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Abstract:  

In  response  to  environmental  changes,  the  medial  entorhinal  cortex  alters  its  single-cell  firing              
properties.  This  flexibility  in  neural  coding  is  hypothesized  to  support  navigation  and  memory  by               
dividing  sensory  experience  into  unique  contextual  episodes.  However,  it  is  unknown  how  the              
entorhinal  circuit  transitions  between  different  representations,  particularly  when  sensory          
information  is  not  delineated  into  discrete  contexts.  Here,  we  describe  spontaneous  and  abrupt              
transitions  between  multiple  spatial  maps  of  an  unchanging  task  and  environment.  These             
remapping  events  were  synchronized  across  hundreds  of  medial  entorhinal  neurons  and  correlated             
with  changes  in  running  speed.  While  remapping  altered  spatial  coding  in  individual  neurons,  we               
show  that  features  of  the  environment  were  statistically  preserved  at  the  population-level,  enabling              
simple  decoding  strategies.  These  findings  provoke  a  reconsideration  of  how  medial  entorhinal             
cortex  dynamically  represents  space  and  broadly  suggest  a  remarkable  capacity  for  higher-order             
cortical   circuits   to   rapidly   and   substantially   reorganize   their   neural   representations.  

Keywords:  medial  entorhinal  cortex,  dynamic  coding,  behavioral  state,  population  coding,  attractor            
manifolds.   
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Introduction:  

As  animals  engage  in  complex  behaviors,  they  must  dynamically  integrate  the  sensory  features  of               
their  environment  with  internal  factors  such  as  behavioral  state.  For  example,  arousal (Hulse  et  al.,                
2017;  Salay  et  al.,  2018;  Vinck  et  al.,  2015) ,  satiety (Jennings  et  al.,  2019) ,  attention (Kentros  et                  
al.,  2004) ,  and  running  speed (Hardcastle  et  al.,  2017;  Hulse  et  al.,  2017;  Niell  and  Stryker,  2010;                  
Vinck  et  al.,  2015)  have  widespread  impacts  on  cortical  processing (Stringer  et  al.,  2019)  and                
influence  how  an  animal  interacts  with  its  environment (Calhoun  et  al.,  2019;  Salay  et  al.,  2018) .  In                  
this  way,  the  same  set  of  sensory  features  associated  with  a  given  environment  can  drive  unique                 
neural  representations  when  combined  with  different  internal  factors.  However,  this  dynamic            
interaction  between  internal  and  external  factors  also  presents  a  challenge  to  integration  centers  of               
the  brain,  which  must  balance  reliable  representations  of  sensory  features  with  flexible  responses              
to  changing  internal  state.  For  example,  during  navigation  animals  encounter  a  continuous  stream              
of  sensory  features  while  simultaneously  experiencing  bevarioral  state  changes.  To  encode  unique             
episodes  or  contexts,  the  brain  must  integrate  these  internal  and  external  factors  in  order  to                
generate  distinct  neural  representations  that  are  consistent  with  the  animal’s  experience  of  the              
world.   

A  key  neural  substrate  hypothesized  to  support  this  process  is  the  medial  entorhinal  cortex  (MEC),                
which  contains  neurons  encoding  the  animal’s  spatial  position  and  orientation  relative  to  features  in               
the  external  world,  such  as  environmental  boundaries  and  objects (Diehl  et  al.,  2017;  Gil  et  al.,                 
2018;  Hafting  et  al.,  2005;  Høydal  et  al.,  2019;  Sargolini  et  al.,  2006;  Solstad  et  al.,  2008) .  MEC                   
position  and  orientation  cells  can  alter  their  firing  rates  and  their  firing  fields  can  rotate,  shift,  or                  
switch  locations  in  response  to  changes  in  the  geometry,  sensory  features,  or  task  demands               
associated  with  the  environment—a  phenomenon  known  as  remapping (Barry  et  al.,  2007;             
Boccara  et  al.,  2019;  Butler  et  al.,  2019;  Diehl  et  al.,  2017;  Fyhn  et  al.,  2007;  Keene  et  al.,  2016;                     
Krupic  et  al.,  2015;  Marozzi  et  al.,  2015;  Munn  et  al.,  2020;  Solstad  et  al.,  2008) .  Previous  studies                   
of  MEC  remapping  have  primarily  focused  on  how  the  firing  fields  of  individual  functionally-defined               
classes  of  cells  (e.g.  grid,  border,  or  head  direction  cells)  respond  to  distinct  sets  of  environmental                 
features.  However,  many  MEC  neurons  do  not  fall  into  discrete  functionally-defined  classes             
(Hardcastle  et  al.,  2017;  Hinman  et  al.,  2016) ,  and  theoretical  models  of  MEC  propose  that  neural                 
dynamics  emerge  from  interconnected  networks  of  neurons (Burak  and  Fiete,  2009;  Couey  et  al.,               
2013;  Fuhs  and  Touretzky,  2006;  McNaughton  et  al.,  2006;  Ocko  et  al.,  2018;  Pastoll  et  al.,  2013) .                  
How  MEC  as  a  whole  transitions  between  contextual  representations,  particularly  when  presented             
with  environmental  features  that  are  not  explicitly  divided  into  distinct  sets,  is  incompletely              
understood.   

Here,  we  investigate  how  large  populations  of  MEC  neurons  transition  between  spatial             
representations  in  an  invariant  external  context.  To  do  so,  we  use  silicon  probes  to  simultaneously                
record  from  hundreds  of  MEC  neurons  while  mice  navigate  a  tightly  controlled  virtual  reality               
environment.  We  find  that  remapping  events  occur  synchronously  across  the  MEC  population  and              
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can  occur  without  any  change  in  environmental  features  or  task  demands.  Further,  we  demonstrate               
that  each  map  corresponds  to  a  single  attractor  manifold  and  that  running  speed  correlates  with                
neural  variability,  driving  transitions  between  manifolds.  Together,  our  findings  bridge  the  gap             
between  previous  studies  of  flexibility  in  MEC  coding (Barry  et  al.,  2007;  Boccara  et  al.,  2019;                 
Butler  et  al.,  2019;  Diehl  et  al.,  2017;  Fyhn  et  al.,  2007;  Keene  et  al.,  2016;  Krupic  et  al.,  2015;                     
Marozzi  et  al.,  2015;  Munn  et  al.,  2020;  Solstad  et  al.,  2008)  and  existing  theoretical  models  of                  
MEC  population  dynamics (Burak  and  Fiete,  2009;  Couey  et  al.,  2013;  Fuhs  and  Touretzky,  2006;                
McNaughton   et   al.,   2006;   Ocko   et   al.,   2018;   Pastoll   et   al.,   2013) .  

 

Results:  

Spatial   representations   remap   in   an   invariant   virtual   environment  

We  implemented  a  virtual  reality  (VR)  navigation  task  in  which  head-fixed  mice  foraged  for  water                
rewards  along  an  infinite  track  with  landmark  cues  that  repeated  every  400  cm (Campbell  et  al.,                 
2020) (fig.  1a,  c).  6  mice  experienced  only  a  cue  rich  track  (5  landmarks,  fig.  1c,  top;  cool  colors                   
indicate  mouse  ID  in  all  figures,  fig.  1b,  top)(n  =  21  sessions,  i.e.  “cue  rich,  single-track”  sessions),                  
6  mice  experienced  only  a  cue  poor  track  (2  landmarks,  fig.  1c,  bottom;  warm  colors  in  all  figures,                   
fig.  1b,  middle)(n  =  11  sessions,  i.e.  “cue  poor,  single-track”  sessions),  and  5  mice  experienced                
alternating  blocks  of  cue  rich  and  poor  trials  within  each  each  session  (n  =  13  sessions,  i.e.                  
“double-track”  sessions;  purples  in  all  figures,  fig.  1b,  bottom)(see  also  fig.  S1).  Mice  could  lick  to                 
request  water  in  a  visually  marked  reward  zone,  which  appeared  at  random  locations  along  the                
track.  Mice  consistently  slowed  (mean  difference  in  running  speed  within  vs.  outside  of  reward               
zone  ±  standard  error  of  the  mean  (SEM):  9.1  ±  1.5  cm/s;  Wilcoxon  two-sided  signed-rank  test,  p  =                   
3.9x10 -7 ;  n  =  45  sessions  in  17  mice)  and  licked  for  water  (mean  difference  in  lick  number  within  vs.                    
outside  of  zone  ±  SEM:  7.4  ±  0.3;  Wilcoxon  two-sided  signed-rank  test,  p  <  0.0001;  n  =  10,953                   
reward  trials  across  45  sessions  in  17  mice)  in  reward  zones,  demonstrating  familiarity  with  the                
task  (fig.  1c-f).  As  reward  locations  were  random,  the  task  produced  a  spatially  uniform  distribution                
of   running   speeds   (fig.   1g).  

To  record  neural  activity  as  mice  traversed  the  VR  tracks,  we  acutely  inserted  Neuropixels  silicon                
probes (Jun  et  al.,  2017)  into  MEC  in  up  to  six  recording  sessions  per  mouse  (up  to  three  sessions                    
per  hemisphere),  each  associated  with  a  unique  probe  insertion  (fig.  1a,  k;  fig.  S1).  We  obtained                 
simultaneous  recordings  from  hundreds  of  MEC  neurons  in  individual  mice  across  a  large  portion               
of  the  dorsal  to  ventral  axis  of  MEC  (n  =  5,963  cells  across  45  sessions  in  17  mice)(fig.  1j,  k;  fig.                      
S1).  Many  individual  neurons  exhibited  spatially  periodic  firing  patterns,  with  decreasing  spatial             
frequencies  along  the  dorsal  to  ventral  axis  of  MEC  (fig.  1l;  fig.  S2),  consistent  with  known  grid  cell                   
properties    (Brun   et   al.,   2008;   Fyhn   et   al.,   2008;   Hafting   et   al.,   2005) .   To   characterize   spatial   coding   

3  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.326942doi: bioRxiv preprint 

https://paperpile.com/c/j1VbDs/OVqi+gjHn+eNSf+0AZ3+8fzv+edWR+a2zy+QX2B+E3fw+xdEV
https://paperpile.com/c/j1VbDs/OVqi+gjHn+eNSf+0AZ3+8fzv+edWR+a2zy+QX2B+E3fw+xdEV
https://paperpile.com/c/j1VbDs/OVqi+gjHn+eNSf+0AZ3+8fzv+edWR+a2zy+QX2B+E3fw+xdEV
https://paperpile.com/c/j1VbDs/twGQ+KMVr+i30S+ll2N+6RMp+SwpK
https://paperpile.com/c/j1VbDs/twGQ+KMVr+i30S+ll2N+6RMp+SwpK
https://paperpile.com/c/j1VbDs/8OTd
https://paperpile.com/c/j1VbDs/8OTd
https://paperpile.com/c/j1VbDs/HUCi
https://paperpile.com/c/j1VbDs/DpnY+6JO0+aZse
https://doi.org/10.1101/2020.10.05.326942


 

 

4  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.326942doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.326942


 

Figure  1:  Spatial  representations  remap  in  an  invariant  virtual  environment.  (A)  Schematic  of  recording                
set-up.  (B)  Color  scheme  for  each  track  condition  (colors  represent  individual  mice  and  are  maintained  throughout                 
this  figure).  (C)  Side-view  schematic  of  cue  rich  (top)  and  cue  poor  (bottom)  environments.  (D)  Average  running                  
speed  within  versus  outside  of  reward  zones  (points  represent  individual  sessions).  (E)  Average  fraction  of  licks                 
that  occurred  within  versus  outside  of  the  reward  zones  on  each  trial  for  each  session.  (F)  Average  running  speed                    
for  each  track  position  across  all  sessions  (gray  shading,  SEM).  (G)  Running  speed  near  rewards  for  the  first  100                    
trials  of  an  example  session  (gray  traces,  each  trial;  black  line,  average).  (H)  As  in  (G),  but  for  smoothed  lick                     
count  (pink  line,  average).  (I)  Average  spatial  correlation  of  nearby  trials  for  each  session.  Double-track  sessions                 
(purple)  show  cue  rich  (filled)  and  cue  poor  (open)  blocks  separately.  (J)  Locations  for  all  recorded  MEC  units                   
relative  to  the  dorsal  border  of  MEC  (dorsal-ventral  (DV)  =  0),  middle  of  MEC  (medial-lateral  (ML)  =  0),  and  back                     
of  brain  (anterior-posterior  (AP)  =  0)(hash-marks  correspond  to  example  units  in  K-Q).  (K)  Probe  locations  for                 
examples  in  (L-Q)(lines,  probe;  points,  example  units)  relative  to  anatomical  boundaries  as  in  (J).  (L)  Raster  plots                  
(top)  and  tuning  curves  (bottom)  for  three  example  cells  from  one  session  (black  lines,  average  firing  rate;                  
shading,  SEM).  (M-O)  Rasters  of  example  units  (left;  arrowheads  and  lines  indicate  distinct  maps)  and                
network-wide  trial-by-trial  similarity  matrices  (right)  from  3  example  single-track  sessions  (M,  n  =  142  cells;  N,  n  =                   
227  cells;  O,  n  =  139  cells).  (P,  Q)  As  in  (M-O),  but  for  one  double-track  session  split  into  cue  rich  (P)  and  cue                         
poor  (Q)  trial  blocks  (dashed  lines  indicate  breaks  between  blocks;  n  =  55  cells).  (C,  D,  H,  I)  N  =  5,963  cells  in  45                         
sessions  across  17  mice.  (See  also  Fig.  S1,  S2,  S3,  S4.)(Methods).  This  procedure  resulted  in  a  trial-by-trial                  
similarity  matrix  of  network-wide  spatial  representations  for  each  session  (fig.  1m-q  right;  fig.  S3).  Sessions  were                 
on  average  locally  spatially  stable  (mean  moving  average  correlation  of  5  nearest  trials  ±  SEM:  0.455  ±  0.011;  n  =                     
32   single-track   sessions   and   26   cue   rich   or   poor   blocks   from   13   double-track   sessions   in   17   mice)  

across  all  co-recorded  neurons,  we  estimated  each  neuron’s  position-aligned  firing  rate  on  each              
trial  and  computed  the  correlation  between  all  spatial  representations  for  each  pair  of  trials               
(Methods),  though  in  some  cases  neural  representations  appeared  untethered  from  landmarks  for             
part  or  all  of  the  session  (mean  spatial  correlation  range:  0.28  to  0.73;  within  session/block                
interquartile  range  min  to  max:  0.039  to  0.394)(fig.  1i;  fig.  S2).  Nonetheless,  many  neurons  still                
exhibited   spatially   periodic   firing   in   these   unstable   trial   blocks   (fig.   S2).  

In  many  recording  sessions,  we  observed  clear  changes  in  the  spatial  firing  patterns  of  single                
neurons  distributed  across  MEC  (i.e.,  remapping  events),  as  well  as  in  network-wide  trial-by-trial              
similarity  matrices  (fig.  1m-q,  arrowheads  and  lines;  fig.  S3).  Unlike  previous  reports  of  remapping               
in  MEC (Barry  et  al.,  2007;  Boccara  et  al.,  2019;  Butler  et  al.,  2019;  Diehl  et  al.,  2017;  Fyhn  et  al.,                      
2007;  Keene  et  al.,  2016;  Krupic  et  al.,  2015;  Marozzi  et  al.,  2015;  Munn  et  al.,  2020;  Solstad  et  al.,                     
2008) ,  these  remapping  events  occurred  without  any  change  to  environmental  sensory  cues  or              
task  demands.  Importantly,  remapping  events  did  not  reflect  shifts  in  the  location  of  the  recording                
probe,  as  spike  waveforms  remained  stable  across  remapping  events  (fig.  S4),  we  observed              
similar  remapping  events  in  recordings  using  tetrodes  (fig.  S4),  and  adjacent  brain  regions  did  not                
show  comparable  remapping  in  this  task  (fig.  S1).  In  many  recordings,  MEC  cells  switched  abruptly                
between  stable  spatial  representations  (i.e.  maps),  with  cells  returning  repeatedly  to  one  of  several               
distinct  maps  within  a  single  session,  resulting  in  a  checkerboard  pattern  in  the  trial-by-trial               
similarity  matrices  (fig.  1m-q;  fig.  S1,  S3).  In  other  sessions,  spatial  representations  underwent  a               
single  transition  between  stable  maps  (fig.  S3)  or  transitioned  abruptly  between  spatially  stable  and               
unstable  coding  regimes  (fig.  1m,  q;  fig.  S2).  While  the  frequency  and  stability  of  remapping  was                 
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thus  heterogeneous  across  mice  and  sessions,  in  all  cases  remap  events  appeared  to  recruit               
co-recorded   neurons   all   along   the   dorsal   to   ventral   MEC   axis   (fig.   1m-q,   right;   fig.   S1-3,   S5).  

Entorhinal   neurons   reversibly   remap   between   different   spatial   representations  

To  group  trials  with  similar  network-wide  spatial  activity,  we  applied  k-means  clustering  to  each               
session  (fig.  2a).  The  k-means  model  assigns  a  single  cluster  label  to  each  trial  and  these  cluster                  
labels  often  visibly  matched  the  checkerboard  pattern  in  trial-by-trial  similarity  matrices  (fig.  2b;  fig.               
S3,  S5).  Despite  making  the  strict  assumption  that  each  trial  belongs  to  a  single  spatial  map,  a                  
2-cluster  k-means  model  consistently  approached  the  performance  of  a  less  constrained            
uncentered  PCA  model,  which  allows  each  trial  to  contain  a  blend  of  multiple  spatial  maps  (fig.  2c,                  
d;  performance  is  measured  by  uncentered ).  These  results  suggest  that  remapping  events              
were  well-approximated  by  discrete  transitions  between  spatial  maps.  Using  the  relative            
performance  of  k-means  to  PCA,  we  identified  18/32  single-track  sessions  across  8  mice  that  were                
adequately  fit  by  a  2-cluster  k-means  model  (fig.  2e,  green  points;  performance  gap  with  PCA  <                 
70%  relative  to  shuffle,  >  0.63).  Of  these  18  sessions,  10  exhibited  three  or  more  remap                  
events  (n  =  4  mice),  thus  visiting  each  of  the  2  maps  at  least  twice  (mean  remap  events  ±  SEM:  6.2                      
±  1.8;  range:  1  to  27;  n  =  18  sessions  across  8  mice)(fig.  S5).  We  focused  subsequent  analysis  on                    
these  18  “2-map  sessions,”  as  they  were  the  simplest  and  most  common  case  (example  sessions                
with  periods  of  unstable  spatial  coding  are  shown  in  fig.  S2;  example  sessions  with  >  2  spatial                  
maps,   fig.   S5).  

In  2-map  sessions,  many  single  neurons  exhibited  distinct  position  tuning  curves  within  each              
k-means  identified  spatial  map  (fig.  2f,  middle  row;  see  also  fig.  S2,  S5).  Averaging  neural  activity                 
over  the  entire  session—as  is  typically  done  in  single-cell  analyses  of  MEC  coding—obscured              
these  differences  in  tuning  (fig.  2f,  bottom  row).  Further,  we  observed  changes  in  spatial               
information  across  the  two  maps  (mean  absolute  change  in  spatial  information  ±  SEM:  55.5  ±                
1.4%;  n  =  2,873  cells  in  8  mice)(fig.  2g),  such  that  only  a  small  percentage  of  all  cells  were                    
significantly  spatial  in  both  maps  (mean  ±  SEM:  spatial  in  both  maps  =  17  ±  2%;  one  map  =  13  ±                      
1%;  neither  map  =  71  ±  3%;  p  <  0.05;  n  =  18  sessions  in  8  mice)(fig.  2h).  We  further  quantified                      
these  differences  by  calculating  the  change  in  peak  firing  rate  (i.e.  rate  remapping)  and  in  spatial                 
similarity  (i.e.  global  remapping)  across  the  two  maps  for  each  cell (Knierim  et  al.,  1998;  Muller  and                  
Kubie,  1987;  O’Keefe  and  Conway,  1978)  (Methods).  Across  all  cells  (spatial  and  non-spatial),  we               
observed  rate  remapping  (fig.  2f,  left),  global  remapping  (fig.  2f,  middle),  and  combinations  of  both                
(n  =  2,873  cells  in  8  mice)(fig.  2f  right,  fig.  2i,  j).  Rate  remapping  was  common  (818  out  of  2,873                     
cells  >  1.5-fold  change  in  firing  rate)(fig.  2j  red  dashes,  horizontal).  Large  differences  in  spatial                
representations  across  maps  were  rare  (118  cells  <  75%  tuning  curve  similarity)(fig.  2j  yellow               
dashes),  but  many  cells  exhibited  some  change  in  spatial  preference  (568  cells  <  90%               
similarity)(fig.   2j,   red   dashes,   vertical).   Altogether,   300   cells   showed   both   rate   and   global   
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Figure   2:   Entorhinal   neurons   reversibly   remap   between   different   spatial   representations.    (A)   Schematic   of  

k-means   clustering   strategy   showing   conversion   of   raw   spikes   (top)   to   normalized   firing   rate   (center)   and   resulting  

low-dimensional   k-means   clustering   estimate   of   the   neural   activity   (bottom).   (B)   Trial-by-trial   similarity   (top,   as   in  

fig.   1M-O),   distance   score   for   population-wide   neural   activity   by   trial   (middle;   score   =   1,   in   map   1   centroid;   score   =  

-1,   map   0),   and   single   neuron   distance   to   k-means   cluster   centroid   across   trials,   sorted   by   depth   (bottom;   gray,  

midway   between   maps;   black,   at   or   beyond   map   0   centroid;   white,   map   1)   for   an   example   session.   (C)   2-factor  

k-means   versus   2-factor   PCA   performance   for   all   single-track   sessions   (n   =   32   sessions,   12   mice).   (D)   Selection  

criteria   for   2-map   sessions   (green   points)(n   =   32   sessions,   12   mice).   (E)   Model   performance   for   uncentered   PCA  

(blue),   k-means   (red),   and   k-means   on   shuffled   data   (gray)   for   an   example   session.   (F)   Single-neuron   spiking  

(top)   and   tuning   curves   (middle)   for   example   cells   from   an   example   session,   colored/divided   by   k-means   cluster  

labels   (black,   map   0;   color,   map   1),   versus   averaged   over   the   full   session   (bottom)(solid   line,   trial-averaged   firing  

rate;   shading,   SEM;   color   scheme   denotes   cell   identity   and   is   preserved   in   G,   I,   L).   (G)   Spatial   information   (S.I.)  

for   single   neurons   in   map   0   versus   map   1   for   an   example   session.   (H)   Percent   of   MEC   neurons   from   2-map  

sessions   that   were   spatial   in   just   one   map   (gray),   both   maps   (black),   or   neither   map   (white).   (I)   Absolute   fold  
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change   in   firing   rate   versus   cosine   similarity   of   single-map   tuning   curves   for   neurons   from   an   example   session.   (J)  

As   in   (I),   but   for   all   neurons   from   2-map   sessions   (red   vertical   dashes,   75%   spatial   similarity;   yellow   dashes,   90%  

similarity;   50%   change   in   firing   rate).   (K)   Percent   of   all   cells   that   were   consistent   remappers   by   location   in   MEC.  

(L)   Distance   to   k-means   cluster   centroid   by   highest   average   S.I.   across   maps   (black   dashes,   consistent   remapper  

threshold;   green,   spatial   in   both   maps;   gold   spatial   in   one   map).   N   =   2873   cells,   18   sessions,   8   mice,   unless  

noted.   (See   also   Fig.   S3,   S5.)  

remapping  (>  1.5-fold  change  in  firing  rate,  <  90%  spatial  similarity)(fig.  2i,  j,  red  dashes).  Further,                 
the  majority  of  single  cells  throughout  MEC  changed  their  firing  properties  in  precise  agreement               
with  the  population-derived  remapping  events  (i.e.  “consistent  remappers,”  2,405  out  of  2,873  cells              
distance  to  cluster  centroid  <  1)(fig.  2b  bottom,  k,  l;  fig.  S4)(Methods).  There  was  some  regional                 
variability  in  the  proportion  of  these  cells  (fig.  2k),  but  nearly  all  cells  that  were  significantly  spatial                  
in  at  least  one  map  were  consistent  remappers  (789  out  of  830  spatial  cells)(fig.  2l,  green  and  gold                   
points).  Together,  these  results  indicate  that  remapping  events  recruit  a  large  portion  of  the  MEC                
neural   population   and   reflect   changes   in   the   spatial   coding   properties   of   this   circuit.  

Positional   information   is   conserved   at   a   population   level   across   distinct   entorhinal   spatial   maps  

MEC  neurons  project  to  multiple  brain  areas  involved  in  spatial  information  processing,  including              
the  hippocampus,  retrosplenial  cortex,  and  the  subiculum (Kerr  et  al.,  2007) .  How  might  these               
areas  make  use  of  positional  information  encoded  in  MEC,  in  spite  of  network-level  remapping?  To                
investigate  this  question,  we  fit  circular-linear  regression  models  to  predict  position  from  neural              
activity  (fig.  3a-c)  and  found  that  these  simple  decoding  models  were  robust  to  remapping.               
Performance  was  comparable  between  models  trained  and  tested  on  trials  from  a  single  map,  and                
models  trained  and  tested  on  trials  from  both  maps  (fig.  3d,  e;  mean  score  ±  SEM:  train/test  map  0                    
=  0.60  ±  0.06;  train/test  map  1  =  0.65  ±  0.05;  train/test  both  maps  =  0.65  ±  0.06;  Kruskal-Wallis                    
H-test,  p  =  0.87;  n  =  18  sessions  in  8  mice).  Performance  significantly  worsened,  however,  when                 
training  data  and  testing  data  were  taken  from  distinct  maps  (fig.  3d,  f,  g;  Wilcoxon  two-sided                 
signed-rank  test,  p  =  1.68x10 -7 ;  n  =  36  model  pairs).  These  findings  indicate  that  the  two  maps  are                   
distinct  from  one  another,  but  given  training  data  from  both  maps  it  is  possible  to  find  a  decoder                   
that  is  robust  to  remapping.  Intuitively,  this  can  be  accomplished  when  a  decoder  selectively  makes                
use  of  neurons  with  only  minor  remapping,  or,  more  generally,  when  remapping  occurs  in  the  null                 
space  of  the  decoder  weights (Kaufman  et  al.,  2014;  Rule  et  al.,  2020) .  Altogether,  these  results                 
indicate  that,  in  principle,  downstream  brain  areas  can  still  exploit  positional  information  encoded  in               
MEC   in   the   presence   of   remapping.  
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Figure  3:  Positional  information  is  conserved  at  a  population  level  across  distinct  entorhinal  spatial  maps.                
(A-C)  Schematic  of  decoder  training  and  testing  strategy  (green  shading,  map  0;  white,  map  1).  (A)                 
Population-wide  spiking  activity  (hash  marks)  was  divided  into  k-means  clusters  and  10%  of  data  was  held  out  for                   
testing  (gray  shading).  (B)  Decoders  were  trained  on  spiking  data  from  either  map  0  (top),  map  1  (middle),  or  both                     
maps  (bottom).  (C)  Each  model  was  then  used  to  predict  position  using  held-out  spiking  data  from  either  map  0                    
(top),  map  1  (middle),  or  both  maps  (bottom).  Note  that  models  trained  only  on  data  from  map  0  or  map  1  were                       
also  used  to  predict  position  using  only  data  from  the  other  map  (diagonal  arrows  from  B  to  C;  labels  indicate  test                      
map→train  map).  (D)  Decoder  performance  using  training  data  from  each  map  alone  (test→train)  or  from  both                 
maps  (“both”)  for  an  example  session  (score  =  0,  chance;  score  =  1,  perfect  prediction;  N  =  227  cells).  (E)                     
Decoder  performance  for  models  trained  and  tested  on  data  from  the  same  map  (map  0,  map  1)  or  from  both                     
maps  across  all  2-map  sessions.  (F,  G)  Decoder  performance  within  versus  across  maps  for  all  sessions  (Grey                  
bars,  interquartile  range).  (E-G)  Points  indicate  individual  sessions;  colors,  mouse  identity.  N  =  2873  cells,  18                 
sessions,   8   mice,   unless   noted.  

Neural   activity   transitions   between   geometrically   aligned   ring   attractor   manifolds  

MEC  representations  of  space  thus  display  a  capacity  for  flexibility  (e.g.  spontaneous  remapping),              
as  well  as  reliability  (e.g.  consistent  decoding  performance).  To  reconcile  these  two  aspects  of  the                
circuit,  we  characterized  the  geometry  of  position  coding  in  N-dimensional  firing  rate  space  (where               
N  denotes  the  number  of  simultaneously  recorded  neurons).  For  the  continuous  1D  virtual              
environments  used  in  this  study,  attractor  network  models (Burak  and  Fiete,  2009;  Fuhs  and               
Touretzky,  2006;  Guanella  et  al.,  2007)  predict  that  the  trajectory  of  network  activity  should  trace                
out  a  1D  ring  manifold  as  the  animal  moves  through  space  (fig.  4a).  Each  k-means  cluster  centroid                  
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provides  an  empirical  estimate  of  this  attractor  manifold  and,  indeed,  the  low-dimensional  linear              
embedding  of  each  centroid  had  a  qualitative  ring  structure  (fig.  4b-c).  Manifolds  derived  from  cue                
poor  environments  were  tightly  wound  around  themselves,  as  quantified  by  an  entanglement             
metric  (fig.  4d),  indicating  that  there  may  be  limited  discriminability  between  the  first  and  second                
halves  of  the  track  in  cue  poor  environments.  These  results  suggest  that  the  number  of  landmark                 
cues   alters   the   geometry   of   the   spatial   map   without   altering   its   topology   as   a   1D   ring.  

We  next  used  PCA  to  simultaneously  visualize  the  two  manifolds  of  each  2-map  session  in  the                 
same  low-dimensional  space.  In  both  cue  rich  and  cue  poor  environments,  the  manifolds  appeared               
geometrically  aligned  such  that  position  coding  was  translated  along  a  single  dimension  in  neural               
activity  space  (fig.  4e-f);  applying  a  random  rotation  to  each  manifold  qualitatively  disrupted  this               
alignment  (fig.  4g-h).  Using  standard  tools  from  statistical  shape  analysis  (Methods),  we  found  the               
optimal  rescaling,  rotation,  and  reflection  to  align  the  manifolds  in  each  session.  The  two  manifolds                
required  only  modest  rescaling  (fig.  4i,  11/17  sessions  ≤  10%  difference  in  scale),  suggesting  minor                
changes  in  overall  population  firing  rate.  Further,  in  all  cases,  the  observed  manifolds  were  within                
7%  of  the  optimal  rotational  alignment,  measured  relative  to  the  root-mean-squared-error  under             
random  rotations  and  reflections  (fig.  4j),  suggesting  that  spatial  tuning  was  largely  preserved  at               
the  population  level  (fig.  2i,  j).  Thus,  remapping  largely  corresponded  to  a  translation  in  neural                
representations.  This  observation  is  not  a  necessary  consequence  of  existing  theoretical            
frameworks—when  we  developed  a  simple  extension  of  the  classic  ring  attractor  circuit  to  support               
bistable  ring  manifolds,  this  model  could  not  account  for  the  geometrical  alignment  observed              
experimentally  (Supplementary  Text;  fig.  S6a-g).  This  suggests  that  the  alignment  of  the  spatial              
manifolds  may  be  a  functionally  important  feature  of  the  circuit.  Indeed,  if  remapping  is               
well-described  by  a  translation  along  a  single  dimension,  any  decoder  that  is  insensitive  to  this                
dimension  will  be  robust  to  remapping,  providing  a  simple  strategy  by  which  a  downstream  region                
could  decode  position.  In  the  absence  of  manifold  alignment,  more  complex  decoders  would  be               
required   (Supplementary   Text;   fig.   S6h-n).  

As  the  k-means-identified  ring  manifolds  show  only  the  average  neural  activity  within  each  map,  we                
next  asked  how  single-trial  variability  around  these  manifolds  was  structured.  Applying  PCA  to  the               
residuals  of  the  k-means  model  showed  that  the  remaining  variance  was  preferentially  oriented  in               
the  dimension  separating  the  two  manifolds  (fig.  4k-l).  Importantly,  the  scale  of  this  variability  was                
limited  so  that  the  two  manifolds  often  remained  well-separated  (i.e.  it  is  generally  appropriate  to                
conceptualize  the  maps  as  two  separate  ring  manifolds,  rather  than  a  single  hollow  cylinder).  This                
result  suggests  that  variability  in  network  activity  could  predispose  the  network  to  remap  (i.e.  to                
jump  from  one  ring  manifold  to  the  other),  with  attractor  dynamics  locally  stabilizing  the  network                
activity  within  each  map.  The  geometrical  alignment  of  the  two  manifolds  supports  this  hypothesis,               
as  it  implies  that  simple  perturbations  could  induce  remapping  without  introducing  errors  into  the               
MEC   network   positional   estimate   (Supplementary   Text;   fig.   S6h-n).  
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Figure  4:  Neural  activity  transitions  between  geometrically  aligned  ring  attractor  manifolds. (A)  Schematic:              
we  expect  the  1D  environment  (top,  side-view  shown)  to  produce  a  circular  1D  trajectory  (i.e.,  ring  manifold)  in                   
neural  firing  rates  (bottom;  color  scheme  indicates  position  and  is  preserved  throughout  this  figure).  (B)  PCA                 
projection  of  a  single  map  (k-means  centroid)  from  a  cue  rich  recording  session  (n  =  149  cells).  (Inset)  Pairwise                    
distances  in  neural  firing  rates  across  all  points  (i.e.  spatial  position  bins)  in  the  manifold  (color  code  blue,                   
minimum  value;  yellow,  maximum).  (C)  As  in  (B),  but  for  a  cue  poor  recording  session  (n  =  227  cells).  The  linear                      
projection  uses  two  principal  components  and  a  third  orthogonal  axis  (dashed  line)  that  maximally  distinguishes                
between  the  first  and  second  half  of  the  track.  (D)  Manifold  entanglement  in  cue  rich  and  cue  poor  environments                    
(top:  schematic  of  entanglement  measure;  n  =  10  cue  poor  manifolds,  n  =  26  cue  rich  manifolds).  (E)  PCA                    
projection  of  two  manifolds  extracted  from  a  2-map  cue  rich  session.  (Inset)  Across-manifold  distances  in  neural                 
firing  rates  for  every  pair  of  points  (color  code  as  in  B,  C  insets).  (F)  As  in  (E),  but  for  a  cue  poor  session.  (G,  H)                           
As  in  (E,  F),  respectively,  but  after  applying  a  random  rotation  to  each  manifold.  (I)  Percent  difference  in  manifold                    
sizes  for  spatial  maps  recorded  in  the  same  behavioral  session  (n  =  18  sessions).  (J)  Manifold  misalignment                  
scores,  normalized  to  range  between  zero  and  one  (n  =  18  sessions).  (K)  Schematics  showing  that  variability                  
around  manifolds  could  be  isotropically  distributed  (left)  or  magnified  in  the  direction  of  the  other  manifold  (right).                  
(L)  Angles  between  the  remapping  dimension  and  the  subspace  spanned  by  the  top  7  principal  components,                 
compared  to  angles  formed  with  random  7D  subspaces  (averaged  across  1,000  samples).  All  sessions  (n  =  18)                  
displayed   smaller   angles   than   their   shuffle   control   (Wilcoxon   rank-sum   test,   p   <   1e-6).   (See   also   Fig.   S6.)   
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Remapping   events   and   neural   variability   correlate   with   slower   running   speeds  

As  the  task  and  environment  in  our  experiments  did  not  change  within  a  given  session,  we  next                  
examined  whether  the  single-trial  variability  correlated  with  aspects  of  the  animal’s  behavior.  For              
example,  the  k-means  clustering  model  does  not  account  for  running  speed,  but  speed  is  known  to                 
modulate  spatial  representations  in  MEC (Bant  et  al.,  2020;  Hardcastle  et  al.,  2017) .  First,  we                
asked  whether  the  animal’s  running  speed  was  different  on  “remap  trials”  (defined  as  the  two  trials                 
book-ending  each  transition  from  one  map  to  the  other),  compared  to  the  intervening  “stable               
blocks”  (defined  as  the  block  of  trials  at  least  two  trials  away  from  a  remap  event,  which  all  reside                    
in  the  same  map)(fig.  5a,  c).  We  restricted  our  analysis  to  2-map  sessions  that  contained  at  least                  
three  remap  events  and  to  stable  blocks  of  at  least  five  trials  (n  =  10  sessions  in  4  mice;  see  also                      
fig.  S1,  S6  for  analysis  of  double-track  sessions  and  >2-map  sessions,  respectively)(Methods).             
Across  most  of  these  sessions,  the  animal’s  average  running  speed  on  remap  trials  was  lower                
compared  to  its  average  running  speed  in  the  preceding  stable  block  (7/10  sessions;  speeds  were                
equal  in  3  sessions;  mean  percent  difference  in  running  speed  ±  SEM:  12.7  ±  2.4%;  Wilcoxon                 
two-sided   signed-rank   test,   p   =   1.06x10 -5 ;   n   =   103   remap   trial/stable   block   pairs)(fig.   5a-e).   

We  next  investigated  the  moment-by-moment  correlation  between  neural  variability  and  running            
speed  by  binning  neural  activity  and  speed  into  5  cm  position  bins  within  each  trial.  For  each                  
position  bin,  we  calculated  how  close  the  neural  activity  was  to  the  midpoint  between  manifolds,                
where  activity  is  most  likely  to  switch  between  maps  (distance  score  =  1  in  cluster  centroid  for                  
either  map,  0  when  equidistant  from  each  manifold)(Methods).  As  expected,  neural  activity  was              
closer  to  the  midpoint  within  remap  trials  compared  to  stable  blocks  (mean  distance  ±  SEM:  remap                 
trials  =  0.631  ±  0.003,  stable  blocks  =  1.045  ±  0.001;  two-sided  Wilcoxon  rank-sum  test,  p  <                  
0.0001;  n  =  80  bins  per  trial  for  226  remap  trials,  5,393  stable  trials  across  18  sessions  in  8                    
mice)(fig.  5f,  g  bottom).  However,  we  also  observed  instances  where  the  neural  activity              
approached  the  midpoint  within  stable  periods  (stable  bin  distance  interquartile  range:  0.761  to              
1.342)(fig.  5f,  g  arrowheads),  indicating  that  neural  variability  does  not  by  necessity  provoke  a               
remap  event.  Across  all  position  bins,  slower  running  speeds  were  correlated  with  a  reduced               
neural  distance  to  decision  boundary  (ordinary  least  squares  regression,  R 2  =  0.782,  p  <  0.0001;  n                 
=  10  speed  bins  per  session  for  18  sessions  in  8  mice)(fig.  5h-j).  Further,  the  medians  of  the  two                    
maps  were  generally  closer  in  activity  space  for  bins  containing  the  slowest  (20th  percentile)               
compared  to  the  fastest  (80th  percentile)  running  speeds  (11/18  2-map  sessions  had  less              
separated  medians  at  slow  speeds,  7  sessions  had  more  separated  medians  at  slow  speeds,  p  <                 
0.01)(fig.  5k-m).  Altogether,  these  results  suggest  that  the  two  neural  maps  are  often  less               
distinguishable  at  slow  running  speeds,  likely  increasing  the  probability  of  a  remap  event.              
Conceptually,  this  suggests  a  model  in  which  remapping  involves  overcoming  an  energetic  barrier              
separating  two  locally  stable  spatial  manifolds.  The  magnitude  of  this  barrier  could  change  over               
time   and   correlate   positively   with   running   speed   (fig.   5n).   In   the   Supplementary   Text,   we   provide   a  
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Figure  5:  Remapping  events  and  neural  variability  correlate  with  slower  running  speeds. (A)  Average               
running  speed  in  remap  trials  versus  stable  blocks  (points  indicate  session  average;  colors  indicate  individual                
mice;  grey  error  bars,  SEM;  dashed  line,  unity;  n  =  10  sessions,  4  mice).  (B)  (Top)  Distance  score  for                    
population-wide  neural  activity  by  trial  (as  in  fig.  2B)  for  an  example  cue  poor  session  (n  =  227  cells).  (Bottom)                     
Running  speed  by  trials  (black  line,  average;  gray,  density),  dotted  lines  indicate  remapping  events.  (C)  as  in  (A)                   
for  the  example  session  shown  in  (B)(points  indicate  a  remap  trial/stable  block  pair).  (D,  E)  as  in  (B,  C)  but  for  a                       
second  example  session  (cue  rich;  n  =  74  cells).  (F)  (Top  panels)  Average  running  speed  by  5  cm  position  bins  for                      
the  two  trials  preceding  and  following  either  a  remap  event  (right;  dashed  line,  remap  point)  or  middle  of  the                    
corresponding  stable  block  (left)  for  the  example  session  from  (B,  C)(black  trace,  running  speed;  green  shading,                 
reward  zones).  (Bottom  panels)  Distance  to  midpoint  between  k-means  clusters  by  5  cm  position  bins  (gray,                 
between  maps;  black,  map  0;  white,  map  1).  Arrowheads  indicate  points  of  slow  running  speed  where  the  neural                   
code  approached  the  midpoint.  (G)  As  in  (F),  but  for  the  example  session  from  (D,  E).  (H)  Average  distance  to                     
midpoint  versus  binned  running  speed  for  one  example  session  (black  line,  average;  gray  shading,  SEM).  (I)  As  in                   
(H),  but  for  a  second  example  session.  (J)  as  in  (H,  I),  but  for  all  2-map  sessions;  distance  to  midpoint  and  speed                       
are  normalized  within  each  session  (n  =  2,873  cells,  18  sessions,  8  mice).  (K)  Distance  to  midpoint  for  5  cm                     
position  bins,  split  into  slow  (20th  percentile)  and  fast  (80th  percentile)  average  running  speeds  for  an  example                  
session  (curves,  gaussian  fit;  black  dashed  lines,  means  of  gaussians;  n  =  227  cells).  (L)  As  in  (K),  but  for  a                      
second  example  session  (n  =  74  cells).  (M)  As  in  (K,  L),  but  for  all  2-map  sessions.  (N)  Schematic  model:                     
schematized  manifolds  (top),  neural  activity  (ball,  neural  activity;  arrow,  trajectory  in  state  space),  and  energy                
landscape  (black  line)  for  slow  (middle)  and  fast  (bottom)  running  speeds  shows  how  running  speed  might  interact                  
with   remapping   events   (dashed   line,   midpoint   between   clusters).   (See   also   Fig.   S5.)  

formal  analysis  of  this  hypothesis  within  the  well-established  framework  of  attractor  networks  (fig.              
S6a-g).  

Spontaneous   remapping   persists   in   double-track   sessions   

Each  of  the  2-map  sessions  was  recorded  as  a  single  continuous  session  in  just  one  environment                 
(either  cue  rich  or  cue  poor).  In  order  to  examine  remapping  in  a  more  dynamic  setting,  we  ran  a                    
cohort  of  mice  on  alternating  blocks  of  trials  in  the  cue  rich  and  cue  poor  environments  (i.e.                  
“double-track”  sessions;  n  =  13  sessions  in  5  mice).  Each  double-track  session  consisted  of  four                
blocks  of  75-100  trials,  delineated  by  1-2  minutes  of  darkness  (fig.  S1).  As  expected,  MEC                
maintained  distinct  maps  for  the  distinct  environments.  Spatial  representations  from  the  same             
environment  were  qualitatively  more  similar  to  one  another  than  to  representations  of  other              
environment,  evidenced  by  the  blocky  structure  of  the  network-wide  similarity  matrices,  which             
matched  the  blocked  trial  structure  (fig.  6a,  b,  left;  dashed  lines  indicate  breaks  between  blocks).                
To  assess  remapping  within  each  environment,  we  next  divided  sessions  into  trials  from  either  the                
cue  rich  (fig.  6a,  b,  middle)  or  cue  poor  (fig.  6a,  b,  right)  track  (i.e.  “trial  blocks”).  As  trial  blocks  from                      
the  same  environment  were  separated  by  75-100  trials,  we  then  re-normalized  neural  firing  rates  to                
correct  for  small  amounts  of  drift  in  network-wide  spatial  representations  across  these  long              
sessions  (see  Methods).  Similar  to  single-track  sessions,  we  observed  remapping  in  single             
neurons  (fig.  6c)  and  across  the  population  (fig.  6a,  b  middle,  d  top,  i-p),  such  that  each  cue  rich  or                     
poor  environment  was  often  represented  by  several  (1-3)  stable  maps  (n  =  26  blocks  from  13                 
sessions  in  5  mice).  We  also  observed  periods  of  spatial  instability  (fig.  S2).  In  trial  blocks  with                  
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multiple  stable  maps,  remapping  was  qualitatively  well-captured  by  a  k-means  clustering  model             
(fig.   6d,   i-p,   left   bar).  

One  feature  of  the  double-track  task  design  is  that  we  recorded  from  a  single  population  of  neurons                  
across  repeated  visits  to  the  same  environment.  In  this  task,  the  MEC  circuit  often  returned  to  the                  
same  set  of  maps  when  returned  to  the  same  environment  (fig.  6a,  b  middle,  d  top,  i-p),  indicating                   
that  the  multiple  maps  were  stable  over  time.  Indeed,  an  example  pair  of  trial  blocks,  concatenated                 
across  repeated  visits  to  the  cue  rich  environment,  demonstrates  remapping  that  is  virtually              
indistinguishable  from  remapping  in  a  continuous  single-track  cue  rich  or  cue  poor  session  (fig.               
6c-g).  Single  neurons  exhibited  distinct  tuning  curves  in  each  map  and  showed  a  mix  of  rate  and                  
global  remapping  (fig.  6c;  compare  to  fig.  2f).  Each  k-means-identified  neural  manifold  formed  a               
qualitative  ring  structure  in  neural  activity  space  (fig.  6e;  compare  to  fig.  4b)  and  the  manifolds  from                  
a  given  session  were  significantly  aligned  (versus  a  randomly  rotated  null  distribution;  Methods)(fig.              
6f;  compare  to  fig.  4e).  Finally, across  many  double-track  sessions,  the  animal’s  average  running               
speed  on  remap  trials  was  lower  compared  to  its  average  running  speed  in  the  preceding  stable  block                  
(6/9  sessions;  speeds  were  equal  in  3  sessions;  mean  percent  difference  in  running  speed  ±  SEM:  6.9                  
±  2.1%;  Wilcoxon  two-sided  signed-rank  test,  p  =  0.0003;  n  =  86  remap  trial/stable  block  pairs)(fig.  6d                  
bottom,  g,  h;  compare  to  fig.  5a-e).  Thus  our  results  from  continuous  single-track  sessions  appeared  to                 
generalize   to   a   task   involving   both   environments.  

Discussion:  

Here,  we  report  that  MEC  representations  are  capable  of  remapping  even  in  the  absence  of  any                 
changes  to  sensory  cues (Diehl  et  al.,  2017;  Fyhn  et  al.,  2007;  Marozzi  et  al.,  2015;  Solstad  et  al.,                    
2008)  or  task  demands (Boccara  et  al.,  2019;  Butler  et  al.,  2019;  Keene  et  al.,  2016) .  Previous                  
reports  have  observed  that  increased  running  speed  is  associated  with  improved  spatial  tuning  in               
single  neurons  through  sharpening  of  individual  tuning  curves (Bant  et  al.,  2020;  Hardcastle  et  al.,                
2017) .  Here  we  show  that  changes  in  running  speed  can  also  correspond  to  large  shifts  in  MEC                  
coding—up  to  three-fold  variation  in  peak  firing  rate,  and  50%  reconfiguration  in  the  spatial               
patterning  of  neural  tuning  (fig.  2i-j).  Further,  we  find  that  remapping  events  rapidly  recruit  almost                
all  position-coding  neurons  across  the  full  anatomical  extent  of  MEC,  resulting  in  synchronous,              
network-wide  remapping  events.  Finally,  these  remapping  events  represent  complete  transitions           
between  geometrically  aligned  neural  activity  manifolds.  Together,  our  results  empirically           
demonstrate  that  MEC  can  maintain  multiple  distinct  attractor  networks  in  a  single  environment,  an               
idea   which   had   previously   only   been   considered   theoretically    (Sanders   et   al.,   2020) .  
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Figure  6:  Spontaneous  remapping  persists  in  double-track  sessions. (A,  B)  Network-wide  similarity  matrices              
for  example  double-track  full  sessions  (left)  and  split  into  cue  rich  (middle)  and  cue  poor  (right)  trial  blocks  (A,  n  =                      
68  cells;  B,  n  =  55  cells)(dashed  lines  indicate  breaks  between  blocks).  (C)  Single-neuron  spiking  (top)  and  tuning                   
curves  (middle)  for  example  cells  from  an  example  pair  of  cue  rich  trial  blocks,  colored/divided  by  k-means  cluster                   
labels  (top),  versus  averaged  over  the  full  session  (bottom)(solid  line,  trial-averaged  firing  rate;  shading,  SEM;                
color  scheme  denotes  map  identity  and  is  preserved  in  D)(compare  to  Fig.  2F).  (D,  top)  Network-wide  spatial                  
similarity  for  an  example  pair  of  cue  rich  trial  blocks  (right)  and  corresponding  k-means  cluster  labels  (left).  (D,                   
bottom)  Running  speed  by  trials  (black  line,  average;  gray,  density),  dotted  lines  indicate  remapping  events.  (E)                 
PCA  projection  of  a  single  map  (k-means  centroid)  from  an  example  pair  of  cue  rich  trial  blocks  (n  =  130  cells).                      
(Inset)  Pairwise  distances  in  neural  firing  rates  across  all  points  (i.e.  spatial  position  bins)  in  the  manifold  (color                   
code  blue,  minimum  value;  yellow,  maximum)(compare  to  Fig.  4B).  (F)  PCA  projection  of  two  manifolds  extracted                 
from  an  example  pair  of  cue  rich  trial  blocks.  (Inset)  Across-manifold  distances  in  neural  firing  rates  for  every  pair                    
of  points  (color  code  as  in  E)(compare  to  Fig.  4E).  (G)  Average  running  speed  on  remap  trials  vs.  stable  blocks  for                      
an  example  session  (points,  stable  block/remap  trial  pairs;  dashed  line,  unity;  n  =  13  pairs)(compare  to  Fig.  5C,                   
E).  (H)  Average  running  speed  in  remap  trials  versus  stable  blocks  (points  indicate  session  average;  colors                 
indicate  individual  mice;  grey  error  bars,  SEM;  dashed  line,  unity;  n  =  9  sessions  in  4  mice).  (I-P)  As  in  (D,  top),                       
but  for  additional  example  2-map  (I,  L,  M,  N)  and  3-map  (J,  K,  O,  P)  double-track  sessions  (“cr”  indicates  cue  rich                      
blocks  from  a  given  session;  “cp”  indicates  cue  poor;  colorbars  indicate  trial-by-trial  correlation).  (See  also  Fig.                 
S5.)  

Consistent  with  predictions  of  attractor  network  models  of  navigational  coding,  we  find  that  network               
activity  follows  1D,  ring-shaped  trajectories  through  high-dimensional  neural  state  space (Burak            
and  Fiete,  2009;  Fuhs  and  Touretzky,  2006;  Guanella  et  al.,  2007;  Samsonovich  and  McNaughton,               
1997) .  Previous  attractor  models  of  MEC  have  demonstrated  how,  for  a  given  environment,  a  set  of                 
landmark  cues  can  combine  with  self-motion  information  to  establish  a  single  spatial  map  and               
maintain  one’s  location  estimate  within  that  map (Burak  and  Fiete,  2009;  Campbell  et  al.,  2018;                
Ocko  et  al.,  2018;  Skaggs  et  al.,  1995) .  Theoretical  work  has  also  considered  how  multiple                
attractors  (i.e.  internal  spatial  maps)  could  be  embedded  in  the  same  network;  however,  this               
possibility  is  often  framed  in  terms  of  modeling  spatial  coding  across  different  external              
environments (Romani  and  Tsodyks,  2010;  Roudi  and  Treves,  2008;  Samsonovich  and            
McNaughton,  1997;  Stringer  et  al.,  2004) .  Our  results  build  off  of  these  models  to  suggest  that                 
multiple  attractors  may  be  visited  within  the  same  environment  in  a  rapid  and  repeating  fashion.                
Further,  we  find  that  behavioral  factors  could  influence  the  probability  of  transitioning  between              
attractors  (Fig.  5n).  Importantly,  our  experiments  show  that  these  attractor  manifolds  are             
geometrically  aligned,  suggesting  an  elegant  computational  mechanism  by  which  spatial           
information  encoded  by  MEC  could  be  preserved  across  remapping  events.  This  geometric             
alignment  could  plausibly  allow  downstream  neurons  that  are  insensitive  to  the  remapping             
dimension  to  decode  position  across  remapping  events,  while  neurons  sensitive  to  the  remapping              
dimension  could  decode  information  unique  to  each  internal  context.  Future  studies  will  be  needed               
to  elucidate  how  these  multiple  attractor  manifolds  are  formed  and  what  factors  determine  the               
number   of   distinct   maps   associated   with   a   particular   environment.  

Our  findings  indicate  that  a  change  in  behavioral  state  often  coincides  with  network-wide,              
synchronous  remapping  in  MEC  spatial  representations.  While  remapping  events  often  took  the             
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form  of  transitions  between  two  stable  spatial  maps,  we  also  observed  multiple  sessions  that               
contained  more  than  two  stable  maps,  as  well  as  sessions  where  neural  coding  remapped               
between  landmark-based  and  landmark-free  coding  regimes.  It  is  possible  that  the  impoverished             
sensory  experience  of  our  virtual  environment  promoted  these  remap  events.  However,  complete             
remapping  of  hippocampal  spatial  representations  of  a  single  environment  has  recently  been             
observed  in  freely  behaving  animals,  suggesting  that  similar  remapping  can  occur  under  more              
naturalistic  settings (Sheintuch  et  al.,  2020) .  The  behavioral-state  driven  remapping  that  we             
observed  almost  certainly  interacts  with  other  factors  known  to  cause  MEC  remapping,  such  as               
changes  in  the  sensory  features (Diehl  et  al.,  2017;  Fyhn  et  al.,  2007;  Marozzi  et  al.,  2015;  Solstad                   
et  al.,  2008)  or  task  demands (Boccara  et  al.,  2019;  Butler  et  al.,  2019;  Keene  et  al.,  2016)                   
associated  with  a  given  environment.  It  will  be  of  interest  for  future  work  to  determine  the  degree  to                   
which  behavioral  state  variables  versus  environmental  factors  modulate  neural  variability,  with  the             
ultimate  goal  of  predicting  which  factors  will  drive  remapping  across  behaviors,  time  and  context.               
Moreover,  detailed  consideration  and  tracking  of  multiple  behavioral  state  variables  will  be  needed              
in   future   work   to   identify   which   specific   state   variables   control   remapping   in   the   navigation   circuitry.   

Altogether,  we  find  that  MEC  has  the  capacity  to  remap  in  a  rapid  and  reversible  fashion,  which                  
could  support  a  role  for  this  circuit  in  dividing  the  unbroken  stream  of  sensory  features  encountered                 
during  navigation  into  discrete  contextual  episodes.  Further,  the  current  work  aligns  with  a  larger               
body  of  emerging  findings  that  demonstrate  that  cortical  activity  is  highly  responsive  to  behavioral               
state  changes (Jennings  et  al.,  2019;  Salay  et  al.,  2018;  Stringer  et  al.,  2019) .  Our  results  suggest                  
that  these  behavioral  state  changes  may  drive  rapid,  large-scale  reconfigurations  of  internal             
representations   for   the   external   world   in   higher-order   cortex.    
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Methods  

Resource   Availability  

Lead   Contact:  

Further  information  and  requests  for  resources  and  reagents  should  be  directed  to  and  will  be                
fulfilled   by   the   Lead   Contact,   Lisa   M.   Giocomo   ( giocomo@stanford.edu ).  

Materials   Availability:  

This   study   did   not   generate   new   unique   reagents.  

Data   and   Code   Availability  

Data   will   be   made   available   at    https://giocomolab.weebly.com/data.html .  
Code   will   be   made   available   at    https://github.com/GiocomoLab .  

Experimental   Model   and   Subject   Details  

Mice  

All  techniques  were  approved  by  the  Institutional  Animal  Care  and  Use  Committee  at  Stanford               
University  School  of  Medicine.  Recordings  were  made  from  17  C57BL/6  mice  aged  4  weeks  to  3.5                 
months  at  the  time  of  first  surgery  (15.7–35 g).  All  mice  were  female  except  mice  5a  and  5b,  which                   
were  male.  Mice  were  group  housed  with  same-sex  littermates,  and  in  one  case  with  the  dam  (2a,                  
b,  c  with  3a),  unless  separation  was  required  due  to  water  restriction,  aggression,  or  disturbance  of                 
prep  site.  Mice  were  housed  in  transparent  cages  on  a  12-h  light-dark  cycle  and  experiments  were                 
performed   during   the   light   phase.   

Method   Details  

Training   and   handling  

Mice  were  handled  at  least  every  2  days  following  headbar  implantation  and  given  an  in-cage                
running  wheel.  Starting  1  day  after  headbar  implantation,  same-sex  mice  were  placed  daily  in  a                
large  (100x100cm),  communal  environment  with  enrichment  objects  including  a  running  wheel,            
Lego  tower,  textured  floor  tape,  and  crushed  chocolate  cheerios  for  between  15  mins  and  1.5                
hours.  Mice  were  monitored  for  aggression  and  separated  as  needed.  Mice  were  given  free  access                
to  water  until  3  days  after  headbar  implantation,  after  which  they  were  water  restricted  to  1mL  of                  
water   per   day   and   weighed   daily   to   ensure   a   body   weight   of   >80%   of   their   starting   weight.  

After  >1  day  of  water  restriction,  mice  were  acclimated  to  head  fixation  and  trained  to  drink  water                  
from  a  custom  lickport  for  10-20  mins  over  2  days.  Mice  were  then  trained  to  run  on  the  virtual                    
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random  forage  task  (described  below)  starting  with  a  reward  probability  of  0.1/cm  (essentially  one               
reward  per  50  cm),  for  gradually  decreasing  reward  probability  and  gradually  increasing  session              
length  as  behavior  improved.  Mice  were  trained  on  the  exact  track(s)  that  they  were  recorded  in,                 
either  cue  poor  (litters  1,  2,  and  3),  cue  rich  (litters  6  and  7),  or  both  (litters  4  and  5).  Mice  trained                       
on  both  tracks  were  exposed  to  each  track  in  a  counterbalanced  fashion,  initially  alternating  tracks                
over  days  and  ultimately  alternating  the  order  of  presentation  as  mice  improved  sufficiently  to  run  2                 
or  more  sessions  per  training  day.  Training  continued  at  least  until  mice  ran  >300  trials  in  2  hours                   
and  demonstrated  proficient  licking  from  the  lickport  in  the  reward  zone;  training  was  sometimes               
extended  in  order  to  stagger  recording  periods  (7  days  to  7  weeks;  mean  ±  SEM:  23  ±  3  days;  3                     
mice   never   learned   the   task).  

In   vivo    survival   surgeries  

For  all  surgeries,  anesthesia  was  induced  with  isoflurane  (4%;  maintained  at  0.5–1.5%)  followed  by               
injection  of  buprenorphrine  (0.05–0.1 mg/kg).  Animals  were  injected  with  baytril  (10  mg/kg)  and             
rimadyl  (5  mg/kg)  immediately  following  each  surgery  and  for  3  days  afterwards.  In  the  first                
surgery,  animals  were  implanted  with  a  custom-built  metal  headbar  containing  two  holes  for  head               
fixation,  as  well  as  with  a  jewelers’  screw  with  an  attached  gold  pin,  to  be  used  as  a  ground.  The                     
craniotomy  sites  were  exposed  and  marked  during  headbar  implantation  and  the  surface  of  the               
skull  was  coated  in  metabond.  After  completion  of  training,  a  second  surgery  was  performed  to                
make  bilateral  craniotomies  (~200µm  diameter)  at  3.7–3.95mm  posterior  and  3.3–3.4mm  lateral  to             
bregma.  A  small  plastic  well  was  implanted  around  each  craniotomy  and  affixed  with  metabond.               
Craniotomy  sites  were  covered  with  a  drop  of  sterile  saline  and  with  silicone  elastomer  (Kwik-sil,                
WPI)   in   between   surgery   and   recordings.  

In   vivo    electrophysiological   data   collection  

All  recordings  were  performed  at  least  16-h  after  craniotomy  surgery,  at  which  point  the  mouse  was                 
head-fixed  on  the  VR  recording  rig.  Craniotomy  site  was  exposed  and  rinsed  with              
saline—occasionally  dura  was  re-nicked  or  debris  removed  using  a  syringe  tip.  Recordings  were              
performed  using  Phase  3B  Neuropixels  1.0  silicon  probes (Jun  et  al.,  2017)  with  384  active               
recording  sites  (out  of  960  total)  along  the  bottom  ~4  mm  of  a  ~10  mm  shank  (70  µm  wide  shank                     
diameter,  24  µm  thick,  25  µm  electrode  spacing),  and  reference  and  ground  shorted  together.  The                
probe  was  positioned  over  the  craniotomy  site  at  8–14°  from  vertical  and  targeted  to  ~50–300  µm                 
anterior  of  the  transverse  sinus  using  a  micromanipulator.  On  consecutive  recording  days,  probes              
were  targeted  medial  or  lateral  of  previous  recording  sites  as  permitted  by  the  craniotomy.  The                
reference  electrode  was  then  connected  to  a  gold  ground  pin  implanted  in  the  skull.  The  probe  was                  
advanced  slowly  (~10  µm/s)  into  the  brain  until  it  encountered  resistance  or  until  activity  quieted  on                 
channels  near  the  probe  tip,  then  retracted  100–500µm  and  allowed  to  sit  for  at  least  30  mins  prior                   
to  recording.  While  the  probe  was  implanted,  the  craniotomy  site  was  covered  with  sterile  saline                
and  silicone  oil.  Signals  were  sampled  at  30  kHz  with  gain  =  200  (7.63  µV/bit  at  10  bit  resolution)  in                     
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the  action  potential  band,  digitized  with  a  CMOS  amplifier  and  multiplexer  built  into  the  electrode                
array,   then   written   to   disk   using   SpikeGLX   software.  

Virtual   reality   environment  

The  VR  recording  set-up  was  nearly  identical  to  that  in  Campbell  et  al (Campbell  et  al.,  2018) .                  
Head-fixed  mice  ran  on  a  15.2-cm-diameter  foam  roller  (ethylene  vinyl  acetate)  constrained  to              
rotate  about  one  axis.  The  cylinder’s  rotation  was  measured  by  a  high-resolution  quadrature              
encoder  (Yumo,  1024 P/R)  and  processed  by  a  microcontroller  (Arduino  UNO).  The  virtual             
environment  was  generated  using  commercial  software  (Unity  3D)  and  updated  according  to  the              
motion  signal.  Virtual  reality  position  traces  were  synchronized  to  recording  traces  on  each  frame               
of  the  virtual  scene.  The  virtual  scene  was  displayed  on  three  24-inch  monitors  surrounding  the                
mouse.  The  gain  of  the  linear  transformation  from  ball  rotation  to  translation  along  the  virtual  track                 
was  calibrated  so  that  the  virtual  track  was  4 m  long.  At  the  end  of  the  track,  the  mouse  was                    
teleported  seamlessly  back  to  the  start  to  begin  the  next  trial,  such  that  the  track  was  seemingly                  
infinite  (all  visual  cues  were  repeated  and  visible  into  the  distance  as  the  mouse  approached  the                 
track   end).  

Cue  rich  tracks  consisted  of  5  towers  of  different  heights,  widths,  and  patterns  (black  and  white,                 
neutral  luminance),  placed  at  80  cm  intervals  starting  at  0  cm  (see  schematic,  fig.  1c,  top)  and  a                   
black  and  white  checkerboard  on  the  floor  for  optic  flow.  Cue  poor  tracks  contained  2  towers  of                  
different  patterns  placed  at  0  and  200  cm  (see  schematic,  fig.  1c,  bottom)  and  a  white  to  black                   
horizontal  sinusoidal  pattern  on  the  floor.  Both  tracks  had  uniform  gray  walls  and  sky  beyond  the                 
towers.  For  mice  that  experienced  a  single  track,  recording  sessions  consisted  of  57–450  trials               
(mean  ±  SEM:  328  ±  14  trials).  For  mice  that  experienced  both  tracks,  each  track  was  presented  in                   
a  block  of  75–100  trials  with  ~1  min  of  darkness  in  between  tracks  (fig.  S1g).  Blocks  alternated                  
between  cue  rich  and  poor—each  track  was  presented  twice  (barring  rare  cases  when  the  mouse                
failed   to   complete   the   session)   and   which   track   was   presented   first   was   alternated   on   each   day.  

Random   foraging   task  

In  both  cue  rich  and  cue  poor  tracks,  visually  marked  reward  zones  appeared  at  a  probability  of                  
0.01–0.001  per  cm,  titrated  to  mouse  performance,  within  the  middle  300  cm  of  the  track  and  at                  
least  50  cm  apart.  Reward  zones  were  50  cm  long  and  track-width,  were  patterned  with  a  black                  
and  white  diamond  checkerboard,  and  hovered  slightly  above  the  floor.  Upon  entering  the  reward               
zone,  animals  could  request  water  by  licking  and  breaking  an  infrared  beam  at  the  mouth  of  the                  
lickport;  if  not  requested,  water  was  dispensed  automatically  at  the  center  of  the  zone.  For  mice  1c,                  
4a,  and  4b  for  some  recording  sessions  there  were  between  1-5  probe  trials  every  10  trials  in                  
which  water  was  only  dispensed  if  requested  in  the  reward  zone  (no  automatic  dispensation).  Upon                
water  dispensation  (or  next  trial  start  for  missed  probe  trials),  the  current  reward  zone  disappeared                
and  the  next  zone  became  visible.  Water  rewards  (~1.5 µL)  were  delivered  using  a  solenoid               
(Cole-Parmer)  triggered  from  the  virtual  environment  software,  generating  an  audible  click  with             
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water  delivery.  Licks  were  recorded  as  new  breaks  in  the  lickport  infrared  beam  and  were                
processed   by   a   microcontroller   (Arduino   UNO).  

Histology   and   probe   localization  

Before  each  implantation,  probes  were  dipped  in  fixable  lipophilic  dye  (1mM  DiI,  DiO,  DiD,  Thermo                
Fisher)  10  times  at  10  second  intervals.  Within  7  days  of  the  first  probe  insertion,  mice  were  killed                   
with  an  overdose  of  pentobarbital  and  transcardially  perfused  with  phosphate-buffered  saline            
(PBS)  followed  by  4%  paraformaldehyde.  Brains  were  extracted  and  stored  in  4%             
paraformaldehyde  for  at  least  24 h  before  transfer  to  30%  sucrose  in  PBS.  Brains  were  then  rapidly                 
frozen,  cut  into  30-µm  sagittal  sections  with  a  cryostat,  mounted  and  stained  with  cresyl  violet.                
Histological  sections  were  examined  and  the  location  of  the  probe  tip  and  entry  into  the  dorsal                 
MEC  for  each  recording  were  determined  based  on  the  reference  Allen  Brain  Atlas (Allen  Institute                
for  Brain  Science,  2004) (Fig.  S1).  The  location  of  each  recording  site  along  the  line  delineated  by                 
the  probe  tip  and  entry  point  was  then  determined  based  on  each  site’s  distance  from  the  probe  tip.                   
Only  cells  within  MEC,  again  based  on  the  reference  Allen  Brain  Atlas (Allen  Institute  for  Brain                 
Science,  2004) ,  were  included  for  analysis  (Fig.  S1).  In  all  cases,  “depth”  reported  is  the  ventral                 
distance  from  the  location  of  the  dorsal  boundary  of  MEC  in  the  medial  section  where  the  probe                  
enters   MEC.  

Offline   spike   sorting  

Electrophysiological  recordings  were  common-average  referenced  to  the  median  across  channels           
and  high-pass  filtered  above  150  Hz.  Automatic  spike  sorting  was  then  performed  using  Kilosort2,               
a  high-throughput  spike  sorting  algorithm  that  identifies  clusters  in  neural  data  and  is  designed  to                
track  small  amounts  of  neural  drift  over  time  (open  source  software  by  Marius  Pachitariu,  Nick                
Steinmetz,  and  Jennifer  Colonell, https://github.com/MouseLand/Kilosort2 )(see  also  Kilosort1        
(Pachitariu  et  al.,  2016) ).  After  automatic  spike-sorting,  all  clusters  with  peak-to-peak  amplitude             
over  noise  ratio  <  3  (with  noise  defined  as  the  standard  deviation  of  voltage  traces  in  a  10ms                   
window  preceding  detected  spike  times),  total  number  of  spikes  <  100,  and  repeated  refractory               
period  violations  (0-1  ms  autocorrelegram  bin  >  20%  of  maximum  autocorrelation)  were  excluded.              
All  remaining  clusters  were  manually  examined  and  labeled  as  “good”  (i.e.  stable  and  likely               
belonging  to  a  single,  well-isolated  neural  unit),  “MUA”  (i.e.  likely  to  represent  multi-unit  activity),  or                
“noise.”  Only  well-isolated  “good”  units  from  within  MEC  (barring  fig.  S1h,  i,  which  were  non-MEC                
units)  with  greater  than  400  spikes  were  included  for  analysis  in  this  paper.  Sessions  with  fewer                 
than   10   cells   meeting   these   criteria   were   excluded.  

Behavioral   data   preprocessing  

On  each  frame  of  the  virtual  reality  scene,  the  virtual  position  and  time  stamps  were  recorded  and                  
a  synchronizing  TTL  pulse  was  sent  from  an  Arduino  UNO  to  the  electrophysiological  recording               
equipment.  These  pulses  were  recorded  in  SpikeGLX  using  an  auxiliary  National  Instruments  data              
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acquisition  card  (NI  PXIe-6341  with  NI  BNC-2110).  The  location  of  each  reward  zone,  time  of  each                 
lick,  and  time  of  each  reward  dispensation  were  also  recorded.  Thus  all  time  stamps  and                
behavioral  factors  were  synchronized  to  the  neurophysiological  data.  Time  stamps  were  adjusted             
to  start  at  0  and  all  behavioral  data  was  interpolated  to  convert  the  variable  VR  frame  rate  to  a                    
constant  frame  rate  of  50Hz.  As  the  track  was  effectively  circular  and  400  cm  long,  recorded                 
positions  less  than  0  or  greater  than  400  cm  were  converted  to  the  appropriate  position  on  the                  
circular  track  (eg.  a  recorded  position  of  404  cm  would  be  converted  to  4  cm  and  a  recorded                   
position  of  -4  cm  would  be  converted  to  396  cm).  Trial  transitions  were  identified  as  timepoints                 
where  the  difference  in  position  across  time  bins  was  less  than  -100  cm  (i.e.  a  transition  from  ~400                   
cm   to   ~0   cm)   and   a   trial   number   was   accordingly   assigned   to   each   timepoint.  

Running  speed  for  each  timepoint  was  computed  by  calculating  the  difference  in  position  between               
that  timepoint  and  the  previous,  divided  by  the  framerate  (speed  at  the  first  timepoint  was  assigned                 
to  be  equal  to  that  at  the  second  timepoint).  Speeds  greater  than  150  cm/s  or  less  than  -5  cm/s                    
were  removed.  Speed  was  then  interpolated  to  fill  removed  timepoints  and  smoothed  with  a               
gaussian  filter  (standard  deviation  0.2  time  bins).  For  all  analyses  except  lick  and  reward  zone                
analyses   (fig.   1d,   e,   g,   h),   stationary   time   bins   (speed   <   2   cm/s)   were   excluded.  

Population   analysis   and   clustering   model  

The  1D  track  was  divided  into  5  cm  position  bins  (total  of  80  bins).  On  each  traversal  of  the  track,                     
the  empirical  firing  rate  of  each  neuron—i.e.,  number  of  spikes  divided  by  time  elapsed—was               
computed  for  every  position  bin.  We  then  smoothed  the  firing  rate  traces  with  a  Gaussian  filter                 
(standard  deviation  5  cm).  For  each  session  this  resulted  in  a  3-dimensional  array  of  raw  firing                 
rates,   with   dimensions   corresponding   to   trials,   positions,   and   neurons.  

Since  these  raw  firing  rates  varied  widely  across  neurons,  we  rescaled  them  so  that  the  peak  firing                  
rate  was  commensurate  across  cells.  Similar  normalization  steps  or  variance-stabilizing           
transformations  have  been  used  in  previous  population  analyses  of  neural  data (Churchland  et  al.,               
2012;  Williams  et  al.,  2018;  Yu  et  al.,  2009) ,  to  prevent  neurons  with  high  firing  rates  from  washing                   
out  low  firing  rate  neurons.  Here,  we  normalized  firing  rates  by  first  clipping  the  maximum  firing  rate                  
of  each  neuron  at  its  90th  percentile  (to  exclude  large  outliers),  and  then  re-scaling  each  neuron’s                 

firing  rate  to  range  between  zero  and  one.  That  is,  if  denotes  the  clipped  firing  rate  on  trial ,                     
position   bin   ,   and   neuron   ,   then   the   normalized   firing   rate   was   computed   as:   

 

(1)  

The     and     operations   (as   well   as   the   90th   percentile   clipping   operation)   are   applied   on  
a   neuron-by-neuron   basis,   pooling   observations   across   all   trials   and   timebins.   For   two-track  
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sessions   (which   contained   2   blocks   of   cue   rich   trials   and   2   blocks   of   cue   poor   trials,   in   alternating  
order)   we   added   an   additional   per-neuron   correction   factor   to   account   for   drift   in   firing   rates:   the  
mean   normalized   firing   rate   for   each   neuron   (across   all   trials   and   position   bins)   was   subtracted  
within   each   block   of   trials,   and   the   result   was   renormalized   to   values   between   zero   and   one,   as  
above.  

On   each   trial,   MEC’s   representation   of   position   is   summarized   by   a   matrix,   denoted     for   trial   ,  
with   rows   and   columns   respectively   corresponding   to   position   bins   and   neurons.   A   simple   measure  
of   similarity   between   two   trials,   indexed   by     and   ,   is   given   by   the   Pearson   correlation   between  
the   vectors     and   .   Network-wide   trial-by-trial   similarity   matrices   (as   in   fig.   1,   2,  
S1,   S2,   S3,   and   S5)   were   found   by   computing   this   correlation   across   all   pairs   of   trials.  

Let  denote  the  array,  or  tensor,  of  normalized  firing  rates  defined  in  equation  (1).                 
As  before  the  index  variables , ,  and ,  respectively  represent  trials,  position  bins,  and  neurons.                 
Now  consider  the  following  low-rank  matrix  factorization  model (Singh  and  Gordon,  2008;  Udell  et               
al.,   2016)    of   these   data:  

 

(2)  

where  denotes  the  number  of  model  components,  or  the  model  rank.  Equation              
(2)  represents  an  approximate  factorization  of  the  matricization  or  tensor  unfolding  of  the               
data  array (Kolda  and  Bader,  2009;  Seely  et  al.,  2016) ).  We  will  see  that  k-means  clustering  arises                  
as  a  special  case  of  this  model,  and  in  this  special  case  represents  the  number  of  clusters  (i.e.                    
the   number   of   spatial   maps).  

The   parameters     and     are   optimized   according   to   a   least   squares   criterion,   i.e.:  

 

(3)  

It  is  well-known  that  a  rank-R  truncated  singular  value  decomposition  (SVD)  provides  a  solution  to                
this  optimization  problem (Eckart  and  Young,  1936) .  Further,  the  solution  provided  by  truncated              
SVD  is  closely  related  to  Principal  Components  Analysis  (PCA)—indeed,  these  two  methods  are              
identical  for  the  case  of  mean-centered  data  (see,  e.g., (Shlens,  2005) ).  Since  the  normalized  firing                
rate  array  in  equation  (3)  is  not  mean-centered,  we  refer  to  this  initial  model  as  “uncentered                  
PCA.”  We  use  the  uncentered  coefficient-of-determination  (uncentered  R 2 )  as  a  normalized            
measure   of   model   performance   associated   with   equation   (3).  
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The  k-means  clustering  model  incorporates  an  additional  constraint  into  the  uncentered  PCA             
model.   Specifically,   k-means   seeks   to   minimize   equation   (3),  

 

(4)  

Thus,  if  we  view  as  the  elements  of  an  matrix,  the  rows  of  this  matrix  are  constrained  to                     
be  standard  Cartesian  basis  vectors  of -dimensional  Euclidean  space.  Each  of  these  vectors              
specifies  the  cluster  assignment  label  for  every  trial  (see  fig.  2a  for  a  schematic  illustration  for  the                  

 case).  Further,  we  can  interpret  as  elements  of  an  array.  For  a  fixed  cluster                  
index ,  the  remaining  elements  form  a  matrix,  called  a  “slice”  of  the  original  array (Kolda                  
and  Bader,  2009) .  Each  slice  corresponds  to  a  cluster  centroid,  which  we  may  interpret  as  a  spatial                  
map—the  columns  are  dimensional  vectors  holding  the  spatial  tuning  curves  for  every  neuron,               
so   different   slices   correspond   to   different   sets   of   spatial   tuning   curves   for   each   neuron.  

This  connection  between  k-means  clustering  and  other  matrix  factorization  models  is  well-known             
and  expanded  upon  in  detail  by (Singh  and  Gordon,  2008;  Udell  et  al.,  2016) ).  We  exploit  this                  
connection  to  assess  the  k-means  model,  which  is  more  constrained  than  uncentered  PCA  (i.e.               
truncated  SVD)  in  that  is  constrained  to  be  a  one-hot  vector  as  opposed  to  an  arbitrary  length-R                   
vector.  Intuitively,  this  allows  us  to  interpret  each  trial  as  belonging  to  one  of  types,  as  opposed                   
to  a  linear  combination  of  them.  The  fact  that  the  more  restrictive  k-means  model  performs  as  well                  
as  uncentered  PCA  gives  credence  to  the  multiple-map  interpretation.  To  compare  these  two              
models  we  used  a  randomized  cross-validation  procedure  in  which  10%  of  the  data,  representing               
the  validation  set,  were  censored  in  a  speckled  holdout  pattern (Williams  et  al.,  2018;  Wold,  1978) .                 
Ten  randomized  replicates  were  performed  for  all  models.  For  the  case  of  components,  we                
observed  similar  performance  (measured  by  the  uncentered  R 2  averaged  over  validation  sets)             
between   uncentered   PCA   and   k-means   for   all   sessions   (see   fig.   2d).  

Further,  we  compared  the  test  performance  of  k-means  on  “shuffled”  datasets  (see  fig.  2c,  fig.  2e).                 
Firing  rates  from  a  behavioral  session  were  shuffled  by  applying  a  random  rotation  (i.e.,  an                
orthogonal  linear  transformation)  to  across  trials.  That  is,  we  sample  a  random  rotation  matrix                

  and   define  

 

as  the  new  shuffled  dataset,  which  is  substituted  into  the  objective  function  defined  in  equation  (3).                 
This  form  of  shuffling  preserves  many  features  of  the  data,  including  the  overall  norm  of  the  data                  
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and  correlations  between  neurons  and  position  bins.  However,  it  destroys  the  sparsity  pattern  on               

 which  is  imposed  by  the  k-means  model.  This  procedure  is  similar  in  spirit  to  methods                 
proposed   by   Elsayed   &   Cunningham    (Elsayed   and   Cunningham,   2017) .  

Sessions  that  were  well-approximated  by  the  k-means  model  with  clusters  were  classified              
as  “two-map”  sessions.  We  required  that  the  performance  gap  (measured  by  the  uncentered  R 2               
averaged  over  validation  sets)  between  k-means  and  uncentered  PCA  and  be  less  than  70%               
relative  to  the  shuffle  control.  Further,  we  required  an  uncentered  R 2  of  at  least  0.63  for  the                  
k-means  model  with  maps.  Sessions  not  meeting  these  criteria  sometimes  displayed  more              
than  two  maps  (see  Fig  S6),  long  periods  of  unstable  coding  (see  Fig  S2),  or  little  to  no  remapping                    
at  all.  For  all  k-means  analyses,  we  ran  the  clustering  model  at  least  100  times  on  all  neural  data                    
from   each   session   to   account   for   model   variability,   keeping   the   model   with   the   best   fit   to   the   data.  

Manifold   alignment   analysis  

We   used   standard   Procrustes   analysis   methods    (Gower   et   al.,   2004)    to   assess   the   degree   to   which  
the   two   ring   manifolds,   representing   spatial   maps,   were   aligned   in   neural   firing   rate   space.   Recall  
that   the   k-means   centroids   provide   an   estimate   of   each   spatial   map—in   this   case,   we   restrict   our  

focus   to     maps,   so   the   two   maps   are   given   by     and   .   Geometrically,   these   maps   are  
represented   as     points   embedded   in   a   -dimensional   space   (recall   that     denotes   the   number  
of   position   bins   and     is   the   number   of   simultaneously   recorded   neurons).   Procrustes   Analysis  
begins   by   centering   each   of   these   manifolds   at   the   origin   and   rescaling   them   to   have   unit   norm.   Let  

  and     denote   the   maps   after   these   preprocessing   steps   have   been   applied,   i.e.,  

 

 

Since   position   bin     in   map   1   and   position   bin     in   map   2   correspond   to   the   same   location   on   the  
track,   we   consider   the   root-mean-squared-error   (RMSE)   between   these   centered   and   rescaled  
maps   as   the   empirically   “observed”   alignment   score   (reported   in   fig.   4j):  
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The   central   step   of   Procrustes   analysis   is   to   find   the   optimal   rotation   matrix   that   aligns   these   two  
point   clouds.   That   is,   we   wish   to   find   the   matrix     that   solves   the   following   optimization   problem: 

  that   solves   the   following   optimization   problem:  

 

This   optimization   problem   admits   a   closed   form   solution   for     in   terms   of   the   singular   value  

decomposition   of   the     matrix      (Schönemann,   1966) .   See   Gower   &   Dijksterhuis  
(Gower   et   al.,   2004)    for   further   details   and   background.   In   fig.   4j,   we   report   the   RMSE   after  
applying   the   optimal   rotation   (“aligned”)   as   well   as   a   random   rotation   matrix   (“shuffled”).  

Manifold   entanglement  

We   quantified   the   entanglement   of   a   manifold   as   the   maximum   ratio   of   intrinsic   distance   (i.e.  
distance   along   the   manifold)   to   extrinsic   distance   (i.e.   Euclidean   distance   in   -dimensional   space)  
between   any   two   points   on   the   manifold.   Concretely,   the   extrinsic   distance   between   two   points  
corresponding   to   position   bins     and     was   computed   as:  

 

The   intrinsic   distance,   ,   was   the   sum   of   extrinsic   distances   along   a   path   from     and     (see  
diagram   in   fig.   4d).   Depending   on   whether   one   travels   clockwise   or   counterclockwise   along   the  
ring,   there   are   two   paths   connecting   any   pair   of   points—the   intrinsic   distance   is   given   by   whichever  
path   is   shorter.   The   triangle   inequality   implies   that     for   every   pair   of   points   along   the  
manifold.   A   raw   measure   of   entanglement   is   given   by   .   We   normalized   the  
entanglement   scores   to   values   between   zero   and   one   by   computing:  

 

All     and     operations   are   understood   to   operate   over   all   pairs   of   position   bins,     and   .  

Distance   to   cluster   calculations  
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After   fitting   the   k-means   model   and   obtaining   two   centroids,     and   ,   we   can   quantify   how  
close   network   activity   is   to   each   centroid   on   a   trial-by-trial   or   neuron-by-neuron   basis.   In   each   case  
we   project   the   activity   onto   a   one-dimensional   space   where     corresponds   to   one   centroid   and  

  corresponds   to   the   other   centroid.   That   is,   for   each   trial   ,   we   compute  

 

Note   that      when     and     when   .   Further,   if   the   network   activity  

on   trial     is   at   the   midpoint,   then     and   .  

We   can   compute   an   analogous   statistic   for   each   combination   of   trial     and   position   bin   :  

 

Likewise,   we   can   compute   for   each   combination   of   trial     and   neuron   :  

 

Note   that   ,   ,   and     refer   to   three   different   quantities,   and   are   only   distinguished   on   the   basis  
of   their   indices.   This   concise,   somewhat   informal,   notation   is   common   in   tensor   algebra,   but   is  
restricted   to   the   present   section   to   prevent   potential   confusion.  

In   Figure   2,   we   use     to   identify   neurons   that   consistently   remap.   Let     denote   the   cluster   label  
of   each   trial   such   that     if   trial     is   in   map   1   and     if   trial     is   in   map   2.   Then  

  provides   a   measure   of   neuron   ’s   distance   from   the   cluster   centroid   on   trial    
(specifically,   it   corresponds   to   a   logistic   loss   function   in   the   context   of   classification   models).  
Averaging   this   distance   over   trials   summarizes   the   remapping   strength—intuitively,   an   average  
distance   close   to   zero   implies   that   the   neuron   “agrees   with”   the   rest   of   the   population   on   each   trial,  
while   a   large   average   distance   implies   that   the   neuron   is   inconsistent   (e.g.,   because   the   neuron  
exhibits   high   levels   of   noise   combined   with   little   to   no   changes   in   spatial   tuning   across   maps).   We  
classified   neurons   as   “consistent   remappers”   when   the   average   distance   was   less   than   1.  
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In   fig.   5,   we   used     to   assess   the   relationship   between   running   speed   and   the   distance   of   neural  
coding   to   the   midpoint   between   clusters.   In   fig.   5h-i,   we   plotted   ,   i.e.   the   distance   to   midpoint,  
in   10   running   speed   bins—the   first   9   bins   were   evenly   spaced   between   0   cm/s   and   20   cm/s   below  
the   maximum   speed;   the   last   bin   included   all   top   speeds   above   this   final   threshold   (this   was   done  
to   account   for   rare   bursts   of   high   speeds).   Similarly,   in   fig.   5j   we   plotted   ,   normalized   within  
each   session,   in   10   running   speed   bins,   also   normalized   within   each   session.   In   fig.   5k-m,   we   use  
histograms   to   visualize     for   all   trials   and   position   bins.   To   account   for   arbitrary   map   assignment,  
we   randomly   flipped   the   sign   of     for   each   session   in   fig.   5m.   Likewise,   the   white-to-black  
heatmaps   in   fig.   5f-g   visualize     for   a   subset   of   trials.  

Position   decoding   analysis  

We   fit   linear   models   to   predict   the   animal’s   position   from   the   spiking   activity   of   all   MEC   neurons,  
and   call   the   optimized   model   a   “decoder”   following   common   terminology   and   practice    (Kriegeskorte  
and   Douglas,   2019)    (fig.   3).   Let     denote   the   position   on   the   circular   track   at   time   ,   and  
let     denote   the   number   of   spikes   fired   by   neuron     at   time     after   smoothing   with   a   Gaussian  
filter   (standard   deviation   =   200   ms).   Due   to   the   nature   of   the   VR   environment,     is   a   circular  
variable—i.e.,   it   should   be   interpreted   as   an   angle   on   the   unit   circle.   In   the   statistics   literature,   a  
regression   that   predicts   a   circular   variable   from   linear   covariates   is   known   as   a    circular-linear  
regression    model.   Several   approaches   to   circular-linear   regression   have   been   developed    (Fisher  
and   Lee,   1992;   Pewsey   and   García-Portugués,   2020;   Sikaroudi   and   Park,   2019) .   Here,   we   used   a  
spherically   projected   multivariate   linear   model     (Presnell   et   al.,   1998) .   Two   regression   coefficients,  

  and   ,   are   optimized   for   each   neuron   using   the   expectation   maximization   routine   described  
by   Presnell   et   al.    (Presnell   et   al.,   1998) .   After   fitting   the   model   to   a   set   of   training   data,   the   model  
estimate   for   a   given   set   of   inputs   is   given   by  

 

where     corresponds   to   the   “2-argmuent   arctangent”   function.   The   “model   score”   referenced  
in   Figure   2   is   the   average   of     over   time   bins   in   the   testing   set.   Thus,   a   decoder   which  
randomly   guesses   angles   over   the   unit   circle   would   have   an   expected   score   of   zero,   while   a  
perfect   decoder   would   have   a   score   of   one.   Note   that   training   data   was   downsampled   to   match  
spike   number,   position   bins,   running   speed,   and   number   of   observations   across   training   sets   (map  
0,   map   1,   and   both   maps)   for   each   session.   In   fig.   3d,   each   point   represents   the   test   set   (10%   of  
the   subsampled   data)   model   score   for   a   single   training   set   (the   remaining   90%   of   the   subsampled  
data),   while   in   fig.   3e-g   each   point   represents   the   average   model   score   across   all   10   possible   test  
sets.  
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Spike   waveform   analysis  

Waveforms  were  extracted  from  the  Kilosort2  data  output  using  Daniel  J.  O’Shea’s  neuropixel-utils              
library  (open  source  code  from  GitHub: https://djoshea.github.io/neuropixel-utils/ ).  To  compute  the           
spike-by-spike  similarity  matrices  in  fig.  S4  (C,  H,  K,  O),  we  extracted  the  waveforms  for  1000                 
spikes  from  random  points  in  the  session  (or  all  spikes,  for  n  total  spikes  <  1000)  on  the  20  best                     
channels.  We  then  concatenated  these  waveforms  into  an  matrix,  where             
(spikes),  (channels),  and  (samples).  We  then  computed  the  Pearson  correlation             
between  all  unique  pairs  of  rows  and  then  visualized  these  results  in  spike-by-spike               
similarity  matrices  (this  overall  procedure  is  analogous  to  how  trial-by-trial  similarity  was  computed              
in  fig.  1,  2,  S1,  S2,  S3,  and  S5).  The  amplitude  plots  in  fig.  S4  (D,  I,  N,  R)  represent  the  peak                       
amplitude   for   all   spikes,   as   calculated   by   Kilosort2.  

In  order  to  explicitly  compare  waveforms  across  remap  events  and  across  the  session  (as  in  fig.  S4                  
B,  G,  M,  Q),  we  identified  stable  blocks  of  10  or  more  trials  abutting  k-means-identified  remap                 
events  near  the  beginning,  middle,  and  end  of  the  session  (fig.  S4,  A,  F,  L,  P).  We  then  extracted                    
the  waveforms  for  100  spikes  randomly  chosen  from  the  10  trials  in  the  middle  of  each  stable  block                   
(for  cells  with  fewer  than  100  spikes  in  any  pre-  or  post-remap  stable  block,  we  extracted  an  equal                   
number  of  spikes  from  each  block,  equal  to  the  minimum  number  of  spikes  across  the  two  blocks).                  
We   then   computed   the   average   waveform   within   each   block   (e.g.   fig.   S4,   B,   G).  

Tetrode   recordings   and   analysis  

The  tetrode  data  included  in  figure  S4  were  collected  for  a  previous  publication  (n  =  296  cells  from                   
112  sessions  in  19  mice) (Campbell  et  al.,  2018) .  Because  VR  gain  manipulations  as  performed  for                
that  study  can  induce  remapping  of  spatial  representations,  all  data  examined  for  this  figure  were                
from  “baseline  trials”  in  which  no  VR  manipulation  occurred.  However,  because  these  mice              
experienced  frequent  gain  manipulations,  we  compared  these  tetrode  data  to  Neuropixels  data             
collected  from  mice  who  also  experienced  gain  manipulations,  to  account  for  potential  lasting              
effects  of  the  manipulations  (n  =  3,075  cells  from  89  sessions  in  20  mice) (Campbell  et  al.,  2020) .                  
For  each  cell  (Neuropixels  or  tetrodes),  we  examined  a  single  block  of  20  baseline  trials  in  which                  
no  VR  manipulation  occurred.  For  each  cell,  we  computed  firing  rate  maps  in  single  trials  and                 
computed  a  cross  correlation  matrix  over  the  20  trial  block,  taking  the  peak  cross  correlation  over                 
lags  from  -20  cm  to  +20  cm  to  allow  for  small  shifts.  We  focused  our  analysis  on  cells  that  were                     
"spatially  stable"  within  the  first  6  trials  (defined  as  having  mean  trial-trial  peak  cross  correlation  >                 
0.5  in  the  first  6  trials),  and  asked  how  the  rate  maps  changed  in  the  following  14  trials.  To  quantify                     
this,  we  computed  the  peak  cross  correlation  between  each  of  these  14  trials  and  each  of  the  6                   
"baseline"  trials,  and  averaged  over  baseline  trials.  When  the  pattern  remaps,  this  cross  correlation               
should  be  low;  when  it  is  stable,  it  should  be  high.  We  performed  a  statistical  comparison  of  the                   
distribution  of  cross  correlations  for  cells  recorded  with  tetrodes  to  the  distribution  for  cells  recorded                
with  Neuropixels  probes.  Note  that  the  tetrode  recordings  were  performed  on  a  VR  track  with  more                 
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salient  visual  landmarks  than  that  used  for  Neuropixels  recordings,  including  a  clearly  delineated              
trial   structure   with   teleportations   between   each   trial.  

Spatial   information   calculations  

Following  the  procedures  in  Skaggs  et  al.  (1996) (Skaggs  et  al.,  1996)  we  calculated  spatial               
information   content   in   bits   per   second   over   2   cm   position   bins   for   each   neuron   as   follows:  

 

Where  is  the  probability  that  the  animal  is  in  position  bin  (occupancy  of  position  bin  /  total                     
session  time),  is  the  average  firing  rate  of  the  neuron  in  position  bin ,  and  is  the  overall                     
average  firing  rate  for  the  neuron.  Firing  rates  were  computed  empirically  (number  of  spikes  /                
occupancy).  For  fig.  2,  spatial  information  was  calculated  separately  for  each  map  by  first               
separating  trials  by  their  k-means-defined  cluster  label.  Cells  were  defined  as  significantly  spatial  if               
their  spatial  information  score  was  >  95 th  percentile  of  a  null  distribution  comprising  1,000  shuffle                
controls.  Shuffles  were  computed  separately  for  each  map  in  each  session,  and  were  implemented               
by  shifting  all  spikes  for  all  cells  by  a  random  time  interval,  up  to  a  maximum  of  10  seconds,  to                     
disrupt  the  spike/position  relationship  without  changing  inter-spike  intervals  or  correlations  across            
cells.  “Spatial  cells”  in  fig.  2  and  as  referred  to  throughout  the  text,  were  significantly  spatial  in  at                   
least   one   map.  

Rate   remapping   vs   global   remapping   

In  order  to  identify  the  extent  to  which  each  cell  remapped  across  trials,  we  first  divided  trials  by                   
their  2-factor  k-means  cluster  label.  We  then  computed  the  trial-averaged  firing  rate  in  2  cm                
position  bins  for  each  map,  smoothing  with  a  1D  Gaussian  filter  (standard  deviation  2  cm).  We                 
quantified  the  degree  of  rate  remapping  in  each  neuron  by  the  percent  change  in  the  peak  firing                  
rate  (i.e.  largest  firing  rate  in  any  spatial  bin)  across  the  two  maps.  As  a  measure  of  global                   
remapping,  we  calculated  an  alignment  score  between  the  normalized  firing  rate  vectors  in  activity               
space.  To  do  so,  we  computed  the  cosine  similarity  (vector  dot  product  after  normalization)               
between  the  spatial  profiles  of  the  within-map  averaged  firing  rates.  A  cosine  similarity  of  1  would                 
indicate  an  identical  spatial  firing  pattern  and  a  score  of  0  would  indicate  orthogonal  spatial                
representations.  

Spatial   autocorrelation   analysis  

In  fig.  S2,  we  analyzed  periods  of  unstable  spatial  coding  in  MEC  (i.e.  periods  where  spatial  tuning                  
curves  were  not  entrained  to  landmark  locations).  We  first  divided  trials  into  spatial  and  non-spatial                
using  a  threshold  value  of  0.4  average  spatial  correlation  to  the  4  nearest  trials  (using  the                 
trial-by-trial  spatial  similarity  matrix  described  in  “Population  analysis  and  clustering  model”).  For             
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each  trial,  we  computed  the  firing  rate  in  2  cm  position  bins  and  concatenated  trials  of  each  type  to                    
obtain  a  continuous  vector  of  firing  rate  by  absolute  distance  traveled  for  each  condition.  We  then                 
computed  the  spatial  autocorrelation  of  this  signal,  up  to  a  maximum  distance  of  1600  cm,                
normalized  such  that  the  autocorrelation  at  0  cm  =  1.  We  identified  peaks  in  this  signal  with  a                   
minimum  prominence  of  0.05  and  compared  each  peak  to  a  null  distribution  to  determine  whether  it                 
was  higher  than  could  be  expected  by  chance.  The  null  model  was  given  by  a  first-order                 
autoregressive  process,  i.e.  an  AR(1)  model,  with  no  drift  term.  The  decay  parameter  of  the  model                 
was  chosen  to  be  0.55  to  roughly  match  the  autocorrelation  of  cells  with  small  spatial  fields.  The                  
autocorrelation  function  of  the  AR(1)  null  model  admits  a  closed-form  expression,  as  covered  in               
standard  references  on  time  series  analysis (Chatfield,  1984) .  To  evaluate  whether  any  peak  in  the               
empirical  autocorrelation  function  was  significant  with  respect  to  this  null  distribution,  we  computed              
Bonferroni-corrected  95%  confidence  intervals  around  the  observed  autocorrelation  function.  We           
classified  a  given  neuron  as  having  periodic  firing  fields  if  it  had  more  than  one  significant  peak  in                   
the   unstable   regime.  

Quantification   and   Statistical   Analysis  

Statistics  

All  data  were  analyzed  in  Python,  using  the  scipy  stats  library  to  compute  statistics,  except  for  data                  
in  fig.  S4u,  which  were  analyzed  in  MATLAB.  Unless  otherwise  noted,  all  tests  are  two-sided,                
correlation  coefficients  represent  Pearson’s  correlation,  and  values  are  presented  as  mean  ±             
standard  error  of  the  mean  (SEM).  Non-parametric  tests  were  used  to  assess  significance,              
specifically  Wilcoxon  signed-rank  tests  for  paired  data,  Wilcoxon  rank-sum  tests  for  unpaired  data,              
and  Kruskal-Wallis  H-tests  for  comparisons  of  >  2  values.  Data  collection  and  analysis  were  not                
performed  blind  to  the  conditions  of  the  experiments.  No  statistical  methods  were  used  to               
predetermine   sample   sizes,   but   our   sample   sizes   are   consistent   with   previous   similar   studies.   
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Fig.  S1:  Unit  identification,  histology  and  examples  of  remapping  in  individual  mice  and              
sessions.  (A)  Number  of  kilosort-identified  clusters  from  each  session  labeled  as  well-isolated  single              
units  (top,  total  cell  n  =  9,307),  the  subset  of  those  units  within  MEC  (middle,  total  cell  n  =  5,844),  and                      
the  number  of  clusters  labeled  as  multi-unit  activity  (“MUA”,  bottom,  total  cluster  n  =  8741)  for  all                  
sessions  with  >10  MEC  units  (total  cluster/unit  n  =  18,048  from  44  sessions  in  17  mice).  (B)  Locations                   
for  all  recorded  units  relative  to  anatomical  boundaries  (black,  MEC  units;  gray,  all  well-isolated  units;                
bars,  probe  location  for  example  mice  shown  in  panels  C  and  D).  Note  that  units  from  the  same                   
dorsal-ventral  (DV),  medial-lateral  (ML),  or  anterior-posterior  (AP)  coordinates  can  be  classified  as             
either  within  or  outside  of  MEC.  For  example,  see  (D,  far  right  panel,  red  dye)  for  probe  placement  with                    
acceptable  DV  and  AP  coordinates,  but  unacceptable  ML  coordinates  (-325µm  ML  is  too  far  medial  to                 
be  within  MEC).  (C)  Example  histology  from  mouse  6a,  left  hemisphere  showing  probe  placement  for                
session  1009_1  (red)(bottom  text,  medial  (-)  or  lateral  (+)  distance  from  center  of  MEC  (ML  =  0µm);                  
dashed  lines,  dorsal  MEC  boundary  (DV  =  0µm);  scale  bar  =  500µm).  AP  distance  is  calculated  as  the                   
perpendicular  distance  from  probe  tip  (or  probe  crossing  of  MEC  boundary)  to  the  back  of  the  brain  (AP                   
=  0µm);  DV  location  is  determined  as  distance  from  that  point  at  the  back  of  the  brain  to  the  MEC                     
dorsal  boundary,  traveling  parallel  to  the  probe  track  (C  left,  dotted  lines).  (D)  As  in  (C),  but  for  mouse                    
7b,  left  hemisphere  (red,  session  1112_1).  (E)  Trial-by-trial  similarity  matrices  for  all  sessions  from               
mouse  6a  with  >10  MEC  units;  raster  plots  (top  left)  show  example  units  from  session  1009_1.  (F)  As  in                    
(E)  but  for  mouse  7b,  raster  plots  (top  left)  show  example  units  from  session  1112_1.  (G)  Schematic  of                   
cue  rich  and  poor  tracks  (left)  and  task  structure  for  single-track  (middle)  and  double-track  (right)                
sessions.  (H)  Three  example  cells  from  the  example  session  in  (D,  F)  recorded  outside  MEC  illustrate                 
that  non-MEC  cells  tended  not  to  show  remapping.  (I)  In  order  to  compare  network-wide  remapping  for                 
MEC  cells  to  non-MEC  cells  recorded  in  the  same  session,  we  subtracted  the  trial-by-trial  similarity                
matrix  for  non-MEC  cells  from  the  trial-by-trial  similarity  matrix  for  MEC  cells.  Within  map  similarity  was                 
overall  higher  and  across  map  similarity  was  overall  lower  for  MEC  cells  compared  to  non-MEC  cells,                 
indicating  stronger  remapping  in  this  population  (colorbar  indicates  the  difference  in  similarity  between              
MEC  and  non-MEC  trial-by-trial  similarity).  (J,  K)  Rasters  and  similarity  plots  from  additional  example               
mice   and   sessions   show   a   variety   of   remapping   patterns.   
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Fig.  S2:  Short-term  within-session  stability  of  MEC  representations. (A)  For  each  trial,  we              
calculated  the  firing  rate  by  position  for  each  neuron  (top),  linearized  these  matrices  (middle),  and                
computed  the  Pearson  correlation  between  all  trial  pairs,  resulting  in  a  trial-by-trial  similarity  matrix  of                
network-wide  spatial  coding  (bottom).  Each  similarity  matrix  indicates  both  short-term  and  long-term             
stability  in  spatial  coding  through  correlations  to  nearby  and  distant  trials,  respectively.  (B)  Short-term               
spatial  stability,  quantified  as  the  average  correlation  of  each  trial  with  its  four  nearest  neighbors,  was                 
variable  across  sessions  recorded  in  a  single  cue  rich  or  cue  poor  environment  (i.e.  single-track                
sessions,  n  =  32  sessions  in  12  mice)(top  two  panels;  points,  single  sessions;  colors  indicate  mouse                 
identity;  gray  bars,  interquartile  range  (IQR)),  as  well  as  in  alternating  blocks  of  cue  rich  and  cue  poor                   
tracks  (i.e.  double-track  sessions,  n  =  24  blocks  across  12  sessions  in  5  mice)(bottom  two  panels;  filled                  
circles,  cue  rich  blocks;  open  circles,  cue  poor  blocks;  gray  bars,  full  session  IQR)(mean  short-term                
stability  range:  0.18  to  0.73).  Short-term  coding  stability  in  cue  poor  trials  was  lower  than  in  cue  rich                   
trials  for  contiguous  blocks  of  trials  recorded  in  a  given  double-track  session  (mean  short-term  stability                
±  SEM:  cue  rich  =  0.52  ±  0.03,  cue  poor  =  0.45  ±  0.02;  Wilcoxon  two-sided  signed-rank  test,  p  =  0.028;                      
n  =  11  pairs  of  trial  blocks  in  5  mice)(rightmost  panel),  as  well  as  in  cue  rich  and  poor  single-track                     
sessions  recorded  in  different  mice  (mean  short-term  stability  ±  SEM:  cue  rich  =  0.46  ±  0.01,  cue  poor  =                    
0.39  ±  0.03;  two-sided  Wilcoxon  rank-sum  test,  p  =  0.002;  n  =  11  cue  poor  sessions  in  6  mice,  21  cue                      
rich  sessions  in  6  mice)(middle  left).  These  results  indicate  that  the  number  of  landmarks  could                
contribute  to  some  of  the  observed  variability  in  stability  across  sessions.  While  short-term  stability  was                
internally  consistent  in  some  sessions  (n  =  9  sessions  and  5  blocks  with  IQR  <  0.06),  it  was  variable  in                     
other  sessions  (n  =  9  sessions  and  10  blocks  with  IQR  >  0.1),  suggesting  that  MEC  coding  can  shift                    
(i.e.  remap)  between  stable  and  unstable  regimes  (within  session  IQR  min  to  max:  0.039  to  0.394;  n  =                   
32  sessions  in  12  mice,  24  blocks  across  12  sessions  in  5  mice).  (C)  A  network-wide  similarity  matrix                   
from  an  example  session  with  variable  short-term  stability  (mean  local  stability  =  0.42,  min  =  0.28,  max                  
=  0.75)  illustrates  remapping  between  stable  and  unstable  periods  (red  bars,  trials  with  local  stability  <                 
0.4,  i.e.  “unstable  trials”).  (D)  Single  cells  from  the  session  shown  in  (C)  have  spatial  firing  fields  in                   
stable  trials  (green),  but  do  not  have  position-aligned  firing  fields  in  unstable  periods  (black).  This                
distinction  is  lost  by  averaging  position-aligned  tuning  over  the  full  session  (bottom).  (E,  F)  To  examine                 
periodic  firing,  we  divided  trials  into  stable  and  unstable  periods,  computed  firing  rate  in  2  cm  position                  
bins,  and  computed  the  spatial  autocorrelation  for  each  cell’s  firing.  We  then  compared  the  peaks  of                 
this  autocorrelation  to  a  null  model  to  identify  cells  with  significant  spatial  periodicity  (F;  blue  curve,  null                  
model;  black  curve,  observed;  pink  shading,  95%  confidence  intervals)(Methods).  In  both  stable  and              
unstable  regimes,  cells  exhibited  spatially  periodic  firing  that  increased  in  period  from  dorsal  to  ventral,                
consistent  with  known  grid  cell  properties (Brun  et  al.,  2008;  Fyhn  et  al.,  2008;  Hafting  et  al.,                  
2005) (128/383  cells  had  spatially  periodic  firing).  In  stable  regimes  (short-term  stability  ≥  0.4)(E,  F  left),                
spatially  periodic  firing  aligned  with  the  400  cm  track  length  across  cells,  as  evidenced  by  the  higher                  
autocorrelation  peaks  at  400  cm,  indicating  that  periodic  spatial  firing  was  anchored  to  the  track                
landmarks  in  these  cells.  These  cells  maintained  their  spatial  periodicity  in  unstable  regimes  (E,  F  right,                 
ordering  is  the  same  as  left  panels),  but  spatial  periodicity  was  not  anchored  to  the  available  landmarks                  
in  these  regimes;  rather,  each  cell  maintained  its  own  preferred  spatial  period.  Thus,  transitions               
between  spatially  stable  and  unstable  regimes  may  represent  shifts  between  landmark-based  and             
landmark-free   navigational   coding   strategies.   In   panels   B   and   F,   *   indicates   p   <   0.05.   
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Fig.  S3:  Similarity  matrices  and  distance  to  2-factor  k-means  cluster  for  all  single-track              
sessions. Network-wide  similarity  matrices  for  many  sessions  showed  a  checkerboard  pattern,            
indicating  synchronous  remapping  between  distinct  spatial  representations  (top  panels;  colormap           
indicates  trial-by-trial  spatial  correlation;  black,  correlation  =  0.7;  white,  correlation  =  0.1).  A  2-factor               
k-means  model  (middle  panels)  fit  sessions  with  variable  degrees  of  accuracy  (1  indicates  in  map  0                 
cluster  centroid,  -1  indicates  map  1  centroid).  We  classified  18  sessions  in  8  mice  as  “2-map  sessions”                  
(green  box)  in  that  they  were  well-described  by  a  2-factor  k-means  model  (fig.  2e,  green  points;                 
performance  gap  with  PCA  <  70%  relative  to  shuffle,  >  0.38).  The  similarity  matrices  from  these                 
sessions  often  alternated  between  internally  stable,  distinct  maps  (9  leftmost  2-map  sessions).  The              
distance  to  k-means-identified  cluster  qualitatively  matched  these  transitions  in  most  sessions.  In  some              
cases,  the  network  appeared  to  transition  more  gradually  between  the  two  maps  (9  rightmost  2-map                
sessions).  Single  cell  spatial  representations  tended  to  tightly  occupy  each  map.  Heat  maps  of  distance                
to  cluster  for  each  cell  across  all  trials  show  discrete  single-cell  transitions  between  maps  that  agree                 
precisely  with  the  network-level  remapping  events  (2-map  sessions,  bottom  panels;  black  =  in  or               
beyond  map  0  cluster  centroid;  white  =  in  or  beyond  map  1;  gray  =  midway  between  maps;  cells  are                    
sorted   from   dorsal   (top)   to   ventral   (bottom)).   
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Fig.  S4: Remapping  is  unlikely  to  be  an  artifact  of  recording  technique .  (A-R)  To  account  for                 
possible  artifacts  of  probe  movement  or  multi-unit  activity,  we  examined  the  waveforms  for  spikes               
labeled  as  belonging  to  a  single  unit  across  remapping  events  in  two  example  sessions.  (A-E)  Illustrate                 
that  waveforms  were  similar  across  remapping  events  in  an  example  cue  poor  session.  (A)  We                
sampled  100  spikes  each  from  blocks  of  10  trials  located  early  (light  colors),  midway  through  (neutral                 
colors),  or  late  (dark  colors)  in  the  session  from  each  map  (denoted  by  blue  and  pink).  (B)  We  then                    
computed  the  average  waveform  across  these  spikes  for  each  trial  block.  Example  waveforms  from  a                
single  contact  site  (right,  dashed  box),  but  calculated  from  different  trial  blocks  (left;  colors  match  A),                 
are  qualitatively  similar,  which  holds  true  across  channels  (right;  8  best  channels,  overlaid;  colors  match                
A).  (C)  A  spike-by-spike  similarity  matrix  for  this  example  cell  compares  waveforms  for  1000  randomly                
selected  spikes  from  throughout  the  session  and  is  largely  unstructured;  differences  in  waveforms              
seemed  not  to  systematically  vary  across  remap  events.  (D)  The  amplitude  of  each  spike  was  variable                 
across  the  session,  but  these  variations  were  not  aligned  with  remap  events.  (E)  Across  all  cells  for  this                   
example  session  (n  =  220  cells),  the  correlation  between  pairs  of  average  waveforms  was  no  different                 
whether  these  pairs  were  from  the  same  map  (single  color  bars)  or  from  different  maps  (two-color                 
bars)(Kruskal-Wallis  H-test;  p  =  0.11  across  all  pairs,  n  =  8  waveform  average  pairs  from  220  cells;  p  =                    
0.96  across  pairs  from  nearby  trial  blocks,  n  =  4  waveform  average  pairs;  p  =  0.99  across  pairs  from                    
distant  trial  blocks,  n  =  4  waveform  average  pairs).  To  control  for  time  in  the  session,  we  compared                   
waveforms  from  early  and  midway  through  the  session  (i.e.  “nearby”  pairs;  light  colors)  and  waveforms                
from  early  and  late  in  the  session  (i.e.  “far”  pairs;  dark  colors)(Methods).  (F-J)  As  in  (A-E),  but  for  an                    
example  cue  rich  session.  Waveform  shapes  changed  slightly  over  the  course  of  this  session  (e.g.                
amplitude  difference  in  G),  resulting  in  differences  in  correlation  between  nearby  versus  far  pairs               
(Kruskal-Wallis  H-test;  p  =  5.2x10 -4  across  all  pairs,  n  =  8  waveform  average  pairs  from  44  cells);                  
however,  this  difference  was  abolished  when  time  in  session  was  controlled  (p  =  0.81  across  pairs  from                  
nearby  trial  blocks,  n  =  4  waveform  average  pairs;  p  =  0.57  across  pairs  from  distant  trial  blocks,  n  =  4                      
waveform  average  pairs)(colors  match  A).  (K,  O)  As  in  (C,  H);  (L,  P)  as  in  (A,  F);  (M,  Q)  as  in  (B,  G,                        
right);  (N,  R)  as  in  (D,  I),  but  for  an  additional  example  cell  from  each  session.  (S-U)  Tetrode  data                    
shown  here  was  previously  published (Campbell  et  al.,  2018) .  In  this  tetrode  data  set,  VR  gain                 
manipulations  were  performed  (i.e.  mismatch  between  visual  and  locomotor  cues).  To  control  for  the               
possibility  that  frequent  gain  manipulations  could  have  a  lasting  impact  on  the  network’s  propensity  to                
remap,  we  compared  the  tetrode  data  to  Neuropixels  data  from  mice  that  had  experienced  gain                
manipulations (Campbell  et  al.,  2020) .  All  data  examined  for  this  figure  are  from  “baseline  trials”  in                 
which  no  gain  manipulation  occurred.  (S,  T)  Cells  that  were  co-recorded  using  tetrodes  from  two                
sessions.  Remapping  of  single  neurons  appeared  synchronized  across  cells  and  was  qualitatively             
similar  to  the  remapping  that  we  observed  in  single  Neuropixels  units  (e.g.  Fig.  1M-Q)(arrowheads,               
remaps).  As  a  measure  of  single  cell  remapping,  we  selected  cells  with  stable  spatial  coding  on  the  first                   
6  recorded  trials  (mean  across-trial  peak  cross-correlation  >  0.5)  and  compared  spatial  firing  on  the                
subsequent  14  trials  to  these  baseline  trials  (Methods).  We  would  expect  a  low  cross-correlation  for                
trials  where  the  spatial  tuning  remapped  from  the  baseline  spatial  map.  (U)  The  distributions  of                
cross-correlations  for  both  tetrode  and  Neuropixels  recordings  were  qualitatively  similar,  with  heavy  tails              
towards  lower  correlation  values.  Neuropixels  spatial  correlations  were  slightly  lower  than  tetrode             
correlations  (mean  correlation  to  baseline  ±  SEM:  tetrode  recordings  =  0.55  ±  0.003,  n  =  296  cells                  
across  4144  trials,  Neuropixels  recordings  =  0.53  ±  0.001,  n  =  3075  cells  across  43,050  trials;                 
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two-sided  Wilcoxon  rank-sum  test,  p  =  2.5x10 -6 ),  indicating  slightly  more  single  cell  remapping  in               
Neuropixels  recordings.  Note,  however,  that  tetrode  recordings  were  made  on  a  track  with  more  salient                
landmarks  and  with  clearly  delineated  trial  boundaries  compared  to  the  track  used  for  the  Neuropixels                
recordings,   which   could   possibly   account   for   this   small   difference.    

49  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.326942doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.326942


 

Fig.   S5  

 
  

50  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.326942doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.326942


 

Fig.  S5: Sessions  with  more  than  2  stable  maps  show  many  of  the  same  characteristics  as                 
2-map  sessions. (A)  (top  row)  Rasters  for  example  neurons  from  a  3-map  session,  colored  by                
k-means  cluster  label.  Neurons  exhibited  distinct  tuning  curves  in  each  map  (middle  row),  while               
averaging  neural  activity  over  the  entire  session  obscured  this  structure  (bottom  row)(compare  to  Fig.               
2F).  The  example  cells  in  (A)  illustrate  that,  as  in  2-map  sessions,  we  observed  cases  of  rate                  
remapping  and  global  remapping  (often  a  mix  of  both)  across  each  of  the  multiple  maps.  (B,  top)  The                   
k-means  assigned  cluster  labels  (left)  qualitatively  matched  the  checkerboard  structure  visible  in  the              
network-wide  trial-by-trial  similarity  matrix  (right)  (colorbar,  spatial  correlation).  (B,  bottom)  Running            
speed  by  trial  (black,  trial  average;  gray,  density)  compared  to  remap  events  (dotted  lines)  for  an                 
example  3-map  session  (compare  to  Fig.  5A).  (C,  top)  Similar  to  what  we  observed  in  2-map  sessions,                  
for  all  3-  and  4-map  sessions,  the  animal’s  average  running  speed  on  remap  trials  was  lower  compared                  
to  its  average  running  speed  in  the  preceding  stable  block  (mean  percent  difference  in  running  speed  ±                  
SEM:  6.3  ±  2.2%;  Wilcoxon  two-sided  signed-rank  test,  p  =  0.0045;  n  =  82  remap  trial/stable  block                  
pairs;  “remap  trials”  and  “stable  blocks”  were  defined  as  in  Fig.  4)(points,  individual  sessions;  colors                
indicate  mouse  identity;  gray  bars,  SEM).  (C,  bottom)  Running  speed  on  remap  trials  vs.  stable  blocks                 
for  an  example  session  (points,  stable  block/remap  trial  pairs;  n  =  8  pairs).  (D-I)  As  in  (B,  top),  but  for                     
additional  example  3-map  (E,  G,  H,  O)  and  4-map  (D,  F)  sessions.  Note  that  (D-F)  also  met  our  criteria                    
for  “2-map”  sessions  (fig.  2-5),  but  additional  features  of  the  neural  activity  could  be  captured  by                 
3-factor  (E)  or  4-factor  (D,  F)  k-means  models.  Importantly,  the  relationship  between  running  speed  and                
remapping   was   preserved   for   these   sessions   regardless   of   model   choice.   N   =   7   sessions   in   3   mice.   
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Fig.   S6  
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Fig.  S6:  Neural  circuit  model  supporting  bistable  ring  attractor  manifolds.  (A)  Illustration  of  ring               
attractor  connectivity  pattern  (see  equation  S.2).  Blue  indicates  excitatory  (exc.)  connections  and  red              
indicates  inhibitory  (inh.)  connections.  (B)  Illustration  of  winner-take-all  connectivity  between  two            
sub-populations  of  neurons  (see  equation  S.3).  Color  coded  as  in  (A).  (C)  Full  connectivity  matrix  of  the                  
model.  Two  permutations  of  the  neurons  are  shown,  and ,  which  respectively  reveal  the                
ring  attractor  pattern  and  winner-take-all  connectivity  pattern.  (D)  PCA  embeddings  of  the  two  stable               
ring  manifolds.  The  blue-to-red  coloring  along  the  manifold  corresponds  to  the  encoded  position,  as  in                
Figure  3  in  the  main  text. Left ,  embedding  of  map  1  alone. Middle, embedding  of  map  2  alone. Right,                    
simultaneous embedding  of  both  maps.  (E)  Normalized  root-mean-squared  error  of  manifolds  before             
(“observed”)  and  after  (“aligned”)  alignment  by  Procrustes  analysis.  The  error  is  normalized  to  equal               
one  for  randomly  rotated  manifolds  (dashed  line);  thus,  we  see  that  the  simple  superposition  of  ring  and                  
winner-take-all  connectivity  structures  produces  randomly  aligned  manifolds.  (F)  Normalized          
root-mean-squared  error  of  manifolds  (calculated  as  in  panel  E),  as  a  function  of  the  proportion  of                 
shared  neurons, .  (G)  Example  PCA  embedding  of  a  model  with  shared  neurons  ( );               
demonstrating  better  alignment  than  the  model  without  shared  neurons.  (H)  Schematic  illustration  of              
coplanar  and  aligned  ring  manifolds.  Blue  to  red  coloring  of  the  ring  manifolds  corresponds  to  encoded                 
position,  as  in  Figure  3.  Black  double-sided  arrows  denote  matching  positions  on  the  two  manifolds,                
and  thus  correspond  to  appropriate  remapping  dimensions  if  the  encoded  position  is  preserved  across               
remap  events.  (I)  Same  as  panel  A,  but  for  misaligned  manifolds  on  non-parallel  planes.  Note  that                 
remapping  dimensions  are  no  longer  parallel  to  each  other  and  depend  on  the  location  along  the                 
manifold.  (J)  Same  as  panel  A,  but  with  the  manifolds  misaligned  by  a  vertical  reflection.  As  in  panel  B,                    
remapping  dimensions  are  no  longer  parallel.  (K)  Schematic  illustration  of  remapping  (black  arrow)  in               
the  presence  of  noise  (gray  spherical  blur)  and  three  different  levels  of  rotational  misalignment.  Map  2                 
is  rotated  radians  away  from  a  plane  parallel  to  map  1.  We  consider  remapping  from  an  initial                   
position  on  map  2.  (L)  Projection  of  3D  plots  in  panel  D  onto  the  plane  spanned  by  map  1.                     
Map  1  is  shown  in  black;  the  projection  of  map  2  is  shown  as  a  dashed  red  line.  For  nonzero  the                       
projection  of  map  2  onto  this  2D  plane  is  an  ellipse.  The  remapping  noise  is  a  bivariate  Gaussian                   
distribution  after  this  projection  (gray  circular  blur).  (M)  Assuming  attractor  dynamics  project  the              
distribution  of  activity  to  the  nearest  point  on  map  1,  the  final  position  along  the  ring  manifold, ,  follows                    
a  projected  normal  distribution.  The  density  function  of  this  distribution  is  plotted  in  gray  for  the  three                  
levels  of  misalignment  shown  in  panel  E.  (N)  The  interquartile  range  of  the  projected  normal  distribution                 
is  plotted  as  a  function  of  for  four  levels  of  noise, .  Uncertainty  in  the  final  position, ,  increases  as                      
the   noise   increases   and   as   the   misalignment   increases.   
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Supplementary   Discussion  

Attractor   Models   of   Bistable   Spatial   Maps  

Attractor  networks  are  a  class  of  models  that  describe  how  neural  circuits  can  create  persistent                

internal  representations  about  the  state  of  the  world,  even  after  sensory  inputs  are  removed               

(Amari,  1977;  Samsonovich  and  McNaughton,  1997;  Seung,  1996) .  Attractor  models  of  MEC             

dynamics  were  implemented  soon  after  the  discovery  of  grid  cells (Burak  and  Fiete,  2009;  Fuhs                

and  Touretzky,  2006;  Guanella  et  al.,  2007;  McNaughton  et  al.,  2006)  and  have  influenced               

subsequent  experimental  research (Couey  et  al.,  2013;  Pastoll  et  al.,  2013;  Stensola  et  al.,  2012;                

Yoon  et  al.,  2013) .  In  their  simplest  form,  these  models  construct  a  single  attractor  manifold,                

corresponding  to  a  single  internal  spatial  map.  Our  observation  that  MEC  spontaneously  remaps              

between  multiple  internal  representations  reveals  one  way  in  which  neural  activity  is  more  complex               

than  this  idealized  model.  In  this  section,  we  show  how  to  reconcile  our  major  experimental                

findings   with   existing   theory.  

Attractor  models  are  often  formulated  as  a  system  of  differential  equations  describing  neural  firing               

rates:  

 
(S.1)  

where  denotes  a  vector  of  firing  rates  for  a  network  containing  neurons,  is                 

the  “connectivity  matrix”  holding  synaptic  weights,  is  an  elementwise  nonlinear  activation             

function,  is  a  constant  input  to  the  network,  and  is  the  time  constant  of  the  system.                   

We  assume  that ,  though  other  choices  of  activation  function  are  possible.             

More  detailed  models  have  been  developed  with  greater  attention  to  biological  plausibility (Laing              

and  Chow,  2001;  Navratilova  et  al.,  2012;  Widloski  and  Fiete,  2014) ;  however,  these  share  many  of                 

the   same   fundamentals   as   the   simpler   rate   model   in   eq.   (S.1).  

Values  of  which  satisfy  are  called fixed  points .  Each  fixed  point  represents  a                

persistent  firing  rate  configuration  of  the  network.  Of  particular  interest  are attractive  fixed  points               
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(also  called  asymptotically  stable  fixed  points):  a  fixed  point  is  attractive  if  the  dynamical                

trajectory  approaches  in  the  limit  as  after  being  initialized  at  where                

 denotes  a  suitably  small  perturbation. Attractor  manifolds  can  be  thought  of  as  continuous  sets                

of  attractive  fixed  points.  While  attractive  fixed  points  are  limited  to  representing  a  discrete  set  of                 

states,  attractor  manifolds  can  represent  continuous  quantities,  such  as  the  orientation  of  a  visual               

stimulus (Ben-Yishai  et  al.,  1995) ,  motor  neuron  drive (Seung,  1996) ,  the  animal's  heading              

direction (Skaggs  et  al.,  1995) ,  or  position  in  space (Burak  and  Fiete,  2009;  Samsonovich  and                

McNaughton,   1997) .  

In  our  experiments,  mice  traversed  a  1-dimensional  virtual  hallway  that  seamlessly  looped  back  to               

the  starting  position  after  400  cm.  This  can  be  thought  of  as  a  virtual  reality  analogue  to  a  circular                    

maze  environment.  The  attractor  manifold  framework  predicts  that  neural  activity  mirrors  the             

structure  of  this  external  environment—specifically,  the  fixed  points  of  the  network  are  arranged  in               

a  1-dimensional  ring  attractor  manifold.  Further,  the  velocity  of  the  animal  on  the  track  is  calibrated                 

to  the  velocity  in  neural  firing  rate  space  along  the  ring  attractor  so  that  every  physical  location  on                   

the  track  is  one-to-one  matched  to  a  position  along  the  ring.  While  previous  studies  have  used  ring                  

attractor  networks  to  model  subpopulations  of  comodular  grid  cells  within  MEC (Burak  and  Fiete,               

2009;  Giocomo  et  al.,  2011) ,  all  of  our  analyses  and  models  consider  the  full  MEC  network                 

including  landmark  cells,  border  cells,  object  vector  cells,  and  cells  with  mixed  or  unknown               

selectivity.  Our  approach  is  not  necessarily  incompatible  with  models  that  restrict  their  focus  to               

sub-structures   within   the   circuit.  

Ring  attractor  networks  have  been  proposed  in  a  variety  of  contexts (Ben-Yishai  et  al.,  1995;                

Hansel  and  Sompolinsky,  1998;  Skaggs  et  al.,  1995;  Zhang,  1996) .  Most  of  these  models  utilize  a                 

connectivity  pattern  in  which  neurons  are  arranged  in  a  ring  with  short-range  excitatory              

connections  and  long-range  inhibitory  connections  (fig.  S6A).  Intuitively,  this  creates  a  stable             

“bump”  of  activity  at  one  location  in  the  ring.  Neurons  encoding  the  animal’s  velocity  can  then  move                  

the  position  of  this  bump (Navratilova  et  al.,  2012) ;  however,  for  our  purposes,  it  is  unnecessary  to                  

model   these   details   explicitly.  

The  notion  that  a  single  network  may  store  multiple  attractors,  corresponding  to  different  internal               

maps,  has  been  previously  considered  in  several  papers (Romani  and  Tsodyks,  2010;  Roudi  and               
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Treves,  2008;  Samsonovich  and  McNaughton,  1997;  Stringer  et  al.,  2004) .  Following  these  works,              

we  set  the  network's  connectivity  to  be  a  linear  superposition  of  attractor  networks---that  is,  to  store                 

 attractor  manifolds  we  set ,  where  each  holds  the            

connectivity  pattern  of  a  single  map.  If ,  and  if  the  maps  are  sufficiently  decorrelated  (e.g.                 

if  the  neuron  indices  are  randomly  permuted  for  each ),  then  the  attractors  can  operate                

independently    (Samsonovich   and   McNaughton,   1997) .  

There  are  potentially  multiple  models  within  this  framework  that  could  be  used  to  account  for  the                 

remapping  events  we  experimentally  observed.  Here,  we  outline  a  simple  possibility  that  combines              

a  classic  ring  attractor  connectivity  pattern  (fig.  S6A),  with  a  “winner-take-all”  connectivity  pattern              

(fig.  S6B).  Intuitively,  the  winner-take-all  pattern  creates  two  sub-populations  of  neurons  that             

mutually  exclude  each  other  from  firing.  Because  the  ring  attractor  structure  is  present  within  both                

sub-populations,  two  mutually  exclusive  spatial  maps  are  created.  To  instantiate  the  model             

numerically,  we  define  a  fine  grid  over  ring  angles, .  Additionally,  for             

each  neuron  we  define  a  sub-population  indicator  variable ;  where           

 is  a  binary  indicator  function  which  evaluates  to  one  if  is  true  and  zero  if  is  false.  Then,  let                       

 denote  a  random  permutation  of  the  neurons,  and  define  the  connectivity  of  the  network  to                  

be   ,   where  

 

(S.2)  

 

(S.3)  

The  connectivity  encoded  in  implements  the  ring  attractor,  while  implements  the  winner               

take  all  connectivity.  The  three  scalar  hyperparameters, , , ,  respectively            

determine  the  strength  of  a  global  inhibition  term,  the  strength  of  connections  modulated  by  the                

ring,  and  the  strength  of  the  winner-take-all  connectivity.  For  now,  we  assume  the  network  receives                

no   input,   .  
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Figure  S6C  shows  and  for  a  small  network  with  neurons;  this               

visualization  demonstrates  that  simply  re-ordering  the  neurons  is  sufficient  to  reveal  the  two              

connectivity  patterns  embedded  in  the  same  network.  We  numerically  simulated  a  network  with              

 neurons  to  explore  whether  this  model  produced  the  expected  attractor  structures.  For              

these  simulations  we  set  and .  The  steady-state  of  eq.  (S.1)  is  solely               

determined   by   the   initial   state,   ,   which   we   set   equal   to  

 (S.4)  

where  is  an  angle  specifying  the  tuning  of  initial  activity  along  the  ring,  and  scales  the                   

competitive  winner-take-all  connectivity  pattern.  When  the  network  activity  reliably           

converges  to  one  of  the  spatial  maps;  conversely,  when ,  the  network  converges  to  the  other                 

map.  As  is  varied  and  is  kept  fixed,  the  steady-state  activity  traces  out  the  expected  ring                   

attractor   manifold   (fig.   S6D).  

In  contrast  to  the  experimental  data,  when  both  maps  are  simultaneously  embedded  into  the  same                

3D  space  by  PCA,  the  ring  manifolds  do  not  appear  aligned  (fig.  S6D,  right).  We  confirmed  this  by                   

using  Procrustes  analysis  to  quantify  manifold  alignment  (as  done  for  the  experimental  data  in  fig.                

4).  Indeed,  measured  relative  to  a  shuffle  control,  the  root-mean-squared-error  (RMSE)            

substantially  decreased  after  the  optimal  rotational  alignment  was  applied  to  the  manifolds  (fig.              

S6E).  Overall,  this  suggests  that  the  natural  alignment  of  the  ring  manifolds  is  a  non-trivial  feature                 

of   the   experimental   data   that   is   not   universally   present   in   attractor   models.  

While  the  attractor  model  defined  by  equations  (S.2  -  S.3)  does  not  capture  the  experimentally                

observed  alignment  of  the  spatial  manifolds,  it  is  relatively  straightforward  to  incorporate  remapping              

into  the  model.  To  do  this,  we  introduce  a  noise  term  (formally,  Brownian  motion)  into  the  dynamics                  

of  equation  (S.1)  and  numerically  integrate  the  dynamics  by  the  Euler–Maruyama  method.  Inspired              

by  the  experimental  findings  in  Fig.  4K-L,  we  use  a  mix  of  isotropically  distributed  noise  with                 

occasional  perturbations  preferentially  oriented  in  the  dimension  separating  the  manifolds.  These            
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directed  perturbations  occasionally  push  the  network  activity  from  one  ring  attractor  to  the  other,               

resulting   in   a   remap   event   (Supplemental   Video   1).  

Finally,  we  investigated  whether  the  model  could  be  modified  to  produce  aligned  ring  manifolds,  as                

we  experimentally  observed.  Indeed,  introducing  a  population  of  “shared  neurons”  that  participated             

in  both  spatial  maps  was  sufficient  to  reproduce  this  feature  of  the  data.  We  implemented  this                 

model   extension   by   defining  

 

(S.5)  

where  corresponds  to  the  proportion  of  “shared  neurons.”  Then,  we  modified  equation              

(S.3)   to   be:  

 
(S.6)  

and  set  the  network  input  to  for  each  neuron.  Intuitively,  scales  additional               

excitatory  input  to  the  "shared  neurons"  that  lack  the  mutual  excitation  from  the  winner-take-all               

connectivity.  We  set  in  our  numerical  simulations.  As  was  increased,  we  found  the  two                 

maps  were  pulled  closer  together  and  became  more  aligned,  eventually  fusing  into  a  single  ring                

manifold  (fig.  S6F).  At  intermediate  values,  the  rings  appear  geometrically  aligned  in  PCA              

embeddings  (fig.  S6G),  but  are  still  capable  of  operating  independently.  Supplemental  Video  2              

demonstrates  this,  showing  that  the  model  exhibits  remapping  events  akin  to  those  described              

above  for  the  initial  simulations  without  shared  neurons  (the  parameters  of  the  noise  process               

needed   no   modification   for   this   simulation).  

Overall,  these  results  outline  a  model  of  our  experimental  results  in  which  directed  noise               

spontaneously  induces  remapping  in  a  network  combining  winner-take-all  and  ring  attractor            

connectivity  motifs.  This  provides  additional  mathematical  rigor  and  precision  to  substantiate  the             

conceptual  model  in  figure  4N,  and  also  lays  the  foundation  for  future  modeling  work.  A  key  open                  

question  is  how  running  speed—and,  more  broadly,  behavioral  state—should  be  modeled.  These             
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factors  tend  to  increase  the  probability  of  remapping  in  our  experimental  data  (see  fig.  5).  In  the                  

model  similar  effects  might  be  accomplished  in  several  ways,  such  as  modulating  the  scale  of  the                 

noise  term,  manipulating  the  input  to  the  network,  or  by  incorporating  neuromodulatory  effects  into               

the  model.  Alternative  mechanisms  for  maintaining  multiple  maps,  such  as  correlated  ring  attractor              

manifolds (Romani  and  Tsodyks,  2010) ,  might  also  be  investigated.  Finally,  the  attractor  model              

presented  here  does  not  account  for  the  reality  that  many  MEC  neurons  have  multiple  spatial  firing                 

fields,  and  does  not  consider  the  possibility  of  more  sophisticated  interactions  between  landmark              

and  grid  cells (Campbell  et  al.,  2018;  Kang  and  Balasubramanian,  2019;  Ocko  et  al.,  2018) .                

Nonetheless,  it  is  noteworthy  that  the  simple  and  preliminary  model  outlined  here  is  sufficient  to                

recapitulate   most   of   our   experimental   observations.  

Consequences   of   Manifold   Alignment   For   Decoding   and   Remapping  

As  mentioned  in  the  main  text,  the  geometrical  alignment  of  the  spatial  manifolds  has  two                

advantageous  consequences.  First,  it  implies  that  simple  linear  decoders  of  MEC’s  representation             

of  position  can  be  robust  to  remapping  dynamics.  Second,  it  ensures  that  a  simple  remapping                

mechanism—namely,  bistable  attractor  dynamics  combined  with  variability  in  neural          

firing—preserves  the  network’s  representation  of  position  and  is  noise  tolerant.  In  this  section,  we               

briefly   formalize   these   two   conclusions.  

Recall  our  notation  where  and  respectively  denote  the  first  and  second  spatial  manifolds,                

with  indexing  position  bins,  and  indexing  neurons.  In  the  main  text,              

we  empirically  estimated  and  by  applying  k-means  clustering  to  experimental  data.  Here,               

we   treat   the   problem   on   more   general   terms   and   assume   that   the   manifolds   are   known.  

The  first  result—that  manifold  alignment  enables  robust  linear  decoding—is  easy  to  demonstrate.             

Intuitively,  for  aligned  ring  manifolds,  remapping  is  accomplished  by  translation  along  a  single              

dimension  (fig.  S6H),  while  more  complex  and  position-dependent  remapping  dimensions  are            

required  for  misaligned  rings  (fig.  S6I-J).  Suppose  that  the  two  manifolds  are  perfectly  aligned,  i.e.,                

there   exists   some   translation   vector     for   which:  
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 (S.7)  

Then,  let  denote  a  set  of  regression  weights  associated  with  some  linear  decoder  of  position                 

(see Methods ;  though  two  linear  features  are  required  since  the  dependent  variable  is  a  circular                

quantity,  the  reasoning  applies  equally  well  to  each  feature  vector).  This  linear  feature  is  insensitive                

to   remapping   if   ,   since   this   implies:  

 
(S.8)  

Thus,  so  long  as  the  remapping  dimension  is  orthogonal  to  the  regression  weights,  any  decoder                

making  use  of  this  linear  feature  will  perform  equally  well  in  each  map.  This  is  only  a  minor                   

constraint   as   it   leaves     orthogonal   dimensions   for   the   linear   decoder   to   utilize.  

Constructing  a  robust  decoder  with  fixed  weights  is  more  difficult  when  the  two  manifolds  are                

misaligned.  Suppose,  for  simplicity,  that  is  centered  at  the  origin  (i.e.  for  each                

position  bin  indexed  by ).  Further  suppose  that  the  two  manifolds  are  related  by  an  orthogonal                 

matrix     in   addition   to   a   translation:  

 
(S.9)  

Then,  even  if  the  regression  weights  were  orthogonal  to  the  remapping  dimension,  we  would               

additionally  require  that  in  order  to  obtain  an  identical  linear  feature.             

Geometrically,  this  corresponds  to  being  a  fixed  axis  of  rotation  or  reflection  (equivalently,  is                 

an  eigenvector  with  an  eigenvalue  equal  to  one).  Some  orthogonal  transformations  have  no               

such  fixed  axes,  so  in  general  we  cannot  expect  to  find  a  linear  decoder  that  works  equally  well  in                    

each   map   if   the   manifolds   are   misaligned.  
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In  addition  to  enabling  simple  decoding  strategies,  the  alignment  of  the  ring  manifolds  also               

simplifies  intrinsic  circuit  mechanisms  for  remapping.  This  second  result  shares  many  intuitions             

with  the  above  discussion  of  decoders.  Namely,  if  the  manifolds  are  aligned  (i.e.  the  relation  S.7                 

holds)  then  only  a  single  remapping  dimension  is  required  (fig.  S6H).  Thus  a  perturbation  to                

network  activity  along  a  fixed  dimension  (corresponding  to  in  equation  S.7)  is  a  viable                

remapping  mechanism.  Note  that  this  model  of  remapping  is  entirely  agnostic  to  the  animal’s               

position,   which   is   not   generally   sensible   for   the   case   of   misaligned   manifolds   (fig.   S6I-J).  

Incorporating  noise  into  each  remapping  event  further  complicates  the  case  of  misaligned             

manifolds.  Indeed,  if  we  make  several  simplifying  assumptions  (which  could  be  relaxed  by  future               

work),  it  is  possible  to  analytically  characterize  the  error  in  positional  coding  induced  by  remapping                

as  a  function  of  manifold  misalignment.  We  assume  that  the  two  ring  manifolds  are  circular  and                 

embedded  in  2-dimensional  planes,  and  we  model  remapping  as  a  projection  of  the  activity  from                

one  map  (arbitrarily  labeled  map  2)  onto  the  other  map  (labeled  map  1).  We  add  an  isotropic                  

Gaussian  noise  term  with  covariance  to  model  instability  in  the  remapping  mechanism.  Figure               

S6K  schematically  illustrates  this  model  as  map  2  is  rotated  to  be  non-parallel  with  map  1.  Let                   

denote  the  angle  of  rotation,  such  that  corresponds  to  the  case  where  the  manifolds  are                 

aligned.  It  is  evident  that  the  projection  of  map  2  onto  map  1  is  equivalent  whether  the  rotation  is                    

clockwise  or  counterclockwise  rotations,  so  we  can  restrict  ourselves  to  considering .             

Further,  we  are  principally  interested  in  the  interval ,  since  for  the  manifolds               

are  irreparably  misaligned  (see  fig.  S6J)  and  would  require  a  more  complex,  position-dependent              

remapping  mechanism.  The  distortions  and  uncertainty  introduced  by  this  noisy  remapping            

process  depend  on  the  initial  position  of  neural  activity  on  map  2.  For  simplicity,  we  focus  on  the                   

case  where  this  initial  position  is  located  at  the  “top”  of  map  2  (as  illustrated  in  fig.  S6K),  and  leave                     

a   more   comprehensive   analysis   to   future   work.  

After  projecting  the  location  of  neural  activity  onto  the  plane  containing  map  1  and  adding  isotropic                 

Gaussian  noise,  we  assume  that  the  ring  attractor  dynamics  move  the  activity  to  the  closest  point                 

on  the  manifold  defining  map  1.  This  final  step  can  be  understood  as  projecting  a  bivariate                 

Gaussian  density  onto  the  unit  circle.  This  results  in  the projected  normal  distribution ,  which  has                

been  characterized  in  the  circular  statistics  literature  and  has  a  closed  form  density  function (Wang                
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and  Gelfand,  2013) .  When  the  covariance  of  the  projected  density  is  diagonal  (as  we  assume),  the                 

resulting  distribution  is  symmetric  and  unimodal  and  has  a  similar  appearance  to  the  more  familiar                

von  Mises  distribution.  Figure  S6L  illustrates  the  distribution  of  neural  activity  before  projecting  the               

bivariate  density  onto  the  circle.  Figure  S6M  illustrates  the  final  probability  density  function  over  the                

circle—notice  that  the  width  of  this  distribution  increases  as  the  manifolds  become  more              

misaligned,  even  though  the  scale  of  the  noise, ,  is  held  fixed.  The  interquartile  range  is  plotted  as                   

a  function  of  in  figure  S6N  for  various  choices  of .  In  the  limit  as  the  distribution                    

becomes  uniform  on  the  circle,  representing  a  complete  loss  of  position  coding  from  map  2.                

Interestingly,  noise  has  a  much  smaller  effect  for  smaller  misalignments  ( ),  relative  to              

manifolds  with  large  misalignments  ( ),  suggesting  that  the  simple  position-independent           

remapping   scheme   may   be   naturally   tolerant   to   some   imperfections.   
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Supplemental   Video   Legends  
 
Video  S1: Model  of  bistable  ring  attractor  dynamics  in  the  presence  of  noise.  A  3-dimensional  PCA                 

embedding  of  the  two  ring  attractors,  with  red-to-blue  circular  color  scheme  denoting  position,  is  shown                

as  in  fig.  S6D  (right  panel).  The  moving  black  dot  represents  the  evolution  of  circuit  activity  through                  

neural  firing  rate  space  in  the  presence  of  noise  (Wiener  process  with  identity  covariance);  the  gray  line                  

shows  the  recent  trajectory.  Time  units  are  arbitrary.  Occasional  noise  perturbations  restricted  the              

dimension   separating   the   two   manifolds   cause   remapping   in   a   probabilistic   manner.  

 
Video  S2: Model  of  bistable  ring  attractor  dynamics  with  shared  neurons.  The  setup  is  the  same  as                  

Video  S1,  but  with  20%  shared  neurons  between  each  map  ( ).  This  minor  modification  is                

sufficient to  provide  the  visual  appearance  of  aligned  rings  in  closer  agreement  to  the  biological  data                 

analyzed   in   the   main   text.  
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