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Summary14

1. It is common practice for ecologists to examine species niches in the study of community com-15

position. The response curve of a species in the fundamental niche is usually assumed to be quadratic.16

The center of a quadratic curve represents a species’ optimal environmental conditions, and the width17

its ability to tolerate deviations from the optimum.18

2. Most multivariate methods assume species respond linearly to the environment of the niche, or with19

a quadratic curve that is of equal width and height for all species. However, it is widely understood that20

some species are generalists who tolerate deviations from their optimal environment better than others.21

Rare species often tolerate a smaller range of environments than more common species, corresponding22

to a narrow niche.23

3. We propose a new method, for ordination and fitting Joint Species Distribution Models, based on24

Generalized Linear Mixed-Effects Models, which relaxes the assumptions of equal tolerances and equal25

maxima.26

4. By explicitly estimating species optima, tolerances, and maxima, per ecological gradient, we can better27

predict change in species communities, and understand how species relate to each other.28
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keywords: model-based ordination, unimodal response, niche model, unconstrained quadratic ordina-29

tion, joint species distribution model.30

Introduction31

One of the key topics addressed by community ecology is what causes changes in community composition. In32

order to explore species niches, species communities are surveyed at locations with different environmental33

conditions. Species tolerances are then reflected in the resulting multivariate dataset, as differences in34

occurrences or abundances between locations. The most favorable environmental conditions for species are35

represented by the optimum of the niche, where species exhibit their maximum abundance or probability of36

occurrence. Deviation from the optimum reflects increasingly unfavorable conditions.37

Correspondence Analysis (CA) is often used to summarize community data, as it implicitly approximates38

the fit of a quadratic model, with the additional assumptions of equally spaced optima, sites that are well39

within the range of species optima, equal tolerances, and equal or independent maxima (ter Braak 1985).40

The combination of assuming equally spaced optima, equal maxima, and equal tolerances, gives an early41

niche model, called the species packing model (MacArthur & Levins 1967). The relationship of the species42

packing model to CA has added to its popularity among applied ecologists (Wehrden et al. 2009).43

Recent advances in the estimation of species niches have focussed on performing ordination with explicit44

statistical models, such as Generalized Linear Latent Variable Models (GLLVMs; Warton et al. 2015). The45

GLLVM framework is well known for its capability to fit Joint Species Distribution Models (JSDMs; Pollock46

et al. 2014; Ovaskainen et al. 2017; Tobler et al. 2019; Zurell et al. 2020). In the context of JSDMs, GLLVMs47

assume species abundances are correlated due to similarity in response to ecological gradients, modelled with48

covariates or latent variables respectively. Latent variables can be understood as combinations of missing49

covariates, so that GLLVMs allow us to parsimoneously model species distributions. They are equivalent to50

ordination axes, representing complex ecological gradients (Halvorsen 2012). Recently, the use of GLLVMs51

to perform model-based ordination has increased in popularity (Inoue et al. 2017; Björk et al. 2018; Lacoste52

et al. 2019; Damgaard et al. 2020).53

With intercepts included for row standardization, GLLVMs fit the species packing model (Jamil & ter54

Braak 2013; Hui et al. 2015), though with maxima that are equal for the latent variables. Existing GLLVMs55

assume that latent variables are linear, just as all classical ordination methods (Jamil & ter Braak 2013).56

However, it is widely understood that species have unequal tolerances and maxima, so that the assumptions57

of linear latent variables, and equal tolerances, are unlikely to hold in practice.58

In this paper, our goal is to overcome the assumptions of equal tolerances, and equal maxima, by formu-59

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.326199doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.326199
http://creativecommons.org/licenses/by/4.0/


lating a GLLVM with quadratic latent variables. To our knowledge, there has been no attempt to implement60

such a GLLVM until now. Although seemingly a straightforward extension, the quadratic term explicitly61

allows species niches to be estimated without constraints on the parameters. This means that optima, tol-62

erances, and maxima per latent variable, as well as the lengths of ecological gradients, can all be explicitly63

estimated. Explicitly estimating the combination of these three parameters gives unique insight into reasons64

for species low detectability, whether it is due to low abundance or probability of occurrence (maxima),65

a high degree of habitat specialization (tolerance), or due to unsuitable observed environmental conditions66

(optima). In combination with knowledge of the study system, these parameters can help ecologists to deter-67

mine why certain species are rare. Additionally, due to the model-based nature of the proposed ordination68

method, it is possible to calculate confidence intervals for each set of parameters, providing unparalleled69

benefits for inference when using ordination. In the context of JSDMs, the quadratic GLLVM models latent70

species distributions, without covariates in the model. When covariates are included, the quadratic GLLVM71

partitions species distributions in observed (fixed effects) and latent or unobserved (random effects), similar72

to the partitioning of fixed and random effects in mixed-effects models when covariates are included.73

In contrast to classical ordination methods, GLLVMs model the latent variables as unobserved, treating74

them as random rather than fixed (Walker & Jackson 2011), which consequently have to be integrated75

over in the likelihood. Here, we develop a variational approximations (VA) implementation after Hui et al.76

(2017) and Niku et al. (2019a), to perform calculations quickly and efficiently. In addition to presenting77

the quadratic GLLVM, we perform simulations to evaluate the accuracy of the VA implementation, and the78

capability of the quadratic GLLVM to retrieve the true species-specific parameters and latent variables. We79

use two real world datasets to demonstrate use and interpretation of the proposed quadratic GLLVM: 1) a80

small dataset of hunting spiders in a Dutch dune ecosystem (van der Aart & Smeek-Enserink 1974), and 2)81

a larger dataset on Swiss alpine plant species on a strong elevation gradient (D’Amen et al. 2018).82

Model formulation83

The ecological niche is here described by a quadratic function involving three parameters; the optimum uj ,84

the tolerance tj , and the maximum cj . The optimum uj is the location on the ecological gradient where a85

species exhibits its highest abundance or probability of occurrence (the maximum cj). The tolerance tj is a86

measure of the width or breadth of the niche, and indicates if a species is a generalist or specialist.87

Consider an n × p matrix of observations, where yij denotes the response of species j = 1 . . . p at site88

i = 1 . . . n. Then in the quadratic GLLVM, we assume that, conditional on a vector zi of q = 1 . . . d latent89

variables where d � p, the responses yij at site i are independent observations from a distribution whose90
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mean, denoted here as E(yij |zi), is modelled as:91

g{E(yij |zi)} =
d∑

q=1

{
cjq −

(ziq − ujq)2

2t2jq

}

=
d∑

q=1

(
cjq −

u2
jq

2t2jq

+
z2

iq

2t2jq

− ziqujq

t2jq

)
,

(1)

where g{·} is a known link function (e.g. the log-link when the responses are assumed to be Poisson, negative-92

binomial, or gamma distributed, the probit-link when the responses are assumed to be Bernoulli or ordinal93

distributed, and the identity-link for responses that are assumed to be Gaussian distributed).94

To facilitate easier estimation, and for a closer comparison to the linear GLLVM, we formulate the95

quadratic GLLVM in matrix notation:96

g{E(yij |zi)} = β0j + z>i γj − z>i Djzi, (2)

with a species-specific intercept β0j that accounts for e.g. mean abundances, and a vector of coefficients per97

species for the linear term γj . We can see a third term is added here to the existing structure of the linear98

GLLVM, which models tolerances and maxima per species and latent variable. Specifically, we introduce a99

diagonal matrix Dj of quadratic coefficients with each diagonal element being the quadratic effect for latent100

variable q and species j. We require Dj to be a positive-definite diagonal matrix, to ensure concave curves101

to the latent variables. Thus, 2Dj is the precision matrix of the ecological niche (likewise (2Dj)−1 is the102

covariance matrix). Additionally, row intercepts or covariates can be included as in Hui et al. (2017), or103

species traits as in Niku et al. (2019a), though we have chosen to omit those terms here and focus on the104

case of unconstrained ordination.105

With Dj being a diagonal matrix with the positive elements Djqq, the vector of species maxima cj106

with elements cjq, the vector of species optima uj with elements ujq, and the vector of species tolerances107

tj with elements tjq, we derive the following connections between the parameters in equations (1) and (2):108

β0j =
d∑

q=1
cjq − u2

jq/(2t2jq), γjq = −ujq/t
2
jq, and Djqq = 1/(2t2jq). Similarly, for the formulation in equation109

(2), the parameters in equation (1) can be retrieved: cjq = β0j +ujqγjq −u2
jqDjqq, ujq = −γjq/(2Djqq), and110

tjq = 1/
√

2Djqq.111

Four special cases of the quadratic GLLVM, as formulated in equation (2), are worth discussing: 1)112

Dj = D, i.e. common tolerances for species, 2) Dj = D11Id where Id is a d × d identity matrix, i.e. equal113

tolerances for species and latent variables, 3) when Dj = 0 for a subset of the p species, and 4) when Dj = 0114

for all p species. The first case assumes tolerances to be the same across species, but not latent variables,115

and additionally places constraints on the species maxima. This species-common tolerances model might116
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prove useful in practice, as it requires fewer observations per species than the full quadratic GLLVM, but still117

explicitly includes quadratic latent variables. The second case can be shown to be equivalent to the linear118

GLLVM with row intercepts as presented in Hui et al. (2015), which assumes tolerances to be the same for119

all species and latent variables, and the maxima to be the same for all latent variables. In the third case,120

some species respond to the latent variable linearly, while others exhibit quadratic responses. The fourth121

case is the most basic GLLVM with linear latent variables, currently possible to fit with e.g. boral (Hui122

2016), HMSC-R (Tikhonov et al. 2020), and gllvm (Niku et al. 2020).123

Model interpretation124

In this section, we derive and discuss various tools that are commonly used in the application of JSDMs and125

ordination, such as calculating residual correlations and partitioning residual variance, calculating gradient126

length, and visualizing the ordination, and demonstrate how they can be adapted to the proposed quadratic127

GLLVM.128

Residual covariance matrix129

One aspect GLLVMs are known for is modelling species residual correlations, calculated from the residual130

covariance matrix (Zurell et al. 2018; Blanchet et al. 2020). To facilitate calculation of the residual covariance131

matrix, we can reparameterize all GLLVMs as a multivariate mixed-effects model with a residual term:132

g{E(yij |zi)} = β0j + εij . (3)

Here, εij accounts for any residual information that is not accounted for by fixed-effects in the model, such133

as covariates or intercepts (Warton et al. 2015). Assuming the latent variables are independent for all sites,134

the elements of the residual covariance matrix are given by:135

Σjk = cov (εij , εkl) , ∀i, k = 1 . . . n, j, l = 1 . . . p.

For a a length p vector εi, existing JSDM implementations assume εi ∼ N (0,Σ), i.e. the residual term follows136

a multivariate normal distribution. For the linear GLLVM, it is straightforward to show that εij = z>i γj , so137

it follows that εi ∼ N (0,γ>j γj). In essence, GLLVMs peform a low rank approximation to the covariance138

matrix of a residual term. The rank of this residual covariance matrix is equal to the number of estimated139

latent variables d in the model for the linear GLLVM.140
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Turning to the quadratic GLLVM, where εij = z>i γj − z>i Djzi, the elements of the residual covariance141

matrix are:142

Σquad,jk =
d∑

q=1
(γjqγkq + 2DjqqDkqq) , (4)

for which a proof is given in Appendix S1. This can be rewritten in terms of the species optima uj and143

tolerances tj :144

Σquad,jk =
d∑

q=1
{(t2jqt

2
kq)−1(0.5 + ujqukq)}, (5)

from which it follows that εij ∼
d∑

q=1
t2jqχ

2( 1
4 ,

1
4u

2
jq), in words: the residual term follows a generalized χ2

145

distribution (Khatri 1980).146

Equation (4) and equation (5) additionally serve to demonstrate how to partition the residual variance147

of the quadratic GLLVM, e.g. per latent variable, for the linear and quadratic term separately, or both.148

Variance partitioning is commonly used in the application of ordination methods, e.g. to determine fit149

(Økland 1999), or to explore causes of residual variance (Borcard et al. 1992; Økland & Eilertsen 1994).150

Covariates can be included in the model to account for the residual variance otherwise accounted for by the151

latent variables. The residual variance can be used to identify indicator species i.e. those species that best152

represent an ecological gradient, or to calculate a measure of R2 (Nakagawa & Schielzeth 2013).153

The rank of the residual covariance matrix is double that of a linear GLLVM with the same number of154

latent variables: 2d. The additional quadratic term thus allows us to account for more residual correlations155

between species, with fewer latent variables. This corresponds with the ecological notion that species often156

respond to few major complex ecological gradients (Halvorsen 2012). From this, we see that when the number157

of latent variables in a quadratic GLLVM exceeds 1
2p, there are more parameters included than in a JSDM158

with an unstructured residual covariance matrix. However, this is not an issue here, since for ordination159

purposes we are only interested in cases where there are much fewer latent variables d than species p.160

Gradient length161

The length of an ecological gradient is of great interest to ecologists in the use of ordination, because it162

provides a measure of beta diversity (Oksanen & Tonteri 1995). Longer gradients indicate higher diversity,163

as spacing (i.e. dissimilarity in the species community) between sites in latent space is potentially larger. In164

the past, it has been emphasized that short gradients are better analysed using linear ordination methods,165

and longer with unimodal methods (ter Braak & Prentice 1988). However, the quadratic GLLVM allows166
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species to exhibit both linear and unimodal responses, and so it is appropriate for both, and it is no longer167

required to switch ordination method as a consequence of gradient length.168

To determine gradient length from the proposed quadratic GLLVM, we define the ecological gradients169

z̃i, as a function of the latent variables zi, but with a diagonal covariance matrix G of size d×d. First, for a170

species-common tolerances model, we note that the quadratic term in equation (2), i.e. z>i Dzi, can instead171

be written as
d∑

q=1
z2

iqDqq, so that z̃iq = ziq

√
Dqq, and z̃i ∼ N (0,G), where G = D. Then, the gradient172

length is approximately 4G
1
2 (i.e. the approximate width of a normal distribution), and D = I173

For the species-specific tolerances model, we note that one of the uses of gradient length in the past has174

been to rescale the latent variables so that an ordination diagram can be understood in terms of compositional175

turnover (Hill & Gauch 1980). This requires the mean species tolerances to be one (as is the case for the176

species-common tolerances model above), so that the covariance matrix of the ecological gradient in the177

species-specific tolerances model is Gqq = 1
p

p∑
j=1

Djqq, so the matrix of quadratic coefficients Dj is scaled178

by the inverse of the covariance matrix of the ecological gradient, G−1. However, we choose to use the179

median of the species tolerances instead, as it more accurately represents gradient length with both linear180

and quadratic responses of species in the model. In general, the proposed quadratic model allows further181

exploration of measures of gradient length by, for example, using the mean tolerance of species with clear182

quadratic responses, rather than the median of all tolerances.183

The measure of gradient length calculated here, can be interpreted in the same manner as the gradient184

length provided by Detrended Correspondence Analysis (Hill & Gauch 1980).185

Ordination diagram186

Usually, a biplot (Gabriel 1971) is constructed to visually inspect results from an ordination. For the187

quadratic GLLVM, biplots tend to create an arch when the residual variance of the linear term is smaller188

than the residual variance of the quadratic term.189

Instead, we propose that species optima and tolerances can be plotted directly, so that species niches190

are visualized in a two-dimensional latent space from a top-down perspective. The widths of the niches191

can then potentially be represented as ellipses using the estimated species tolerances (i.e. providing species192

distributions in latent space), so that co-occurrence patterns can be inferred from the (lack of) overlap193

between ellipses. Additionally, information on sites, such as the predicted locations and prediction regions,194

can be added (Hui et al. 2017). Information for the sites can be used to infer the distance of sites to the195

species optima (i.e. the suitability of sites for species), or to the egdes of species niches (see the hunting196

spiders example below).197
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Finally, based on the disscussion in the two subsections above, there are two ways of scaling the ordination198

diagram: 1) by the residual variance per latent variable, or 2) by the mean or median tolerance. In the first199

scaling, the diagram is scaled to draw attention to the latent variable that explains most variance in the model.200

However, the second scaling has a more ecological intuitive interpretation. If the tolerances are assumed to201

be common for species, the second scaling provides an ordination diagram in units of compositional turnover202

(Gauch 1982). When the linear and quadratic terms in the model explain an equal proportion of the total203

residual variance per latent variable, these scalings produce similar results.204

Model estimation205

We propose to use variational approximations (VA; Hui et al. 2017) for estimation and inference for the206

quadratic GLLVM. Broadly speaking, VA is a general technique used to provide a closed-form approximation207

to the marginal log-likelihood of a model with random effects or latent variables, when an analytical solution is208

not available. Computationally, VA can be orders of magnitude faster than MCMC, numerical integration,209

or even the Laplace approximation (Niku et al. 2019a), and without loss of accuracy (Hui et al. 2017).210

However, the calculation of the VA log-likelihoods needs to be derived on a case-by-case basis. In contrast,211

the Laplace approximation can be applied automatically in many cases (Kristensen et al. 2016). Note it is212

not possible to approximate the marginal likelihood of a quadratic GLLVM with the Laplace approximation213

(K. Kristensen, pers. comm., March 8th 2019).214

The marginal log-likelihood of a quadratic GLLVM is given by:215

L(Θ) =
n∑

i=1
log
{ ∞∫
−∞

p∏
j=1

f

(
yij |zi,Θ

)
h

(
zi

)
dzi

}
, (6)

where f(yij |zi,Θ) is the distribution of the species responses given the latent variables. As mentioned216

previously, and as per Hui et al. (2015), we assume the distribution of the latent variables h(zi) to be217

multivariate standard normal i.e. h(zi) = N (0, I). The vector Θ includes all parameters in the model218

Θ = {β01 . . . β0j , γ11 . . . γjq, D111 . . . Djqq}>. Equation (6) can be straightforwardly modified if covariates are219

also included in the quadratic GLLVM.220

In VA, we construct a lower bound to equation (6), by assuming that the posterior distribution of the221

latent variables can be approximated by a closed form distribution e.g., a multivariate normal distribution.222

We then minimze the Kullback-Leibler divergence between this approximate closed-form distribution (also223

known as the variational distribution) and the true posterior distribution. Hui et al. (2017) showed that,224

for GLLVMs with linear latent variables, the optimal variational distribution is multivariate normal zi ∼225
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N (ai,Ai), with mean ai and covariance matrix Ai, so we will adopt this choice here as well.226

In Appendix S1 we provide information on calculating approximate confidence intervals for the parame-227

ters. In Appendix S2 we provide derivations for the log-likelihood of common response types in community228

ecology, such as count data (Poisson, and negative-binomial with quadratic mean-variance relationship,229

and both assuming a log-link function), binary data and ordinal data (both with probit-link function), as230

well as positive continuous data (gamma, with log-link function) and continuous data (Gaussian, with an231

identity-link function).232

Simulation study233

To assess how well the proposed model retrieves the true latent variables zi, optima uj , tolerances tj , and234

maxima cj , we performed simulations for six response distributions; 1) Gaussian, 2) gamma, 3) Poisson, 4)235

negative-binomial, 5) Bernoulli, and 6) ordinal. The R-code used for the simulations is provided in Appendix236

S3. For each of the distributions, we simulated 1000 datasets with different numbers of sites and species.237

A consequence of the negative-only third term in the quadratic GLLVM, is that the model often simulates238

a large number of zeros (more so than the linear GLLVM), providing a challenge in testing its accuracy,239

especially for small datasets. First, to study the accuracy of the VA approximation, we simulated datasets240

of p = 20 to 100 species in increments of 10, while keeping the number of sites constant at n = 100. Hui241

et al. (2017) argued that the VA log-likelihood is expected to converge to the true likelihood as p → ∞242

(i.e. for a large number of species), thus this will allow us to study the finite sample properties of the VA243

approximation for the proposed model.244

Second, to explore the sample size required to accurately estimate the species-specific parameters e.g.,245

species optima uj , tolerances tj , and maxima cj , we simulated datasets of n = 20 to 100 sites in increments of246

10, while keeping the number of species constant at p = 100. For each dataset, we compared 12 combinations247

of initial values and fitting algorithms (see Appendix S4: Fitting, for details), and picked the model with the248

highest log-likelihood (see Appendix S5: Fig. S1 for the frequency at which different types of initial values249

and fitting algorithm were used in the best models per distribution).250

As a true model, we considered a quadratic GLLVM with d = 2 latent variables, which was constructed251

as follows. First, the species-specific intercepts β0j were simulated as Uniform(−1, 1), which corresponds252

to species with low abundance or occurrence. Next, the true coefficients corresponding to the linear terms253

in the model γj , were simulated independently as Uniform(−5, 5), and the true quadratic coefficients as254

Uniform(−5,−0.5). The true latent variables were simulated as zi ∼ N (0, I). For the Gaussian, negative-255

binomial, and gamma distribution, the dispersion parameter for all species was set equal to one. For the256
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ordinal distribution we assumed six classes with the true cut-offs being 0, 1, 2, 3, 4, 5, meaning that species257

were most often absent (category 1), while they were rarely very abundant (category 6).258

We measured performance of the quadratic GLLVM by the prediction of the latent variables zi and the259

species optima uj . The species optima are a function of both the linear and quadratic coefficients and should260

provide a good overall measure of performance for retrieving the true species-specific parameters, in addition261

to being of specific interest to ecologists. Though it is common to measure the performance of ordination262

methods using the Procrustes error (Peres-Neto & Jackson 2001), we chose to use the Median Absolute Error263

(MAE) instead, as we often observed a highly skewed error distribution for the species optima. Additionally,264

interpreting the MAE is more intuitive, as it measures the deviation from the truth in the same units as the265

coefficients of interest. We excluded the first optimum of the second latent variable as this was fixed to zero266

for reasons of parameter identifiability (Hui et al. 2015), and excluded optima that could not be estimated.267

Since the quadratic GLLVM allows species to exhibit linear responses, which have infinite optima, we chose268

to remove all optima larger than 10 and smaller than -10, i.e. for those species that lacked a sufficiently269

strong quadratic signal in the simulated datasets. Including these optima would result in a biased view of270

the accuracy of the optima that can be estimated by the model. This process resulted in a vector of optima,271

which we then used to calculate the MAE. For clarity and transparency, we additionally present the number272

of optima removed for each of the datasets, to further provide an impression of the data requirements of the273

proposed quadratic GLLVM.274

For all of the models fitted to Gaussian and gamma response datasets, typically none or only a few optima275

were excluded, meaning that the median number excluded was zero. In general, and not surprisingly, more276

optima were excluded for models fitted to datasets where n/p was small and for discrete distributions. For277

example, when n = 20 sites and p = 100 species, the median number of optima excluded for datasets with278

Poisson responses was 4 (2 - 8, first and third quartiles), for datasets with negative-binomial responses this279

was 7 (5 - 10), for datasets with Bernoulli responses this was 31 (24 - 38), and for datasets with ordinal280

responses this was 17 (13 - 23). In contrast, for datasets where n/p was large, considerably less optima were281

excluded across all response types. For example, when n = 100 and p = 100, for Poisson and negative-282

binomial response datasets the median number of excluded optima was zero, while for Bernoulli response283

datasets the median number of optima excluded was 4 (2 - 5), and for ordinal response datasets this was 2284

(1 - 3).285

The MAE per distribution and for the different sized datasets is presented in Figure 1 (see Appendix S5:286

Fig. S2 for the same figure with all species optima). As expected, the quadratic GLLVM was more accurate287

for datasets with larger p and larger n. For all distributions, the latent variables were often better retrieved288

than the species optima. This is not surprising, as the species optima are a function of two parameters,289
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particularly the inverse of the quadratic coefficients, so that a small change in the quadratic coefficients290

can result in a large change in the species optima. When fitted to Gaussian or gamma response datasets,291

regardless of the dimensions of the data, the model performed best. The accuracy of the estimated species292

optima was only slightly lower for the Poisson distributed datasets with 70 or more sites, while the latent293

variables were accurately estimated even with small p. These results are consistent with the results above294

regarding the number of excluded optima. Although the accuracy of species optima for negative-binomial295

response datasets seems similar to that of Poisson response datasets, this is inconsistent with the number296

of excluded optima reported above, as that was considerably larger for the negative-binomial. The model297

was not accurate for Bernoulli or ordinal response datasets with small n and p. However, when the number298

of sites and species increased above 40, the performance of the quadratic GLLVM in these cases improved299

considerably, consistent with the number of excluded species optima.300
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Figure 1: Simulation results for the 1000 best fitting quadratic GLLVMs across six different response dis-
tributions, with the MAE calculated based on optima that could be estimated (optima outside the range
(-10,10) were excluded). The left column shows simulations where the number of sites was kept constant at
n = 100, and analogous for the right column with p = 100. The figure includes the median MAE for species
optima (black) and latent variables (red), with the first and third quartiles represented as dotted (optima)
and dashed (latent variables) lines.
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Applications to real data301

We applied the proposed quadratic GLLVM to two different datasets: 1) the classical hunting spiders dataset302

collected by van der Aart & Smeek-Enserink (1974) in Dutch dunes, available in the mvabund R package303

(Wang et al. 2012), and 2) a dataset of plants in the Swiss Alps (available in the dryad database; D’Amen304

et al. 2017).305

Hunting spiders306

For the hunting spiders dataset, van der Aart & Smeek-Enserink (1974) used pitfall traps to collect spiders307

over a 60 week period, resulting in a dataset of counts for each of the n = 28 sites and p = 12 species. It308

has been used in the testing of ordination methods before (e.g. ter Braak 1985, 1986; Yee 2004; Hui et al.309

2015), providing some reference results for comparison here. To find the model that best fitted the hunting310

spiders dataset, and to limit the number of required model fits, we first performed model selection using311

Akaike’s Information Criterion (AIC; Burnham & Anderson 2002) on linear GLLVMs with d = 1 to 5 latent312

variables, and with Poisson distributions. Though the hunting spiders dataset exhibits overdispersion in the313

linear GLLVM (Hui et al. 2015), the quadratic GLLVM models overdispersion with the latent variables (see314

Appendix S2: Negative-Binomial: overdispersed counted responses). Second, we fitted a linear GLLVM with315

random row intercepts (i.e. equal tolerances), a quadratic GLLVM with common tolerances, and a quadratic316

GLLVM with unequal tolerances, to determine which model structure was most suited for the data. Third,317

with the best model structure from step two, we again tested for the optimal number of latent variables,318

after which we explored different sets of initial values and fitting algorithms to find the model that maxmizes319

the VA log-likelihood (see Appendix S5 for the results).320

The best model of step one included d = 2 latent variables, the best model from step two included unequal321

tolerances, and the best model from step three included d = 3 latent variables. The results for te first two322

latent variables of the final model fit, which explained most residual variation, are presented in Figure 2.323

We used the residual variance to determine which latent variables explained most variation i.e. were most324

important to consider for inference. For the quadratic GLLVM, the first and second latent variables explained325

most variation in the model; 40% and 57% respectively. Overall, the quadratic GLLVM explained four and326

a half times more residual variation than a linear GLLVM with the same number of latent variables. The327

lengths of the first two ecological gradients were 5.46 (4.28-6.64, 95% confidence interval), and 3.35 (3.14-328

3.55). The confidence interval of the gradient length for the third ecological gradient included zero, so we329

do not present results of that here.330

Ter Braak (1985) and Yee (2004) both visualized quadratic curves of the first latent variable using331
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Figure 2: Ordination plot for the first two latent variables of the final quadratic GLLVM fit to the hunting
spiders dataset, scaled by the residual variances. Species optima are shown as letters, indicating the follwing
species: a = Alopecosa accentuata, b = Alopecosa cuneata, c = Alopecosa fabrilis, d = Arctosa lutetiana, e =
Arctosa perita, f = Alonia albimana, g = Pardosa lugubris, h = Pardosa monticola, i = Pardosa nigriceps, j
= Pardosa pullata, k = Trochosa terricola, l = Zora spinimana. Species quadratic curves are included as side
panels, with dashed lines indicating unobserved parts of species niches, and with bands representing 95%
confidence intervals. Site locations and prediction regions have not been included, in favor of readability.
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variations of Poisson regression and generalized additive models, respectively. There are clear similarities332

between the species response curves for the first latent variable in Figure 2, and the corresponding response333

curves described by ter Braak (1985) and Yee (2004). Though ter Braak (1985) concluded all species exhibited334

unimodal curves on the first latent variable (without formal testing), the species Alopecosa fabrilis, Arctosa335

perita and Pardosa lugubris had confidence intervals, for the quadratic coefficients, that include zero in the336

quadratic GLLVM. For the following conclusions, species with confidence intervals of quadratic coefficients337

that crossed zero were excluded.338

Turning to the species niches, on the first latent variable all optima were observed (i.e. within the339

range of the latent variable), and on the second latent variable only the optimum of Arctosa lutetiana was340

unobserved. On the first latent variable, Aulonia albimana had the lowest maximum and Trochosa terricola341

the highest. On the second latent variable, Alopecosa accentuata had the lowest maximum, and Pardosa342

pullata the highest. On the first latent variable it was possible to distinguish that Trochosa terricola and343

Pardosa monticola had wider niches than Pardosa nigriceps, Aulonia albimana, and Arctosa lutetiana, and344

the confidence intervals of these two groups did not overlap. On the second latent variable, Pardosa pullata345

had the most narrow niche, and Pardosa monticola the widest, and the confidence intervals of the tolerances346

for these species did not overlap. Alopecosa cuneata was more tolerant to changes in the environment than347

Pardosa pullata but less than Pardosa monticola. Additionally, Alopecosa fabrilis, Trochosa terricola, and348

Pardosa nigriceps were more tolerant to changes in the environment than Pardosa pullata, though it was not349

possible to say if this was more or less than Pardosa monticola. Overall, Arctosa lutetiana had the smallest350

tolerance across all three latent variables.351

Overall, due to a combination of low maxima and low tolerances, Arctosa lutetiana is predicted to be352

most prone to changes in the environment of the first latent variable, and for the second latent variable353

Arctosa perita.354

Swiss alpine plants355

In the second application, n = 912 plots of 4 m2 each were used to record binary data on p = 175 plant356

species. Plots were located on a strong elevation gradient ranging from 375 meters to 3210 meters above357

sea level (D’Amen et al. 2018). We excluded 72 plots without any presences, and 103 plots with less than358

six presences, though it is possible to run the model including these plots, so that the final dataset included359

n = 737 plots. Species with less than 20 presences were excluded by the original study (D’Amen et al.360

2018), though it would not have presented a problem for the quadratic GLLVM had we included those here.361

Instead of selecting the optimal number of latent variables, we directly fitted the model to the data, using362
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the Bernoulli distribution and with d = 2 latent variables, for the purpose of creating an ordination diagram.363

We tested different sets of initial values and retained the model that had the highest log-likelihood.364

The first latent variable explained 83% of the overall residual variation in the model, of which 61%365

was accounted for by the linear term. The length of the first ecological gradient was 3.52 (2.85-4.18, 95%366

confidence interval). Since the first latent variable explained considerably more residual variation than the367

second, we here focus our inference on that alone for illustration purposes. The species response curves for368

the first latent variable are visualized in Figure 3a-c. To improve readability, species are numbered by their369

location in the dataset, for which the corresponding names are included in Figure 4. In Figure 4 species370

tolerances for the first latent variable are visualized, with approximate 95% confidence intervals.371

Environmental tolerances from species of which the confidence interval for the quadratic coefficients on372

the first latent variable did not include zero, ranged from 0.45 (Veratrum album) to 1.58 (Silene vulgaris)373

with a median tolerance of 0.73 and a standard deviation of 0.21.374
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Figure 3: One-dimensional figures for the quadratic GLLVM fit to the Swiss alpine plants dataset. Each
plot includes approximately one third of the species in the dataset, which have been sorted based on their
variation explained, so that the first plot includes species explaining most of the variation. Plot a) represents
56% of the residual variation, plot b) represents 28% of the residual variation, and plot 2) represents 16%
of the residual variation. Dashed coloured lines indicate the position of species optima, and the rug plot at
the bottom indicates predicted locations of the plots. The numbers correspond with the species names in
Figure 4.

The original dataset additionally included multiple covariates, measuring the growing degree-days above375

zero, a moisture index, total solar radiation over the year, slope, topography, and elevation. In an attempt376

to identify the ecological gradient represented by the first latent variable, we post-hoc calculated correlation377

coefficients between the covariates and the first latent variable. From all covariates, elevation was most378

correlated with the first latent variable (a correlation coefficient of 0.93), though this was collinear with379

growing degree-days above zero and the moisture index. We additionally fitted two unconstrained linear380
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Figure 4: Species tolerances and approximate 95% confidence intervals derived using the Delta method, for
the Swiss plants dataset. When optima are outside the range of the latent variable, or when tolerances cross
one (indicated with a red dashed line), species have partially unobserved niches. The panels show the first
and second half of species in the dataset respectively, ordered by the size of their tolerances. Species for
which the confidence interval for the quadratic coefficients crosses zero are shown in grey. Species at the
top of the plot, seemingly without tolerances, exhibit near linear responses, so that their tolerances are very
large. Grey dashed lines are added at increments of 0.5 as visual aid.
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GLLVMs with two latent variables, one of which included a random row intercept, and again calculated a381

correlation coefficient between the latent variables and elevation. The linear GLLVM without row intercept382

estimated the ecological gradient less successfully (highest correlation coefficient of -0.68), than when a row383

intercept was included (highest correlation coefficient of -0.92). To test more explicitly for the effect of384

elevation, we additionally fitted a quadratic GLLVM with elevation included as a covariate (both the linear385

and quadratic term), and with two latent variables. Including the covariate reduced the residual variance386

to 36% of that in the unconstrained model. The results presented here are from the unconstrained model,387

though the covariate effect of the second model is presented in appendix S5, Figure S3.388

We examined groups of plants at the extremes of the gradient, i.e. plants that had optima of minus two or389

smaller, and plants with optima of two or larger, to further investigate whether the estimated latent variable390

from the quadratic GLLVM represented an elevation gradient. This approach allowed us to distinguish two391

groups of plants, the first indicative of lowlands (see Fig. 3). In contrast, plant species included on the392

opposite side of the latent variable were clearly indicative of alpine conditions. Here, we focus our inference393

on the alpine plants, as those are likely to be most affected by climate change (Walther et al. 2005). Of394

the alpine species, only two had confidence intervals for the quadratic coefficients that did not include zero:395

Dryas octopetala and Sesleria caerulea. Dryas octopetala had a maximum probability of occurrence of 0.35,396

a tolerance of 1.03, and an optimum at 2.05, and is as such predicted to be most prone to future changes397

in the environment. However, Figure 4 clearly shows some species that have more narrow tolerances, thus398

more specialised species are likely present in the dataset, though it was not possible to conclude this due to399

the confidence intervals of species quadratic coefficients crossing zero.400

Discussion401

In this article, we extended the GLLVM approach of Hui et al. (2015), to estimate the niches of species402

with quadratic response curves, for unobserved ecological gradients. We fitted and performed inference403

for the quadratic GLLVM by extending the VA approach from Hui et al. (2017). The relation between404

latent variable models (i.e. unobserved ecological gradients) and ecological niches has been well described405

for classical ordination methods (ter Braak & Prentice 1988; Jongman et al. 1995), yet a method (either406

classical or model-based) to perform unconstrained (residual) ordination without limiting assumptions for407

species tolerances and maxima has not been available until now.408

The similarity in responses of species to unobserved environments can be assed by examining tolerances,409

by examining an ordination diagrams for overlap in species distributions, or by using the residual correlation410

matrix. Determining if species exhibit fully quadratic curves in response to ecological gradients, whether411
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tolerances are common for all species per ecological gradient, or if the equal tolerances assumption is suited412

for a dataset, comes down to a problem of model selection for the quadratic GLLVM. To that end, future413

research can further investigate approaches such as regularization (e.g., possibly extending the approach of414

Hui et al. 2018), hypothesis testing, or the use of confidence intervals of the quadratic coefficients. Similar to415

DCA, the quadratic GLLVM provides estimates of gradient length. But in contrast to DCA, where gradient416

length is a result of a heuristic rescaling of the ecological gradient, here it is calculated from the quadratic417

coefficients, which are estimated with approximate maximum likelihood.418

For datasets with 50 species and 50 sites or more, the quadratic GLLVM accurately retrieved ecological419

gradients and species-specific parameters, though for continuous responses or counts it is possible to accu-420

rately estimate parameters with fewer species or sites. In general, when fitting the quadratic GLLVM to421

binary or ordinal responses, more information is required than for other data types (similarly as reported in422

Yee 2004). However, this is conditional on the information content in a dataset, and the number of required423

sites and species here should only be considered as a rough rule of thumb.424

We studied the response of species to ecological gradients for hunting spiders in a Dutch dune ecosystem425

(van der Aart & Smeek-Enserink 1974), and for Swiss alpine plants (D’Amen et al. 2017), with use of426

the quadratic GLLVM. Various generalist species can be identified for both datasets, but as specialists are427

more likely to be affected by future changes in the environment, their identification is of critical importance428

to community ecology, to better focus recommendations for conservation efforts. We suggest that, for429

the hunting spiders dataset, Arctosa perita, and Arctosa lutetiana are most vulnerable to changes in the430

environment, and for the Swiss alpine plants dataset Dryas octopetala is most vulnerable to changes in the431

environment.432

Modelling rare species is often difficult in community ecology as few ordination methods have the ca-433

pability to explicitly do so. The quadratic GLLVM has great potential for community ecology, as it can434

simultaneously accommodate common (large tolerance and maxima i.e. a wide and high niche) and rare435

species (small tolerance and maxima i.e. a narrow and low niche) with the quadratic term. The quadratic436

GLLVM predicts species with unobserved optima, narrow niches, and small maxima will have the fewest437

observations. Since the quadratic GLLVM includes two species-specific parameters per latent variable, and438

thus requires more information in the data for accurate estimation of parameters than the linear GLLVM, it439

potentially requires a large dataset to include sufficient information on rare species. However, the example440

in this paper using the dataset of counts for hunting spiders (van der Aart & Smeek-Enserink 1974) shows441

that the quadratic GLLVM can be feasible to fit even to small datasets. An advantage of GLLVMs is their442

ability to use information from common species to improve estimation of parameters to describe the niches443

of rare species. However, without penalization or borrowing information for estimation from more abundant444
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species, the parameters for species with few observations are not necessarily expected to be accurate.445

The implementation of the quadratic GLLVM here is constrained to produce concave shapes only, though446

it could instead be used to estimate species minima rather than maxima. However, we did not do that here,447

as clear ecological foundations for such a model are lacking. An easy to use implementation based on the448

the gllvm R package (Niku et al. 2019b) is available on github (https://github.com/BertvanderVeen/gllvm-449

1/tree/goGLLVM), which will be included in the gllvm R package after publication.450

Acknowledgements451

Manuela D’Amen kindly provided the elevation covariate for the Swiss Alpine plants dataset. B.V. was452

supported by a scholarship from the Research Council of Norway (grant numbver 272408/F40). F.K.C.H.453

was supported by two Australian Research Council Discovery grants.454

Authors contributions455

B.V., K.A.H. and R.B.O. conceived the ideas. B.V., F.K.C.H. and R.B.O. designed the methodology. All456

authors contributed to the writing, reviewing and editing of the draft and gave final approval for publication.457

References458

Björk, J.R., Hui, F.K.C., O’Hara, R.B. & Montoya, J.M. (2018). Uncovering the drivers of host-associated459

microbiota with joint species distribution modelling. Molecular Ecology, 27, 2714–2724.460

Blanchet, F.G., Cazelles, K. & Gravel, D. (2020). Co-occurrence is not evidence of ecological interactions.461

Ecology Letters, 23, 1050–1063.462

Borcard, D., Legendre, P. & Drapeau, P. (1992). Partialling out the Spatial Component of Ecological463

Variation. Ecology, 73, 1045–1055.464

Burnham, K.P. & Anderson, D.R. (2002). Model Selection and Multimodel Inference: A Practical465

Information-Theoretic Approach, Secondn. Springer-Verlag, New York.466

D’Amen, M., Mod, H.K., Gotelli, N.J. & Guisan, A. (2018). Disentangling biotic interactions, environ-467

mental filters, and dispersal limitation as drivers of species co-occurrence. Ecography, 41, 1233–1244.468

D’Amen, M., Mod, H.K., Gotelli, N.J. & Guisan, A. (2017). Disentangling biotic interactions, environ-469

mental filters, and dispersal limitation as drivers of species co-occurrence. Dryad.470

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.326199doi: bioRxiv preprint 

https://github.com/BertvanderVeen/gllvm-1/tree/goGLLVM
https://github.com/BertvanderVeen/gllvm-1/tree/goGLLVM
https://github.com/BertvanderVeen/gllvm-1/tree/goGLLVM
https://doi.org/10.1101/2020.10.05.326199
http://creativecommons.org/licenses/by/4.0/


Damgaard, C., Hansen, R.R. & Hui, F.K.C. (2020). Model-based ordination of pin-point cover data:471

Effect of management on dry heathland. bioRxiv, 2020.03.05.980060.472

Gabriel, K.R. (1971). The biplot graphic display of matrices with application to principal component473

analysis. Biometrika, 58, 453–467.474

Gauch, H.G. (1982). Multivariate Analysis in Community Ecology. Cambridge University Press, Cam-475

bridge.476

Halvorsen, R. (2012). A gradient analytic perspective on distribution modelling. Sommerfeltia, 35,477

1–165.478

Hill, M.O. & Gauch, H.G. (1980). Detrended Correspondence Analysis: An Improved Ordination Tech-479

nique. Classification and Ordination: Symposium on advances in vegetation science, Nijmegen, The Nether-480

lands, May 1979 (ed E. van der Maarel), pp. 47–58. Advances in vegetation science. Springer Netherlands,481

Dordrecht.482

Hui, F.K.C. (2016). Boral Bayesian Ordination and Regression Analysis of Multivariate Abundance Data483

in r. Methods in Ecology and Evolution, 7, 744–750.484

Hui, F.K.C., Tanaka, E. & Warton, D.I. (2018). Order selection and sparsity in latent variable models485

via the ordered factor LASSO. Biometrics, 74, 1311–1319.486

Hui, F.K.C., Taskinen, S., Pledger, S., Foster, S.D. & Warton, D.I. (2015). Model-based approaches to487

unconstrained ordination. Methods in Ecology and Evolution, 6, 399–411.488

Hui, F.K.C., Warton, D.I., Ormerod, J.T., Haapaniemi, V. & Taskinen, S. (2017). Variational Approxi-489

mations for Generalized Linear Latent Variable Models. Journal of Computational and Graphical Statistics,490

26, 35–43.491

Inoue, K., Stoeckl, K. & Geist, J. (2017). Joint species models reveal the effects of environment on492

community assemblage of freshwater mussels and fishes in European rivers. Diversity and Distributions, 23,493

284–296.494

Jamil, T. & ter Braak, C.J.F. (2013). Generalized linear mixed models can detect unimodal species-495

environment relationships. PeerJ, 1, e95.496

Jongman, R., ter Braak, C. & van Tongeren, O. (Eds.). (1995). Data analysis in community and497

landscape ecology. Cambridge university press, Cambridge.498

Khatri, C.G. (1980). 14 Quadratic forms in normal variables. Handbook of Statistics, pp. 443–469.499

Analysis of Variance. Elsevier.500

Kristensen, K., Nielsen, A., Berg, C.W., Skaug, H. & Bell, B. (2016). TMB: Automatic Differentiation501

and Laplace Approximation. Journal of Statistical Software, 70. Retrieved from http://arxiv.org/abs/1509.502

00660503

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.326199doi: bioRxiv preprint 

http://arxiv.org/abs/1509.00660
http://arxiv.org/abs/1509.00660
http://arxiv.org/abs/1509.00660
https://doi.org/10.1101/2020.10.05.326199
http://creativecommons.org/licenses/by/4.0/


Lacoste, É., Weise, A.M., Lavoie, M.-F., Archambault, P. & McKindsey, C.W. (2019). Changes in504

infaunal assemblage structure influence nutrient fluxes in sediment enriched by mussel biodeposition. Science505

of The Total Environment, 692, 39–48.506

MacArthur, R. & Levins, R. (1967). The limiting similarity, convergence, and divergence of coexisting507

species. The American Naturalist, 101, 377–385.508

Nakagawa, S. & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized509

linear mixed-effects models. Methods in Ecology and Evolution, 4, 133–142.510

Niku, J., Brooks, W., Herliansyah, R., Hui, F.K.C., Taskinen, S. & Warton, D.I. (2019a). Efficient511

estimation of generalized linear latent variable models. PLOS ONE, 14, e0216129.512

Niku, J., Brooks, W., Herliansyah, R., Hui, F.K.C., Taskinen, S. & Warton, D.I. (2020). Gllvm: Gener-513

alized linear latent variable models.514

Niku, J., Hui, F.K.C., Taskinen, S. & Warton, D.I. (2019b). Gllvm: Fast analysis of multivariate515

abundance data with generalized linear latent variable models in r. Methods in Ecology and Evolution, 10,516

2173–2182.517

Oksanen, J. & Tonteri, T. (1995). Rate of compositional turnover along gradients and total gradient518

length. Journal of Vegetation Science, 6, 815–824.519

Ovaskainen, O., Tikhonov, G., Norberg, A., Blanchet, F.G., Duan, L., Dunson, D., Roslin, T. & Abrego,520

N. (2017). How to make more out of community data? A conceptual framework and its implementation as521

models and software. Ecology Letters, 20, 561–576.522

Peres-Neto, P.R. & Jackson, D.A. (2001). How well do multivariate data sets match? The advantages of523

a Procrustean superimposition approach over the Mantel test. Oecologia, 129, 169–178.524

Pollock, L.J., Tingley, R., Morris, W.K., Golding, N., O’Hara, R.B., Parris, K.M., Vesk, P.A. & Mc-525

Carthy, M.A. (2014). Understanding co-occurrence by modelling species simultaneously with a Joint Species526

Distribution Model (JSDM). Methods in Ecology and Evolution, 5, 397–406.527

ter Braak, C.J. (1986). Canonical Correspondence Analysis: A New Eigenvector Technique for Multi-528

variate Direct Gradient Analysis. Ecology, 67, 1167–1179.529

ter Braak, C.J.F. (1985). Correspondence Analysis of Incidence and Abundance Data: Properties in530

Terms of a Unimodal Response Model. Biometrics, 41, 859–873.531

ter Braak, C.J.F. & Prentice, I.C. (1988). A Theory of Gradient Analysis. Advances in Ecological532

Research (eds M. Begon, A.H. Fitter, E.D. Ford & A. Macfadyen), pp. 271–317. Academic Press.533

Tikhonov, G., Ovaskainen, O., Oksanen, J., de Jonge, M., Opedal, O. & Dallas, T. (2020). Hmsc:534

Hierarchical model of species communities.535

Tobler, M.W., Kéry, M., Hui, F.K.C., Guillera-Arroita, G., Knaus, P. & Sattler, T. (2019). Joint species536

21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.326199doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.326199
http://creativecommons.org/licenses/by/4.0/


distribution models with species correlations and imperfect detection. Ecology, 100, e02754.537

van der Aart, P. & Smeek-Enserink, N. (1974). Correlations between distributions of hunting spiders538

(Lycosidae, Ctenidae) and environmental characteristics in a dune area. Netherlands Journal of Zoology, 25,539

1–45.540

Walker, S.C. & Jackson, D.A. (2011). Random-effects ordination: Describing and predicting multivariate541

correlations and co-occurrences. Ecological Monographs, 81, 635–663.542

Walther, G.-R., Beißner, S. & Burga, C.A. (2005). Trends in the upward shift of alpine plants. Journal543

of Vegetation Science, 16, 541–548.544

Wang, Y., Naumann, U., Wright, S.T. & Warton, D.I. (2012). Mvabund an R package for model-based545

analysis of multivariate abundance data. Methods in Ecology and Evolution, 3, 471–474.546

Warton, D.I., Blanchet, F.G., O’Hara, R.B., Ovaskainen, O., Taskinen, S., Walker, S.C. & Hui, F.K.C.547

(2015). So Many Variables: Joint Modeling in Community Ecology. Trends in Ecology & Evolution, 30,548

766–779.549

Wehrden, H.V., Hanspach, J., Bruelheide, H. & Wesche, K. (2009). Pluralism and diversity: Trends in550

the use and application of ordination methods 1990-2007. Journal of Vegetation Science, 20, 695–705.551

Yee, T.W. (2004). A New Technique for Maximum-Likelihood Canonical Gaussian Ordination. Ecological552

Monographs, 74, 685–701.553

Zurell, D., Pollock, L.J. & Thuiller, W. (2018). Do joint species distribution models reliably detect554

interspecific interactions from co-occurrence data in homogenous environments? Ecography, 41, 1812–1819.555

Zurell, D., Zimmermann, N.E., Gross, H., Baltensweiler, A., Sattler, T. & Wüest, R.O. (2020). Testing556

species assemblage predictions from stacked and joint species distribution models. Journal of Biogeography,557

47, 101–113.558

Økland, R.H. (1999). On the variation explained by ordination and constrained ordination axes. Journal559

of Vegetation Science, 10, 131–136.560

Økland, R.H. & Eilertsen, O. (1994). Canonical Correspondence Analysis with variation partitioning:561

Some comments and an application. Journal of Vegetation Science, 5, 117–126.562

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.326199doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.326199
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Model formulation
	Model interpretation
	Residual covariance matrix
	Gradient length
	Ordination diagram

	Model estimation
	Simulation study
	Applications to real data
	Hunting spiders
	Swiss alpine plants

	Discussion
	Acknowledgements
	Authors contributions
	References

