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Spatial transcriptomics is an emerging stack of technologies, which adds spatial dimension
to conventional single-cell RNA-sequencing. New protocols, based on in situ sequencing or
multiplexed RNA fluorescent in situ hybridization register positions of single molecules in
fixed tissue slices. Analysis of such data at the level of individual cells, however, requires
accurate identification of cell boundaries. While many existing methods are able to approx-
imate cell center positions using nuclei stains, current protocols do not report robust signal
on the cell membranes, making accurate cell segmentation a key barrier for downstream
analysis and interpretation of the data. To address this challenge, we developed a tool for
Bayesian Segmentation of Spatial Transcriptomics Data (Baysor), which optimizes segmen-
tation considering the likelihood of transcriptional composition, size and shape of the cell.
The Bayesian approach can take into account nuclear or cytoplasm staining, however can
also perform segmentation based on the detected transcripts alone. We show that Baysor
segmentation can in some cases nearly double the number of the identified cells, while reduc-
ing contamination. Importantly, we demonstrate that Baysor performs well on data acquired
using five different spatially-resolved protocols, making it a useful general tool for analysis
of high-resolution spatial data.

During the last decade, single-cell transcriptomic technologies gained great popularity, with single-

cell RNA-sequencing (scRNA-seq) has become the preferred approach for characterizing the state

of complex tissues1–4. These techniques are being gradually augmented by the spatially-resolved

transcriptomics measurements, based on in situ sequencing5, 6, multiplexed single-molecule fluo-

rescent in situ hybridization (sm-FISH)7–9, or spatially-barcoded hybridization10, 11. The ability to

examine the physical positions of different transcripts and cells at genomic scales has potential

to bridge the molecular view of the cell with morphology, electrophysiology and other cellular

phenotypes12. It can expose the impact of physical and biochemical interactions between cells,

and reveal how such processes influence tissue organization during development13 and disease14.
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These protocols may eventually supplant scRNA-seq, as they also offer technical advantages, such

as the ability to bypass capricious tissue disassociation steps needed for scRNA-seq. At present,

however, most such assays are limited in the number of genes they can detect (30-300 genes), as

well as the number of molecules that can be detected per cell (50-500)8, 15. Nevertheless, there

has been steady progress on the optimization of these protocols, with some increasing the number

of detectable genes to thousands7, 16. Increasing scales and spatial resolution are already enabling

unbiased characterization of tissue organization9 and subcellular organization of cells7, 17.

The transcriptional data acquired by the in situ sequencing or smFISH protocols can be gen-

erally summarized as a collection of detected molecules, each corresponding to a particular gene or

transcript, along with the coordinates of that molecule within the field of view. While in principle

such data can yield cellular or even sub-cellular resolution, the effective spatial resolution depends

on the ability to distinguish features in the downstream analysis. Very sparse measurements, for

instance, may only allow for interpretation of regional differences, such as segmentation of corti-

cal layers. Achieving cellular resolution, however, even with high-density measurements, requires

accurate cell segmentation. Most current groups have relied on the auxiliary nuclei staining (e.g.

DAPI) to identify putative cell centers7, 9, 16. Unfortunately, even such one-channel segmentation

is challenging, commonly requiring manual tuning and corrections18, including compensation for

physical misalignment of molecular and auxiliary stains. The nuclei positions also do not inform on

the extent of the cell body. Some efforts have used additional poly-A staining to extend the initial

nuclei positions9, 16. Similarly, pciSeq algorithm15 relies on the initial nuclei segmentation as a seed

to extend the boundaries of the cell based on a Poisson model of gene expression. Alternatively,

the spatial measurements can be analyzed without explicit cell segmentation (segmentation-free).

Such approaches can characterize cell type composition of the tissue or identify distinct regions,

but cannot be easily extended to many other kinds of downstream analyses13, 19.

In this manuscript we start by discussing the applications and limitations of the segmentation-

free approach. We suggest a new, simple method for segmentation-free analysis, which does not

require extensive hyperparameter tuning. We then describe a general framework, based on Markov

Random Fields, that can be used to solve a variety of molecule labeling problems. In partic-

ular, we follow this strategy to implement solutions for (i) separation of background noise, (ii)

de novo inference of cell populations without cell segmentation, and (iii) cell type annotation of

molecules based on the annotated scRNA-seq data. Finally, we introduce a method that performs

cell segmentation based on the observed molecules, and optional microscopy staining data. All

of the algorithms are implemented in an open-sourced command-line tool and a corresponding

Julia package called Baysor. We show that Baysor can segment data from most published proto-

cols with molecular resolution, yielding better segmentation accuracy, increasing the number of

detected cells, as well as the number of molecules associated with each cell.
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Results
Analysis of local expression patterns without segmentation. As illustrated by the scRNA-seq

studies, different cell types and many phenotypic states can be readily distinguished based on the

transcriptional composition of a cell. In spatial measurements, the cells of a distinct type will

give rise to small molecular neighborhoods with stereotypical transcriptional composition. This

patch-like structure of the spatial transcriptomics data can be used to interpret it without per-

forming explicit cell segmentation19. To perform such neighborhood composition analysis, we

generated a neighbourhood composition vector (NCV) for each molecule by taking its k spatially

nearest neighbors and estimating the relative frequency of different genes among the neighbor-

ing molecules (Fig. 1a). These expression vectors can be treated as “pseudo-cells” and analyzed

using existing methods developed for scRNA-seq, including clustering, cell type annotation and

embedding (Fig. 1b,c). The NCVs can also be used to effectively visualize local transcriptional

composition. To do so, we embed the NCVs in 3D color space. Under such color encoding,

where the neighborhoods of similar transcriptional composition are represented by similar colors,

different types of cells as well as their boundaries become visually apparent (Fig. 1).

Unlike scRNA-seq datasets, spatial transcriptomics data can be analyzed at different scales.

In the NCV analysis, the spatial scale is determined by the neighborhood size parameter k, relative

to the average number of molecules measured per cell m. Small neighborhoods, with character-

istic size smaller than the scale of the cell (k � m), can provide information about intra-cellular

organization, driven for example, by the nucleus or other organelles. Most of the protocols pub-

lished to date, however, lack the resolution necessary to effectively distinguish such subcellular

features. The notable exceptions are the Seq-FISH+7 protocol and a high-resolution variant of

MERFISH9, 20. Large neighborhoods, with characteristic size greater than a cell (k � m), can

reveal microanatomical tissue and even organ-level organization, such as the layer structure of the

brain cortex (Supplementary Figs. 1 to 3).

General approach for statistical labeling of spatial data. A number of analyses in spatial tran-

scriptomics can be formulated as label-assignment problems. Cell segmentation, for instance,

assigns cell labels to the observed molecules. Similarly, separation of intercellular background is

a problem of labeling molecules as “signal” vs. “background”. The distinguishing characteristics

of these problems is that the labels tend to show strong spatial clustering: two nearby molecules,

for instance, are likely to belong to the same cell and therefore share a common label. Mathe-

matically, this spatial clustering tendency can be captured using Markov Random Field (MRF)

priors21, 22. The labels themselves can be modeled as latent variables, and inferred from the ob-

served data using an Expectation-Maximization (EM) algorithm.

Different labeling problems can then be solved by choosing the appropriate label probability

model and the observable data (Supplementary Fig. 4a). For instance, by using gene identities of
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Fig. 1 | Segmentation-free analysis of spatial data using Neighbourhood Composition Vectors (NCVs).
a. NCVs are estimated by taking k spatially-nearest neighbours for each molecule, and tabulating the num-

ber of neighborhood molecules belonging to each gene. (left) The molecules measured in the 2D space are

shown as dots, colored by the gene identity. Based on the similarity of these vector profiles, NCVs can be

clustered or embedded into lower-dimensional space (b,c). (center, right) A 3D embedding can be translated

into a color encoding, so that similar colors correspond to similar neighbourhood compositions. Such color

encoding allows for effective visualization of individual cells as well as the overall tissue organization. A

part of the Allen smFISH dataset is shown as an example. b. The heatmap shows the expression patterns for

20000 NCVs, uniformly sampled across the physical space with rows corresponding to genes and columns

corresponding to NCVs. The color scale shows log10 of total-count normalised expression, additionally nor-

malised by the maximum for each gene. The L1 and L2 column headers show the marker-based annotations

for the corresponding NCVs. c. NCVs can be analyzed using existing scRNA-seq pipelines, to generate

clustering, cell type annotation and embeddings. An 2D UMAP embedding is shown, labeled and colored

according to the published annotation of the corresponding cells.
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Fig. 2 | Application of Markov Random Field (MRF) framework for segmentation-free cell type in-
ference and background filtration. a,b. Individual molecules were clustered into major cell types by

modelling the tissue as a mixture of multinomial distributions with MRF prior. Cluster labels per molecule

are shown in (a), with expression vector for each of the clusters shown in (b). c. The MRF approach is

used to separate background from intracellular signal. For each molecule, the algorithm estimates the dis-

tance to its k-th nearest neighbour and models the distances as a mixture of two Normal distributions. The

distribution of physical distances to 16-th nearest neighbour (x-axis) is shown for the molecules in the Allen-

smFISH dataset as a histogram (blue). Fitted intracellular and background distributions are shown in red and

green, respectively. The vertical black line shows the optimal separation point. d. Molecules from a subset

of the Allen-smFISH dataset are shown as dots, coloured by their distance to the 16-th nearest neighbour,

with the colorkey shown on the bottom of (c). The black contours mark regions above 50% probability of

being intracellular.
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the molecules as observables, and multinomial distributions to model the transcriptional composi-

tion associated with different labels, this MRF-based approach results in a meaningful clustering of

molecular neighborhoods (Fig. 2a,b). One can additionally use expression profiles of different cell

types obtained from scRNA-seq data as a prior for the multinomial distributions of different labels.

This enables the approach to efficiently transfer the cell annotations from scRNA-seq to the mea-

sured molecules without performing cell segmentation (Supplementary Fig. 5). The MRF-based

inference can be notably faster than traditional clustering (Supplementary Table 1), however, both

performance and robustness of such annotation transfer become poor when the number of cell types

increases beyond 10-20. Another example of the labeling problem is distinguishing background

molecules from cell bodies. In this setting, one can assume that the cells form dense regions, while

the background noise molecules appear in sparse regions. Taking the distance to the k-th nearest

neighbor as a measure of sparsity (observed data), we used the same EM algorithm to segment the

background (Fig. 2c-d and Supplementary Fig. 4a). Overall, MRF provides a general recipe for

solving a variety of spatial labeling problems, though each problem requires a custom formulation

of the EM algorithm.

Cell segmentation across various protocols. Despite the relative ease and effectiveness of the

NCV approach described above, many of the downstream analyses and interpretations of the

spatially-resolved data depend on the ability to resolve individual cells. These include analysis of

context-dependent cell expression states, physical interactions and spatial dependencies between

cell types, cell migration and formation of tissue architecture. We, therefore, set out to develop a

cell segmentation method that can take into account different facets of data that are informative of

cell boundaries. The increased spatial density of molecules within the cell somas is one such facet.

The transcriptional composition of local molecular neighborhoods is another. Further evidence can

be gained from stainings for nuclei (e.g. DAPI), cell bodies (e.g. poly-A primers), or cellular mem-

branes. To optimize cell segmentation based on multiple evidence sources, we have developed an

algorithm, called Baysor, which builds on the ideas of the MRF segmentation outlined above. The

method can be used to analyze data from various experimental protocols (Fig. 3), and can perform

cell segmentation using molecular positions alone, or by incorporating additional information. The

approach models each cell as a distribution, combining spatial positions and gene identity of each

molecule. Thus, the whole dataset is considered as a mixture of such cell-specific distributions.

Baysor then uses Bayesian Mixture Models to separate the mixture. The optimization relies on

MRF prior to ensure spatial separability of the cells and to encode additional information about the

spatial relations of molecules (Supplementary Fig. 4b).

Existing cell segmentation methods rely on nuclear (DAPI) or cytoplasmic (poly-A) staining8, 9, 15,

segmenting the images with watershed or other algorithms to obtain cell labels18, 23. While Baysor

can perform segmentation using only the information on the measured molecules (Fig. 2), the aux-
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Fig. 3 | Examples of Baysor cell segmentation over the published protocols. a, Baysor segmentation

is shown for a part of the MERFISH Mouse Hypothalamus9 dataset. The central panel shows positions

of the measured molecules, colored by their neighbourhood gene composition (see Fig. 1a). The inferred

boundaries of the segmented cells are shown as black contours. Zoom-in views are shown immediately to

the left and right of the central plot. The outer plots show DAPI signal within these regions. Additionally,

the DAPI signal is also shown as grayscale background within the zoom-in molecule plots. b-e, Additional

examples of Baysor segmentation are shown for the Allen sm-FISH Mouse VISp (b), ISS Hippocampus15

(c), STARmap Mouse VISp 102016 (d), and osm-FISH somatosensory cortex8 (e) datasets.
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iliary stains can provide valuable information in cases where the molecular signal is sparse or not

informative about cell boundaries (see Discussion). Baysor can take advantage of such informa-

tion by using a pre-calculated segmentation as a probabilistic prior. Computational segmentation of

nuclear and cytoplasmic stains, however, remains a challenge in itself18, 19, and the pre-calculated

segmentations will typically contain many errors (Fig. 4d). To account for this, Baysor defines a

“prior segmentation confidence” parameter which determines the weight of the prior. Setting this

parameter to 0 will cause Baysor to ignore the prior, while a maximum value of 1 will restrict

Baysor from changing segmentation of the molecules assigned to cells, leaving it to deal only with

non-assigned molecules (Supplementary Fig. 6). Prior segmentation is also taken into account

when determining the background to penalize removal of the molecules assigned to cells in the

prior segmentation (see Methods). In addition to segmentation priors, Baysor can also incorporate

information about background assignment probabilities per molecule. Finally, Baysor can use in-

formation about molecule clustering to penalize assignment of molecules from different clusters

to the same cell.

To evaluate the performance of our approach, we compared Baysor results with segmenta-

tions provided in the original publications (“Paper”). Additionally, a common base-line segmen-

tation was generated using a watershed segmentation of DAPI images (using ImageJ23, see Meth-

ods). Baysor was run in two configurations: a minimal configuration - using only the positions and

gene identity of the detected molecules (“Baysor”); and using enhanced configuration where the

originally published segmentations were used as a prior for Baysor segmentation (“Baysor with

Prior”). We first examined various summary statistics for different segmentations. Both Baysor

and the Paper segmentations have around the same number of molecules and area per cell (Sup-

plementary Fig. 7), which suggests that neither of them performs over- or under-segmentation. In

contrast, the Watershed segmentation has cells of smaller size, which can be explained by it cap-

turing only the nuclei information and discarding cytoplasmic molecules. Compared to published

(Paper) segmentations, Baysor reports a larger number of cells and a higher fraction of molecules

recognized as a part of a cell (Fig. 4a,b) with the largest difference of 2 folds for the osmFISH

data8. The Watershed underperforms other methods by these two criteria, as well. Additionally,

since the Baysor algorithm is stochastic in nature, we showed that the segmentations generated

based on different seeds of the random number generator showed highly similar (Supplementary

Fig. 8). Additionally, we profiled time and memory usage of the Baysor run with the longest run

taking 51 minutes for the MERFISH dataset with 3.7M molecules and the largest memory usage

of 40.4 GB for the STARmap dataset with 1020 genes (Supplementary Table 2).

We currently lack experimental methods to establish ground truth on cell segmentation, so

it is not possible to estimate a global quality metric which would show to what extent the results

differ from an ideal segmentation. Instead, we examined the differences between segmentations
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Fig. 4 |Comparison of the Baysor segmentation to the published results and Watershed DAPI segmen-
tation. a,b, Number of cells (a), and fraction of the molecules assigned to cells (b) by different segmentation

methods (color) are shown for different datasets (x-axis). c, Schematics for evaluating the differences be-

tween two segmentations based on gene composition of the results. Each cell from the source segmentation

c is matched to cells from the target segmentation t. For the source cells, which overlap multiple target cells,

the region with the largest (“main") overlap is used. Correlation of gene expression of the main overlap re-

gion against the expression of the rest of the cell in the source segmentation is then estimated. d, Examples

of the results where the published segmentation merged distinct cell types. The dots show the measured

molecules, colored by NCVs with contours showing cell boundaries for Baysor (black) and reported in the

original publications (purple). e, Comparison of Baysor results to the published segmentations, using the

correlation benchmark (c). The violin plots show the distribution of overlap correlations with the rest of the

cell (y-axis), for different datasets (x-axis). The right part of each violin plot was calculated using Baysor

segmentation as a source and the published segmentation as a target, while the left parts were calculated by

swapping the source and target segmentations. The width of the violin plots is proportional to the number

of source cells that were matched to multiple target cells. The results show that Baysor segmentation (used

as a target) can be used to split multiple cells from the published segmentations into poorly-correlated parts,

while the reverse - using the published segmentation as a target - for the most part is not able to identify

flaws in the Baysor segmentation. f, Analogous to e, the plot compares performance of Baysor segmentation

with the segmentation obtained using Watershed algorithm.
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and evaluated which algorithm performs better in the cases where the segmentations disagree.

Specifically, in comparing any two segmentation results we identified all cases where a cell from

one segmentation matched multiple cells from the other segmentation. For each of these cases we

picked the largest part of the cell from the first segmentation that matched to a single cell from the

second segmentation. We then estimated the correlation of expression profiles between this match-

ing part and the rest of the cell (Fig. 4c). If the first segmentation was correct, then the matching

part should show similar transcriptional composition to the rest of the cell in the first segmentation,

and the resulting correlation measure will be high. In contrast, if the second segmentation was cor-

rect, the expression correlation will be low (Fig. 4d). Assessment of such expression correlation

between parts of the cell requires a relatively high number of molecules per cell, so we were not

able to apply this benchmark to the dataset generated using ISS protocol15 (Supplementary Fig. 7a).

On all other protocols, the overlapping regions showed on average higher expression correlation

with the corresponding Baysor assignments than with the alternative segmentations (Fig. 4e,f and

Supplementary Fig. 9), indicating higher accuracy of Baysor segmentation results.

We further investigated the two datasets where the differences between Baysor and published

segmentations were most notable: osmFISH8 (Fig. 5) and MERFISH9 (Supplementary Fig. 10)

datasets. In both cases, the segmentation differences preferentially impacted certain cell types.

In the case of osmFISH, the published segmentation omitted most of the cells of non-neuronal

subtypes: only 8% of Vascular and Astrocytic cells detected by Baysor are present in the original

segmentation (Fig. 5d). The disagreements on the MERFISH dataset were less biased, with the

largest difference observed for the Endothelial cells, with the published segmentation reporting

51% fewer cells (Supplementary Fig. 10c). There were two subtypes where Baysor distinguished

fewer cells: 10% less for Ependymal, and 15% for Microglia. The difference in Microglia, how-

ever, is likely caused by the set of Inhibitory neurons that express contradictory markers and were

mis-annotated as Microglia (Supplementary Fig. 10j).

Outstanding challenges. The Baysor model described above performed well on most existing

protocols, however some edge cases are not resolvable within the current model. These include

working with ultra-high resolution data, capturing 3D structure of the data, and segmenting sparse

homogeneous regions. An example of the ultra-high resolution data is the NIH3T3 fibroblast

dataset from the Seq-FISH+ protocol7. It captures 10,000 different genes with 35,622 molecules

and 6,700 unique genes per cell on average. Such resolution reveals prominent sub-cellular struc-

ture, resulting in heterogeneous gene composition within different parts of the cell body (Fig. 6a).

Furthermore, such data also highlights complex morphology of the cells (Fig. 6b). These features

go beyond the two critical assumptions of the current Baysor model: that the composition of the

cell body is homogeneous, and that the cell shape can be reasonably well approximated using a bi-

variate normal prior. The homogeneity assumption was also violated in the dataset generated using
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Fig. 5 | Examples of the segmentation differences on the osmFISH data. a, A joint UMAP embedding

of the cells generated by both Baysor and the published segmentations, labeling the annotated cell types

with color. b, The same embedding, colored by the segmentation method. c, A heatmap showing expression

patterns of marker genes (columns) for each of the cell types (rows). The colours show expression levels,

normalised by gene. d, The barplots showing the number of cells per cell type for the Baysor (brown) and

the published (green) segmentations, with the numbers on the top of the bars showing excess percentage

for the Baysor segmentation. e-f, Examples of Micro Hexb (e) and Astro Mfge8 (f) cells, which were

not segmented in the published segmentation, but were distinguished using Baysor. The dots correspond

to molecules, colored by gene (only five the most abundant genes are shown). The grayscale background

represents DAPI signal, and the black line shows the cell boundary determined by Baysor.
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STARmap protocol16, however the reasons for that are likely technical: in the STARmap data, the

molecules belonging to the same gene were spatially clustered, with the size of such mono-genic

clusters reaching dozens of molecules (Fig. 6d,e and Supplementary Fig. 11). While Baysor was

still able to perform a reasonable segmentation of this data (Fig. 4a,b,e), such local clustering of

genes affected the convergence of the algorithm.

Another potential limitation is the presence of the 3D structure in the data. The existing

protocols can scan through the third dimension by generating sequential focal stacks (z stacks).

The distance between the sequential stacks, however, can vary. In some datasets, the distance

between stacks exceeds 10µm, effectively capturing different cell layers. Other datasets show

much smaller distances, on the order of 1µm, in which case the stacks can be pooled together

reducing it to a 2D view. There are, however, some rare cases where the stacks capture real 3D

structure of the cells (Fig. 6c). In such cases, segmentation needs to be performed in 3D. While

the Baysor model can be extended to 3D, the current implementation is limited to 2D data.

The third challenge involves separation of sparse homogeneous regions. If a region is com-

posed primarily of the same cell type, the segmentation would normally be driven by the local

density clustering of the detected molecules (e.g. Fig. 6b). However, if the molecular signal is

very sparse, such density patterns become challenging to detect. This situation can be observed in

the ISS dataset of the CA1 brain region15. As there is little signal in the data, the resulting Baysor

segmentation does not correspond to the DAPI staining (Fig. 6f). It is worth noting, however, that

for the purposes of the downstream analyses, the uncertainty in the boundaries between cells of the

same type is likely to be less consequential than other types of errors.

The challenging situations described above can be addressed by specifying a segmentation

prior based on auxiliary stainings, and regulating its weight with the “prior segmentation confi-

dence” parameter. For accurate segmentation of complex cell shapes, stainings that register the

whole cell body are needed (e.g. poly-A or membrane staining). The choice of the staining seg-

mentation method is also important, to ensure that the prior segmentation traces the complex cell

shapes. When using such priors, the further the cell shapes are from simple ellipsoid approxima-

tions, the larger should be the value of the prior segmentation confidence parameter. Similarly,

having whole body stainings with high prior confidence can help to overcome problems aris-

ing from heterogeneous subcellular structure. For instance, incorporating a segmentation prior

for STARmap VISp 160 had a substantial effect on the segmentation (Supplementary Figs. 9, 12

and 13).

In contrast, segmentation of sparse datasets can be aided by the knowledge of cell centers

alone, obtained from DAPI or similar stainings. Specification of the approximate cell size (i.e.

global scale) is also useful in such cases. A lower prior confidence value will provide better results

in such cases, since even a small value should be sufficient to resolve homogeneous regions. Using
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Fig. 6 | Outstanding challenges. a, Seq-FISH+ Fibroblast7 data colored by NCVs with black contours

showing the published segmentation borders. b, The same data, segmented by Baysor with colors showing

cell assignment. c, Example of cells which are separable only in 3D in the Allen smFISH data. The two plots

show 2D projections on the physical x-y and x-z axes correspondingly. Each point represents a molecule,

coloured by its gene of origin. Gad2 and Pvalb are markers of inhibitory neurons, while Sv2c with Satb2

are markers of excitatory neurons. These markers are mutually exclusive, and there should be no cell that

expresses all four of these markers.
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Fig. 6 | d, Example of a cell from the STARmap VISp 160 dataset16. The black lines show the published cell

boundaries. The plot shows colouring by gene for the 15 most expressed genes. e, Local grouping tendency

of the transcripts on STARmap data, is illustrated through distributions of neighbor gene entropy. (top) For

each molecule, k = 5 nearest neighbours were estimated. The entropy (left) of their gene count vector,

and the number of unique genes in the neighbourhood (right) and are shown on the “Observed” histogram.

The “Expected” histogram shows the distributions expected under gene randomization. (bottom) Analogous

plots for k = 10 neighborhoods. f, Example of a homogeneous CA1 region in the ISS data15. The plot shows

Baysor segmentation, and it can be seen that cell boundaries do not match the grayscale DAPI signal from

the nuclei. Each dot represents a molecule, colored by NCVs, with black contours showing cell boundaries.

g, Different segmentations shown for the same region as f with the segmentation type specified in the top-

left corner. Black crosses on the plot show molecules, assigned to background. The bottom row shows

that after using DAPI segmentation (Watershed) prior, Baysor segmentation shows better correspondence

to the nuclei DAPI signal. h, Segmentation examples from the Allen smFISH dataset, showing Baysor

segmentation without (top) and with (bottom) DAPI-based Watershed prior. Here, using Watershed prior

does not change results visibly, as transcriptomic signal matches to DAPI.

larger prior confidence value, on the other hand, can distort the segmentation of heterogeneous

regions. Prior segmentations do not appear to help in overcoming 3D structure effects, as the

current 2D model can not properly account for such data.

Discussion
Realizing the potential of spatially-resolved transcriptomics will require continued improvements

on both the side of the protocols12, as well as analytical methods for processing such data. Here we

focused on addressing an important pre-processing step of cell segmentation. Effective segmenta-

tion can increase the number of detected cells, and provide more informative profiles for each cell.

The accuracy of the segmentation is also critical for a number of valuable downstream inferences.

For instance, incorrectly drawn borders can create spurious correlation of expression state between

adjacent cell types, resulting in false-positive inference of cell interactions. Alternatively, shifted

borders may be interpreted as transient cell states, suggesting false transitions between cell types.

To avoid such potential issues, we described an approach that uses transcriptional composition to

optimize the placement of cell boundaries. Baysor can perform segmentation using only molecule

placement data or in combination with evidence from auxiliary stains, and yields improved seg-

mentation quality, increased number of cells and segmented molecules.

Not all of the downstream analyses require cell segmentation. For instance, region segmen-

tation or tissue cell type composition may be inferred directly from molecular data19. We show that

a relatively simple segmentation-free approach based on the composition of local neighborhoods

(NCVs) can be used to assess the quality of the dataset, estimate the number and identity of the
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major cell types, and effectively visualize the organization of the tissue (Fig. 1a). This approach

is fast and does not require parameter tuning, making it a convenient option for preliminary anal-

ysis. Furthermore, the NCVs can be fed directly into existing scRNA-seq analyses methods for

integration with other datasets, annotation of cell types, etc. Many of these downstream problems,

however, can be formulated as labeling problems, in which local continuity can be effectively cap-

tured using Markov Random Field (MRF) priors. Such MRF-based approach is at the core of

Baysor cell segmentation method, but can also be used to solve other labeling problems, such as

separation of signal from background molecules or clustering of NCVs. It can also be used for

continuous labels, such as cellular response on an injury, for example modeling dependence on

the distance from the site of the injury. The strategy can also be applied on the level of cells, for

instance to identify larger tissue segments22.

Though Baysor algorithm performed well on most of the published protocols, a number of

potential improvements could be introduced. For instance, the implementation can be extended

to support segmentations in 3D space, without altering the logic of the underlying algorithm. A

more complex problem would be improving modeling of cell shapes24, for instance by replacing

current ellipsoid shape approximations by limiting the size and complexity of the cellular shapes.

Further improvements could be gained by extending the hierarchical Bayesian model to introduce

cell-type specific shape and composition characteristics. Finally, as we demonstrate, information

from auxiliary stainings can be extremely valuable in resolving difficult cases. Improved stain-

ings, such as those labeling cellular membranes, as well as improved methods for segmenting such

images will likely be key for improving the overall segmentation results. However, even with the

common DAPI images, manual processing is commonly required to perform initial nuclei segmen-

tation. As Baysor can take advantage of uncertain prior predictions, a probabilistic auxiliary image

segmentation method that could incorporate nuclei, cytoplasm and membrane stainings to predict

a cell center and boundary probability maps would provide a significant advantage. We hope that

the Baysor implementation and the MRF-based computational approach will further facilitate the

development and applications of high-resolution spatial transcriptomics methods.
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Methods
Neighborhood Composition Vector Analysis. To analyze the spatial expression patterns without

cell segmentation, we use neighbourhood composition vectors (NCVs) as a unit of analysis. NCVs

are constructed by identifying K spatially nearest neighbours (NNs) for each molecule, and then

characterizing its composition. That is, estimating the frequency of occurrences of different genes

among the neighbours:

NCVi =

{
|u : (geneu = q, u ∈ adjK(i)) |

K

}
q=1:Ngenes

, (1)

where Ngenes is the total number of measured genes, geneu is the gene that produced the molecule

u,K is the number of NNs and adjK(i) are the indices of these NNs for the molecule i. To estimate

the NNs, a k-d tree structure implemented in the NearestNeighbors.jl julia package was used. 2D

Euclidean distance was used as a distance metric. As implemented in the Baysor package, the

default value ofK was set to the expected minimal number of molecules per cell (a user-modifiable

parameter) or the total number of detectable genes divided by 10, whatever is larger.

To perform single-cell RNA-sequencing (scRNA-seq) analysis of NCVs we used Pagoda2

( https://github.com/kharchenkolab/pagoda2) R package to calculate UMAP

embedding25 and CellAnnotatoR package (https://github.com/khodosevichlab/Ce

llAnnotatoR) to annotate the cell types.

To visualize the local gene composition, embedding of the NCVs into three dimensions was

performed, first by reducing the dimensions using Principal Component Analysis (PCA) to the

top 15 principal components, and then embedding the data into 3D space using UMAP with the

default parameters min_dist = 0.1 and spread = 2.0. As fitting UMAP embedding for many

NCVs is computationally intensive, to optimize performance we first fit the UMAP embedding

on a subset of NCVs and then applied the resulting transformation to all NCVs. First, PCA was

estimated on the whole dataset. Then, 10000 molecules were selected uniformly across the prin-

cipal components. After which UMAP was fitted only on the 10000 NCVs, corresponding to

18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2020. ; https://doi.org/10.1101/2020.10.05.326777doi: bioRxiv preprint 

https://arxiv.org/abs/1802.03426v3
https://arxiv.org/abs/1802.03426v3
1802.03426
https://github.com/kharchenkolab/pagoda2
https://github.com/khodosevichlab/CellAnnotatoR
https://github.com/khodosevichlab/CellAnnotatoR
https://doi.org/10.1101/2020.10.05.326777
http://creativecommons.org/licenses/by/4.0/


these components. Next, the fitted UMAP was used to embed all PCA-transformed NCVs to a 3D

space. Finally, these 3D coordinates were re-normalized and encoded into a perceptually uniform

CIELAB colorspace. Selecting molecules uniformly across multiple dimensions was done by tak-

ing sum over all PC coordinates for each of the molecules, ranking them by the obtained values,

and then selecting a subset from this array uniformly across indices. Such approach allows to have

a subset of molecules with density, similar to the original distribution while avoiding stochastic

sampling. If assignment of molecules to background noise or true signal is available for a given

dataset, only non-background molecules are used for fitting UMAP.

Markov Random Field segmentation. In many cases, spatial proximity of molecules is a sign of

their similarity by some other properties. Examples of such properties include cell assignment, cell

type that produced the molecules, or the distinction between "background" and true "intracellular"

molecules. To infer such labeling from molecules we formulate it as a segmentation problem,

which is solved using an Expectation-Maximization (EM) algorithm for separating a mixture of

distributions with Markov Random Field (MRF) prior21, 26 to encode spatial relationships.

Such a model implies that each segment (which can be cell, cell type, or a background/signal

label) comes from its own distribution that is generated by

p(zi = s| vs, z\i,W ) =
fs(obsi | vs, z\i,W )∑ncomps

u=1 fu(obsi | vu, z\i,W )
(2)

fs(obsi | vs, z\i,W ) = fMRF

(
zi = s | {zj, wi,j }j∈adj(i)

)
∗ fs (obsi|vs) , (3)

where fMRF is the MRF density, fs is the density of the component s, ncomps is the total number of

components, zi is the segment label for the molecule i, z\i is the vector of labels for all molecules

except i, obsi is the observed data from this molecule, W = {wi,j}i,j∈molecules is the matrix of

MRF edge weights between pairs of molecules i and j, and vs is the vector of parameters for the

component s.

Building the Random Field. To establish the structure of the random field, Delaunay triangulation

over points in 2D space was built using the VoronoiDelaunay.jl package. It provides a connected

planar graph, matching the general structure of the space. Edge weights were set to the trimmed

inverse Euclidean distance, so they represent connectivity of the two molecules i and j: wi,j =

min(Q0.3(d)/di,j, 1) , where di,j =
√

(xi − xj)2 + (yi − yj)2, and Q0.3(d) is the 0.3 quantile of

the distance distribution d = {di,j}. In principle, the weights could be additionally adjusted to

represent other kind of dependencies between molecules (see the "Cell Segmentation" section),

but they were not used during this step. It is worth noting that the Delaunay triangulation captures

only a small neighborhood of a molecule, which is necessary to keep the graph planar. However,

more neighbors could, in principle, be taken into account by adding edges to the nearest neighbors

that are not already connected.
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Separation of the intracellular molecules from the background. In the existing datasets, back-

ground regions are much sparser than the cellular somas. This difference can be quantified by

estimating distance to the k-th nearest neighbour (NN) for each molecule. The molecules in the

dense regions would have small distance, while for sparser regions the distance will be large (2c,d).

To model distribution of such distances di we used Gaussian Mixture Model with two components:

one for the intracellular and another for background molecules. The EM algorithm with the MRF

prior was then used to separate this components.

Initialization was performed using 10’th and 90’th percentile of the distance distribution for

the means of the intracellular (µc) and the background (µb) components correspondingly. Both

standard deviations were initialized as σc, σb = 0.25 ∗ (µb − µc). The probability of a molecule

to be labelled as intracellular (later called "molecule confidence" for simplicity) was initialized as

pc,i = N (di|µc,σc)
N (di|µc,σc)+N (di|µb,σb)

. The molecules from the right tail with di > µb + 3σ were assigned to

the background with probabilities fixed to 1.0 and excluded from subsequent optimization. Finally,

the total number of molecules per component was initialized as mu =
∑nmols

i=1 pu,i.

On the Expectation step of the iteration t the assignment probabilities were updated using

the following formulas with u ∈ [c, b]:

fMRF

(
zi = u | {zj, wi,j }j∈adj(i)

)
= exp

 ∑
j∈adj(i)

(
wi,j ∗ p(t−1)u,j

)
fu(di|z\i,W,mu, µu, σu) = mu ∗ fMRF

(
zi = u | {zj, wi,j }j∈adj(i)

)
∗ N (di|µu, σu)

p
(t)
u,i = pu(di|z\i,W,mu, µu, σu) =

fu(di|z\i,W,mu, µu, σu)∑
s∈(c,b) fs(di|z\i,W,ms, µs, σs)

(4)

On the Maximization step parameters µ, σ and m were re-estimated according to:

µu =

∑nmols

i=1 (pu,i ∗ di)∑nmols

i=1 pu,i

σ2
u =

∑nmols

i=1 (pu,i ∗ (di − µu)2)∑nmols

i=1 pu,i

mu =

nmols∑
i=1

pu,i

(5)

The difference of the parameters µ and σ between iterations was used as the convergence

criteria, with the convergence threshold of 0.005. After the algorithm converged, the MRF prior

was discarded and only the densities of the normal distribution were used to estimate the cell

assignment probabilities: pc(di) = mc∗N (di|µc,σc)
mc∗N (di|µc,σc)+mb∗N (di|µb,σb)

. That was done because the MRF

prior consistently push probabilities to be close to either 0.0 or 1.0, which corresponds to binary
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classification. In contrast, using only normal densities results in more gradual probability values,

which can be integrated better with the further probabilistic parts of the algorithm.

When a prior segmentation Lprior was available (e.g. DAPI), it was used as a constraint for

the optimization. Given the prior segmentation confidence cprior ∈ [0.0, 1.0], the Expectation step

was restricted pc(di) to be greater or equal than c2prior for all molecules, assigned to cells in the

prior segmentation:

pc,i = c2prior + (1− c2prior) ∗
fu(di|z\i,W,mu, µu, σu)∑

s∈(c,b) fs(di|z\i,W,ms, µs, σs)
∀i : Lprior(i) > 0 (6)

At the limit of cprior → 0, this approach converges to the case without a prior segmentation,

whereas cprior → 1 will ensure that the molecules assigned to cells in the prior segmentation will

be necessarily recognized as intracellular.

Segmentation of cell types. The same MRF formalism can be applied to perform de-novo clustering

of molecules by cell type of origin. Moreover, when the scRNA-seq data is available, the approach

can match the transcriptional identifies of the clusters identified in the spatial data to those ob-

served in the provided scRNA-seq. To perform the segmentation, we considered gene identity of

a transcript as observable data, and modeled the whole dataset as a mixture of Categorical distri-

butions representing different cell types. The number of components ncomps is an input algorithm

parameter that must be specified at the start. Then, the basic Expectation step on the iteration t

works as the following:

p
(
u ∈ adj(i)

)
= 1−

∏
j∈adj(i)

(1− p(t−1)u,j )

fMRF

(
zi = u |{zj, wi,j, pc,j }j∈adj(i)

)
= exp

 ∑
j∈adj(i)

(
wi,j ∗ p(t−1)u,j ∗ pc,j

)
fu(gi|W, vu, z\i, pc) = fMRF

(
zi = u |{zj, wi,j, pc,j }j∈adj(i)

)
∗ Cat(gi|vu) ∗ p

(
u ∈ adj(i)

)
p
(t)
u,i = p(t)u (gi|W,V, z\i, pc) =

fu(gi|W, vu, z\i, pc)∑ncomps

s=1 fs(gi|W, vs, z\i, pc)

(7)

These formulas differ from the previous case (4) in several aspects. First, given that gene

identities are categorical, and not continuous variables, the two Normal distributions were replaced

with ncomps Categorical ones to describe this kind of data. The parameter vu = {vu,q}q∈1:Ngenes here

defines expression probabilities per gene for component u. Second, they remove dependency of the

density on the segment sizemu, as its presence forced the algorithm to prefer components of larger

size, and without strong signal from data, the MRF prior tended to eliminate all but the largest com-

ponent. Such problems did not arise in the previous application, because there two Normal distri-
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butions described the observed data much better than one, ensuring that both components (back-

ground and signal) were maintained. In contrast, here the whole dataset can be described as a single

Categorical distribution with a high quality of fit, pushing the algorithm to converge towards one

component. Next, the molecule confidence pc,j , obtained from the background estimation step, is

used here for estimation of fMRF . This step is very important, because only intracellular molecules

are expected to be clustered over cell types, while background molecules can be arranged in arbi-

trary patterns. Finally, the updated formulas introduce p
(
u ∈ adj(i)

)
, which ensures continuity of

the resulting segmentation: without it, a molecule can be assigned to some cluster even if none of

its neighbors belong to that cluster, as fMRF

(
zi = u |{zj, wi,j, pc,j = 0 }j∈adj(i)

)
= exp(0) = 1.

Indeed, such ability to re-assign molecules globally can be desirable, as the EM algorithm can get

trapped in local minima and is generally sensitive to initialization. And the assignments to the com-

ponents distant from the local neighborhood can help to reach convergence to a global optimum.

However, the probability of assigning a molecule to a cluster that is not connected to it cannot be

inferred solely from the density fMRF (zi = u) = 1; it also depends on the scale of the other terms.

So, in addition to p
(
u ∈ adj(i)

)
the formulas introduce an additional term, pglobal = 0.05, which

defines the probability of assigning the molecule to a component regardless of the connectivity.

Then, the Expectation step can be adjusted as:

p(t)u (gi|W,V, z\i, pc) = (1− pglobal) ∗
fu(gi|W, vu, z\i, pc)∑ncomps

s=1 fs(gi|W, vs, z\i, pc)
+ pglobal ∗

Cat(gi|vu)∑ncomps

s=1 Cat(gi|vs))
(8)

The downside of the global assignment is the reduced continuity of clusters. To correct for that

effect, after the algorithm converged, pglobal was set to 0, which reduces to the basic version of

the Expectation step, and the EM iterations were carried out further until convergence to the final

result.

The Maximization step fit the parameters for Cat(gi|vu) using the assignment pu,i from the

Expectation step:

vu,q =

∑
i: gi=q

(pc,i ∗ pu,i) + 1∑ngenes

t=1

∑
j: gj=t

(pc,i ∗ pu,j) + 1
(9)

It is important to note here that the vector vu is a non-normalized probability density, due to the

way pseudo-counts were incorporated: instead of adding ngenes to the denominator, 1 was added

as it allowed to preserve spiking structure of the sparse distribution.

When prior information about transcriptional composition of cell clusters is available (e.g

scRNA-seq cell types), the Maximization step is changed to take it into account. Given prior

expression fraction µu,q from the cluster u and the gene q and its standard deviation σu,q, the
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estimate was adjusted based on the Z-score value ζu,q = vu,q−µu,q
σu,q

as:

v′u,q =


vu,q, if |ζu,q| < 1

µu,q + sign(ζu,q) ∗
(
|ζu,q |
4

+ 0.75
)
∗ σu,q, if 1 ≤ |ζu,q| < 3

µu,q + sign(ζu,q) ∗
(√
|ζu,q|+ 1.5−

√
3
)
∗ σu,q, if |ζu,q| ≥ 3

, (10)

This function corresponds to no penalty for all deviation from the mean within one σ, linear penalty

for deviations less than 3σ, and a super-linear penalty otherwise (Supplementary Fig. 14a). If the

standard deviation was not available, it was set to the mean value by default: σu,q = µu,q. It is

important to note here that for a given prior clustering reasonable results can often be obtained

by running only the Expectation step without the Maximization, which corresponds to setting

σu,q = 0, ∀u, q. Particularly, the results shown on the Supplementary Fig. 5 were obtained with

only iterating over the Expectation step.

The algorithm was initialized using a vector of gene frequencies, estimated over the whole

dataset, multiplied by uniform noise in [0.95; 1.05]: vinitu,q = |{i: gi=q}|∗Unif(0.95,1.05)
nmols

. Next, these

values were normalized by the sum over all genes: vu,q =
vinit
u,q∑ngenes

t=1 vinit
u,t

. The initial assignment

probabilities were estimated as pu,i = Cat(gi|vu)∑ncomps
s=1 Cat(gi|vs))

. Convergence was determined based on the

maximal change in pu,i between iterations, weighted by pc,i: max 1≤i≤nmols
1≤u≤ncomps

(
|p(t)u,i − p

(t−1)
u,i | ∗ pc,i

)
.

The default threshold for the convergence was set to 0.01.

Cell segmentation. Assignment of molecules to a cell of origin is another case of the MRF seg-

mentation. In the most basic form, a cell can be modeled as a Multivariate Normal distribution over

positions of molecules within a cell and a Categorical distribution over the cell gene composition.

Thus, the density of a cell k in the molecule i is:

fk(obsi|W, pc, z\i) = fMRF (zi = k|W, pc, z\i) ∗ ppriork ∗MvNormalk(xi) ∗ Catk(gi), (11)

where ppriork is the prior probability of the component k, which is proportional to the number of

molecules, assigned to this component, fMRF (zi = k|W, pc, z\i) is the MRF term, andMvNormal()

is the multivariate Normal distribution (bivariate for the 2D implementation). However, fitting this

model by the EM algorithm does not work well for several reasons. First, the number of com-

ponents cannot be defined beforehand and has to be inferred by the algorithm. To perform such

inference, the algorithm we use a Dirichlet prior over the number of components (the approach

called Bayesian Mixture Modeling or BMM). Second, not all of the molecules belong to cells,

and filtration of the background molecules by a hard threshold over pc,i does not always work

well. So the algorithm was adjusted to deal with raw probabilities pc,i, and a separate background
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component fbg was added to the mixture. Finally, dense homogeneous regions within a tissue do

not have sufficient information to be segmented based on their transcritpional composition, so the

model (11) will segment the whole region into a single component. Such situations, however, can

be resolved much better by utilizing information about the expected physical size of a cell. This

was done by introducing a global scale parameter sglobal that was used as a prior for estimating the

covariance matrices of the bivariate Normal distribution. If a prior segmentation is provided, sglobal
is inferred based on this data, and otherwise it has to be specified by the user.

Initialization. The algorithm is initialized with a large number of components uniformly dis-

tributed over 2D space. Setting the initial number of cells to be much larger than the expected

number greatly improved the convergence of the algorithm. The initial cell centers were selected

uniformly across 2D space, and each molecule was assigned to the nearest center. The center

selection was done using a strategy similar the one used for subsampling of the neighbourhood

composition vectors (NCVs): the molecules are ranked by the sum over the x and y coordinates,

and then the algorithm selects a subset from this array uniformly across indices. When molecule

background confidences were available, only molecules with true signal confidence greater than

0.25 are used. The MRF was initialized using Delaunay triangulation in the same way as described

above. However, given that the triangulation uses only the information about spatial positions, the

MRF was then further adjusted to reflect the neighbourhood composition similarities, based on

NCVs. Specifically, NCVs were estimated for each molecule, and the resulting matrix of NCVs

was transformed using PCA. Pairwise Pearson linear correlation of the PC vectors, ρi,j , was esti-

mated for any two molecules i and j that were connected by an edge in the Delaunay graph, and

the MRF edge weight was then multiplied by max(ρi,j, 0.01).

Fitting Bayesian Mixture Model. Fitting of the Bayesian Mixture Model was performed by incor-

porating Stick-breaking process into the Stochastic EM algorithm. The algorithm iterates over the

four steps over a pre-defined number of iterations N iter (500 by default, which was enough for

convergence on all of the tests):

1. Maximize parameters of the distributions given existing assignment of molecules by cells

(Maximization step)

2. Sample empty components from the Dirichlet prior (Distribution Sampling step)

3. Stochastically assign molecules to components given the exiting components (Stochastic

Expectation step)

4. Remove all components that have less than two molecules assigned to them
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After finishing the iterations, the algorithm re-estimates molecule assignment by averaging it over

the last N est iterations (N iter/10 by default).

Maximization. The Maximization step fits the parameters of the Normal and Categorical distri-

butions based on the current assignment of molecules to components. For the Categorical dis-

tribution of the component k, non-normalized probability vk,q of the gene q being expressed was

estimated as a fraction of the gene q across the observed molecules (smoothed with pseudo-counts),

weighted by the molecule confidence pc,i. To avoid numerical problems, all confidences were re-

stricted with 0.01 from the bottom: p′c,i = max(pc,i, 0.01), vk,q =
(
∑

i: (gi=q)&(i∈k) p
′
c,i)+1

(
∑

j: j∈k p
′
c,j)+1

. This

procedure is similar to the one employed in estimation of probabilities for the cell type segmen-

tation. However, here hard assignment of cell labels was used for the sake of performance. For

the Multivariate Normal distribution, the mean µk was estimated as the weighted average over

the positions of the assigned molecules: µk,u =
∑

i: i∈k xi,u∗p′c,i∑
i: i∈k p

′
c,i

, where u ∈ {1, 2}. The weighted

Maximal Likelihood Estimator was also used for the covariance matrix: Sk =
∑

i: i∈k(xi∗xiT ∗p′c,i)∑
i: i∈k p

′
c,i

.

After estimating the covariance matrix, it was adjusted based on the global scale sglobal. The most

popular solution for such adjustment uses the Wishart prior over the covariance matrix, as this

prior is conjugate for the Normal distribution. However, the Wishart prior is parametrized with

the expected covariance matrix and the number of degrees of freedom, and thus does not allow

to explicitly control the magnitude of deviation from the expected covarate matrix. Therefore

we instead relied on the non-conjugate Normal-like prior on the eigenvalues of the covariance

matrix. This prior was parametrized with the expected size of the eigenvalues sglobal, and their

standard deviation σglobal, which can be specified by the user, or set to 0.25 ∗ sglobal by default.

Then, the adjustment starts by performing eigen decomposition over Sk to calculate its eigen-

values λk and the eigenvector matrix Qk. Next, the eigenvalues are adjusted using the formula

λ′k,u = λk,u + sign(λk,u − sglobal) ∗
√
|λk,u−sglobal|

σglobal
∗ σglobal, where u ∈ [1, 2] . This transformation

corresponds to quadratic penalty over deviation Z-scores Zk,u, reducing the deviation Zk,u ∗ σglobal
to
√
Zk,u ∗ σglobal. Next, to account for the components with low number of samples, it is further

adjusted as λ′′k,u =
m∗σglobal+nk∗λ′k,u

m+nk
, wherem is the expected minimal number of molecules per cell

and nk is the number of molecules assigned to the component k. Finally, the adjusted covariance

matrix is estimated as S ′k = Qk ∗

(
(λ′′k,1)

2 0

0 (λ′′k,2)
2

)
∗ Q−1k . When the distribution parameters

are estimated, the component prior probabilities ppriork are sampled from the Dirichlet distribution,

proportionally to the number of molecules per component nk: pprior ∼ Dirichlet (max(n, α)),

where α is the Dirichlet Process parameter, set to 0.2 by default. Density of the background com-

ponent was also estimated during this step, as it is constant and depends only on the parameters of

the cell components:
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fbg = fpositionbg ∗ f genebg (12)

fpositionbg = MvNormal

(
[3sglobal, 3sglobal]|µ = [0, 0],Σ =

(
s2global 0

0 s2global

))
(13)

f genebg =
1

Ncoms

Ncomps∑
i=1

(
1

|expressedi|
∑

q∈expressedi

Catk(q)

)
(14)

where expressedi is a set of all genes, expressed in the component i. The position part of this

density corresponds to the level of three expected standard deviations (i.e. 3 ∗ sglobal) from the cell

center. And the composition part estimates the average expression probability across all cells and

all genes expressed in them.

Distribution sampling. After the Maximization step, Nnew comps = βnew ∗ Ncomps new compo-

nents were sampled from the prior distributions. The parameter βnew was set to 0.3 by default.

For the Normal distribution, centers were sampled from all molecule positions with the weights,

proportional to the molecule confidences: µ∗ = [xi, yi]; i ∼ Cat(pc). The diagonal covariance

matrix was sampled from the global scale prior: S∗ =

(
s21 0

0 s22

)
; si ∼ N

(
sglobal, σ

2
global

)
. Sam-

pling gene composition parameters requires proper modeling of sparsity of the expression vectors,

which varies greatly between protocols and cell types. It is therefore unclear how to capture this

with a parametric prior distribution. Instead, the algorithm sampled gene composition parameters

uniformly from the existing components: v∗ = vk; k ∼ Uniform(1 : Ncomps).

Stochastic Expectation. During the Expectation step, the algorithm iterates over all the molecules

and stochastically re-estimates their component assignment. The algorithm starts by determin-

ing candidate components for each molecule, as well as their MRF prior densities. First, if a

component k already has some molecules {i}zi=k assigned to it, it is included as a candidate

for all molecules j that are connected to the assigned molecules {i}zi=k: (zi = k) ⇒ (k ∈
candidatesj, ∀j ∈ adj(i)). The MRF prior densities are defined as the weighted sum over

all edges coming from the molecules that are assigned to this component: f(zi = k|W, pc) =∑
(j∈adj(i))&zj=k (pc,j ∗ wi,j). For every component k that was just sampled from the prior and still

has no assigned molecules, the algorithms found the molecule i, closest to the component center

µk and included component k as a candidate for all molecules j that are connected to i:(
i = argmin

l∈1:Nmols

(|xl − µk|)
)
⇒ (k ∈ candidatesj, ∀j ∈ ∪(adj(i), i))

In this case, the edge weight was set to 1, which is the maximal possible weight given the scaling

procedure. The background component was included as a candidate to all molecules, and its MRF

26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2020. ; https://doi.org/10.1101/2020.10.05.326777doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.326777
http://creativecommons.org/licenses/by/4.0/


prior probability was set to

fMRF (zi = bg|W, pc, z\i) = max

 ∑
j∈adj(i) &
zj=bg

((1− pc,j) ∗ wi,j) , 1

 .

It’s important to note that the exponent was not used for the MRF densities here, as it gave visibly

worse results on the tests. After the MRF weights are estimated, the full formula for the component

density is:

fk(obsi|W, pc, z\i) = pc,i ∗ fMRF (zi = k|W, pc, z\i) ∗ ppriork ∗MvNormalk(xi) ∗ Catk(gi)

fbg(obsi|W, pc, z\i) = (1− pc,i)) ∗ fMRF (zi = bg|W, pc, z\i) ∗ fpositionbg ∗ f genebg

(15)

Finally, assignment for the molecule i is sampled from the estimated densities.

Using molecule cell type segmentation information. To improve gene composition purity of the cell

segmentation, results from the cell type segmentation can be utilised here by penalizing assignment

of molecules from different clusters to the same cell. For that, the cell type segmentation is ran prior

to the cell segmentation, and each molecule has a cluster label assigned to it. By default, number of

clusters is set to 4, as almost every dataset has 4 cell types, while having larger number of clusters

could lead to over-segmentation. Given a cluster label per molecule, on the maximization step the

algorithm estimates the most represented cluster per cell. Then, on the expectation step, densities

of the cell components are penalized in case the cluster of the molecule cli does not match to the

cluster clk of the cell: f ′k(obsi|W, pc, z\i) = fk(obsi|W, pc, z\i) ∗ γI[clk=cli], where γ is the penalty

term (0.25 by default) and I is the indicator function.

Using a prior segmentation. For many datasets, the auxiliary microscopy stains, such as DAPI,

can be used to generate a prior segmentation. Such a segmentation can be used to resolve the

cases where molecules do not provide sufficient information. The complexities of segmenting and

aligning the auxiliary stains, however, mean that the quality of such segmentations can vary. To in-

corporate this optional information, Baysor can accept prior cell segmentation labels per molecule,

as well as the prior segmentation confidence parameter cprior ∈ [0; 1]. At cprior = 0, the prior

segmentation would be ignored, whereas cprior = 1 forces the Baysor segmentation not to violate

the prior segmentation assignments. Increasing cprior from 0 to 1 gradually increases importance

of the prior segmentation. The prior segmentation penalty is evaluated only for the molecules

that are assigned to some cell (but not to background) in both Baysor and the prior segmenta-

tions. This accounts for the fact that the imaging-based segmentations may miss some cells or

portions of cells that can still be deduced from the spatial transcriptomics data. The most obvious

example of such situation are the DAPI-based segmentations, which cover only molecules within
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the cell nuclei, leaving most of the cytoplasm molecules unannotated. Baysor algorithm, there-

fore, treats background labels (i.e. not within segmented region) within the prior segmentations

as "unknown", instead of explicitly assigning these molecules to the background component. The

situation in which some non-background molecules from the prior segmentation are recognized

as background by Baysor is dealt with during the Background segmentation step. Specifically, if

a molecule i is recognized as intracellular in the prior, its confidence can not be less than c2prior:

pc,i ≥ c2prior, ∀i : zpriori 6= background. As a result, there are two possible types of contradic-

tions between the two segmentations: (i) multiple Baysor components are present within one prior

segment, and (ii) one Baysor cell component touches multiple prior segment.

The penalties are applied during the stage at which the densities of components are estimated

for a given molecule, by multiplying fk(obsi|W, pc, z\i) by the penalty term βk,i. If this molecule

has a prior assignment to some segment, all but the component with the largest intersection with

this prior segment are penalized. This is done using the following procedure. After the Distribution

Sampling step, the algorithm estimates number of molecules nsegk,q per segment q for each of the cell

components k. Then, based on these numbers it estimates the main prior segment per component

ςk. This main segment label is used to separate the cases where two Baysor components are present

within one prior segment (in this case they would have the same main segment id) from the cases

where a Baysor component touches multiple segments (it would have one main segment, but would

get penalized for touching all other segments). During the Expectation step for the molecule i, the

algorithm finds the component u∗, which has the largest intersection with the segment zpriori = q

across all candidate components for any molecule i that has this segment as their main assignment

or do not have a main segment at all: u∗ = argmin
k:ςk∈(q,∅)

(
nsegk,q

)
. If any two components have the same

number of molecules for this segment, the component with larger total number of molecules is

chosen as the main component. The main component per segment incurs no penalty (βu∗,i = 1),

while the others are penalized as the following:

βk,i =


√

1− cprior
(
nseg
k,q

nseg
u∗,q

)cprior
if ςk ∈ (q,∅)√

1− cprior
(
nseg
k,q

nseg
q

)cprior∗exp(3∗cprior)
otherwise

(16)

where nseqq is the total number of molecules per segment q. The first type of penalty prevents two

cells from existing in the same prior segment (over-segmentation problem), while the second type

prevents one cell from taking over a big part of a segment assigned to a different cell (overlapping

problem). The second penalty type also solves the under-segmentation problem: if a Baysor cell

overlaps two prior segments, then as soon as a new component is sampled inside one of these seg-

ments, the existing "doublet" cell incurs very large penalty for all other molecules of this segment.

These functional form of the penalties, while somewhat arbitrary, has allowed to express a desired
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curve shape for the penalties (see Supplementary Fig. 14b,c). The penalties are also scaled in [0; 1],

which allows to keep the Distribution Sampling step without changes. Freshly sampled cells have

no penalty, which corresponds to βk,i = 1.

Complete Baysor workflow. Below is the description of the full Baysor workflow, as implemented

by the command-line interface:

1. Read the data frame with information about molecules. Filter out the genes with total number

of molecules below threshold if it was specified.

2. If provided, load the prior segmentation mask. Filter out any prior segments that have less

than mprior molecules. Estimate the global scale sglobal based on this data.

3. Estimate confidence pc,i per molecule

4. If the specified number of cell clusters (4 by default) is greater than 1, run the cell type

segmentation using the confidences, estimated above. Otherwise, assign all molecules to the

same cluster.

5. Initialize the Bayesian Mixture Model algorithm

6. Optionally, split data by frames to enable parallel processing

7. Run the BMM algorithm

8. Re-estimate assignment by averaging over the last N est iterations

9. If the data was split by frames, merge them back into one

10. Save the segmentation results

Inferring the algorithm parameters. Baysor implementation derives most of the parameter esti-

mates based on the minimal expected number of molecules per cell m, which must be specified by

the user, as well as the number of genes measured by the assay (ngenes):

• The initial number of cells is set to N init
cells = Nmolecules/m, where Nmolecules is the total

number of molecules.

• The number of principal components for the PCA transformation of NCVs for adjusting the

MRF is estimated as min (max (ngenes/3, 30) , 100, ngenes)

• The nearest neighbor index for estimating distances di during the Background Segmentation

is set to max (m/2 + 1, 2)
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• The number of nearest neighbors for NCV coloring is set to max(ngenes/10),m, 3)

• If a segmentation mask was provided, it is used to infer the global scale sglobal and its standard

deviation σglobal. To do so, Baysor first approximates cell radii from the number of pixels

per prior segment npixi as ri = npixi /π. Then, sglobal = median
i

(ri) and σglobal = 1.4826 ∗
MAD

i
(ri), which are the median and the adjusted median absolute deviation over the radii.

• Without a segmentation mask, the global scale sglobal is a required input parameter, and the

deviation σglobal is set to 0.25 ∗ sglobal by default.

• The minimal number of molecules per prior segment mprior = max(m/4, 2).

Segmentation parameters. Parameters of the segmentation runs for different datasets are shown in

the Supplementary Table 3.

Benchmarks. To evaluate Baysor, we have shown its performance in separating distinct cell types,

using Pearson Correlation benchmarks. We have also shown stability of its convergence for differ-

ent random number generator seeds, as well as runtime profiling.

Correlation benchmarks. As we currently lack independent techniques to establish ground truth on

cell segmentations, we developed a benchmark to evaluate the differences between two segmen-

tations. For each source cell c in the segmentation zsrc the benchmark finds a target cell t∗ from

the segmentation ztarget that has the largest overlap with c (Fig. 4c). Then it splits the molecules

from c over the part that overlaps with t∗ from the molecules in the non-overlapping part. Mea-

suring similarities of gene compositions of these two parts as a Pearson linear correlation (ρc), the

benchmark evaluates the distribution of such similarities over all cells from the source segmenta-

tion: ρ = {ρc}c∈zsrc . Taking two segmentations z1 and z2 as the input, the benchmark returns two

distributions ρ1 and ρ2 for the cases where zsrc = z1, ztarget = z2 and zsrc = z2, ztarget = z1 cor-

respondingly. Based on these two distribution, the segmentation is said to be better if it has higher

ρi values. More formally, given two segmentations zsrc and ztarget, the benchmark procedure does

the following:

1. All cells i with the total number of molecules below the threshold (nmolsi < m) are removed

from both segmentations.

2. Among the remaining cells, a contingency matrix between the two segmentation assignments

is estimated.

3. Based on the contingency matrix, for each cell c of the segmentation zsrc and cell t from the

segmentation ztarget, the overlap fraction f overc,t is estimated.
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4. For each cell c ∈ zsrc, the target cell t∗ ∈ ztarget is determined as the cell with the highest

molecule overlap fraction f overc,t∗ =
|{i:(zsrc,i=c) & (ztarget,i=t

∗)}
i∈1:Nmols |

nmols
c

.

5. Only cells from zsrc with the overlap f overc,t∗ ∈ (25%, 75%) are selected for further analysis.

6. For each cell c ∈ zsrc, the molecules from this cell are partitioned into (i) the main over-

lap lmainc,t∗ = {i : (zsrc,i = c) & (ztarget,i = t∗)}, and (ii) the rest lrestc,t∗ = {i : (zsrc,i =

c) & (ztarget,i 6= t∗)}.

7. Expression vectors vmainc,t∗ and vrestc,t∗ are estimated over the molecules from lmainc,t∗ and lrestc,t∗

correspondingly.

8. Pearson linear correlation coefficients ρc between the vectors vmainc,t∗ and vrestc,t∗ are estimated.

If these two sets of molecules were produced by different cell types, the correlation ρc is

expected to be low, suggesting that the segmentation zsrc was erroneous for the cell c. How-

ever, similarly to the classical hypothesis testing framework, a high correlation ρc does not

mean that the segmentation zsrc is correct: it only suggests that the molecules were obtained

from the same cell type, and it is still possible that they originated from different cells.

Stability benchmarks. To assess the stability of the algorithm convergence, Baysor was run 10 times

with different random number generator seeds on the MERFISH dataset. Each run used 400 iter-

ations each, with parameters "scale=6.16" and "min_molecules_per_cell=30". The final assign-

ment was obtained by averaging over the last 100 iterations ("assignment_history_depth=100").

The molecule confidences and clusters were pre-estimated only once, as these procedures are de-

terministic. Pairwise Adjusted Rand Index and Mutual Information between results of different

runs were calculated as stability metrics.

Performance benchmarks. For runtime performance profiling of the molecule clustering (Supple-

mentary Table 1), MERFISH dataset was used with the molecules subset to those with coordinates

x < −3300 and y < −3300 (338023 molecules in total). Then, molecule confidence was esti-

mated, using confidence_nn_id=26 parameter setting. The MRF clustering was then ran five times

for each value of k ∈ {2, 4, 6, 8, 10}, with parameters max_iters=5000 and n_iters_without_up-

date=100.

To evaluate the performance of the NCV Leiden clustering, Pagoda2 package was used. For

each run, the NCV matrix was estimated using 50 nearest neighbors, normalized by the total count

of each NCV, and reduced to projections on the top 50 principal components. A k-NN graph was

then built using 30 nearest neighbors (using the default cosine similarity distance metric) and leiden

community detection algorithm was applied with the default resolution=1.0. For the profiling, the

same parameters as specified in the Supplementary Table 3 (Prior=No) were used. Each dataset
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was segmented 5 times using a single thread. All benchmarks were ran on Lenovo Thinkpad X1

laptop with Intel(R) Core(TM) i7-8850H @ 2.60GHz CPU and 64GB RAM.

Quality metrics. After finishing the segmentation, Baysor extracts the following summary metrics

per cell:

• Cell area: area of the convex hull around the cell molecules

• Density: cell area divided by the number of molecules in cell

• Elongation: ratio of the two eigenvalues of the cell covariance matrix

• Average confidence: average confidence of the cell molecules

scRNA-seq processing. Analyzing NCVs using scRNA-seq tools. To generate clustering and em-

bedding of NCVs (Figure 1b,c) Pagoda2 package (https://github.com/kharchenkolab

/pagoda2/) was used. The data was pre-processed using the total count normalization, and then

building 50-NN graph over the normalized counts using the default cosine distance metric. Leiden

clustering with parameters "resolution=8" and "n.iterations=15" was used for annotation expansion

(see below). Visualization of the MERFISH and the osm-FISH datasets was done by building a

joint matrix over the paper and the Baysor segmentations, reducing its dimensionality with PCA to

10 top PCs (MultivariateStats.jl package) and then running UMAP embedding (UMAP.jl package)

using Euclidean distance and parameters "spread=2.0" and "min_dist=0.1" over the joint matrix.

Hierarchical clustering with the Ward linkage method and 70 clusters (Clustering.jl package) was

used for the annotation expansion.

scRNA-seq Annotation. The annotation for Allen smFISH data was generated using CellAnnotatoR

package. The cell type markers were inferred from Mouse VISp scRNA-seq data produced for the

SpaceTx consortium by the Allen Brain Institute (personal communication), and then applied it to

the corresponding FISH data. For inference, the "merged_cluster_smFISH" annotation shared with

the dataset was used. First, the cell type hierarchy was built using "broad_class" as the first level,

class prefix from "merged_cluster_smFISH" as the second and the full "merged_cluster_smFISH"

labels as the third level of the hierarchy. Second, cell types "CR", "Astro", "Endo", "Macrophage",

"Oligo" and "SMC" were removed, as they could not be distinguished by the genes, measured in

the Allen smFISH dataset. Next, CellAnnotatoR marker inference procedure was utilized to obtain

the markers using this hierarchy, and the resulting marker list was adjusted by hands to improve

the quality of the annotation. Finally, CellAnnotatoR was used to apply the identified markers to

the NCV data. To annotate MERSISH and osm-FISH data, the marker list was compiled manually

using the information published by the protocol authors, and then CellAnnotatoR was applied in
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the same manner. In all three cases, the resulting annotation was expanded over the clusters found

in the previous step (see "Analyzing NCVs using scRNA-seq tools").

Polygon visualization. To visualize the boundaries of the cells, a Kernel Density Estimation

(KDE) based algorithm was used. The algorithm builds a grid over 2D space, assigns each grid

node to the cell with the highest density of molecules around this node and draws a polygon around

this labels on the grid. More formally:

1. A uniform 4-connected grid was created over the 2D space, with the grid step specified as

an input parameter.

2. The density of molecules for each cell was estimated over the grid nodes using the KDE

implementation in the KernelDensity.jl package. KDE bandwidth - a parameter of the algo-

rithm - was set to the 0.5 * "grid step" by default. To improve runtime performance, only the

nodes within three bandwidths of the cell molecules were taken into account.

3. Each node was assigned to the cell with the maximal density in this node. If the maximal

density was below threshold (10−5 by default), the node was assigned to the background.

4. For each cell, the graph of boundary nodes were determined as the grid nodes of the cell that

were adjacent to the nodes from the other cells or from the background. The edges between

these boundary nodes were accepted into the boundary graph.

5. For each cell, a minimal spanning tree was built over its boundary graph using the Kruskal

algorithm.

6. For each cell, the longest path in this tree was extracted using the Dijkstra algorithm, and the

resulting path was transformed into a polygon by connecting its beginning and its end.

DAPI watershed segmentation with ImageJ. To generate prior segmentations using DAPI stains,

the Watershed segmentation was performed using ImageJ23 software. Each staining was segmented

by the following procedure:

1. The image was converted to 8-bit format ("Image" / "Type" / "8-bit").

2. Median filter with one pixel radius was applied ("Process" / "Filters" / "Median...").

3. Auto Threshold with the "Default" method and "Ignore black" option was applied for image

binarization ("Image" / "Adjust" / "Auto Threshold")

4. Watershed segmentation was applied ("Process" / "Binary" / "Watershed").
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VISP multiplexed smFISH data generation. Multiplexed smFISH data of mouse primary visual

cortex (VISp) was generated as part of the SpaceTx consortium. Tissue processing was carried out

as previously described27, with some modifications. The description is taken from19.

Silanizationof coverslips (#1.5, Thorlabs CG15KH) was performed by plasma cleaning for

30 min in a Plasma-Prep III (SPI 11050-AB), followed by vapor deposition of 3-aminopropyltriethoxysilane

(APES, Sigma A3648) in a vacuum for 10 minutes. Coverslips were then washedin 100% methanol

for 2 × 5 minutes, allowed to dry, and stored in a dust-free environment until use.

Fresh-frozen mouse brain tissue was sectioned at 10 µm onto silanized coverslips, let dry for

20 min at -20◦C, then fixed for 15 min at 4◦C in 4% PFA inPBS. Sections were washed 3× 10 min

in PBS, then permeabilized and dehydrated with chilled 100% methanol at -20◦C for 10 min and

allowed to dry. Sections were stored at -80 ◦C until use. Frozen sections were rehydrated in 2X

SSC (Sigma 20XSSC, 15557036) for 5 min, then treated 10 min with 8% SDS (Sigma 724255) in

PBS at room temperature. Sections were washed 5 times in 2X SSC. Sections were then incubated

in hybridization buffer (10% Formamide (v/v, Sigma 4650), 10% dextran sulfate (w/v, Sigma

D8906), 200µg/mL BSA (ThermoFisher AM2616), 2 mM ribonucleoside vanadyl complex (New

England Biolabs S1402S), 1 mg/ml tRNA (Sigma 10109541001) in 2X SSC) for 5 min at 37◦C.

Probes were diluted in hybridization buffer at a concentration of 250 nM and hybridized at 37◦C

for 2 h. Following hybridization, sections were washed 2 × 10 min at 37◦C in wash buffer (2X

SSC, 20% Formamide), and 1 × 10 min in wash buffer with 5 µg/ml DAPI (Sigma 32670), then

washed 3 times with 2X SSC. Sections were then imaged in Imaging buffer(20 mM Tris-HCl pH 8,

50 mM NaCl, 0.8% glucose (Sigma G8270), 30 U/ml pyranose oxidase (Sigma P4234), 50 µg/ml

catalase (Abcam ab219092). Following imaging, sections were incubated 3 × 10 min in stripping

buffer (65% formamide, 2X SSC) at 30◦C to remove hybridization probes from the first round.

Sections were then washed in 2X SSC for 3 × 5 min at room temperature before repeating the

hybridization procedure.

The multiplexed smFISH image data was collected and processed using methods previously

described27, except that the images from different rounds of hybridization were registered in (x,y)

based on the DAPI signal. The spot locations and raw data are available on request.

Code availability. Baysor package is available at https://github.com/kharchenkol

ab/Baysor. Baysor parameters for different datasets are reported in the Supplementary Table 3.

The code to reproduce the results is available at https://github.com/kharchenkolab

/BaysorAnalysis/.
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