from the 

475 log‐transformed OTUs as kinship matrix[25,41]. Our results (Fig 5) indicate that BayesC 

476 estimates may be biased upwards, especially when b2 is higher than 0.25 and the number 

477 of causative OTUs is small. However, we found that estimates of b2 derived with Bayes 

478 C were very close to zero in the null scenario (Fig S1B); therefore, we conclude that 

479 models using priors from the Spike-Slab family, which contemplate a priori the 

480 possibility of null effects, can be used to test whether heritability or microbiability is 

481 substantial. Ramayo-Caldas et al. [25] report that estimates using Bray-Curtis based 

482 kernels are higher than those using the log-transformed covariance matrix. The behavior 

483 of estimation methods for microbiability merits further research.

484

485 One conclusion from this work is that it is going to be difficult to distinguish between 

486 some underlying scenarios or to identify the causative OTUs and SNPs, at least using 

487 standard linear models as was done here. The distinction between Joint and Recursive 

488 scenarios is of special relevance for breeding. The latter assumes partial genetic control 

489 of some causative OTUs. Yet, we found both scenarios result in very similar patterns 

490 (Figs 3, 4, 5). Perhaps, a more powerful approach would be to use structural equation 

491 models (SEM), which allow including a variable both as independent and dependent. 

492 Saborio-Montero et al. [42] compared a linear bivariate (one OTU and the phenotype) 

493 model with a SEM but found few differences. One restriction of their approach is that one 
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494 SEM was fitted for each abundance. A whole-genome approach seems in principle more 

495 adequate; however, modeling recursive effects in this context is both statistically and 

496 computationally challenging because of the large number of SNP-OTU combinations that 

497 would need to be considered.

498

499 A line of research that we have not considered involves possible microbiome-DNA 

500 interactions. Although the number of possible interactions to consider can be huge when 

501 the number of SNPs and the number of OTUs is large, interactions between features in 

502 two high-dimensional sets can be modeled in a Gaussian context using co-variance 

503 functions. These functions are the Hadamard product of set-specific similarity matrices 

504 such as the Hadamard product of a SNP-derived and an OTU-derived ‘relationship’ 

505 matrix. Such an approach has been used before to model, e.g. interactions between SNPs 

506 or between SNPs and environmental covariates (e.g., 43). 

507

508 The usefulness of microbiome in prediction depends crucially on its stability in time and 

509 space. For instance, although measures of gastrointestinal microbiome abundances are 

510 known to be repeatable, it cannot be expected to remain stable throughout an individual’s 

511 life span. After weaning and under standard management conditions, e.g., constant diet 

512 and absence of antibiotic treatment, the diversity of monogastric gut microbiota increases 

513 with host age until its composition remains stable. Rumen microbial communities are 

514 highly resilient and host‐specific [44,45] but change in early life. The transition towards 

515 a more stable an adult-like ruminal ecosystem occurs between weaning and one year of 

516 age [46]. Therefore, for prediction purposes, we recommend the inclusion of microbial 

517 information at least after weaning, preferably at adulthood. This may limit the usefulness 

518 of microbiota for prediction in breeding schemes as compared to genomic data in 

519 livestock.

520

521 At present, modeling the influence of microbiome abundances on complex phenotypes is 

522 an open area of research. Here we have presumed that the effects on abundances are 

523 additive in the log scale. Similar models are widely used in a diversity of scenarios, e.g., 

524 multiplicative models are used to accommodate fitness effects in evolutionary genetics 

525 [47] or to deal with highly leptokurtic distributions such as raw abundances, an effect that 

526 is smoothed with the log transformation. In addition to the log-transformation, a widely 

527 popular choice in genetics is the threshold model [7], which assumes the presence of a 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.05.325977doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.325977
http://creativecommons.org/licenses/by/4.0/


20

528 continuous liability (here abundances) with an effect value ‘0’ below a given threshold 

529 and ‘1’ otherwise. This model has the advantage of being independent on whether 

530 abundances are log-transformed or not and is also biologically sound since it is 

531 conceivable that a minimum microorganism abundance is required to trigger a particular 

532 effect. To test the robustness of the log-transformation, we simulated phenotypes such 

533 that 25% of causative abundance observations were above the threshold and the analysis 

534 was performed on the log transformed abundances as before. As could be expected, using 

535 a ‘wrong’ model for the analyses was detrimental to prediction but not dramatically (Fig 

536 8A). Parameter estimates were affected downwards compared to the multiplicative model 

537 (Fig 8B). We suggest that major conclusions from this work should hold even if the 

538 relationship between variables and phenotype is not strictly multiplicative.

539

540
541 Fig 8. Comparison of multiplicative (log) and threshold Microbiome (M) and Joint (J) 
542 scenarios (r2 = 0.5).  A: Predictive accuracy, computed as correlation between predicted 
543 and observed phenotypes, using Bayes Cgb. B: Heritability (h2) and microbiability (b2) 
544 estimates using Bayes Cgb. Results are average of 30 replicates. Scenarios M and J as 
545 specified in Table 1; the log transformation results are shown for completeness and are 
546 the same as in Figs 3 and 5. Data are average of 30 replicates.
547

548 Conclusion
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549 This study suggests that microbiome data can significantly improve the prediction of 

550 complex phenotypes, irrespective of whether some abundances are under direct genetic 

551 control or not. For this strategy to be successful, though, medium to large-sized 

552 experiments are required, the microbiome should be relatively stable and should be 

553 available before the phenotype is collected. This limits the usefulness of microbiome for 

554 prediction in breeding schemes as compared to genome data, which can be collected at 

555 birth and remains unchanged. Important potential applications remain nevertheless, such 

556 as predicting methane emission in cattle, feed efficiency, disease predisposition, or crop 

557 production using soil metagenome. Overall, we can be rather confident that standard 

558 linear methods can be used despite the highly leptokurtic distributions observed in OTU 

559 abundances. There is room for specific theoretical developments though, perhaps along 

560 the lines proposed by Saborio-Montero et al. [42], but these should be based on a better 

561 understanding of the relation between microbiome and phenotype. It seems critical to 

562 quantify, even approximately, the number of taxa affecting the phenotype and to 

563 characterize the distribution of their effects. We are far less optimistic in what regards the 

564 identification of causative OTUs, and in particular of the putative QTNs affecting relative 

565 abundances.

566

567 Materials and Methods
568 Simulation Strategy

569 There is ample literature and software available on the simulation of ‘standard’ complex 

570 phenotypes, e.g., [48–51]. These algorithms, however, are not suited for some of the 

571 scenarios posed in Fig 1. Here we propose simulating the joint influence of genome and 

572 microbiome on a quantitative trait by adding their contributions plus a random noise:

573

574

575 𝑦𝑖 =  ∑𝑁𝑄𝑇𝑁
𝑗=1 𝛼𝑗 𝑧𝑖𝑗 + ∑𝑁𝑂𝑇𝑈

𝑘=1 𝜔𝑘 𝑥𝑖𝑘 + 𝜀𝑖, (1)

576

577

578 where yi is the i-th individual record, j is the genetic effect of j-th causal SNP (QTN), 

579 with j = 1, NQTN, the number of QTNs, zij is the genotype of the i-th individual for j-th 

580 SNP coded say -1, 0 and 1 (strict additivity was assumed for all QTN), k is the linear 

581 effect of the k-th OTU abundance (xik), with k = 1, NOTU, the number of abundances that 
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582 influence the phenotype and  is a normally distributed residual. The OTU’s coefficient 

583 can be interpreted as the expected change in phenotype per OTU’s abundance unit 

584 increase. Since abundances are in the log scale, this is equivalent to a multiplicative effect 

585 model. Equation (1) is valid for all scenarios in Fig 1, except that the term involving 

586 markers∑𝑁𝑄𝑇𝑁
𝑗=1 𝛼𝑗 𝑧𝑖𝑗 is removed in the Microbiome and Indirect scenarios whereas the 

587 term∑𝑁𝑂𝑇𝑈
𝑘=1 𝜔𝑘 𝑥𝑖𝑘 is removed in the Genome scenario. 

588

589 For the Indirect and Recursive scenarios, we also need to model the variation in 

590 abundances (x) that is explained by the genome (Fig 1). Again, we can resort to a linear 

591 model where the abundance itself is treated as a standard complex phenotype:

592

593 𝑥𝑖𝑘 =  ∑𝑁𝑄𝑇𝑁𝑘
𝑗=1 𝛽𝑗𝑘 𝑧𝑖𝑗 + 𝜖𝑖, (2)

594

595 where 𝑥𝑖𝑘 is the abundance level of the k-th OTU that is under partial genetic control for 

596 i-th individual, j is the genetic effect of j-th QTN on abundance, and 𝑧𝑖𝑗 is the genotype 

597 of the i-th individual for j-th SNP. The j-th sum is across the QTNs influencing k-th 

598 abundance, j = 1, NQTN(k). Note abundances 𝑥𝑖𝑘 in Eqn. (2) are a subset of those in (1). 

599 There may be other non-causative abundances under genetic control, but this is irrelevant 

600 for our purposes. A phenotype following the Recursive scenario can then be simulated 

601 via a two-step procedure: first, simulate abundances (x) using Eqn. (2) followed by 

602 phenotype simulation using (1) given the abundances obtained. 

603

604 We used real genome and microbiome data as input for the simulation procedure. We 

605 downloaded the rumen abundance table of 4,018 OTUs from dairy cattle rumen (N = 750, 

606 [4]). A pseudo-count equal to one was added to zero abundances, which were next total-

607 sum scaled and log-transformed. This results in much less leptokurtic and less asymmetric 

608 distributions than original raw abundances. In Eqns. 1 and 2, xik represent the already log-

609 transformed abundances. As for genotypes, high-density array genotypes from 750 dairy 

610 cows among the total available were downloaded from [11]. To prune SNPs and facilitate 

611 computation, 35% of all genotypes with a minimum allele frequency of 0.01 and a 

612 maximum missing percentage of 1% were retained. A total of 32,204 autosomal SNPs 
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613 was finally retained. The few missing values were simply imputed with the mean. Thirty 

614 simulation replicates per scenario were simulated.

615

616 Under the Joint scenario, which assumes independence between G and B, we can simply 

617 sample the list of causative SNPs and abundances, simulate their effects, and apply Eqn. 

618 1 to generate phenotype values given observed genotypes and abundances. The case of 

619 Recursive and Indirect scenarios is not that obvious because we need to sample 

620 abundances that are under genetic control and a link must exist between G and B (Eqn. 

621 2). We solved this issue by rearranging abundances of a given OTU between individuals 

622 such that the desired correlation between abundance and individual’s genotypes is 

623 attained. This strategy has the important advantage that the distribution of abundances is 

624 not changed. Suppose 𝜸𝒊𝒌 = ∑𝑁𝑄𝑇𝑁𝑂
𝑗=1 𝛽𝑗𝑘 𝑧𝑖𝑗 is the simulated genetic effect of the i-th 

625 individual for k-th abundance (Eqn. 2) and that the desired heritability for that abundance 

626 is ℎ2
𝑘. The algorithm (Box 1) is based on the simple observation that, given any two 

627 vectors x and y, correlation is maximum ( ~ 1) when observations in both vectors are 

628 sorted and  is ~ zero when they are shuffled. Therefore, there must be some order ysort 

629 then that fulfills, approximately, the constraint cor(x, ysort) = . For our purposes, we need 

630 to rearrange the observed abundances xk such that the correlation between rearranged xk 

631 and k is hk, the square root of heritability for k-th abundance. The algorithm is detailed 

632 in the Box.

633

634 A drawback of this algorithm is that it locally breaks the covariance between abundances 

635 of different OTUs. To alleviate this, we permuted all abundances that fell within the same 

636 OTU cluster. We clustered abundances using R function hclust(dist(.), 

637 method="ward.D2") and cut the tree in K = 500 clusters. We chose K = 500 because the 

638 first quartile of intra-cluster average correlation was above the third quartile of the 

639 average correlation between random abundances, that is, clusters were made up of highly 

640 correlated abundances compared to average. We also explored K = 200 but we did not 

641 find any difference neither in predictive accuracy nor in heritability estimates. To verify 

642 that the shuffling algorithm did not alter the whole structure of the data, we show the 

643 principal component analysis of the original and a few shuffled microbiome sets in Fig 

644 S3. 

645
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646

Algorithm 1: Find a permutation of vectors x and y such that the correlation 

between permuted vectors is a predetermined value 

Take x,𝒚,𝜌, where 𝒙 and y are arbitrary, uncorrelated vectors in 𝑅𝑛  and 0 ≤ 𝜌 ≤ 1 is the 

desired correlation. The aim is to find a permutation of y such that correlation cor(x,  ysort) 

= 𝜌, approximately. The algorithm can be equally applied when x and / or y are integer 

numbers, normality is not required either. Performance of the algorithm improves as n 

increases and when normality holds. 

1. Sort the values of x and 𝒚 in increasing or decreasing order. The correlation 𝑐𝑜𝑟

(𝒙𝒔𝒐𝒓𝒕,𝒚𝒔𝒐𝒓𝒕)≅1. 

2. Generate a dummy variable 𝒛 = 𝒚𝒔𝒐𝒓𝒕 + 𝒆 where e values are sampled from 𝒆 ~ 𝑁

(0,𝑆2
𝑦

1 ― 𝜌2

𝜌2
 ),  𝑆2

𝑦 is the sample variance of y. The correlation cor(𝒙𝒔𝒐𝒓𝒕 , z) ~ 𝜌. 

3. Create an index variable iy which indicates how ysort should be reordered according 

to z order. This dummy index iy = order(y)[order(z)] contains the order of y when 

values are back-sorted according to the order of z.

4. Reorder iy = iy[rank(x)] to match the index with positions ysort in the original vector 

x. This is needed since x remains unchanged and only y is permuted. 

5. The correlation c𝑜𝑟(𝒙,𝒚[𝒊𝒚])≅𝜌.

Algorithm available at https://github.com/miguelperezenciso/Simubiome, see sortCorr 

function.
647

648 Parameter fitting

649 Little is known neither on the number of OTUs influencing a given phenotype nor on how 

650 many of those are partly inherited. For that reason, we chose some extreme, yet ‘educated’ 

651 values for each of the five scenarios depicted in Fig 1. We considered r2 = ℎ2
𝑔 + ℎ2

𝑏  = 

652 0.25 and 0.50; r2 = 0.25 is grossly the value reported by Difford et al. 2019 with N = 750, 

653 whereas values closer to r2 = 0.50 were reported by Wallace et al. in some farms. Overall, 

654 augmenting r2 values tries to mimic the effect of increasing sample size. We assumed ℎ2
𝑔 

655 = ℎ2
𝑏 for Joint and Recursive scenarios, as also reported by Difford et al or Camarinha-

656 Silva et al. approximately. The number of QTNs was fixed to 100. This figure is 

657 somewhat arbitrary, but the specific number of loci would not affect much the results.  

658 Barton et al. [52] showed theoretically that most properties of the infinitesimal model 
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659 converge as fast as the inverse of the number of loci, or ~ 1% deviance with NQTN = 100. 

660 In general, genomic prediction is known to be relatively insensitive to the number of 

661 QTNs [53]. As for individual genetic effects  numerous empirical and theoretical works 

662 show that they are not uniformly distributed and can be approximated by a gamma-like 

663 distribution [54,55]. Here we sampled genetic effects  ~ (shape = 0.2, scale = 5), as 

664 suggested by Caballero et al. [56], and also used previously by us [57].

665

666 Much less is known on the number of causative OTUs (NOTU), although we can presume 

667 that NOTU should be smaller than the number of QTNs. For instance, Duvallet et al. [36]

668 found in a large meta-analysis that the human diseases studied were affected on average 

669 by 10 - 15 changes in abundances at the genus level. Here we considered NOTU = 25 (0.6% 

670 of all OTUs), although we also evaluated NOTU = 10, 100 and 250. Similarly, for the 

671 Recursive and Indirect scenarios, we took the extreme scenario where all causative OTUs 

672 are genetically determined, i.e., NOTU = NOTU(g). The genetic effects  on abundances 

673 (Eqn. 2) were sampled from the same distribution  ~ (shape = 0.2, scale = 5) as direct 

674 genetic effects . We are much more ignorant regarding the distribution of abundances’ 

675 effects  on the phenotype (Eqn. 1). We took as proxy the regression coefficients of 

676 methane emission on abundances published by Difford et al. [4], in their supplementary 

677 information S4, which can be approximated by a (shape=1.4, scale=3.8). Fig S3 

678 compares both gamma distributions and the fit to empirical data. This model predicts that 

679 the variance of OTUs’ effects is wider and of larger individual effect on average than that 

680 of SNPs. Although this is speculative at this point, it is sensible to assume that only a few 

681 taxa do have a sizeable influence on the phenotype, say methane emission. 

682

683 Analysis

684 We used Bayes C algorithm [15] as implemented in BGLR [58] to assess prediction 

685 performance and reliability of parameter estimates. We also tested Bayesian RKHS 

686 regression, equivalent to GBLUP [40], but results were similar or worse and are not 

687 presented. Three models were used to analyze the data:

688

689 Bayes Cgb: y = Z a + b W + e (3a)

690

691 Bayes Cg: y = Z a + e (3b)
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692

693 Bayes Cb: y = W b + e (3c)

694

695 where y is the vector containing the simulated phenotypes, a contains the marker effect 

696 estimates, Z contains the observed genotypes for the 33k markers, b contains the OTU 

697 abundance effects, W is a matrix with all 4,018 abundances in the 750 individuals, and e 

698 is the residual. Prior to the analyses, phenotypes, abundances, and genotypic values were 

699 standardized to mean zero and SD = 1. As priors  for SNPs or abundances probabilities 

700 to enter into the model, we used  ~ Beta(p0 = 5, 0 = 0.001), which has expectation 0 

701 and variance 0 (1- 0) / (p0+1). We also considered a much more liberal, flat prior for  

702 ~ Beta(p0 = 2, 0 = 0.01), but we did not observe strong differences. A total of 50k 

703 iterations were run per Bayes C chain, a plot of the residual variances along iterations 

704 indicated convergence was attained with this number of iterations. To assess predictive 

705 accuracy, 75 (10% of N) phenotypes were randomly removed and predicted with the fitted 

706 model. Correlation between observed and predicted phenotypes was used as measure of 

707 predictive accuracy. 

708

709 The ‘heritability’ is not explicitly defined in a Bayes C framework, and here we used the 

710 proposal by [58] (https://github.com/gdlc/BGLR-R/blob/master/inst/md/heritability.md). 

711 In short, at each iteration i, the algorithm samples SNPs and OTUs effects: 

712

713 𝒖(𝑖) = 𝒁 𝑎(𝑖)

714 𝒗(𝑖) = 𝑾 𝑏(𝑖)

715

716 where 𝒖(𝑖) and 𝒗(𝑖) are genome and microbiome effects at i-the iteration for the set of 

717 individuals, respectively, 𝑎(𝑖) and 𝑏(𝑖) are current SNP and OTU abundances solutions; 

718 therefore, 𝑉𝑎𝑟(𝒖(𝑖)) / Var(y) and 𝑉𝑎𝑟(𝒗(𝑖)) / Var(y) are i-th iterate heritability and 

719 microbiability estimates wherefrom posterior means can be estimated by averaging over 

720 iterations. For Bayes Cgb, we also sampled the absolute covariance between u and v, i.e., 

721 |𝐶𝑜𝑣(𝒖(𝑖), 𝒗(𝑖))| / Var(y).

722

723 To assess how likely is to identify causative OTUs, we retained the probability of a given 

724 OTU entering into the model, averaged over Gibbs sampling iterations. We run a GWAS 
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725 of abundances (xk, k=1, NOTU) on SNP genotypes (zj, j=1, NSNP) using R function lm(xk 

726 ~ zj) and we computed the P-value of both causative QTNs, i.e., affecting abundances, 

727 and neutral SNPs. This was done in the Recursive scenario only. In this scenario, we also 

728 computed the heritabilities of all abundance levels using GBLUP via a RKHS strategy 

729 (https://github.com/gdlc/BGLR-R/blob/master/inst/md/GBLUP.md#RKHS) using 

730 BGLR. Weakly informative priors for variances were used to mimic a REML-like 

731 estimator. 
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