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Abstract: 12 

Reinforcement learning, the ability to change motor behavior based on external reward, has been 13 

suggested to play a critical role in early stages of speech motor development and is widely used 14 

in clinical rehabilitation for speech motor disorders. However, no current evidence exists that 15 

demonstrates the capability of reinforcement to drive changes in human speech behavior. Speech 16 

provides a unique test of the universality of reinforcement learning across motor domains: 17 

speech is a complex, high-dimensional motor task whose goals do not specify a task to be 18 

performed in the environment but ultimately must be self-generated by each speaker such that 19 

they are understood by those around them. Reinforcement learning may thus be more difficult 20 

for speech, given its high-dimensional and redundant motor system, while speech may also be 21 

particularly responsive to reinforcement given the ultimate goal is typically reliant on such 22 

feedback from our interlocutors. Across four experiments, we establish whether reinforcement 23 

learning alone is sufficient to drive changes in speech behavior and parametrically test two 24 

features known to affect reinforcement learning in reaching: how informative the reinforcement 25 

signal is as well as the availability of sensory feedback about the outcomes of one’s motor 26 

behavior. We show that reinforcement learning can alter speech behavior and that more 27 

informative reward signals lead to greater learning. Contrary to results from upper limb control, 28 

masking feedback about movement outcomes has no effect on speech learning. Our results 29 

suggest reinforcement learning is active in speech but may operate differently than in other 30 

motor domains.   31 
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Introduction 32 

When we are speaking with someone, we are usually understood without any problems. 33 

However, sometimes this seemingly effortless communication breaks down, whether due to a 34 

noisy environment, problems in communication technology, a distracted listener, speaking with 35 

someone from another part of the country or world, or myriad other reasons. In these situations, 36 

we need to change our speech to be better understood, but we may have limited or no 37 

information about why we were not understood or how to change our speech to maximize 38 

intelligibility. In these cases, we may try out different pronunciations of a word until we receive 39 

positive feedback from the listener that they understood what we were saying. This type of trial-40 

by-trial learning driven by external feedback is typically often referred to as reinforcement 41 

learning (sometimes, as model-free learning). 42 

Reinforcement learning has been studied extensively in upper limb control (e.g., 43 

Cashaback et al., 2017; Galea et al., 2015; Izawa & Shadmehr, 2011; Nikooyan & Ahmed, 2015; 44 

Therrien et al., 2016; Wu et al., 2014) and, to a smaller extent, in gait (Hasson et al., 2015). To 45 

date, it is essentially unknown to what extent reinforcement learning is active in speech 46 

production. Speech provides a unique test system to evaluate the universality of reinforcement 47 

learning across motor domains for two reasons. First, speech is a uniquely complex motor 48 

behavior, relying on coordination of close to roughly muscles between the respiratory, 49 

phonatory, and articulatory systems that requires complex control of both skeletal joints and the 50 

tongue, a muscular hydrostat. Second, speech is unique among human motor behaviors in that 51 

the targets for movements are internally generated rather than being defined in the environment. 52 

Ultimately, the goal in speech production is to be understood, and each speaker must come to 53 

define their own the motor task goals to accomplish this task. 54 
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 Reinforcement learning in speech may be critical both during developmental speech 55 

acquisition and for treatment of motor disorders. Developmentally, reinforcement learning has 56 

been suggested to play a critical role in the first stages of speech acquisition (Howard & 57 

Messum, 2011, 2014; Messum & Howard, 2012; Warlaumont, 2014; Warlaumont et al., 2013; 58 

Warlaumont & Finnegan, 2016). In these models, the first words that infants produce are 59 

vocalizations produced with essentially random movements of the speech articulators. The 60 

productions that are recognized and positively reinforced by an external caregiver are more 61 

likely to be repeated. Over time, this reinforcement and repetition leads to consolidation of the 62 

motor plans that produce words that closely match the words in the language the infant is 63 

learning. In terms of motor rehabilitation, reinforcement also forms part of existing standards of 64 

care for motor speech disorders, typically combined with explicit instruction about how to 65 

produce a particular sound or set of sounds (Ballard et al., 2000; Duffy, 2013).  66 

Despite the practical importance of reward learning in existing rehabilitation paradigms 67 

and its potential theoretical importance in human speech development, reinforcement learning in 68 

speech has received relatively little attention. The vast majority of studies on mechanisms of 69 

motor learning in speech has focused on sensory-error based learning (e.g., Daliri & Dittman, 70 

2019; Houde & Jordan, 1998; Lametti et al., 2012, 2018; MacDonald et al., 2011; Mitsuya et al., 71 

2015; Purcell & Munhall, 2006; Shiller et al., 2009; Villacorta et al., 2007). In this type of 72 

learning, differences between predicted sensory feedback and perceived reafferent feedback 73 

about movement outcomes lead to sensory prediction errors, which are used to update internal 74 

models and/or control systems to adapt behavior to oppose the perturbation. While sensorimotor 75 

learning can also drive changes in speech behavior, these changes are relatively short-lived in 76 

both speech and other motor domains compared to the longer-term impact of reinforcement 77 
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learning (Krakauer, 2015; Roemmich & Bastian, 2018) and the two mechanisms rely on different 78 

neural substrates (Krakauer, 2015). 79 

Perhaps because of its prominent role in speech rehabilitation, reinforcement learning has 80 

received some attention for clinical applications in speech. However, research to date, has almost 81 

universal focused on how the frequency of reinforcement affects learning, with mixed results 82 

(Adams et al., 2002; Adams & Page, 2000; Bislick et al., 2012, 2013; Hula et al., 2008; Katz et 83 

al., 2010; Steinhauer & Grayhack, 2000). While these studies have focused on the role of 84 

feedback frequency, they have not demonstrated clearly how reinforcement learning operates in 85 

speech. First, these studies mostly provided highly informative feedback about performance 86 

outcomes, giving participants either explicit instruction of how to improve their performance or 87 

highly informative feedback about their performance such as the difference between produced 88 

duration and a duration target (often referred to as “knowledge of performance” and “knowledge 89 

of results” (Schmidt & Lee, 2011)). In non-speech domains, this type of explicit information is 90 

known to aid learning during training but often decreases retention (Hasson et al., 2015; Schmidt 91 

& Lee, 2011). Second, these studies provided explicit instruction about the desired outcome. 92 

Although this is typical in clinical settings (Ballard et al., 2000), how explicit instruction 93 

interacts with other types of motor learning in unclear (Boyd & Winstein, 2004), and may in fact 94 

detrimentally affect learning in some cases (Green & Flowers, 1991; Shea et al., 2001). 95 

Critically, reinforcement learning in limb control is possible without explicit instruction (Galea 96 

et al., 2015; Izawa & Shadmehr, 2011; Nikooyan & Ahmed, 2015), suggesting it relies on a 97 

separate neural system. 98 

The aim of the current study is to establish to what extent reinforcement learning is able 99 

to shape speech motor behavior. In addition to establishing the capability of the speech 100 
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sensorimotor system to learn purely from reinforcement signals, we additionally explore two 101 

aspects of reinforcement learning that may affect its effectiveness in speech. First, learning is 102 

more likely in reaching tasks when the reward signal contains some information about the 103 

desired outcome compared to uninformative signals that relay only success or failure, 104 

particularly for motor tasks involving multi-dimensional control (Kooij & Overvliet, 2016; 105 

Manley et al., 2014). Second, there is evidence that the availability of sensory feedback may 106 

interfere with reinforcement learning. Cashaback et al. (2017) designed a task where participants 107 

learned to alter their reach location either through reinforcement alone when visual feedback was 108 

withheld or though sensory errors driven by visual feedback. Critically, they used a non-uniform 109 

distribution of perturbations such that the two learning mechanisms differed in the magnitude of 110 

compensation. When both visual feedback and reinforcement were combined, pitting the two 111 

learning systems against each other, learning was identical to the visual feedback alone. This 112 

result suggests the availability of sensory feedback may interfere with reinforcement learning in 113 

some cases.  114 

We parametrically explore these two factors (information content of the reward signal 115 

and availability of sensory feedback) in a set of four studies on speech reinforcement learning 116 

where the factors are crossed in a 2 x 2 design. The basic goal, across all experiments, is to 117 

induce a change in the first vowel formant (F1) of the vowel /ɛ/ (as in head). Vowel formant are 118 

the characteristic resonances of the vocal tract, are closely tied to movements within of the lips, 119 

tongue, and jaw, and are typically used to characterize vowels in speech. Notably, a similar 120 

change in vowel formants is frequently the target of sensorimotor learning studies in speech. 121 

Thus, this paradigm will allow for comparison of our results with previous work in this area. To 122 

establish the ability of reinforcement learning to drive changes in speech behavior, we examine 123 
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change in F1 in each study separately. To examine the effect of reward signal information 124 

content and sensory feedback availability, we compare results across all four studies.  125 

 126 

Methods 127 

Participants: 128 

All participants were recruited from courses in the Linguistics and Cognitive Sciences 129 

department at the University of Delaware and were compensated with extra credit in those 130 

courses. No participant reported any history of speech or hearing problems. Experiments 1, and 131 

2, and 4 had 20 participants each (Exp 1: 19 female/1 male; Exp 2: 20 female/0 male; Exp 4: 14 132 

female/6 male). Experiment 3 had 21 participants (16 female/5 male). The experimental protocol 133 

was approved by Institutional Review Boards at the University of Delaware and the University 134 

of Wisconsin–Madison. 135 

 136 

General methods:  137 

The experiments are designed to induce participants to alter the first vowel formant (F1) in the 138 

vowel /ɛ/ solely through external reinforcement. Participants wore a head-mounted microphone 139 

(AKG C520) that was used to record their speech, and wore closed-back, over-the-ear 140 

headphones (Beyerdynamic DT 770) that were used to play auditory reward signals and, in 141 

Experiments 3 and 4, to play speech-shaped noise designed to mask auditory feedback. Audio 142 

data was digitized using a Scarlett 2i2 USB audio interface and recorded with the Audapter 143 

program (Cai et al., 2008; Tourville et al., 2013) in MATLAB. 144 

Each experiment has three phases: baseline, training, and washout (Figure 1, example for 145 

“head” shown). During all phases, participants read words out loud, one at a time, as they appear 146 
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on a computer screen. Stimuli for the baseline, training, and washout phases were head, bed, and 147 

dead for all experiments. These stimuli contained the target vowel /ɛ/. Experiments 2, 3, and 4 148 

additionally included the words hid, bid, did and had, bad, dad during the baseline phase only to 149 

measure F1 for the vowels /ɪ/ and /æ/, respectively. The order of the stimuli was randomized for 150 

each participant. Each word with /ɛ/ was repeated at least 20 times during the baseline phase of 151 

each experiment. 152 

In order to provide real-time feedback based on participants’ vowel formants, the target 153 

vowel for each trial was detected automatically as the part of the speech signal for that trial 154 

above a participant-specific amplitude threshold. Then, vowel formants were tracked using Praat 155 

(Boersma & Weenink, 2019). A single F1 value for that trial was then calculated as the average 156 

F1 within a 50ms window centered around the vowel midpoint. Using a small window ensured 157 

the F1 measurement was taken from the steady-state portion of the vowel even with a somewhat 158 

noisy estimate of vowel onset and offset. The participant-specific amplitude threshold used for 159 

vowel detection and Linear Predictive Coefficient order for formant tracking were set in a brief 160 

parameter setting session immediately prior to the main experiment.  161 
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 162 

• Baseline phase (80-120 trials): Participants are told that they are training a computer 163 

program to recognize their particular voice. During this phase, the mean and standard 164 

deviation of F1 is measured. No reward or reinforcement signal was given during the 165 

baseline phase. 166 

• Training phase (250-350 trials): Participants are told the computer program that was just 167 

trained will try to recognize the words they speak. Participants gain points when the computer 168 

recognizes the target word (+ in Fig 1) and lose points when it recognizes another word (x 169 

Figure 1). Rewards are presented visually and accompanied by auditory reward signals 170 

(chimes, spoken words) which vary by experiment. Participants are told that their goal is to 171 

gain points by being recognized correctly by the computer. Unknown to the participants, the 172 

computer recognizes words as correct only when the first vowel formant (F1) falls within a 173 

specific target region (blue shaded region in Fig 1). This target region is 100 Hz wide, and is 174 

defined relative to the participant’s mean F1 for the vowel /ɛ/ produced during the baseline 175 

phase (10-110 Hz below the mean). The overlap of the reward region with participants baseline 176 
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Figure 1: Schematic of general methods. Examples of trials with F1 above (left), in (center), and 
below (right) the target region are shown. 
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productions was chosen to ensure that participants would receive positive reward on some 177 

productions without changing their baseline behavior, as large shifts that do not overlap with 178 

baseline production may be difficult to learn (Therrien et al., 2016). A positive reward (+10 179 

points) was given if F1 falls within a target region defined relative to the participant’s mean 180 

F1 in the baseline phase (10-110 Hz below the mean). Productions above this region are 181 

recognized as containing the vowel /æ/ (e.g., had); those below this region, the vowel /ɪ/ (e.g., 182 

hid). The direction of the target region shift relative to baseline values (positive or negative) 183 

was always negative; thus, participants needed to shift their production of /ɛ/ towards /ɪ/ to 184 

produce F1 in the target region. Participants started with 1000 points. 185 

• Washout phase (100-150 trials): Participants are told that the game is over, and that they are to 186 

simply read the words as they appear. Participants do not receive any feedback or earn/lose 187 

points during the washout phase. The long washout period (100-150 trials, depending on the 188 

experiment) allows for testing short-term retention of learning. Notably, changes in speech 189 

behavior due to sensorimotor learning return to near baseline values within 30-50 trials 190 

(MacDonald et al., 2011; Parrell et al., 2017). The washout phase is used to assess both the 191 

degree of learning (aftereffects, measured during first 20 trials) and short-term retention (last 192 

20 trials). No reward or reinforcement signal was given during the washout phase. 193 

 194 

Each trial lasted 3 seconds. Feedback about performance, if shown, was displayed for an 195 

additional 2 seconds. There was a 0.5 second pause between each trial when no stimulus word 196 

was displayed. 197 

 198 

Experiment-specific methods: 199 
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Experiment 1: The baseline phase consisted of 80 trials; the training phase, 350 trials; and the 200 

washout phase, 100 trials. During the training phase, when participants production fell within the 201 

reward region, a pleasant chime was played over the headphones. When the production fell 202 

above or below this region, a pre-recorded voice saying the “recognized” word was played. For 203 

example, when the stimulus was “head”, “had” was played when the production was above the 204 

target region, while “hid” was played when the production fell below the target region.  205 

 206 

Experiment 2: The baseline phase consisted of 120 trials; the training phase, 250 trials; and the 207 

washout phase, 150 trials. All acoustic reinforcement signals were based on each participants’ 208 

own productions recorded during the baseline phase. For each word in the baseline phase, the 209 

production with median F1 was chosen to be played back to the participant during the training 210 

phase. In order to create a positive reinforcement signal that fell within the target region, F1 for 211 

the chosen productions of head, bead, and dead was shifted by -60 Hz using Audapter. This 212 

resulted in an F1 in the center of the reward zone for these words. During the training, when the 213 

production fell above or below the target region, the participant’s recording of the “heard” word 214 

was played. For example, when the stimulus was “head”, “had” was played when the production 215 

was above the target region, while “hid” was played when the production fell below the reward 216 

zone. When the production fell within the reward zone, the modified version of the “heard” word 217 

was played. For example, when the stimulus was “head”, the participant’s own production of 218 

“head” from the baseline phase, with F1 shifted by -60 Hz, was played. 219 

 220 

Experiments 3 and 4: Experiments 3 and 4 were designed to mirror the reinforcement signals 221 

used in Experiments 1 and 2 with the addition of speech-shaped noise designed to mask 222 
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participants’ ability to hear their own speech. For Experiment 3, the baseline phase consisted of 223 

120 trials; the training phase, 250 trials; and the washout phase, 150 trials. For Experiment 4, the 224 

baseline phase consisted of 90 trials; the training phase, 250 trials; and the washout phase, 100 225 

trials. Stimuli with all vowels (/ɪ/, /ɛ/, and /ae/) were included in the baseline phase, where each 226 

stimulus word was repeated 10 times each. For both experiments, only the /ɛ/ stimuli were used 227 

after the baseline phase. Reinforcement signals were the same as those used in Experiment 1 228 

(Experiment 3) and Experiment 2 (Experiment 4). The amplitude of the masking noise was 229 

modulated by the amplitude of the participant’s speech using Audapter, with the noise played at 230 

a constant gain above the speech amplitude and calibrated to be roughly 80 dB when speaking at 231 

a normal volume (Figure 2). This allowed us to prevent participants from receiving auditory 232 

feedback about their speech, while largely avoiding potential Lombard affects associated with 233 

speaking in the presence of background noise. A summary of differences between experiments in 234 

shown in Table 1. 235 

 236 

Table 1: Methodological differences between experiments. 237 

EXP POSITIVE 

REWARD SOUND 

MASKING 

NOISE 

VOWELS IN 

BASELINE 

BASELINE 

TRIALS 

TRAINING 

TRIALS 

WASHOUT 

TRIALS 

EXP 1 chime no /ɛ/ 80 350 100 

EXP 2 resynthesized token 

from baseline with 

F1 in target region 

no /ɛ/, /ae/, and /ɪ/ 120 250 150 

EXP 3 chime yes /ɛ/, /ae/, and /ɪ/ 120 250 150 

EXP 4 resynthesized token 

from baseline with 

F1 in target region 

yes /ɛ/, /ae/, and /ɪ/ 90 250 100 
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 238 

 239 

 240 

Post-participation survey: 241 

Participants in Exp 2 and 3 were given a survey after they completed the experiment to assess 242 

whether they adopted any strategy and, if so, what that strategy was. Participants were also asked 243 

a set of questions regarding their level of engagement and attention during the experiment. 244 

 245 

Data analysis:  246 

The primary outcome for all experiments was the change in F1 for /ɛ/ from its baseline value. 247 

For each participant, all trials for a given participant were normalized to the mean F1 for words 248 

with /ɛ/ from the baseline phase. To measure learning, we took the mean of this normalized F1 249 

over the last 20 trials of the training phase. Aftereffects were measured as the mean F1 during the 250 
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Figure 2: Spectrograms showing speech input (top) and amplitude-
modulated masking noise (bottom) used in experiments 3 and 4. 
The amplitude-modulated noise served to mask auditory feedback 
while limiting Lombard effects associated with speaking in noise. 
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first 20 trials of the washout phase, and short-term retention was measured as the mean during 251 

the last 20 trials of the washout phase. In order to test whether learning occurs, we used linear 252 

mixed-effects models using the lme4 package (Bates et al., 2014) in R (R Core Team, 2013) with 253 

a fixed factor of phase (baseline, end of training, aftereffects, short-term retention) and random 254 

intercepts for participants (there were not enough observations to fit random slopes). Statistical 255 

significance was evaluated with the lmerTest package (Kuznetsova et al., 2017). Separate tests 256 

were conducted for each experiment. Post-hoc comparisons were conducted using the emmeans 257 

package (Lenth et al., 2020) with corrections for multiple comparisons. 258 

On visual inspection of the data, it became clear that learning was not uniform—some 259 

participants clearly showed a change speech behavior that moved their F1 to the target region, 260 

while others showed no change (Figure 3A). To quantify these differences, we sorted 261 

participants into “learners” and “nonlearners” based on their behavior in the last 50 trials of the 262 

training phase. Participants whose F1 in these trials was significantly lower than baseline 263 

(towards the target), as assessed through a t-test with α = 0.05, were classified as learners. All 264 

other participants were classified as non-learners. Classifying participants based on a metric of 265 

task success—i.e., participants who produced a significantly greater number of rewarded trials 266 

than would be expected given the standard deviation of their baseline production of words with 267 

/ɛ/—resulted in essentially the same classification pattern. Each method classified 2 participants 268 

as learners that were classified as non-learners by the other method. Pooling across all 269 

experiments, the distribution of learning is highly non-normal (Kolmogorov-Smirnov test: D(81) 270 

= 0.67, p = 3 X 10-32, Figure 3B). The figure shows learning as the change in F1 from baseline to 271 

the end of the training phase, expressed as a z-score based on baseline variability. When fitting 272 

the data with two Gaussian distributions, the two distributions have centers at -2.04 and -0.15, 273 
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consistent with a group of learners who lowered their F1 and a group of non-learners who did 274 

not. We report the number of learners for each experiment and descriptive statistics for learners 275 

and non-learners. However, no inferential statistics are reported for either group since the 276 

division was done a posteriori based on the data. 277 

 278 

 279 

 In addition to the individual experiment analyses, we conducted a series of meta-analyses 280 

across experiments. These analyses allowed us to test directly whether the different 281 

manipulations across experiments—the type of reward signal on positively rewarded trials and 282 

the presence of masking noise—affected the degree of learning. For these analyses, we 283 

conducted ANOVAs with reward signal and masking noise as fixed factors. Separate analyses 284 
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Figure 3: A: Two example participants from experiment 3. The target region for receiving 
reward is shown in grey. Productions in the baseline and washout phases are shown as 
black circles. Productions during the training phase are shown as green circles if 
participants received a positive reward and as red circles if participants received a 
negative reward. The participant in the top panel shows no change in F1 frequency over 
the course of the experiment, while the participant in the bottom panel shows a clear shift 
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as z-scored change in F1 from baseline values. The distribution is non-normal and has 
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were conducted for the training, aftereffects, and short-term retention measures of learning. We 285 

conducted separate analyses on both the full dataset as well as a dataset limited to only 286 

participants classified as learners. This second analysis allows us to determine whether potential 287 

differences between experiments are due to different degrees of learning or, conversely, to 288 

differences in the fraction of participants who learn without any difference in the magnitude of 289 

the change in participants who do learn. To further probe whether the proportion of learners 290 

varies across experiments, we conducted Chi-squared tests comparing the proportion of learners 291 

1) across all experiments, 2) across experiments without masking noise (Exp 1 and 2) and with 292 

masking noise (Exp 3 and 4), and 3) across experiments with no implicit imitation target (Exp 1 293 

and 3) and with an implicit imitation target (Exp 2 and 4). 294 

 A second goal of the meta-analysis was to further probe the potential mechanisms driving 295 

reward learning in speech. For this, we measured another set of speech parameters related to 296 

either overall variability or trial-to-trial corrections, both of which have been suggested to be 297 

related to reward in other motor domains (Dhawale et al., 2017; Wong & Shelhamer, 2011). We 298 

measured F1 variability during the baseline phase (taken only from words with /ɛ/), to test 299 

whether participants who are naturally more variable may learn better. Variability was measured 300 

in two ways: as the standard deviation of all /ɛ/ productions in the baseline phase as well as the 301 

average trial-to-trial change in these trials. We additionally measured the change in F1 standard 302 

deviation during the first 30 training trials (early learning) compared to baseline variability to 303 

assess whether learning is associated with increased exploration of the potential solution space. 304 

We also measured the F1 distance from /ɛ/ to /ɪ/ during the baseline phase (Exp 2-4 only), as 305 

participants who have a larger space between these vowels may be able to lower F1 for /ɛ/ 306 

without encroaching on /ɪ/. Lastly, we measured the average magnitude of the trial-to-trial 307 
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change in F1 after trials with positive and negative reward. This allows us to assess how much 308 

participants change their production after a negative reward (“exploration”) and whether 309 

participants maintain similar F1 values after positive reward (“exploitation”). Statistical tests 310 

were conducted by correlating these measures with the magnitude of learning at the end of the 311 

hold phase across participants. Results were very similar using either aftereffects or short-term 312 

retention measures.  313 

 314 

Results 315 

All experiments had the same structure (Figure 1). In all phases, participants spoke one 316 

word per trial our loud (head, bed, or dead, all containing the same /ɛ/vowel). First, participants 317 

completed a baseline phase to measure a participant-specific mean F1 values for the vowel /ɛ/. 318 

No reinforcement was given during this phase. Participants were told this phase was being used 319 

to train the computer to recognize their speech. The baseline phase was followed by a training 320 

phase where participants were instructed that the computer would attempt to recognize the word 321 

they spoke, and were instructed to try to get the computer to recognize them correctly. In the 322 

training phase, the computer recognized the “correct” word if participants produced the vowel /ɛ/ 323 

with an F1 value 10-110 Hz below their baseline mean. Positive reward was given by earning 324 

points (+10), visual feedback of the correctly recognized word, and an auditory reward. In 325 

experiments 1 and 3, auditory reward was a pleasant chime. In experiments 2 and 4, auditory 326 

reward was a token of each participant’s own speech from the baseline phase with F1 for the 327 

vowel /ɛ/ shifted by -60 Hz to the middle of the reward region. Negative reward was given by 328 

losing points (-10), visual feedback of the incorrectly recognized word, and the an audio 329 

recording of the incorrectly recognized word. Learning was measured as the change in F1 from 330 
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baseline at the end (last 20 trials) of the training phase. Following training, participants competed 331 

a washout where no reward was given. The washout phase was used to examine immediate 332 

aftereffects of learning (first 20 trials) as well as short-term retention of learning (trials 80-100). 333 

Experiments 1 and 2 had no masking noise. In Experiments 3 and 4, speech-shaped noise was 334 

played over headphones to mask participants’ ability to hear their own speech. Results for each 335 

experiment are first presented individually. All descriptive statistics show mean and standard 336 

error. Data for all experiments is shown in Figure 4. 337 

 338 

Experiment 1: 339 

Experiment 1 had no masking noise and used a chime as auditory feedback for positive reward. 340 

At the group level, participants showed a very slight change in F1 values towards the target 341 

region by the end of the training phase (-2.7±5.8 Hz), which persisted into the aftereffects (-342 

3.5±6.2 Hz) and retention (-5.9±7.4 Hz) measures. However, this change was not significant 343 

(F(3,57) = 0.37, p = 0.78). Despite the lack of an overall effect, 6/20 participants showed 344 

significant learning at an individual level, producing a change in their F1 relative to baseline 345 

values by -30.0 ± 4.4 Hz at the end of training. This change persisted into both the aftereffects (-346 

29.1 ± 9.1 Hz) and retention (-39.9 ± 9.8 Hz) phases. 347 

 348 

Experiment 2: 349 

Experiment 2 had no masking noise and used a resynthesized token of each participant’s own 350 

speech, with F1 shifted to the middle of the target region as auditory feedback for positive 351 

reward. Participants produced a significant change from baseline after training (F(3,57) = 6.4, p 352 

< 0.001). Across all participants, F1 was lower than baseline (p < 0.001) at the end of the 353 
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training phase (-29.9 ± 5.8 Hz), in the aftereffects (-23.6 ± 6.1 Hz), and in retention (-23.8 ± 6.8 354 

Hz). These phases did not differ from each other (all p > 0.97). At the individual level, 17/20 355 

participants exhibited significant learning. When considering only these participants, learning 356 

was greater than for the whole group (training: -37.9 ± 4.4 Hz; aftereffects: -30.4 ± 5.8 Hz; 357 

retention: -30.0 ± 6.8 Hz). 358 

 359 

Experiment 3: 360 

Experiment 3 had masking noise that blocked participants’ perception of their own speech and 361 

used a chime as auditory feedback for positive reward. Participants did change their F1 from 362 

baseline, as reflected by a main effect of phase in the statistical model (F(3,60) = 3.5, p = 0.02). 363 

F1 was lower than baseline in all phases (training: -7.1 ± 8.6 Hz; aftereffects: -11.7 ± 8.5 Hz; 364 

retention: -23.3 ± 8.3 Hz). However, only the retention phase was significantly different from 365 

baseline (p = 0.01, other p > 0.41). The retention phase was not significantly different from 366 

either the training (p = 0.14) or aftereffects measures (p = 0.41). 9/20 participants exhibited 367 

significant learning, producing much larger changes in F1 than the group overall (training: -42.6 368 

± 8.4 Hz; aftereffects: -34.0 ± 10.8 Hz; retention: -42.1 ± 15.6 Hz). 369 

 370 

Experiment 4: 371 

Experiment 1 had masking noise that blocked participants’ perception of their own speech and 372 

used a resynthesized token of each participant’s own speech, with F1 shifted to the middle of the 373 

target region as auditory feedback for positive reward. Across all participants, F1 was reduced, 374 

relative to baseline, in the training (-22.9 ± 6.0 Hz), aftereffects (-21.4 ± 6.5 Hz), and retention (-375 

24.2 ± 8.6 Hz) measures. These values were significantly lower than baseline (F(3,57) = 12.4, p 376 
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< 0.0001, all individual measures p <  0.001). There were no differences between the three 377 

phases (all p > 0.63). 14/20 participants showed learning at an individual level (training: -26.2 ± 378 

5.2 Hz; aftereffects: -34.0 ± 10.8 Hz; retention: -42.1 ± 15.6 Hz). 379 
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Figure 4: Change in F1 for all experiments. Experiments 1-4 are shown in order from the top down. A, C, E, G: mean F1 value 
over the course of the experiment for all participants (black), learners (red) and non-learners (blue). Raw trial averages (thin 
lines) as well as a smoothed running average over 10 trials (thick lines) are shown. B, D, F, H: F1 values in the baseline (B), 
end of training (T), aftereffects (A), and short-term retention (R) phases for experiments 1 (B), 2, (D), 3, (F), and 4 (H). From 
right to left, data is shown for all participants(back), learners (red), and non-learners (blue). 
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Differences between experiments: 381 

All the presented meta-analyses comparing results from different experiments measured learning 382 

as the change in F1 from baseline to the end of the training phase. Analyses using the aftereffects 383 

produced essentially the same results. Analyses using retention showed no differences between 384 

experiments based on either the presence of masking noise or the type of auditory reward signal. 385 

In terms of overall change in F1, there was a significant effect of positive reward signal (F(1,77) 386 

= 10.2, p < 0.01), such that the change was greater in Experiments 2 and 4, where the reward 387 

signal was a token of each participant’s own speech with a shifted F1 value, than in Experiments 388 

1 and 3, where the reward signal was a chime. Contrary to our initial hypothesis, masking noise 389 

had no effect on F1 change (F(1,77) = 0.04, p = 0.85), nor was there any interaction between the 390 

presence of masking noise and the reward signal (F(1,77) = 0.7, p < 0.40).  391 

 However, the effect of reward signal was not significant when examining only 392 

participants classified as learners (F(1,42) = 0.004, p = 0.95). Neither masking, nor the 393 

interaction between masking and reward signal were significant in this group (both p > 0.25). 394 

This result suggests that the difference in the magnitude of F1 change between experiments with 395 

different reward signals was likely driven by differences in the proportion of learners, rather than 396 

in the degree to which participants changed F1 if they did learn. A set of chi-squared tests on the 397 

proportion of learners in each experiment supports this idea. There was an overall difference in 398 

the proportion of learners between all experiments (χ2 (3, N = 81) = 14.5, p = 0.001). This was 399 

largely driven by a difference between experiments with different reward signals (χ2 (3, N = 81) 400 

= 12.2, p < 0.001). There was no difference in the proportion of learners based on masking noise 401 

(χ2 (3, N = 81) = 1.0, p = 0.32). 402 

 Across experiments, the magnitude of F1 change at the end of the training phase was not 403 
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well predicted by variability. Neither baseline variability, change in variability from the baseline 404 

to the training phase, nor distance between /ɛ/ and /ɪ/ in the baseline phase predicted learning 405 

(Table 2).The exceptions are the amount of F1 change after receiving positive and negative 406 

reinforcement during the training phase. The best predictor of learning was the trial-to-trial 407 

change in F1 after receiving positive reward. Participants who produced smaller changes in these 408 

trials learned more (R2 = 0.26,  p < 0.0001). Additionally, increased learning was associated with 409 

participants who produced larger trial-to-trial F1 changes after receiving negative reward, though 410 

the magnitude of this effect was relatively modest (R2 = 0.05, p = 0.03). Results for all factors 411 

are shown in Figure 5. 412 

 Based on the significant relationship between change after positive reward and learning, 413 

we considered whether the difference in overall learning magnitude (driven by the proportion of 414 

learners) between experiments with informative and non-informative reward signals could be 415 

related to differences in the degree to which participants shifted their productions after positive 416 

reward. For example, participants may be less likely to shift their production after they hear a 417 

word with the “correct” F1. However, we found no evidence that the magnitude of shift after 418 

positive reward differed between studies with different reward signals (F(1,77) = 2.4, p = 0.13) 419 

or based on the presence of masking noise (F(1,77) = 0.3, p = 0.59). There was similarly no 420 

significant interaction between the two factors (F(1,77) = 0.003, p = 0.96). 421 

 We additionally examined whether variability in the baseline phase or early in the 422 

training phase affected the percentage of trials that were produced with F1 in the target region. 423 

Recall that the target region ranged from 10 to 110 Hz below each participant’s baseline mean. 424 

This was chosen to ensure that all participants received reward on some trials without needing to 425 

change their baseline F1 values. Indeed, baseline variability, as measured by the standard 426 
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deviation of F1, ranged from 13-56 Hz. Variability in the first 50 trials of the training phase 427 

ranged from 12-127 Hz. Even at the small end of this range, we would expect participants to 428 

receive positive reward on at least 20% of trials. In our data, all participants received at least 429 

some positive reward for trials with F1 within the target region during the training phase, as 430 

expected (1.2%-94.4% of trials, across participants). There was a small but significant 431 

relationship between baseline variability and percentage of trials produced with F1 in the target 432 

region across the training phase (R2 = 0.03, p = 0.04). However, there was no relationship 433 

between variability in the training phase itself and percentage of trials with F1 in the target 434 

region (R2 = 0.002, p = 0.028). Together, these results suggest little relationship between 435 

variability and percentage of rewarded trials. 436 

 437 

Table 2: Correlations between the change in F1 from the baseline to the end of the hold phase and various potential predictors of 438 

learning 439 

MEASURE R2 P 

Baseline standard deviation 0.01 0.16 

Baseline trial-to-trial change -0.01 0.56 

Increase in standard error from 

baseline to training 

-0.01 0.78 

/ɛ/ - /ɪ/ distance -0.02 0.78 

F1 change after negative reward 0.05 0.02* 

F1 change after positive reward 0.28 < 0.0001* 
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Strategy use and engagement: 440 

Strategy use was assessed in a follow-up survey after experiments 2 and 3. Participants were 441 

asked the question “Did you develop any techniques or strategies during the task? If so, what 442 

was that strategy?”. In Experiment 2, 16/20 participants reported using a strategy. Only 4 of 443 

these strategies related to changing the quality of the vowel, which was required to perform the 444 

task successfully. Despite the presence of a highly informative auditory reward signal for 445 

positive reward (a token of the participants’ own speech with F1 shifted to the middle of the 446 

target region), only 2/20 participants reported imitating the reward signal (both of these 447 

participants were classified as learners. In Experiment 3, 19/21 participants reported using a 448 

strategy. Of these, only 2 were plausibly related to changing vowel quality. Positive reward was 449 

accompanied by a chime in this experiment, so participants could not imitate the reward signal. 450 
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Figure 5: Potential factors associated with learning, defined as the magnitude of F1 change from baseline at the end of the 
training phase. In all panels, learners are shown in red and non-learners in blue. A solid black line indicated the regression 
model. A: Baseline standard deviation of F1. B: trial-to-trial change in F1 in the baseline phase. C: change in standard deviation 
of F1 from the baseline phase to the training phase. D: F1 distance between /ɛ/ and /ɪ/ in the training phase. E: trial-to-trial 
change in F1 after receiving negative reward in the training phase. F: trial-to-trial change in F1 after receiving positive reward 
in the training phase. 
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Individual participant responses are reported in the Appendix.  451 

 Participants in these studies were also asked to rate how engaging they found the task. 452 

Specifically, they were asked to rate their agreement with the statements “I was motivated to 453 

perform well in this task” and “I was motivated by the points I was earning” on a scale from 0 454 

(disagree) to 100 (agree). The median overall motivation was 95 (mean: 84.5, 9 participants 455 

reported “yes” instead of reporting a number). The median motivation related to the points was 456 

100 (mean: 83.5, 8 participants reported “yes” and 1 participant reported “no” instead of 457 

reporting a number). 458 

 459 

Discussion 460 

In a set of four experiments, we examined whether positive and negative reinforcement alone 461 

could cause participants to change their speech production in the absence of any explicit 462 

instruction. Specifically, we examined whether participants could learn to lower the first formant 463 

of the vowel /ɛ/, analogous to a widely-demonstrated change that can be induced through 464 

sensorimotor adaptation. We tested two additional aspect of reinforcement learning. First, we 465 

examined the effects of the auditory signal given for positive reward, comparing an arbitrary 466 

sound (a chime) with a potentially-informative sound (a resynthesized version of each 467 

participant’s own speech, with F1 shifted to the center of the target region). We hypothesized 468 

that the more informative reward signal would lead to a larger magnitude of learning. Second, 469 

we examined the effect of masking auditory feedback of participants’ speech would affect 470 

learning. Based on previous work in reaching showing that visual feedback of hand position 471 

reduces the effectiveness of reinforcement learning to change reach angle, we hypothesized that 472 

learning would be reduced when auditory feedback was available, as shifting F1 in this case 473 
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would conflict with participants internal targets for speech. 474 

 Our results showed that reinforcement can indeed drive participants to learn to shift their 475 

vowel production even in the absence of any explicit instruction. While we observed learning in 476 

some participants in all experiments, the average magnitude of learning was greater in 477 

experiments with informative reward signals. This increase in average learning, however, was 478 

driven by a greater proportion of participants who were able to learn to shift their F1 towards the 479 

target region. When examining only participants who exhibited learning, the magnitude of 480 

learning was similar across studies. Thus, it seems that an informative reinforcement signal 481 

makes learning more likely, but does not affect the magnitude of learning.  482 

 Perhaps surprisingly, this effect does not seem to be driven by explicit imitation of the 483 

informative reinforcement signal. In Experiment 2, 17/20 participants were classified as learners. 484 

However, only 2/20 reported imitating the reinforcement signal. These results suggest that the 485 

benefit of an informative reward signal does not come from allowing for explicit imitation, but 486 

rather serves as an implicit guide to achieve success. One possibility is that participants are 487 

implicitly imitating the reward signal, without being consciously aware. This is similar to the 488 

concept of phonetic convergence or accommodation, where speakers adjust their own 489 

productions to align with speech that they hear even over very short time scales (e.g., Babel, 490 

2010; Fowler et al., 2003; Goldinger, 1998; Pardo, 2006, 2013; Pickering & Garrod, 2013). 491 

Alternatively, the resynthesized speech reward signal may give participants implicit information 492 

about the dimension along which speech must be altered to achieve success, which may be 493 

important for reinforcement learning in high-dimensional motor systems (Manley et al., 2014). 494 

These results suggest that providing informative feedback may help reinforcement learning 495 

without the need to instruct participants to explicitly imitate the feedback. This finding has 496 
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important clinical implications, as explicit instruction about how to change motor behaviors may 497 

reduce the retention of learning after training generally (Green & Flowers, 1991; Hasson et al., 498 

2015; Shea et al., 2001; Winstein & Schmidt, 1990), and in some neurological disorders (Boyd 499 

& Winstein, 2004, 2006; Masters et al., 2004). Interestingly, the resynthesized speech feedback 500 

condition is somewhat similar to the “reformulations” of infant speech typically made by 501 

caregivers, where they repeat the word they perceive the infant to have intended with a more 502 

adult-like pronunciation (Howard & Messum, 2011). The current results showing that feedback 503 

with implicit production targets increase learning suggests that such reformulations may in fact 504 

facilitate infant speech learning even in the absence of any attempts to imitate or match adult-like 505 

speech (c.f. Guenther, 2016) 506 

 Contrary to our second hypothesis, we found no evidence that masking auditory feedback 507 

of participants’ speech affected either the magnitude or the probability of learning. This is 508 

contrary to previously demonstrated results in reaching. In these tasks, participants are presented 509 

with a visual target, and must learn to alter the angle or location of their reach away from the 510 

target to receive reward. Providing visual feedback about the position of the hand in these task 511 

seems to bias the system to weight sensory errors over reinforcement feedback, such that the 512 

effect of reinforcement on learning is eliminated (Cashaback et al., 2017). Here, we found no 513 

such effect for speech when auditory feedback is available. This may result from an important 514 

difference in how speech and reaching targets are defined. Targets in laboratory reaching tasks 515 

are externally defined (e.g., move your hand to the circle on the screen). However, movement 516 

targets in speech are defined internally by each participant. Thus, when participants change their 517 

F1 in response to reinforcement feedback, they may be simultaneously altering the intended 518 

target of their speech, eliminating any potential conflict between the sensory and reinforcement 519 
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learning systems. As stated above, speech targets are relatively flexible even at short time scales, 520 

which provides some support for this idea. More broadly, these results suggest that the 521 

interaction between sensory error-based learning and reinforcement learning is complex and 522 

potentially reliant on whether movement targets are defined externally in the environment or 523 

internally. 524 

 Our data suggest that the primary factor driving learning is the magnitude of the change 525 

in F1 after trials that receive positive reward during the training phase. Participants who change 526 

F1 less after positive reward learn more, suggesting they are more capable of “exploiting” the 527 

correct behavior to receive reward. There was also a significant, but small, relationship between 528 

learning and the magnitude of F1 change after negative reward such that participants who have a 529 

greater change in F1 after negative reward learn more. This is consistent with the idea that 530 

reinforcement learning is accomplished through an exploration of the solution space. However, 531 

this seems to play a minor role in learning in these experiments. Somewhat surprisingly, learning 532 

was not related to production variability in the baseline phase or to the change in variability from 533 

the baseline to the hold phase. It may have been expected that participants who were more 534 

variable were more likely to receive positive reward and thus, to learn more readily (Dhawale et 535 

al., 2017) or that higher variability in the dimension of control that must be changed would itself 536 

facilitate learning (Wu et al., 2014); however, this seems to not be the case here. The lack of an 537 

effect between learning and variability has also been reported for some reaching tasks 538 

(Cashaback et al., 2017). 539 

 Lastly, we found that the changes in F1 caused by reinforcement learning were 540 

maintained through the washout phase, up to 150 trials after reinforcement was removed. This is 541 

substantially longer than changes in formant values caused by sensorimotor adaptation are 542 
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retained; in this case, speakers return to producing formant values near to their baseline within 30 543 

trials. This has at least two important implications. First, from a theoretical side, it suggest that 544 

reinforcement learning caused participants to shift their production goals to the target region. 545 

Without anything to push them back to their pre-training targets, they maintained these goals 546 

after reinforcement was removed. Second, from a clinical view, this suggest that reinforcement 547 

learning has the potential to cause long-lasting changes in speech production, potentially even 548 

after a relatively short training session. This suggest reinforcement learning is a likely powerful 549 

clinical tool for speech rehabilitation, consistent with previous suggestions in limb control 550 

(Roemmich & Bastian, 2018). 551 

 In sum, our results suggest that reinforcement learning is an active process in speech 552 

motor control and that it can cause changes in behavior even in the absence of explicit 553 

instruction. Reinforcement learning is not affected by the availability of auditory feedback and is 554 

retained after reinforcement is removed. Together, this suggests that reinforcement operates by 555 

causing a shift in the intended movement target. Notably, this shift is at least largely implicit, as 556 

few participants reported using any explicit strategies related to changing vowel quality. These 557 

results suggest altering behavior through reinforcement is possible even in complex, high-558 

dimensional motor tasks such as speech production. These results suggest reinforcement is a 559 

plausible mechanism for early speech development, consistent with recent computation models 560 

(Howard & Messum, 2011; Messum & Howard, 2012; Warlaumont, 2014; Warlaumont et al., 561 

2013; Warlaumont & Finnegan, 2016). Moreover, they suggest reinforcement may be a powerful 562 

clinical tool for speech rehabilitation, even without explicit instruction or detailed “knowledge of 563 

performance/results” feedback provided about errors. However, potential differences between 564 

speech and other motor domains, such as the effects of sensory masking, suggest reinforcement 565 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2020. ; https://doi.org/10.1101/2020.10.05.327072doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.327072
http://creativecommons.org/licenses/by-nc-nd/4.0/


learning should be further studied to maximize its effectiveness in rehabilitative paradigms. 566 

 567 

 568 
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 734 

 735 

Appendix 736 

Participant responses to post-experiment survey about strategy use. 737 

Exp Used a 
strategy 

Strategy 
related to 
changing 
vowel quality 

Imitated 
feedback 

Strategy 

Exp 2 ✓  ✓ listening to correct words said by the computer and trying to 
mimic them 

✓  ✓ If I got a word correct, I tried to copy the way the playback of 
myself said the word 

✓ ✓  Yes. For "bed," I tried to make more of a schwa sound, 
therefore rounding my lips more than usual and keeping my 
mouth more closed. Usually, when I say "bed," I open my 
mouth wider. For the words "head" and "dead," I tried to not 
let my pitch go up and tried to keep my pitch level throughout 
the vowel sound. Again, I tried to keep my mouth more closed 
than usual and tried to keep the vowel sound consistent. If I 
said the words with a more open mouth like I usually do, the 
computer registered them as "had" or "dad."  

   not really i just tried to not say the four letter words too fast 

✓   At times I would look at my reflection and read the word 
while looking at my reflection to keep myself entertained and 
from dozing off. Another strategy I used was counting on my 
fingers to see how many words I would say. 

   I did not 

✓   I tried to be as articulate as possible when I said the words 

✓ ✓  To adjust my pronunciation. 

✓   I realized that the d on each of the words was short. 

✓   I tried to pronounce the words very clearly 
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✓ ✓  Yes. If I got the word wrong and had points deducted then I 
tried to change how I pronounced the word a little bit. I 
usually tried focusing on the middle part of the word and 
changed how I pronounced that. 

✓   Speaking more clearly by focusing on one word at a time 

✓   The words dead and head were similar to say, found if you 
kept A silent it gave you the points 

✓   I TRIED TO PRONOUNCE THE WORDS WITH A 
STEADY TONE AND EMPHASIS ON THE LAST 
PHONEME WHICH GOT ME POINTS AND THEN FOR 
THE RETRAIN SECTION I TRIED TO CHANGE THE 
WAY I PRONOUNCED THEM TO MATCH UP WITH 
THE SECOND TASK 

✓   yes for head i looked at the e so i remembered to pronounce it 
correctly. 

   No, I did not 

✓   to fully stretch out my e's 
   not really-i thought that emphasizing certain parts of the word 

helped at times. 
✓ ✓  CHANGING THE WAY I PRONOUNCED WORDS IN 

ORDER TO GET POINTS 
✓   During the testing phase, if I spoke lower I was more likely to 

get the answer right and get the points. 
Exp 3 ✓  n/a I tried to keep my voice low and pronunciate each word 

  n/a no. 

✓  n/a I tried to read the words very clearly and with diction.  

✓  n/a i noticed when i articulated the /d/ at the end of the sentence i 
gained points 

  n/a No 

✓  n/a i tried to say the word not like how the person thought i was 
saying it on the screen 

✓  n/a If I got one right where the computer gave me 10 points (rare) 
I would try to not move at all and hope the next word was the 
same or similar in order to get another one right. 

✓ ✓ n/a I tried to do a 'short e' sound as much as possible, as my 
words kept getting confused with 'a' sounds. I tried to change 
my sound so that the computer would recognize it, without it 
seeming forced. 

✓  n/a yes, when I got a word correct I tried to repeat the next word 
in the exact same way by positioning/moving my mouth the 
same way 

✓  n/a Yes- I repeated words a certain way once I finally noticed 
how I was expected to say them to earn points. 

✓  n/a I tried to annunciate my E's more  
  n/a No, just kept going for it 

✓  n/a I started to stress the vowels making them longer in order for 
the machine to approve them 

✓  n/a I noticed that the computer thought I used "ad" endings a lot 
more than I did so I would try and pronounce the "e" sounds 
more in words that this occurred. This did not always work. 

✓  n/a How to speak clearly so words are apparent  
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✓  n/a For words with an "e" sound like "bed" or "dead" or "head" I 
had to prolong the "e" sound for the computer to understand. 
For too short of a word it would think I said an "a" sound like 
"bad" or "dad" or "had". I could tell if I was saying the word 
long enough by listening to the static in the headphones. It 
needed to be a certain length of static before I knew I should 
end the word with the next consonant. Also, I wasn't staring at 
the screen. I knew the next word was up when the static 
started to play in the headphones, and then I read it from the 
screen. When I was originally staring at the screen I could 
predict what word was coming next, or at least my brain was 
trying to, and then I felt like I had a harder time saying the 
next word because I already thought I knew what the word 
should be. So I stopped looking and only looked up when I 
heard static. 

✓ ✓ n/a I'm not sure, but maybe pronouncing words slightly different 
to see if changes would make the word correct. If it was 
correct, then using that change when the same word came up 
again. 

✓  n/a I pronounced "head" with less emphasis on the "ea" part. 

✓  n/a I tried to enunciate my vowels 

✓  n/a I started to say the words head, bed, dead quicker  

✓  n/a I contorted my mouth and diaphragm in ways I did not think 
possible in order to enunciate the words. My main strategy 
was to try and hit the first syllable as hard as possible.  
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