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Summary 15 

• Chromosome number is a central feature of eukaryote genomes. Deciphering 16 

patterns of chromosome-number change along a phylogeny is central to the 17 

inference of whole genome duplications and ancestral chromosome numbers. 18 

ChromEvol is a probabilistic inference tool that allows the evaluation of several 19 

models of chromosome-number evolution and their fit to the data. However, 20 

fitting a model does not necessarily mean that the model describes the empirical 21 

data adequately. This vulnerability may lead to incorrect conclusions when model 22 

assumptions are not met by real data.  23 

• Here, we present a model adequacy test for likelihood models of chromosome-24 

number evolution. The procedure allows to determine whether the model can 25 

generate data with similar characteristics as those found in the observed ones.  26 

• We demonstrate that using inadequate models can lead to inflated errors in several 27 

inference tasks. Applying the developed method to 200 angiosperm genera, we 28 

find that in many of these, the best-fitted model provides poor fit to the data. The 29 

inadequacy rate increases in large clades or in those in which hybridizations are 30 

present. 31 

• The developed model adequacy test can help researchers to identify phylogenies 32 

whose underlying evolutionary patterns deviate substantially from current 33 

modelling assumptions and should guide future methods developments. 34 

Key words: chromEvol, chromosome number, dysploidy, model adequacy, model 35 

selection, phylogenetics, polyploidy.   36 
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Introduction 37 

Chromosome number is widely recognized as a key feature of eukaryote genomes. Its 38 

popularity in cyto-taxonomical and evolutionary studies has been attributed to its 39 

ability to provide a concise description of the karyotype, the ease by which it can be 40 

recorded, and its stable phenotype across repeated measurements. Processes that lead 41 

to changes in chromosome numbers have direct consequences on central evolutionary 42 

processes related to reproductive isolation and speciation, thus providing important 43 

information for species determination and phylogenetic relationships (Guerra, 2008; 44 

Weiss-Schneeweiss & Schneeweiss, 2013). While chromosome numbers generally 45 

exhibit strong phylogenetic signal (e.g. Vershinina & Lukhtanov, 2017; Carta et al., 46 

2018), they are also highly dynamic. This variability has been particularly well 47 

acknowledged in plants, with counts ranging from n = 2 to n = 720 (Khandelwal, 48 

1990; Ruffini Castiglione & Cremonini, 2012), and records showing intraspecific 49 

variation in 23% of angiosperm species (Rice et al., 2015). Understanding the 50 

underlying processes that gave rise to these changes allows inference of major 51 

genomic events that have occurred in the history of a clade of interest and the 52 

processes that have shaped its diversification.  53 

Of the various mechanisms underlying chromosome-number change, polyploidy, or 54 

whole genome duplication (WGD) has received significant attention because of the 55 

profound impacts such an event has on the organism. Polyploids often differ markedly 56 

from their progenitors in morphological, physiological, or life history characteristics, 57 

which may contribute to their establishment in novel ecological settings (Stebbins, 58 

1971; Levin, 1983; Ramsey & Schemske, 2002; Soltis et al., 2007; Leitch & Leitch, 59 

2008; Ramsey & Ramsey, 2014; Spoelhof et al., 2017; Rice et al., 2019). Polyploidy 60 

is thus recognized as one of the major processes that has driven and shaped the 61 

evolution of higher organisms. A more subtle change in chromosome number is 62 

dysploidy, leading to step-wise changes in the number of chromosomes, but typically 63 

does not immediately alter the genomic content. Dysploidy occurs via several types of 64 

genome rearrangements, leading to ascending or descending dysploidy through 65 

chromosome fission or fusion (Weiss-Schneeweiss & Schneeweiss, 2013). 66 

Deciphering the pattern of chromosome-number change within a clade allows 67 

inferring the number and type of transitions that have occurred along branches of a 68 
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phylogeny, to estimate ancestral chromosome numbers, and to categorize extant 69 

species as diploids or polyploids.  70 

In the last decade, several tools that infer changes in chromosome numbers along a 71 

phylogeny were developed (Mayrose et al., 2010; Hallinan & Lindberg, 2011; Glick 72 

& Mayrose, 2014; Freyman & Höhna, 2017; Zenil-Ferguson et al., 2017, 2018; 73 

Blackmon et al., 2019). Among these, the chromEvol probabilistic framework 74 

(Mayrose et al., 2010) was the first to incorporate a continuous time Markov process 75 

that describes the instantaneous rate of change from a genome with i haploid 76 

chromosomes to a genome with j haploid chromosomes via specific types of 77 

dysploidy and polyploidy transitions. Further development of this framework allowed 78 

for more intricate types of chromosome-number transitions (Glick & Mayrose, 2014), 79 

to differentiate between transitions that coincide with speciation events and those that 80 

occur continuously in time along branches of the phylogeny (Freyman & Höhna, 81 

2017), and to associate patterns of chromosome-number change with the evolution of 82 

a discrete character trait (Zenil-Ferguson et al., 2017; Blackmon et al., 2019). 83 

In the chromEvol model, each type of transition is represented by a parameter 84 

describing its rate of change. The inclusion (or exclusion) of different parameters 85 

entails different hypotheses regarding the pathways by which the evolution of 86 

chromosome number proceeded in the clade under study. In a regular application of 87 

the chromEvol framework, different models are fitted to the data and the best one is 88 

chosen by comparing the relative fit of each model to the data at hand using 89 

established model selection criteria, such as the likelihood ratio test or Akaike 90 

Information Criterion (AIC; Akaike, 1974). In reality, however, no empirical dataset 91 

will meet all the assumptions of any model and thus relaying on the best model (or set 92 

of models) may be vulnerable to incorrect conclusions in datasets whose underlying 93 

evolutionary process deviate substantially from current modelling assumptions. To 94 

prevent such errors, here we develop a model adequacy test that allows determining 95 

whether a given model of chromosome-number evolution provides a realistic 96 

description of the evolutionary process for reliable inferences. 97 

Several assumptions made by existing models of chromosome-number evolution may 98 

be violated when empirical data are analyzed. For example, all models rely on a 99 

memory-less Markovian process, in which the transition rates are only dictated by the 100 
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current number of chromosomes of the lineage. Thus, for example, the transition rate 101 

from n = 10 to n = 9 is not affected by the duration of time the lineage possessed 10 102 

chromosomes, nor by the sequence of events that had led to it. However, because 103 

rates of descending dysploidy may increase following WGD (Wood et al., 2009; 104 

Wendel, 2015; Soltis et al., 2016), the transition from n = 10 to n = 9 is more probable 105 

if n = 5 was the ancestral state compared to n = 11. Additionally, most models assume 106 

that the transition rates are similar across the phylogeny, although in practice the 107 

transition patterns may be rather different in some sub-clades compared to others, as 108 

has been demonstrated, for example, in Cyperaceae (Márquez-Corro et al., 2019). 109 

Finally, all current models are based on a phylogenetic structure and thus ignore the 110 

possibility of hybridizations. Notably, allopolyploidy, one of the main types of 111 

polyploidy, is defined by such reticulate evolutionary events and the biases caused by 112 

their presence is rather unexplored.  113 

One aspect of understanding the reliability of a model and interpreting its results is to 114 

quantify its adequacy for the data and the question at hand. The aim of model 115 

adequacy tests is to determine the absolute fit of a model to the data, rather than to 116 

compare its relative fit among a set of models. With some variations, the general 117 

procedure of such tests is composed of several steps: first, given an empirical dataset, 118 

obtain the best-fitting model and its parameter values. Next, use that model to 119 

generate multiple simulated datasets. Then, compute several test statistics that 120 

describe various characteristics of the data on each simulated dataset and on the 121 

empirical dataset. If the empirical values of the test statistics fall outside the range of 122 

variation encompassed by the simulated data, then it may be concluded that the model 123 

cannot provide an adequate description of the data at hand. To date, model adequacy 124 

approaches are established for several types of data and inference tasks, including 125 

those related to sequence evolution (Bollback, 2002; Brown, 2014; Duchêne et al., 126 

2015; Chen et al., 2019) and continuous valued organismal traits (Slater & Pennell, 127 

2013; Pennell et al., 2015). However, both are inappropriate for data and analyses 128 

concerning the evolution of chromosome numbers as the former rely on statistics 129 

derived from many sites, while the latter rely on Brownian motion statistics.  130 

In the following, we first provide the details of the developed model adequacy 131 

framework for likelihood models of chromosome-number evolution. We then use 132 
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simulations to assess the type I error rate and to explore the consequences of using 133 

inadequate models in several common inference tasks, such as ancestral 134 

reconstructions of chromosome numbers and ploidy-level inference. Finally, we apply 135 

the developed procedure to a large cohort of angiosperm genera, as well as to clades 136 

that are expected to violate model assumptions.  137 

Methodological Description 138 

Model adequacy framework for chromosome-number evolution 139 

Given chromosome count data and a compatible phylogeny (together denoted as D), 140 

chromEvol can be used to assess the fit of various models (M1, M2, ..., MN ; N denotes 141 

for the number of models) to D. Each model differs with respect to the included rate 142 

parameters or the constraints placed on them [θ(M1), θ(M2), …, θ(MN)]. The most 143 

general model considered here includes six free parameters (Glick & Mayrose, 2014) 144 

and assumes that five types of events are possible: a single chromosome-number 145 

increase (ascending dysploidy with rate λ) or decrease (descending dysploidy with 146 

rate δ), WGD (i.e. exact duplication of the number of chromosomes with rate ρ), 147 

demi-polyploidy (multiplications of the number of chromosomes by 1.5 with rate µ), 148 

and base-number transitions (the addition to the genome by any multiplication of an 149 

inferred base number, where β, is the inferred base number and ν is its respective 150 

transition rate). A combination of these parameters allows a range of models to be 151 

evaluated (Table 1 shows the various models considered here). We note that the 152 

chromEvol software also allows the ascending and descending dysploidy rates to 153 

depend on the current number of chromosomes, but this option was not evaluated 154 

here.  155 

In a common application of chromEvol, several models are fitted to D, the optimal 156 

model is selected based on its relative fit using established model selection criteria 157 

(e.g. AIC), and subsequent inference tasks are performed based on this model. The 158 

model adequacy test can be carried out to any model of interest, whether or not it is 159 

the most fitted one. The general aim of this test is to examine whether a specified 160 

model, Mx, is able to generate data that are similar to D. Our model adequacy 161 

procedure is based on parametric bootstrapping (Goldman, 1993; Efron & Tibshirani, 162 

1994), where the observed data are compared to a background distribution generated 163 
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from simulations. These simulations are generated under the specified model, whose 164 

parameters, ��(Mx), were optimized with respect to D and the respective probabilities 165 

of chromosome-numbers inferred at the root of the phylogeny (exact details of the 166 

simulation procedure are given in the Supporting Information). Comparing between 167 

true and simulated data is performed using a set of test statistics, which reflects 168 

various characteristics of the data. First, the test statistics (T1, T2,…,Tm ; m denotes for 169 

the number of statistics) are computed for the true data D. Second, multiple datasets 170 

are simulated under the specified model and its inferred parameters. For each 171 

simulated dataset, the same set of test statistics is computed, resulting in a distribution 172 

for each test statistic (Ts1, Ts2,…, Tsm). If the empirical value of the test statistic falls 173 

within the range of variation encompassed by the simulated data (herein defined as 174 

the 2.5th and 97.5th percentiles), the model is considered as capable of generating data 175 

similar to the original ones and is thus inferred as adequate. Otherwise, it is inferred 176 

as inadequate. A schematic illustration of the developed model adequacy test is 177 

presented in Fig. 1.  178 

In our implementation, four test statistics were calculated given the chromosome-179 

number data of extant taxa and the corresponding phylogeny: (1) Variance; higher 180 

values in the simulated data relative to the observed ones may point to some 181 

constraints that were not accounted for by the model (e.g. hard bounds on the number 182 

of chromosomes in the genome), or to errors in the parameter estimation process. (2) 183 

Shannon’s entropy (Shannon, 1948); Lower entropy of the observed data than 184 

predicted by the model is indicative of higher-than-expected concentration of 185 

genomes with certain haploid numbers. This could be due to selective constraints, or 186 

to a very low variability exhibited in certain subclades of the phylogeny, such that 187 

specific states are clumped into large blocks of the tree more than expected. (3) 188 

Parsimony score; the most parsimonious number of character transitions across the 189 

phylogeny is calculated based on Fitch (1971). If the parsimony score of the observed 190 

data are lower than expected it means that the model assumes more transitions than 191 

actually occurred. This could occur due to rate heterogeneity across the tree. For 192 

example, if chromosome-number transitions occur more frequently in one subclade 193 

relative to the rest of the phylogeny, this could be accommodated by inferring higher 194 

values of the transition rates. (4) Parsimony versus time (ParsTime); the parsimonious 195 

number of transitions are computed per branch using the accelerated transformation 196 
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criterion (ACCTRAN; Farris, 1970). The regression line between the divergence 197 

times (computed from the root to the end of the branch) and their parsimony scores is 198 

calculated, and the slope of this line is taken as the test statistic. This statistic is 199 

similar in spirit to that employed by Pennell et al. (2015) for testing the adequacy of 200 

models for continuous trait evolution. Under a time-homogenous model, as 201 

implemented in chromEvol, we expect no relationship between the divergence times 202 

and the number of transitions. Violations of this assumption suggests that transitions 203 

are either concentrated around the root or occur more frequently towards the tips. We 204 

note that aside from these four statistics, two additional ones were computed (the 205 

range and the number of unique counts). These two statistics were found to be highly 206 

correlated with the other test statistics (r2 = 0.85 between range and variance and r2 = 207 

0.74 between unique counts and entropy, when computed over the 200 empirical 208 

datasets; detailed below), and thus we chose to discard them from further analyses. 209 

The coefficient of determinations between all pairs of the four remaining test statistics 210 

was below 0.40 (Supporting Information Table S1). Because the four test statistics are 211 

not independent and researchers might be interested in revealing the specific aspects 212 

of the data that differ from expectations, we followed Pennell et al. (2015) and did not 213 

apply a multiple testing correction. Thus, in all analyses presented here a model is 214 

considered as adequate only if all four statistics fall within the boundaries of the 215 

simulated distribution.   216 

Performance assessment using simulations  217 

Simulations were conducted to examine the performance of the model adequacy 218 

procedure. Given an input phylogeny and a set of model parameters, simulated 219 

chromosome numbers were generated as previously described in Mayrose et al. 220 

(2010). As the number of simulation conditions is infinite, we concentrated on eight 221 

scenarios that vary in terms of data size (the number of tips in the phylogeny and the 222 

observed chromosome-number distribution) and the inferred pattern of chromosome-223 

number change (Table 2). The phylogenies, chromosome counts, and model 224 

parameters were taken from empirical datasets previously analyzed using chromEvol 225 

(Glick et al., 2016; Rice et al., 2019), thus representing realistic data characteristics. 226 

For each simulation scenario, a total of 100 replicates were generated. Each simulated 227 

dataset was then fitted to a set of four models: Dys, DysDup, DysBnum, DysDupBnum. For 228 
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each simulation scenario, one of these models was the generating model (i.e. the 229 

model that was used to simulate the data) and three were non-generating models. We 230 

note that these models share both common and distinct aspects of the parameter space, 231 

such that some, but not all, models are nested within each other (Table 1). Finally, the 232 

adequacy of each model to the simulated data was assessed.  233 

Inference errors of adequate and inadequate models 234 

The consequences of using an adequate versus inadequate model were evaluated by 235 

comparing the errors of four common inference tasks: (1) the chromosome number at 236 

the root of the phylogeny; calculated as the deviation from 1.0 of the posterior 237 

probability assigned to the true (i.e. simulated) chromosome number at the root. (2) 238 

The total number of dysploidy events across the phylogeny; calculated as the relative 239 

error between the inferred and simulated number of events: 2 �
|��� ��|

��� ��
, where x1 and 240 

x2 are the simulated and inferred number of dysploidy events, respectively. In case 241 

both x1 and x2 equal zero the error was assigned as zero. (3) The total number of 242 

polyploidization events across the phylogeny; the relative error was calculated similar 243 

to the total number of dysploidy events. Duplication events, demi-duplications, and 244 

base-number transitions were regarded as polyploidization events. (4) Ploidy level 245 

assignments. The ploidy-level inference of tip taxa, as either diploids or polyploids, 246 

was based on the procedure described in Glick & Mayrose (2014). The assignments of 247 

all tips were compared between the inferred and true values. The number of falsely 248 

inferred taxa, divided by the total number of taxa, was used as the error measure.   249 

In this analysis, six of the eight simulation scenarios in Table 2 were examined. The 250 

two scenarios excluded were those generated under the simple Dys model, for which 251 

not all inference tasks are relevant. To eliminate possible confounding effects between 252 

the specific model used for inference and the magnitude of the error, in this evaluation 253 

a single non-generating model (DysDup or DysBnum) was fitted to the data per 254 

simulation scenario (Supporting Information Table S2). For each simulation scenario, 255 

300 replicates were generated. For each replicate, the phylogeny and the simulated 256 

chromosome counts were given as input to the model adequacy test and the dataset 257 

was determined as either adequate or inadequate. A one-sided t-test was conducted to 258 
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determine whether the error of a certain inference task is significantly larger in the 259 

inadequate set compared to the adequate set. 260 

Application to empirical datasets 261 

To demonstrate the usability of the model adequacy framework, we applied it to a 262 

dataset of 200 angiosperm genera, which were randomly selected from a large 263 

database consisting of thousands of plant genera, excluding genera with no variations 264 

in chromosome numbers as well as those with less than 5 species with both 265 

phylogenetic and chromosome-numbers information. The initial database was used, in 266 

part or as a whole, in several previous analyses (e.g. Glick et al., 2016; Zhan et al., 267 

2016; Salman-Minkov et al., 2016; Rice et al., 2019). From this database we also 268 

selected 40 angiosperm genera that each contains at least one allopolyploid species, 269 

based on data from Barker et al. (2016). Due to overlaps between these two sets, a 270 

total of 233 unique datasets were analyzed. Full details of the reconstruction of the 271 

original database are described in Rice et al. (2019). Briefly, for each genus, the 272 

OneTwoTree pipeline (Drori et al., 2018) was used to automatically reconstruct the 273 

phylogeny using publicly available sequence data as appear in GenBank (Benson et 274 

al., 2013). Chromosome numbers for all species were retrieved from the Chromosome 275 

Counts Database (CCDB; Rice et al., 2015). These data were given as input to 276 

chromEvol, which was executed on the six models detailed in Table 1. Additionally, 277 

we applied similar procedures to seven clades of higher taxonomical ranks, including 278 

five families, one subfamily, and one tribe. The evolution of chromosome numbers in 279 

these clades using chromEvol was previously examined in several studies (Supporting 280 

Information Table S3). 281 

Implementation and availability 282 

The model adequacy procedure was implemented in Python and R (R Core Team, 283 

2013). The source codes and running instructions are available at 284 

https://github.com/MayroseLab/chromEvol_model_adequacy. The obligatory inputs 285 

are three files obtained through a chromEvol run of the examined model: the 286 

summary results file, the tree with the inferred ancestral reconstruction in a NEWICK 287 

format, and the original counts file in FASTA format. The program outputs, for each 288 

test statistic examined, its value computed from the empirical data, the percentile in 289 
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which it falls within the simulated distribution, and the 2.5th and 97.5th percentiles of 290 

the simulated distribution as indicative for the upper and lower bounds expected under 291 

the modelling assumptions. The model adequacy test is also available for on-line use 292 

through the chromEvol web-server (http://chromevol.tau.ac.il/), which is currently in 293 

a Beta version. 294 

Results 295 

In this work we developed a statistical framework for testing the adequacy of 296 

likelihood models of chromosome-number evolution. In essence, the method tests 297 

whether a specified model is capable of generating data that are similar to the data at 298 

hand. If not, the model is considered as providing inadequate description of the data, 299 

suggesting that other processes than those modeled have driven the evolution of 300 

chromosome numbers along the examined phylogeny. We first evaluated the 301 

performance of the model adequacy framework using simulations. We then applied it 302 

to a large number of real datasets derived from dozens of angiosperm genera, as well 303 

as to seven clades of higher taxonomic ranks, that together vary greatly in their extent 304 

of divergence time and patterns of chromosome number variation. 305 

Framework validation 306 

Simulations were used to validate the developed model adequacy approach. Several 307 

simulation scenarios were examined, whose phylogenies and simulated parameters 308 

were derived from real data analyses and cover various data characteristics (Table 2). 309 

In each scenario, a single model was used to generate the data. Given the simulated 310 

data, the generating model and three additional models were fitted to the data, and 311 

their adequacies were examined. The four examined models are indicated by the type 312 

of transitions they allow for: Dys, DysDup, DysBnum, and DysDupBnum (Table 1). In total, 313 

eight different simulation scenarios were examined; two for each type of generating 314 

model.  315 

We first examined the type I error rate, i.e. inferring the generating model as 316 

inadequate. Our results indicated that when considering a single test statistic 317 

independently, the error rate is around the expected value of 0.05 (average = 0.02, 318 

across the eight simulation scenarios and four test statistics; Supporting Information 319 
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Table S4). Combining multiple test statistics together, we consider a model as 320 

inadequate if one or more of the statistics fell outside the margins of the simulated 321 

distributions (see Methodological Description). Under this definition, the percentage 322 

of generating models that were inferred as inadequate varied between 0.04 and 0.13 323 

across the eight simulation scenarios (Table 3). When Bonferroni correction for 324 

multiple testing was applied, the type I error rate dropped to an average of 0.008. We 325 

note however, that the four test statistics are not independent, violating the assumption 326 

of this correction.  327 

We next examined the capability of the adequacy test to detect models that deviate 328 

from that of the generating models. Three types of model misspecification were 329 

examined: over-parameterization, under-parameterization, and miss-parameterization. 330 

In the case of over-parameterization, the tested model allows for additional types of 331 

chromosome-number change (as represented by extra free parameters) than those used 332 

to generate the data. This corresponds to cases where the generating model is nested 333 

within the tested model (e.g. the generating model is DysDup while the tested model is 334 

DysDupBnum). Our results indicated that the performances of over-parameterized 335 

models are very similar to that of the generating models (Table 3). The few 336 

discrepancies were the result of either (1) inaccurate parameter estimates of the more 337 

general model due to the extra degrees of freedom; (2) the optimization procedure 338 

reaching suboptimal regions of the parameter space (we note that while chromEvol 339 

allow for more thorough likelihood optimization search, which should reduce such 340 

instances, this was not attempted here due to the large number of simulations 341 

employed); (3) very similar parameter estimates obtained using the two models, but 342 

slight deviations of the test statistics led one model to be inferred as inadequate while 343 

the other one as adequate.  344 

In the case of under-parameterized models, the tested model allows for fewer types of 345 

transitions than the generating model (e.g. the generating model is DysDup while the 346 

tested model is Dys). As may be expected, in all simulation scenarios the under-347 

parameterized models were more frequently inferred as inadequate compared to the 348 

generating models. The adequacy rate was very low when the tested model allowed 349 

only for dysploid transitions while in reality polyploid transitions (either WGD and/or 350 

base-number transitions) have occurred (Table 3; all cases where the tested model is 351 

Dys). The adequacy rates were higher when the generating model allowed for multiple 352 
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types of polyploid transitions (i.e. DysDupBnum allowing for both exact duplications 353 

and base-number transitions), while the tested model allowed for a subset of these 354 

(DysDup and DysBnum that allow only for duplications or base-number transitions, 355 

respectively). Comparing the adequacy of the two under-parametrized models (DysDup 356 

and DysBnum), the DysBnum model that incorporated base-number transitions had higher 357 

adequacy rates compared to the DysDup model that allowed for exact duplications, as 358 

the former allows for several transitions that frequently include also exact 359 

duplications (e.g. in case the base number is 8, both 8�16 and 8�24 transitions are 360 

allowed).  361 

In the case of miss-parametrization, the tested and generated models are not nested 362 

within each other and thus their parameters only partially overlap. For the set of 363 

models examined here, this fits the case where the generating model is DysDup while 364 

the tested model is DysBnum, or vice versa. When the tested model was DysBnum, it 365 

obtained similar adequacy rates to those of the generating DysDup model. In contrast, 366 

and similar to the results detailed in the case of under-parameterized models, the 367 

DysDup model was inferred as inadequate a large number of times when the generating 368 

model was DysBnum.  369 

Inference errors of adequate and inadequate models 370 

A central usage of probabilistic models of chromosome number evolution is their 371 

inference capabilities, such as ancestral reconstructions of chromosome numbers, or 372 

predicting the branches in which dysploidy and polyploidy events have most likely 373 

occurred. Still, it is unclear whether the use of inadequate models would deteriorate 374 

the performance of such inference tasks. To this end, simulations were used to 375 

compare the errors of the following four common inference tasks when adequate and 376 

inadequate models are employed: (1) the chromosome number at the root of the 377 

phylogeny; (2) the total number of inferred dysploidy events; (3) the total number of 378 

inferred polyploidization events, and (4) inferring the ploidy level of tip taxa as either 379 

diploid or polyploidy (see Methodological Description for details regarding the error 380 

computed for each inference task).  381 

Our results demonstrated that the use of inadequate models frequently leads to larger 382 

inference errors, although under some simulation scenarios the inference errors of 383 
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inadequate models were similar to that obtained using adequate models. For example, 384 

the error in the inference of the root chromosome number was significantly larger in 385 

the case of inadequate models under two simulation scenarios, but was non-386 

significantly different in the other four (Fig. 2). Similarly, in two out of the six 387 

simulation scenarios, the error of inferring the ploidy level of extant taxa was 388 

significantly larger when computed using inadequate versus adequate models. In this 389 

case, the magnitude of the error was relatively low whether adequate or inadequate 390 

models were applied: when inadequate models were applied, the mean error was 4.6% 391 

across all simulation scenarios, reaching up to 12% under the Brassica simulation 392 

scenario. In comparison, the mean error was 2% when adequate models were applied, 393 

reaching up to 6% of erroneous inferences under the Hordeum simulation scenario. 394 

Larger differences in the errors between adequate and inadequate models were 395 

observed in inferring the total number of polyploidizations, and even more so in 396 

inferring the total number of dysploidy events. For both these inference tasks, 397 

significant differences between adequate and inadequate models were obtained for 398 

three out of the six simulation scenarios. Generally, the relative error in inferring the 399 

total number of dysploidy events was larger compared to that of inferring the total 400 

number of polyploidizations (the mean relative error was roughly twice for dysploidy 401 

compared to polyploidy transitions, both in the adequate set and the inadequate set; 402 

Fig. 2).  403 

Application to empirical datasets 404 

We applied the model adequacy framework to 200 datasets, each corresponding to a 405 

single randomly-selected angiosperm genus. First, we performed a standard model 406 

selection procedure based on the AIC (Akaike, 1974) to evaluate the relative fit of 407 

each of the six chromEvol models to the data. In 24% of the datasets, the simple Dys 408 

model, which allows for dysploid transitions only, was selected. The model that was 409 

most frequently selected was DysDup (28%), while models that allow for demi-410 

polyploidy transitions and those that allow for base-number transitions were selected 411 

in 27% and 21% of the datasets, respectively (Fig. 3a). Next, we applied the model 412 

adequacy test to the best model identified for each dataset. We found that in 74% of 413 

the genera, the model that was chosen as best by the AIC was inferred to provide an 414 

adequate description of the data. Applying the model adequacy test to all six models 415 
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per dataset (whether or not selected as best), we found that models that allow for 416 

fewer types of transitions were more frequently predicted as inadequate (Fig. 3b). For 417 

example, the Dys model that allows only for dysploidy transitions was adequate in 418 

only 28% of the 200 datasets, models that additionally allow for one type of 419 

polyploidy, either duplication or base-number transition, were adequate 60% and 64% 420 

of the cases, respectively, while the three models that incorporate two types of 421 

polyploidy transitions (DysDupDem, DysDupDem
*, and DysDupBnum) were inferred as 422 

adequate most frequently. The adequacy rates of all models were generally related to 423 

the complexity of the model that was selected as optimal. Thus, when the most 424 

complex models were selected (DysDupDem and DysDupBnum), the adequacy rates of all 425 

models –  including that of the chosen model –  were low (33% and 47%, 426 

respectively), while when the least complex model was selected, the adequacy rates of 427 

all models was high (70%; Supporting Information Table S5). 428 

Next, we examined the model adequacy procedure in groups that have evolved via 429 

reticulate evolution at some point in their histories. In these clades, the underlying 430 

assumption of the chromEvol framework, in which evolution proceeds along a 431 

phylogenetic structure, is violated, at least to some extent. This analysis was 432 

performed on 40 genera that were identified in the literature to include allopolyploid 433 

species, and thus hybridizations were reported to occur (data taken from Barker et al., 434 

2016). In the majority of these genera (24 out of 40), the model that was selected as 435 

optimal according to the AIC was found by our model adequacy procedure as 436 

inadequate. This adequacy rate is significantly lower (p << 0.05; χ2 test) compared to 437 

a random set of 193 genera in which allopolyploidy was not reported (the 200 genera 438 

analyzed above, omitting seven that include a reported allopolyploid species). 439 

Finally, we evaluated the model adequacy procedure on a set of seven groups whose 440 

taxonomic rank is higher than the genus level, thus representing clades whose 441 

divergence time is generally older than those inspected above. The evolution of 442 

chromosome numbers in these clades likely violates the time homogeneity assumption 443 

of chromEvol, in which the transition pattern is similar across the phylogeny. For four 444 

of these seven clades, the model that was chosen as optimal according to AIC did not 445 

provide adequate description of the data according to the model adequacy test 446 

(Supporting Information Table S3) and in one additional case the empirical values of 447 
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two test statistics were placed close to the lower boundaries of the simulated 448 

distributions (falling in the 0.027 and 0.043 percentiles). Taken together, the last two 449 

analyses indicate that the model adequacy procedure can identify cases in which the 450 

evolution of chromosome numbers is driven by processes that deviate from the basic 451 

modelling assumptions of the chromEvol framework. 452 

Discussion 453 

For over a century, the determination of chromosome numbers has played a vital role 454 

in studying evolutionary and genomic processes in plants. Probabilistic models of 455 

chromosome-number change are a relatively recent addition to the research toolbox 456 

available to study the evolution of major genomic processes. As the usage of such 457 

models increases, so does the need to assess their validity when applied to real data. 458 

Here, we developed a model adequacy test for likelihood models of chromosome-459 

number evolution. We focused our analysis on those models implemented in the 460 

chromEvol software (Glick & Mayrose, 2014), but the procedures are general and can 461 

be implemented in other platforms that use variations to the chromEvol model 462 

(Freyman & Höhna, 2017; Zenil-Ferguson et al., 2017; Blackmon et al., 2019). The 463 

developed test is based on the parametric bootstrapping approach (Goldman, 1993; 464 

Efron & Tibshirani, 1994) in which observed data are compared to a simulated 465 

distribution generated by the examined model. Using multiple test statistics that 466 

describe various characteristics of the data, the test allows to determine whether the 467 

model can generate data that are similar to those found in the observed ones.  468 

Our simulation results indicate that the model adequacy framework has an acceptable 469 

type I error rate (i.e. inferring as inadequate a model that was used to generate the 470 

data). However, higher type I errors were found in models that allow for base-number 471 

transitions (DysBnum and DysBnumDup). This suggests that these models might not be 472 

appropriate in all cases. The current implementation of such models assumes the same 473 

rate for all possible base-number transitions (e.g. given a base number of β = 7, the 474 

additions of 7, 14, or 21 chromosomes are equally likely). Alternatively, it may be 475 

more appropriate to place a probability distribution over the possible base-number 476 

transitions. This will allow, for the example of β = 7, higher rates for additions by 7 477 

chromosomes compared to those by 21.  478 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.326231doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.326231
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

Our simulation results also demonstrate that the adequacy rate of over-parameterized 479 

models, which allows for more types of transitions than those that truly occurred, is 480 

similar to that of the generating models. While it is expected that the accuracy of 481 

inferring the model parameters will decrease as overly-complexed models are 482 

evaluated, in many cases the auxiliary parameters were optimized to very low values, 483 

resulting in a process that is nearly identical to the generating model. Thus, it seems 484 

that the flexibility offered by complex models does not necessarily lead to their 485 

disadvantage, at least for some inference tasks, as has been recently demonstrated for 486 

models of nucleotide sequence evolution (Abadi et al., 2019). In other cases of model 487 

violations, either for under-parameterized or miss-parameterized models, when the 488 

rate parameters deviated substantially from the original ones (e.g. dysploidy rates an 489 

order of magnitude larger than the simulated rates), the model adequacy framework 490 

detected such cases as inadequate. This suggests that the adequacy test is capable of 491 

detecting models that are completely wrong. In other cases, the nature of model 492 

misspecification affected the outcome. In the simulations examined here, DysBnum was 493 

more frequently adequate than DysDup, both in the case of under-parameterization (i.e. 494 

when the generating model was DysDupBnum such that both models miss one type of 495 

transition) and miss-parameterization.  Nevertheless, we note that the DysBnum model 496 

may not fit well in large phylogenies with high dysploidy rates. In its current 497 

implementation, the model assumes that a single base number typifies a clade. 498 

However, if there is a high dysploidy rate, each subclade of the phylogeny may be 499 

characterized by its own base number or by multiple base numbers, which will 500 

necessitate more complex modelling options.  501 

We further tested the consequences of using an inadequate model by examining the 502 

errors of several inference tasks. First, we found that the difference in inference error 503 

between adequate and inadequate models depended on the simulation scenarios: in 504 

some simulation scenarios the use of inadequate models resulted in significantly 505 

inflated inference errors compared to the use of adequate models, in some scenarios it 506 

affected only certain inference tasks and not others, while in others the difference was 507 

negligible for all tasks. Second, we found that some inference tasks are much more 508 

sensitive to model misspecification than others. The assignment of extant taxa as 509 

diploids or polyploids was the inference task that was least affected from using an 510 

inadequate model, and in general, the error of this inference task was very low (in all 511 
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scenarios, the ploidy level of 88% or more of the taxa were correctly identified). This 512 

indicates that determining the ploidy levels of extant taxa is generally robust to model 513 

misspecification. On the other hand, the error of determining the number of events 514 

that had occurred – either dysploid or polyploid transitions – can be substantial when 515 

inadequate models are employed.  516 

Applying the model adequacy test to hundreds of angiosperm genera, we found that in 517 

the majority of the cases the best-fitted model provided sufficient approximation to 518 

the evolutionary processes underlying the data and was determined as adequate. 519 

However, in roughly one fourth of the examined genera, this selection turned out to be 520 

inadequate, suggesting that there is ample room for future modelling improvements. 521 

Indeed, we found high rates of model inadequacy when applying the developed 522 

procedures to two types of clades that are expected to violate basic modelling 523 

assumptions: first, clades in which allopolyploidy events are known to occur, thus 524 

violating the assumption that evolution proceeds via a phylogenetic structure; second, 525 

in the case of large and diverse clades in which a single transition process is fitted to 526 

the entire phylogeny, following the time homogeneity assumption, is insufficient. 527 

These results thus indicate that promising future developments would be to focus on 528 

analytical procedures based on phylogenetic networks (Nakhleh, 2010), rather than on 529 

bifurcating phylogenies, and to further incorporate time-heterogeneous processes.  530 

Phylogenetic model adequacy tests have been previously developed for other data 531 

types and inference tasks, although their use has not been widely adopted. This could 532 

be due to the apparent limited benefit offered to a researcher when all examined 533 

models are deemed inadequate when applied to a clade of interest. We argue, 534 

however, that model adequacy tests are of practical use to methods developers and 535 

end users alike, and should thus be regularly practiced as part of a broader model 536 

assessment routine. For researchers interested in data analysis, inadequate models can 537 

hint on errors in the input data, which should thus be more carefully inspected. In the 538 

case studied here, possible sources of errors include those in the assumed 539 

phylogenetic hypothesis, in the collection of chromosome counts, or in taxa sampling. 540 

Inadequacy could also point to additional attributes that should be considered in the 541 

analysis. For example, if all models that assume a time-homogenous transition 542 

process fail, it could suggest that patterns of chromosome-number change are 543 

dependent on an organismal trait (e.g. the plant growth form), that if accounted for, 544 
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using more complex models (e.g. Zenil-Ferguson et al., 2017; Blackmon et al., 2019) 545 

would enhance the analysis. For researchers interested in large scale analyses that 546 

include multiple datasets, where the in-depth examination of each inadequate dataset 547 

is not feasible, the filtration of such clades is one obvious possible direction. For some 548 

inference tasks, such as the identification of ploidy levels of extant taxa, the effect of 549 

using an inadequate model is rather negligible, indicating that the treatment of the 550 

flagged clades should be tuned to the analysis in question. For the developers, the 551 

frequent application of model adequacy tests should provide interesting test cases on 552 

which new models are trained. Moreover, when a model is deemed inadequate, the 553 

test statistics that fail to align may point to processes absent from existing models, 554 

which could be included in the future. Model adequacy should thus take a vital part in 555 

this recurrent chain of scientific progress in which new methods are developed, 556 

regularly used, and then replaced by more advanced alternatives.  557 
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Tables 679 

Table 1. The set of chromEvol models examined in this study, together with their rate 680 

parameters.  681 

Model 
Model 

parameters1 
Description Nested in2 

Dys λ, δ 
Dysploidy (descending or 

ascending)  

DysDup, DysDupDem
*, 

DysDupDem, DysBnum, 

DysDupBnum 

DysDup λ, δ, ρ Dysploidy and duplication  
DysDupDem

*, 

DysDupDem, DysDupBnum 

DysDupDem
* 

λ, δ, ρ = µ 
Dysploidy, constraining equal rates 

of duplication and demi-polyploidy 
 

DysDupDem λ, δ, ρ, µ 
Dysploidy, duplication, and demi-

polyploidy 
DysDupDem

* 

DysBnum λ, δ, β, ν 
Dysploidy and base number 

transition 
DysDupBnum 

DysDupBnum λ, δ, ρ, β, ν 
Dysploidy, base number transition, 

and duplication 
 

1
 The model parameters are the base number (β), and rates of ascending dysploidy (λ), 682 

descending dysploidy (δ), duplication (ρ), demi-duplication (µ), and base number 683 

transition (ν). 684 

2 In case all parameters of the model are a subset of other models, the more complex 685 

models are indicated.  686 
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Table 2. The eight simulation scenarios examined in this study.  687 

Genus 
Number 

of taxa  

Generating 

model 

Model parameters1 

λ δ ρ β ν 

Aloe 120 DysDup 0 (0) 0.34 (1) 2.61 (8)   

Phacelia 53 DysDup 0.20 (2) 2.33 (21) 0.67 (6)   

Lupinus 77 Dys 0.85 (7) 9.53 (76)    

Hypochaeris 38 Dys 1.14 (5) 0.43 (2)    

Brassica 36 DysBnum 1.24 (11) 0.70 (6)  8 0.55 (5) 

Pectis 49 DysBnum 0 (0) 0.40 (2)  12 0.55 (3) 

Crepis 81 DysDupBnum 2.41 (19) 0.99 (8) 0.26 (2) 8 0.18 (1) 

Hordeum 36 DysDupBnum 0 (0) 0 (0) 1.80 (5) 7 1.36 (4) 

1
 In parentheses: average number of simulated events across the tree.  688 
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Table 3. The inadequacy rates of the four tested models in the various simulation 689 

scenarios examined (100 simulations per tested model per scenario).   690 

1 The diagonal (white cells) are cases where the generating model is also the tested 691 

model. Dark grey represents over-parametrized models, light grey under-parametrized 692 

models, and patterned cells miss-parametrized models.  693 

Simulation 

scenario 

Generating 

Model 

Tested Models1 

DysDup Dys DysBnum DysDupBnum 

Aloe  DysDup 0.07 1.00 0.06 0.08 

Phacelia  DysDup 0.04 0.99 0.04 0.03 

Lupinus  Dys 0.06 0.08 0.06 0.07 

Hypochaeris  Dys 0.03 0.06 0.04 0.05 

Brassica  DysBnum 0.14 0.98 0.05 0.06 

Pectis  DysBnum 0.86 1.00 0.12 0.07 

Crepis  DysDupBnum 0.27 0.95 0.11 0.08 

Hordeum  DysDupBnum 0.77 1.00 0.30 0.13 
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Figure Legends 694 

Fig 1. A schematic illustration of the model adequacy framework for likelihood 695 

models of chromosome-number evolution. In the case illustrated here, the model is 696 

adequate because none of the test statistics lies in the tails of the simulated 697 

distribution.  698 

Fig. 2. The mean inference errors obtained under adequate and inadequate models for 699 

each simulated scenario. Each row presents the error of a different inference task. 700 

From top to bottom: inferring the total number of polyploid events across the tree, 701 

inferring the total number of dysploid events across the tree, ploidy level assignments 702 

of extant taxa, the probability of the chromosome number at the root of the 703 

phylogeny. Each column denotes a different simulation scenario. For each scenario, 704 

300 simulations were conducted and runs were partitioned to adequate and inadequate 705 

models. The violin plots represent the distribution of the errors obtained for the 706 

adequate (light grey, right) and inadequate (dark grey, left) sets. The black dot within 707 

each distribution denotes its mean. Asterisk indicates significant difference between 708 

the two groups (*, p < 0.05 and ***, p < 0.01). 709 

Fig. 3. Application of the model adequacy test to 200 angiosperm genera. (a) A bar 710 

plot representing the frequency of selection according to the AIC of each of the six 711 

tested models in the 200 examined angiosperm genera. The height of each bar is 712 

partitioned according to the percentage of genera that were determined as adequate 713 

(light blue) or inadequate (red). (b) The adequacy rate of each model when applied to 714 

all genera, regardless of whether the model was selected (n = 200).  715 
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Supplementary information 716 

Supplementary Information Methods: 717 

Item 1: Description of the simulation procedures.  718 

Supplementary Information Tables: 719 

Table S1: Pearson’s r coefficient between each pair of statistics. 720 

Table S2: The generating and fitted model for each simulation scenario used in the 721 

comparison of inference error between adequate and inadequate models. 722 

Table S3: Details of the seven plant clades, whose taxonomic rank is above the genus 723 

level, examined in this study. 724 

Table S4: Type I error rates for each test statistic per simulation scenario. 725 

Table S5: Adequacy rates of all models, including those of the chosen models. 726 
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