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ABSTRACT  

Several knowledgebases, such as CIViC and OncoKB, have been manually curated to support 

clinical interpretations of a limited number of “hotspot” somatic mutations in cancer, yet 

discrepancies or even conflicting interpretations have been observed among these 

knowledgebases. Additionally, while these knowledgebases have been extremely useful, they 

typically cannot interpret novel mutations, which may also have functional and clinical impacts 

in cancer. To address these challenges, we developed an automated interpretation tool called 

CancerVar (Cancer Variants interpretation) to score more than 12.9 million somatic mutations 

and classify them into four tiers: strong clinical significance, potential clinical significance, 

uncertain clinical significance, and benign/likely benign, based on the AMP/ASCO/CAP 2017 

guideline. Considering that the AMP/ASCO/CAP rule-based scoring system may have 

inherent limitations, such as lack of a clear guidance on weighing different pieces of functional 

evidence or unclear definition for certain clinical evidence, it may cause misinterpretation for 

certain variants that have functional impacts but no proven clinical significance. To address 

this issue, we further introduced a deep learning-based scoring system to predict oncogenicity 

of mutations by semi-supervised generative adversarial network (SGAN) method using both 

functional and clinical evidence. We trained and validated the SGAN model on 5,234 somatic 

mutations from an in-house database of clinical reports on cancer patients, and achieved a 

good performance when testing on 6,226 variants that were curated by us through literature 

search. We also compared the prediction with several independent datasets and showed great 

utility in classifying variants with previously unknown interpretations. CancerVar is also 

incorporated into a web server that can generate automated texts with summarized descriptive 

interpretations, such as diagnostic, prognostic, targeted drug responses and clinical trial 

information for many hotspot mutations. In summary, CancerVar can facilitate clinical 

interpretation and hypothesis generation for somatic mutations, and greatly reduce manual 

workload for retrieving relevant evidence and implementing existing guidelines. 

 

 

Keywords: somatic variants, copy number alteration, clinical interpretation, precision 

oncology, CancerVar  
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INTRODUCTION 

A large number of somatic variants have been identified by next-generation sequencing (NGS) 

during the practice of clinical oncology to facilitate precision medicine (1,2). In order to better 

understand the clinical impacts of somatic variants in cancer, several knowledgebases have 

been curated, including OncoKB(1), My Cancer Genome(3), CIViC (4), Precision Medicine 

Knowledge Base(PMKB) (5), the JAX-Clinical Knowledgebase (CKB) (6), and Cancer 

Genome Interpreter (CGI) (7). Although clinically relevant, the interpretation of somatic 

variants is still not a standardized practice, and different clinical groups often generate different 

or even conflicting results. To standardize clinical interpretation of somatic variants in cancer 

and support clinical decision making, the Association for Molecular Pathology (AMP), 

American Society of Clinical Oncology (ASCO), College of American Pathologists (CAP), 

jointly proposed standards and guidelines for interpretation and reporting of somatic variants, 

which classify somatic variants into four Tiers: strong clinical significance (Tier I), potential 

clinical significance (Tier II), uncertain significance (Tier III), and benign (Tier IV) (8). The 

AMP/ASCO/CAP 2017 guideline included 12 pieces of evidence, which are diagnostic, 

prognostic and therapeutic clinical evidences, mutation types, variant allele fraction (mosaic 

variant frequency (likely somatic), non-mosaic variant frequency (potential germline)), 

population databases, germline databases, somatic databases, predictive results of different 

computational algorithms, pathway involvement, and publications (8,9).  

 

However, since the AMP/ASCO/CAP classification scheme heavily relies on published clinical 

evidence for a variant, ambiguous assignments were still frequently observed among human 

curators, using the same evidence for a given variant. For example, Sirohi et al., compared 

human classifications for fifty-one variants by randomly selected 20 molecular pathologists 

from 10 institutions (10). The original overall observed agreement was only 58%. When 

providing the same evidential data of variants to the pathologists, the agreement rate of re-

classification increased to 70%. The reasons for discordance are: (i) gathering 

information/evidence is quite complicated and may not be reproducible by the same interpreter 

at different time points; (ii) different researchers may prefer to use different algorithms, cutoffs 

and parameters, making the interpretation less reproducible; (iii) newly published evidence for 

certain variants might not been incorporated into the evaluation system instantly and 

systematically, which is especially relevant to the variants with unknown significance (VUS). 

 

To standardize the interpretation of somatic variants across multiple knowledgebases, a more 

recently published knowledgebase, MetaKB from The Variant Interpretation for Cancer 
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Consortium (VICC), aggregated evidences based on AMP/ASCO/CAP 2017 guideline (11). 

However, this meta knowledgebase also has the following limitations: 1) it only focused on 

consensus interpretations on a limited number of known ‘hotspot’ mutations, so that a large 

number  of variants were currently classified as unknown clinical significance but may still play 

oncogenic roles through “loss of function” or “activating function” in cancer; 2) it only provided 

summarized classification for each variant, without demonstrating itemized evidence in details 

for each individual variant when mapping to the 12 criteria of AMP/ASCO/CAP 2017 

guidelines; therefore, users cannot conduct customized evaluations based on their own 

protocols and experiences; and 3) it utilized a simple score system to rank driver mutations 

without considering heterogeneity of functional consequence (deleteriousness) of the variants, 

especially for those newly identified variants reported in publication. 

 

In clinical practice, when a somatic mutation is considered to have strong confidence in 

causing functional impact on protein changes, clinicians likely interpret it as clinically 

significance or likely clinical significance (12,13). Although a number of remarkable software 

tools such as SIFT(14), Polyphen2 (15) and FATHMM(16) were developed to predict 

functional impacts, disagreements on certain mutations were consistently observed across 

these tools. Although later some meta-analysis tools such as DANN (17) and DriverPower 

(18) were developed to prioritize functionally important variants using more comprehensive 

functional scoring features as the input, they face the limitation in jointly modeling clinical 

impact features based on the AMP/ASCO/CAP guidelines. Because the guidelines tend to be 

conservative (“negative diagnosis” is preferred over “wrong diagnosis”), resulting in more than 

expected variants were misinterpreted as VUS (19-27). In addition, the AMP/ASCO/CAP 

guidelines only designated 7 functional impact prediction tools such as MutationAssessor (28) 

as the official recommended tools, and only the variant from majority voting (more than 4 from 

7 tools) can be considered clinical significance, it over-simplified the heterogeneous functional 

consequence of variant in cancer development. While it may be useful in prediction of overall 

impact of driver genes, it is not optimal to prioritize novel variants found in the genes. To 

address these challenges and improve automated clinical interpretations for cancer variants, 

there is a strong need in the development of reliable and accurate computational methods, by 

utilizing both clinical evidence and functional impact score features.  

 

We have previously developed a standalone software VIC written in Java, which was among  

the first tools to interpret clinical impacts of somatic variants using a rule-based scoring system 

based on 12 criteria of the AMP/ASCO/CAP 2017 guideline (29). In the current study, we 
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developed an improved somatic variant interpretation tool called CancerVar implemented in 

Python (https://github.com/WGLab/CancerVar), with an accompanying web server 

(https://cancervar.wglab.org/). Compared to VIC, CancerVar is an advanced tool providing 

more options to users: (1) Python implementation provides more flexibility to incorporate 

CancerVar into custom command line workflows, (2) a user-friendly web server with pre-

computed clinical evidence for 13 million variants coming from 1,911 cancer census genes 

through literature mining and database aggregations, (3) flexible AMP/ASCO/CAP rule-based 

score system and deep learning-based score system using semi-supervised generative 

adversarial network (SGAN) method to allow improved interpretations, (4) RESTful API to 

allow program developers to freely access complied knowledge. CancerVar allows users to 

query clinical interpretations for variants using chromosome position, cDNA change or protein 

change, and interactively fine-tune weights of scoring features based on their prior knowledge 

or additional user-specified criteria. Importantly, the CancerVar web server can generate 

automated texts with summarized descriptive interpretations, such as diagnostic, prognostic, 

targeted drug responses and clinical trial information for many hotspot mutations, which will 

significantly reduce the workload of human reviewers and advance the precision medicine in 

clinical oncology. 

 

 

MATERIAL AND METHODS 

Overview of clinical evidence mapping to the AMP/ASCO/CAP 2017 guidelines 

According to the AMP/ASCO/CAP 2017 guidelines, there are a total of 12 types of clinical-

based evidence to predict the clinical significance for somatic variants, including therapies, 

mutation types, variant allele fraction (mosaic variant frequency (likely somatic), non-mosaic 

variant frequency (potential germline)), population databases, germline databases, somatic 

databases, predictive results of different computational algorithms, pathway involvement, and 

publications (8,9). As shown in Figure 1, CancerVar contains all the above 12 evidence, 

among which 10 of them are automatically generated and the other two, including variant allele 

fraction and potential germline, require user input for manual adjustment. 

 

Cancer variants collection and pre-processing 

The cancer census gene list or potential driver gene list were very essential to all the somatic 

variants annotators. We curated a list of 1,911 cancer census or driver genes with 13 million 

exonic variants from 7 existing cancer knowledgebase, including COSMIC, CIViC, OncoKB, 

etc, and 2 datasets collected from literature about driver genes predictions (Supplementary 
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Table 1). For each exon position in these 1,911 genes, we generated all three possible 

nucleotide changes. CancerVar fully scanned all the potential variants of significance, and it 

overcomes the limitations of other knowledgebase annotation datasets which only compiled 

variants reported or documented previously. We pre-compiled clinical evidence based on 

2017 guideline for all the possible variant changes, which makes the variant searching in 

CancerVar very fast. In CancerVar, we documented all types of clinical evidence such as in-

silico prediction, drug information, and publications in detail to help users making their own 

clinical decisions according to their prior knowledge.  

 

Evidence-based scoring method to prioritize clinical significance of somatic variants  

CancerVar evaluates each set of evidence and scores each piece of clinical-based prediction 

(CBP). The variant evidence will get 2 points for strong clinical significance evidence or 

oncogenic,1 point for supporting clinical significance or oncogenic, 0 for no support, -1 for 

benign or neutral. The CancerVar score will be the sum of all the evidence. The complete 

score system for each CBP can be found in Supplementary Table 2. Let the  𝐶𝐵𝑃[𝑖] be the 

𝑖 th evidence score, weight [𝑖 ] is the score for 𝑖 th evidence. The CancerVar score can be 

calculated in Equation 1. The weight is 1 by default, but users can adjust it based on its 

importance from prior knowledge. Based on the score range in Equation 2, we classify each 

variant into one of the four Tiers: strong clinical significance, potential clinical significance, 

unknown clinical significance (VUS), and benign/likely benign (neutral).  

 

𝐶𝑎𝑛𝑐𝑒𝑟𝑉𝑎𝑟 𝑠𝑐𝑜𝑟𝑒 (𝐶𝑆) = ∑ 𝑊𝑒𝑖𝑔ℎ𝑡[𝑖] ∗ 𝐶𝐵𝑃[𝑖]12
𝑖=1                                                  (1) 

𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 = {

𝑆𝑡𝑟𝑜𝑛𝑔 𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒                        𝐶𝑆 ≥ 11
𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝑠𝑖𝑛𝑖𝑔𝑖𝑐𝑎𝑛𝑐𝑒           8 ≤ 𝐶𝑆 ≤ 10
            𝑉𝑈𝑆                                                    3 ≤ 𝐶𝑆 < 8

(𝐿𝑖𝑘𝑒𝑙𝑦)𝐵𝑒𝑛𝑖𝑔𝑛                                                   𝐶𝑆 ≤ 2  

                 (2) 

 

Semi-supervised generative adversarial network (SGAN) to predict driver mutations 

We developed semi-supervised generative adversarial network (SGAN) method to predict 

driver mutations using 12 clinical evidence prediction scores and 19 pre-computed scores 

predicted by other computational tools. The 19 predictive tools include: (1) nine function-

prediction method: FATHMM (30), FitCons (31), MutationAssessor (32,33), MutationTaster 

(34), PolyPhen2-HDIV, PolyPhen2- HVAR (35), PROVEAN (36), SIFT (14), and VEST3 (37); 

(2) five ensemble methods: CADD (raw score and Phred score) (38) , DANN (17), FATHMM-

MKL (39) , MetaLR (40) , and MetaSVM (40); and (3) five conservation methods: GERP++ 
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(41) , PhastCons (42) (on vertebrate and mammalian separately), PhyloP (43)  (on vertebrate 

and mammalian separately), LRT (44) , and SiPhy (45). Since the score range are very diverse 

among the predictive tools, we used their categorical outputs as the prediction features. For 

some variants missed certain predictive values, we excluded the variants with more than 2 

missing features. After filtering, a total of 12.9 million variants were used for downstream 

analysis. Supplement Table 3 shows the distribution of missing rate before and after filtering 

and the maximum missing ratio is less than 10%.  

Then, we applied SGAN artificial neural network to predict the probability of clinical 

significance after imputation. As shown in Figure 2, the SGANs architecture was originally 

developed in the context of unsupervised learning, which consists of 2 parts: generator and 

discriminator. The Generator (G) is to generate synthetic samples (fake) by random noise from 

the normal distribution; and the Discriminator (D) is to differentiate realistic samples and 

synthetic data. The Generator contains 3 linear layers with batch normalization, LeakyReLu 

as activation layer, and 60% dropout rate in each layer. The final layer is a linear layer with 

batch normalization and Tanh as activation layer. As for the discriminator (D), we implemented 

3 CNN layers with Tanh as activation layers. The semi-supervised GAN is particularly useful 

in prediction of a huge amount of unlabelled samples using a small number of labelled samples. 

During training process, the SGAN learn the underlying distribution (clusters) of data samples 

by discriminating the synthetic samples and unlabelled realistic samples in each epoch, and 

meanwhile the network labels categories for clusters by classifying the labelled realistic 

samples. In this process, the discriminator/ classifier will be trained to discriminate the 

fake/real samples and to classify the labelled samples.  

In our semi-supervised GAN model, the input data consists of labelled samples, unlabelled 

samples and random noises from normal distribution. Firstly, the noises are converted to 

synthetic samples by the generator. Secondly, the discriminator/classifier classifies the 

sample into 3 classes: 1. neutral, 2. non-neutral (driver mutations), and 3. fake synthetic data, 

in which the unlabelled real samples can be identified as 1 or 2 and the synthetic samples is 

3. Therefore, our models take in X as input and output a vector (𝑙1, 𝑙2, 𝑙3) which can be 

converted to probability by Softmax function. As for supervised learning on labeled samples, 

the probability is: 𝑃𝑚𝑜𝑑𝑒𝑙(𝑦 = 𝑙𝑖|𝑋, 𝑦 ≠ 3) =
exp (𝑙𝑖)

∑ exp (𝑙𝑖)
 and we used 𝑃𝑚𝑜𝑑𝑒𝑙(𝑦 = 3|𝑋) to infer the 

probability that X is fake. Meanwhile, the probability that X is real but unlabelled is 1 −

 𝑃𝑚𝑜𝑑𝑒𝑙(𝑦 = 3|𝑋). Therefore, the loss function L of our discriminator/classifier can be written 

as two parts:  
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The 𝑝𝑑𝑎𝑡𝑎is the underlying distribution of real samples and 𝑝𝐺  is the distribution of the output 

from generator. As for the loss of Generator, we used feature matching (46) as our loss 

function:  ∥ 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎
𝐷(𝑥)  −  𝔼𝑧~𝑝𝐺

𝐷(𝐺(𝑧)) ∥ . 

  

SGAN training and testing process 

We implemented SGAN by PyTorch. For unlabelled data, we randomly selected 60,000 

variants from 12.9 million samples with non-missing features. The evidence-based scores 

were converted into dummy features and added Gaussian noise (mean=0, std=0.02) to make 

the features continuous. The labelled data are from cancer patients of CHOP cancer cohort; 

we have 4,000 variants (1,000 are positive) as the training set and 1,234 variants (669 are 

positive) as the validation set. We tested the SGAN model on 6,226 variants (1,335 are 

positive) which were manually compiled from literature review. The missing feature values 

were filled with the mean value of the non-missing from its 40 nearest neighbouring variants 

in the whole training data by KNNImputater, a python package from scikit-learn (47).  

As for the synthetic samples, the Generator generates random noise from standard normal 

distribution in each batch step, and outputs the synthetic samples. In each minibatch, the 

model calculates 2,000 labelled samples, 10,000 unlabelled samples and 10,000 synthetic 

samples from generator. The discriminator/classifier is trained by calculating the loss from 

supervised learning and unsupervised training separately. And then the generator is trained 

by minimizing the feature matching in each batch.  

 

Pan-Cancer Benchmarks from public dataset 

Most of the somatic variant annotators or datasets have not been systematically assessed on 

their performance, especially for literature or knowledge-based tools. For systematic 

performance benchmarking of CancerVar, complementary and comprehensive benchmark 

datasets are needed and established for clinical significance prediction somatic variant. To 

robustly assess the performance of CancerVar, we employed several different benchmark 

datasets:(i) Multi-Institutional evaluation study (10) with fifty-one variants from Sirohi et; 

(ii)Literature annotation database from OncoKB (1) and CIViC(4); (iii) TP53 mutations on their 

target transcription activity from IARC database (48); (iv)Functional annotation based on in 

vitro cell viability assays from study of Ng. et al (49).  
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Benchmarks from CHOP internal dataset 

Importantly, other than datasets from public resource, we also have our internal dataset with 

7967 somatic mutations from cancer patient’s cohort at the Children’s Hospital of Philadelphia 

(CHOP cancer cohort). Each variant has been manually annotated and classified by human 

experts in the diagnostic labs. Using the AMP/ASCO/CAP guideline, the 4-Tier classification 

assignment for each somatic mutation has to be agreed by at least two cancer experts from 

the Division of Genomic Diagnostics Lab at CHOP. Furthermore, to train the deep learning 

model, we used variants from strong clinical significance (Tier I) and potential clinical 

significance (Tier II) categories as the positive samples, and used variants from benign/likely 

benign (Tier IV) as the negative samples. In total, we have 5234 variants, in which 1668 are 

positive samples and 3566 are negative samples for training and validation in the SGAN 

model.  

 

RESULTS 

Summary functions of CancerVar 

CancerVar provides multiple query options at variants-, gene-, and CNA levels across 30 

cancer types and two versions of reference genomes: hg19 (GRCh37) and hg38 (GRCh38). 

Given user-supplied input, CancerVar generates an output web page, with information 

organized as cards including free text interpretation summary, gene overview, mutation 

information, evidence overview, pathways, clinical publications, protein domains, in silico 

predictions, exchangeable information from other knowledgebases. The CancerVar web 

server provides full details on the variants, including all the automatically generated criteria, 

most of the supporting evidence and predictive scores for clinical significance. CancerVar web 

service can be accessed at http://cancervar.wglab.org and the command-line program can be 

downloaded at https://github.com/WGLab/CancerVar. 

 

Using rule-based approach, users have the ability to manually adjust these criteria and 

perform re-interpretation based on their prior knowledge or experience. If the user already 

know the information of each of the scoring criteria for the variant (possibly inferred by 

themselves using other software tools), they can alternatively compute the clinical significance 

of the variant from the “Interpret by Criteria” service instead. Each variant will be provided with 

a prediction score and clinical interpretation as strong clinical significance, potential clinical 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2020.10.06.323162doi: bioRxiv preprint 

http://cancervar.wglab.org/
https://github.com/WGLab/CancerVar
https://doi.org/10.1101/2020.10.06.323162
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 
 

significance, uncertain significance, and likely benign/benign based on the 12 criteria of the 

AMP/ASCO/CAP guideline. Using deep learning-based approach, CancerVar provides 

probability score predicted by SGAN to determine the oncogenicity of a variant, using 12 

evidence features from AMP/ASCO/CAP guidelines and computational metrics predicted by 

19 tools.  

 

Performance assessment and comparative evaluations of CancerVar with external 

human manual annotator  

Sirohi et. al measured the reliability of the 2017 AMP/ASCO/CAP guidelines (10) using fifty-

one variants (31 SNVs, 14 indels, 5 CNAs, one fusion) based on literature review. Among 

these variants, we selected 43 variants including all 31 SNVs and 12 insertion-deletion 

variants (we did not find alternative alleles information for two indels in gene CHEK1 and MET). 

CancerVar interpreted these 43 variants with the specified cancer types. Since these 43 

variants do not have solid/consistent clinical interpretation, we compared 20 pathologists’ 

opinions from 10 institutions with CancerVar’s predictions. As shown in Table 1, CancerVar 

assigned 21 variants as Tire I/II (strong or potential clinical significance). Among these 21 

variants, the pathologists classified 17 variants (17/21, around 81%) as Tire I/II in agreement. 

Moreover, CancerVar assigned 21 variants as VUS; among these 21 variants, 9 variants (9/21, 

around 43%) also be classified as VUS by pathologist reporters. In total, 26 variants (around 

61%) have a match of clinical significance between human reporters and CancerVar.  

 

The interpretation details of these 43 variants can be found in the Supplementary Table 3 

and Figure 3. Compared to human interpreters, the advantage of CancerVar is clear in that it 

can automatically generate clinical interpretations with standardized, consistent and 

reproducible workflow, with evidence-based support for each of the 12 criteria. Therefore, 

CancerVar will greatly reduce the workload of human reviewers and facilitate the generation 

of precise and reproducible clinical interpretation.   

OncoKB annotation benchmark 

OncoKB (1), a manually curated database of cancer mutations oncogenic effect, has been 

widely used in cancer research community. OncoKB provides evidence classification system 

to interpret the genomic alterations and classified variants as inconclusive, likely neutral, 

Predicted oncogenic, likely oncogenic, or oncogenic. Totally, 3455 SNVs in 245 genes were 

downloaded from OncoKB annotation database (downloaded Mar/01/2020). This version 

contained 2582 oncogenic/likely oncogenic (O/LO) mutations, 587 likely neutral mutations, 
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and 286 mutations annotated as inconclusive for this study. CancerVar evidence-based and 

DL-based prediction methods were applied to classify compiled mutations and compared with 

OncoKB classifications. For the O/LO group in the OncoKB, CancerVar rule-based method 

classified 1839 (1839/2582, 71.2% consistent with OncoKB classification) variants as strong 

or potential clinical significance; while CancerVar deep learning-based method classified 2319 

variants (2319/2582, 90% consistent with OncoKB classification). The details are in Table 2 

and Figure 4(a). The UpSet plot showed the prediction intersections between OncoKB, 

CancerVar rule-based and deep learning-based methods. 

 

CIViC annotation benchmark 

CIViC is a crowd-sourced and expert-moderated public resource for somatic variants in cancer 

(4). It adopts five evidence levels to differentiate reported mutations, namely A: validated, B: 

clinical, C: case study, D: preclinical, and E: inferential. In total, 1681 unique SNVs/INDELs 

from 113 unique genes were retrieved from CIViC website (https://civicdb.org/releases, 

accessed in May/01/2020) and assessed by the CancerVar program. CancerVar rule-based 

method predicted 1230 (1230/1681, 73.2% consistent with CIViC classification) variants as 

strong or potential clinical significance, while CancerVar DL model-based method predicted 

1581 (94.1% consistent with CIViC classification). Table 3 and Figure 4(b) have the details 

of CancerVar prediction. 

 

IARC TP53 Transactivation mutation benchmark 

TP53 is the most frequently mutated gene in human cancers, its mutants had been functionally 

assessed based on the median transactivation levels and complied as IARC TP53 database 

(48). Based on the median of 8 different yeast functional assays (WAF1, MDM2, BAX, h1433s, 

AIP1, GADD45, noxa, and P53R2), the TP53 mutations can be classified as lower 

transactivation (a median transactivation level <= 25% wild type) as oncogenic and higher 

transactivation (level >= 25% wild type) as neutral. We retrieved 1915 missense mutations 

(532 mutations were used as oncogenic cases and 1383 mutations were used as neutral 

cases) from this IARC TP53 database. For 532 oncogenic mutations in IARC TP53 database, 

CancerVar rule-based method predicted 522 (TP=98%) variants and model-based method 

predicted 512 (TP=96.2%) variants as strong/potential clinical significance. Compared to 

OncoKB predicted 489 (489/532=91.9%) variants, CancerVar rule-based method has a higher 

true positive rate. The details of CancerVar and OncoKB prediction can be viewed in Table 4 

and Figure 4(c).  
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Cell Viability in Vitro Assay benchmark 

The oncogenic effect of somatic mutation can be directly assessed by preferential growth or 

survival advantage to the cells using some cellular assays. Ng et al. recently developed a 

medium-throughput in vitro system to test functional effects of mutations using two growth 

factor dependent cell lines, Ba/F3(a sensitive leukaemia cell line, frequently used in drug 

screening) and MCF10A(a breast epithelial cell line)(49). The cell viability data of mutations in 

these two cell lines were used to generate consensus functional annotation to distinguish 

mutations. The mutations were considered as oncogenic when cell viability was labelled as 

activating and as neutral when cell viability was labelled as neutral from the consensus 

functional annotation. Finally, we retrieved 717 missense mutations (253 as oncogenic, 464 

as neutral) in 44 genes. In 253 oncogenic variants, CancerVar rule-based method predicted 

217 (TP=85.7%) variants and DL model-based predicted 208 (82.2%) as strong/potential 

clinical significance, while OncoKB predicted 204 (TP=80.6%) variants as oncogenic, likely or 

predicted oncogenic (Table 5 and Figure 4(d)). Still, CancerVar rule-based method performs 

better than OncoKB.  

 

 

SGAN performance for oncogenic variant’s prediction 

We used cuda to accelerate the training process, which took ~100 hours to train the model to 

1000 epochs with a Nvidia Tesla M40 GPU card. SGAN model can learn the hidden 

distribution of unlabeled mutations comparing with the prediction in clinical data from the 

model trained only with labeled data. SGAN was compared with other six machine learning 

algorithms including gradient boosting tree (GBDT), support vector machine (SVM), AdaBoost 

(ADA), multi-layer perceptron (MLP), random forest (RF) and majority voting classifier (VC), 

which were discussed in a recently published paper AI-driver for driver mutation prediction in 

cancer (50).  We further compared the performance with the other nine score schemes 

including LRT (44), DANN (17), CADD (38), FATHMM (30), SIFT (14), and MetaSVM (40), 

using area under the curve (AUC) score from receiver operating characteristic (ROC) plots 

and true negative rate (TNR, or specificity) as measurements. According to the performance 

evaluation on the independent testing set of 6226 somatic variants, Figure 5 shows that 

CancerVar SGAN method (AUC=0.8595) performs the best compared to cancer-specific 

driver predicting methods and any individual functional prediction tool. 
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FDA approved or recognized cancer biomarkers for therapeutic, diagnosis and 

prognostic 

To show the performance and reliability, we also collected 22 cancer biomarkers approved by 

the US Food and Drug Administration (FDA, then interpreted these biomarkers and predicted 

their oncogenicity using our SGAN model. In these 22 biomarkers, 9 of them were classified 

as Tier-I strong clinical significance and rest of 13 were classified as Tier-II potential clinical 

significance when using only evidence. For the SGAN model based on deep learning, most of 

the biomarkers (19 out of 22) were predicted with score >=0.95 means higher probability as 

oncogenic. The interpretation of these biomarkers are showed in the Table 6. 

Use case: example of comprehensive interpretation of FOXA1 somatic mutation in 

Prostate Cancer   

In this use case, we showed the clinical interpretation of two mutations in prostate cancer 

(Figure 6) from rule-based and deep learning model. Prostate cancer is the most commonly 

diagnosed cancer in men in the world (51). The FOXA1 protein (Forkhead box A1, previously 

known as HNF3a) is essential for the normal development of the prostate (52). The FOXA1 

somatic mutations have been observed frequently in prostate cancer(53) and are associated 

with poor outcome. However, the mechanism of driving prostate cancer by mutations in 

FOXA1 was still not clear. In 2019, two papers published in Nature demonstrated that FOXA1 

acts as an oncogene in prostate cancer (54,55). They found that the hotspot mutation at R219 

(R219S and R219C) drove a pro-luminal phenotype in prostate cancer and exclusive with 

other fusions or mutations (54,55). We interpreted these two mutations, but here we only 

illustrated the clinical interpretation for R219C since the interpretation result of R219S was 

very similar to R219C. We searched this missense mutation R219S using protein change and 

gene name as “FOXA1” in the CancerVar web server. CancerVar did not find any therapeutic, 

diagnostic and prognostic evidence for this mutation. Since this mutation has been recently 

incorporated in somatic databases including COSMIC (ID: COSM3738526) and ICGC (ID: 

MU67448716), CBP_9 as moderate evidence applied.  Recently two publications reported its 

biological functions in prostate cancer, CBP_12 applied. In addition, from CBP_7, this mutation 

is absent or has extremely low minor allele frequency in the public allele frequency database. 

All seven in silico methods predicted this mutation as (likely) pathogenic, CBP_10 applied.  

According the AMP/ASCO/CAP/CGC guidelines, this variant falls into the class of “Tier III 

uncertain significance” with a score of 7, but very closed the class of “Tire II potential”. While 

from deep learning of SGAN, the score is 0.99 as Oncogenic. This semi-automated 

interpretation approach can greatly improve the prediction accuracy for each variant, given 

existing knowledge and domain expertise, while, a model-based approach involving machine 
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intelligence such as SGAN model still can be as another optimized option and could be 

explored in our future work.  

 

DISCUSSION 

Clinical interpretation of cancer somatic variants remains an urgent need for clinicians and 

researchers working in the field of precision oncology, especially given the transition from 

panel sequencing to whole exome/genome sequencing in cancer genomics. To build a 

standardized, rapid and user-friendly interpretation tool, we developed a web server (together 

with command-line software tools) to assess the clinical impacts of somatic variants using the 

AMP/ASCO/CAP guidelines. CancerVar is an enhanced version of cancer variants 

knowledgebase incorporated from our previously developed tools for variant annotations and 

prioritizations including InterVar (56), VIC (9), iCAGES (57), as well as assembling existing 

variants annotation databases such as CIViC(4), CKB(6) and OncoKB(1). We stress here that 

CancerVar will not replace human acumen in clinical interpretation, but rather to generate 

evidence to facilitate/enhance human reviewers by providing a standardized, reproducible, 

and precise output for interpreting somatic variants. 

 

In CancerVar, we did not reconcile the well-known “conflicting interpretation” issues across 

knowledgebases; instead, we documented and harmonized all types of clinical evidence (i.e. 

drug information, publications, etc) for both hotspot and non-hotspot mutations in detail to 

allow users make their own clinical decisions based on their own domain knowledge and 

expertise. Compared to existing knowledgebases such as OncoKB, CIViC and metaKB, 

CancerVar provides an improved platform in four areas: (i) comprehensive, evidence-based 

annotations with rigorous quality control for ~13 million somatic variants, which is not limited 

to the small number of known hotspot mutations; (ii) well-designed, flexible scoring system 

allowing users to fine-tune the importance of clinical evidence criteria according to their own 

prior knowledge; (iii) improved prioritization for cancer driver mutations using novel semi-

supervised DL learning method; (iv) automatically summarized interpretation text so that users 

do no need to query evidence from multiple knowledgebase manually. We expect CancerVar 

to become a useful web service for the interpretation of somatic variants in clinical cancer 

research. 

 

We also need to acknowledge several limitations in CancerVar. First, the scoring weight 

system is not very robust. We note that the existing clinical guidelines did not provide the 
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recommendations for weighting different evidence types, and therefore treated all weights as 

equal by default; however, with the increasing amounts of clinical knowledge on somatic 

mutations, we expect that we may build a weighted model in the future to enhance the 

prediction accuracy. Second, a small number of CNAs (similar to hotspot mutations) has 

emerged as important biomarkers for disease characterization and therapeutic decision 

making, however there is a lack of specific database for clinically actionable somatic CNAs. 

Although AMP/ASCO/CAP published a CNAs guideline recently, CNAs are very 

heterogeneous in size, so their significance is much harder to score in practice. Therefore, in 

the future, we will design and implement the scoring system for CNAs with AMP/ASCO/CAP 

team, based on the platform used to discover CNAs, the reliability of the CNA calls, the genes 

covered by the CNAs and additional cancer type specific information from existing databases 

(given that different cancer types have different CNA profiles). Third, CancerVar currently 

cannot interpret inversions and gene fusions, and cannot interpret gene expression alterations, 

even though these genomic alterations may also play important roles in cancer 

development/progression. Before a specific guideline for these types of mutations becomes 

available, we suggest that users treat them as CNAs (gene inversions/fusions as deletions, 

and gene expression down-regulation or up-regulation as deletions or duplications).  

  

 

Accurate clinical significance interpretation depends greatly on the harmonization of evidence, 

which should be precisely derived and standardized from multiple databases and annotations. 

Compared to existing knowledgebases that document limited number of hotspot mutations, 

CancerVar provides polished, comprehensive, and semi-automated clinical interpretations for 

large scale somatic variants with completed clinical evidences, and it greatly facilitates human 

reviewers draft clinical reports for panel sequencing, exome sequencing or whole genome 

sequencing on cancer. Although some commercial software tools also used AMP/ASCO/CAP 

rule to standardize variants interpretation, they requires a high license fee that pushes many 

academic researchers away. Importantly, besides the interpretation based on 

AMP/ASCO/CAP human experts’ consensus rules, the CancerVar deep-learning based 

SGAN approach jointly modeled both rule-based clinical features and functional prediction 

features to support oncogenic predictions for mutations. We believe that CancerVar allows 

comprehensive clinical interpretations and prioritizations for both hotspot and non-hotspot 

variants, achieving a significant impact to facilitate the implementation of precision oncology.  
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In summary, CancerVar is both a web server and a command-line software that provide 

polished and semi-automated clinical interpretations for somatic variants in cancer.  In 

addition, it facilitates drafting clinical reports semi-automatically for panel sequencing, exome 

sequencing or genome sequencing on cancer. We expect to continuously improve 

CancerVar and incorporate new functionalities in the future, similar to what we have done on 

the wInterVar server and wANNOVAR server. 

 

CancerVar software accessibility 

Users can access CancerVar through three ways, including a web server that is free and open 

to all users without login requirements (http://cancervar.wglab.org), a command-line software 

written in Python that is freely available from GitHub (https://github.com/wglab/CancerVar) for 

non-commercial users, and a RESTful API service to facilitate other web developers to access 

our pre-computed evidence for 13 million variants. 
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TABLE AND FIGURES LEGENDS 

Table 1. Comparison of classification on 43 variants between 20 pathologists and 

CancerVar.  

Annotators 

Classifications 

20 pathologists 

I/II* III IV Total 

CancerVar I/II 17 4 0 21 

III 12 9 0 21 

IV 0 1 0 1 

Total 29 14 0 43 

 

 

* Tire I: strong clinical significance; Tire II: potential clinical significance; Tire III: unknown 

clinical significance (VUS); Tire IV: benign/likely benign 
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 Table 2. Summary of CancerVar prediction on OncoKB mutations. 

OncoKB 

Model-based CancerVar Rule-based CancerVar 

Oncogenic Neutral  
I/II (S/P)  

III 

(VUS) 

IV 

(Benign) 

Oncogenic/Likely 

Oncogenic 2319 263 1839 690 53 

Neutral/  

Likely Neutral 348 239 281 279 27 

Inconclusive 152 134 132 150 4 

Total 2819 636 2252 1119 84 

 

 

Table 3. Summary of CancerVar prediction on CIViC mutations. 

CIViC 

Model-based 

CancerVar Rule-based CancerVar 

Oncogenic Neutral I (Strong) II (Potential) III (VUS) IV (Benign) 

A: validated 17 2 2 7 0 10 

B: clinical 259 40 111 109 61 18 

C: case study 792 30 178 439 198 7 

D: preclinical 466 22 91 277 119 1 

E: inferential 47 6 5 11 33 4 

Total 1581 100 387 843 411 40 
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Table 4. CancerVar and OncoKB predictions of mutations in the IARC TP53 

transactivation dataset 

 

IARC TP53 

Transactivation 

Model-based 

CancerVar Rule-based CancerVar OncoKB 

Oncogenic Neutral S/P VUS benign O/LO VUS Neutral 

Oncogenic 512 20 522 10 0 489 43 0 

Neutral 749 634 1069 314 0 455 928 0 

Total 1261 654 1591 324 0 944 971 0 

 

 

Table 5. CancerVar and OncoKB predictions of mutations in the in vitro Cell Viability 

dataset by Ng. et al, 2018 

Cell Viability 

(in vitro) 

Model-based 

CancerVar  

Rule-based 

CancerVar 
OncoKB 

Oncogenic Neutral S/P VUS benign O/LO VUS Neutral 

Oncogenic 208 45 217 34 2 204 39 10 

Neutral 242 222 230 222 12 71 335 58 

Total 450 267 447 256 14 275 374 68 
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Table-6. FDA approved or recognized biomarkers (therapeutic, diagnosis and prognostic) 

clinical significance or oncogenic prediction from CancerVar and SGAN.    

Gene 
Alternati

on 
Cancers Levels CancerVar SGAN 

ABL1 T315I 

B-Lymphoblastic 
Leukemia/Lymphoma/
Chronic Myelogenous 

Leukemia 

Therapeutic 
(Ponatinib) 

Tier-II(score 8) 0.87 

AKT1 E17K 

Breast 
Cancer/Ovarian 

Cancer/Endometrial 
Cancer 

Therapeutic 
(AZD5363) 

Tier-II(score 10) 0.97 

BRAF V600E 
Melanoma/Non-Small 

Cell Lung Cancer 

Therapeutic 
(Dabrafenib + 

Trametinib;Vem
urafenib) 

Tier-I(score 11) 0.98 

EGFR T790M 
Non-Small Cell Lung 

Cancer 
Therapeutic 
(Osimertinib) 

Tier-II(score 9) 0.96 

EGFR L861Q 
Non-Small Cell Lung 

Cancer 
Therapeutic 

(Afatinib) 
Tier-II(score 10) 0.98 

EGFR S768I 
Non-Small Cell Lung 

Cancer 
Therapeutic 

(Afatinib) 
Tier-I(score 11) 0.99 

EZH2 

Y646F 

Follicular Lymphoma 
Therapeutic 

(Tazemetostat) 

Tier-I(score 11) 0.99 

Y646H Tier-I(score 11) 0.99 

Y646N Tier-I(score 11) 0.99 

Y646S Tier-I(score 11) 0.99 

 FGFR3 

R248C 
 Bladder Cancer 

  
  

Therapeutic 
(Erdafitinib)  

  
  

Tier-II(score 9) 0.99 

S249C Tier-II(score 9) 0.99 

Y373C Tier-II(score 10) 0.99 

JAK2 V617F Primary Myelofibrosis Prognostic Tier-I(score 11) 0.83 

KIT 

A829P 

Gastrointestinal 
Stromal Tumor 

 

Therapeutic 
(Imatinib; 

Regorafenib; 
Ripretinib; 
Sunitinib) 

 

Tier-II(score 9) 0.86 

T670I Tier-II(score 9) 0.97 

V654A Tier-I(score 11) 0.99 

Y823D Tier-II(score 10) 0.99 

D816V 
Systemic 

Mastocytosis 
Diagnostic  Tier-II(score 9) 0.98 

KRAS G12C 
Non-Small Cell Lung 

Cancer 
Therapeutic 
(AMG-510) 

Tier-I(score 11) 0.99 

PDGFR
A 

D842V Gastrointestinal 
Stromal Tumor 

Therapeutic 
(Avapritinib) 

Tier-II(score 9) 0.95 

 D842Y Tier-II(score 10) 0.99 
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Figure 1. The functions of CancerVar and the descriptions of 12 types of evidence.  
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(A)   
 

 
        (B) 

Figure 2. (A) Workflow of the SGAN method and (B) Architecture of generator and 

discriminator/classifier used in SGAN. Here we used a 3 transposed CNN layer to 

generate synthetic samples from a vector consisting of 100 random noises. The 

discriminator/classifier is a typical resNet-18. 
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Figure 3 Comparison of interpretation on 43 variants between 20 pathologists and 

CancerVar. The heatmap shows the ratio of 20 pathologists voting for the four Tiers: Tier I 

strong clinical significance (SCS), Tier II potential clinical significance (PCS), Tier III variant 

uncertain clinical significance (VUS), and Tier IV benign/likely benign (B/LB). The last two 

columns are cancerVar predicted score and classification. Results show CancerVar has 81% 

(17/21) agreement rate with pathologists’ majority voting for Tier I/II, and 60.5% (26/43) 

agreement rate for all Tiers. This agreement rate is comparable to the 58% agreement rate 

within the 20 pathologists, but CancerVar can automate interpretation.  

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2020.10.06.323162doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.323162
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 
 

  

(A)                                                                                       (B) 

  

(C)                                                                                   (D) 

Figure 4. UpSetR (Conway et al., 2017) plot highlights the intersection of multiple methods 

with oncogenic prediction from different datasets. (A) Mutations were taken from OncoKB 

dataset. (B) Mutations were taken from CIViC. (C) Mutations were taken from IARC TP53 

Transactivation dataset. (D) Mutations were taken from Cell Viability in Vitro by Ng. et al, 2018 
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(A)                                                             (B)   

Figure 5. Receiver operating characteristic (ROC) curves for performance comparison on 

6,226 somatic mutations as the testing set. (A) SGAN outperforms six other machine learning 

algorithms including gradient boosting tree (GBDT), support vector machine (SVM), AdaBoost 

(ADA), multi-layer perceptron (MLP) random forest classification (RFC), and voting classifier 

(VC). (B) SGAN also outperforms any individual functional impact prediction tool in prediction 

of cancer somatic driver mutations. 
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Figure 6. CancerVar use case of FOXA1. We queried FOXA1 mutation R219C in prostate 

cancer. The rule-based prediction of this variant was Tier-III uncertain-significance with 

score 7, very close Tier-II. However, after applied deep learning, the SGAN model predicted 

this variant as oncogenic with score 0.99. Finally, we suggested this variant with clinical 

significance.   

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2020.10.06.323162doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.323162
http://creativecommons.org/licenses/by-nc-nd/4.0/

