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Recent experiments have uncovered a fundamental information scale for cellu-

lar signaling networks: the correlation between input and output concentrations of

molecules in a signaling pathway corresponds to at most 1-3 bits of mutual infor-

mation. Our understanding of the physical constraints and evolutionary pressures

that determine this scale remains incomplete. By focusing on a basic element of sig-

naling pathways, the kinase-phosphatase enzymatic push-pull loop, we highlight the

pivotal role played by energy resources available for signaling and their expenditure:

the chemical potential energy of ATP hydrolysis, and the rate of ATP consumption.

Scanning a broad range of reaction parameters based on enzymatic databases, we

find that ATP chemical potentials in modern organisms are just above the threshold

necessary to achieve empirical mutual information values. We also derive an ana-

lytical relation for the minimum ATP consumption required to maintain a certain

signal fidelity across a range of input frequencies. Attempting to increase signal

fidelity beyond a few bits lowers the bandwidth, the maximum characteristic signal

frequency that the network can handle at a given energy cost. The observed informa-

tion scale thus represents a balancing act between fidelity and the ability to process

fast-changing environmental signals. Our analytical relation defines a performance

limit for kinase-phosphatase networks, and we find evidence that a component of the

yeast osmotic shock pathway may be close to the optimality line. By quantifying the

evolutionary pressures that operate on these networks, we argue that this is not a

coincidence: natural selection on energy expenditures is capable of pushing signaling

systems toward optimality, particularly in unicellular organisms. Our theoretical

framework is directly verifiable using existing experimental techniques, and predicts

that more examples of such optimality should exist in nature.

I. INTRODUCTION

Survival for living cells depends in part on accurate and responsive signaling: the ability

to collect enough information about the micro-environment to make decisions in response

to external stimuli such nutrients, hormones, and toxic agents [1]. This capacity to react

to extracellular cues developed early in evolutionary history, and is now seen at all levels

of biological organization, from chemotaxis in unicellular organisms [2–4] to the pathways

that regulate cell differentiation and disease in multicellular life [5–8]. Despite the resulting

diversity of biochemical networks that implement this signaling, information theory provides
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a powerful universal framework to quantify the amount of information transferred through

a network, allowing comparisons between different systems [9].

Over the last decade a remarkable experimental consensus has emerged from such com-

parisons: studies of both prokaryotic and eukaryotic signaling pathways have found they can

transmit at most ∼ 1 to 3 bits of information [10–17], These values refer to mutual infor-

mation (MI) between pathway input (concentrations of a molecule representing the signal)

and output (concentrations of a downstream molecule produced by the network, sampled

either at a single or multiple time points). MI is a measure of signal fidelity, representing the

degree of correlation between input and output. Experiments have typically focused on a

closely related quantity known as the channel capacity [18, 19]: the maximum MI achievable

among all input distributions.

The consistently small channel capacities observed in cellular signaling pathways seem to

indicate that cells operate with a fairly coarse representation of their surroundings: n bits

of MI corresponds to being able to reliably distinguish between 2n levels of the input, so

a 1 bit pathway can only discriminate between “high” versus ”low” signal concentrations.

Though 1 bit is typical for MI measured at single time points, one can achieve higher MIs by

focusing on output responses collected over several time points [14, 15], or by designing the

experiment to isolate single-cell responses (as opposed to estimating MI from the responses

of a population of cells) [17]. But these enhancements, which can push values to the 2-3 bit

range, do not change the fundamental order of magnitude of the MI.

The central question we explore in this work is to what extent this fundamental infor-

mation scale is shaped by the energy requirements of the underlying biochemical signaling

networks. In order to transmit information, these networks necessarily need to operate out

of equilibrium, fueled by processes like ATP hydrolysis that consume energetic resources.

Recent research highlights these costs as an essential factor in understanding constraints on

signaling [2–4, 20–23], often focusing on the ATP hydrolysis chemical potential difference

∆µ = µATP − µPi
− µADP between the reactant (ATP) and products (ADP and inorganic

phosphate, Pi), quantifying the free energy available to drive the system per ATP. Crossing

a certain minimum threshold of ∆µ is a prerequisite for a variety of signaling functions:

accurate read-out of ligand-bound receptors [2, 3, 23], maintaining the phase coherence of

oscillations in circadian clocks [20], or preserving the integrity of methylation-based “mem-

ory” to facilitate adaptation in chemotaxis [4]. This threshold is typically a few times larger

(i.e. by a factor of ∼ 3−4 [2, 23]) than the energy scale of thermal fluctuations, kBT , where

kB is the Boltzmann constant and T the temperature. And indeed cells across the various

domains of life maintain a sufficiently high ∆µ ≈ 21− 29 kBT [24] to enable such functions.

The large value and remarkably narrow range of ∆µ observed in modern organisms opens

up additional questions. The metabolic cycles that sustain ∆µ, constantly replenishing ATP
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as it is hydrolyzed, must almost necessarily have been far more inefficient and wasteful in the

earliest stages of evolutionary history [25]. To what degree could organisms operating with

smaller ∆µ still process information about their environment? What kinds of evolutionary

pressures might have driven ∆µ to its modern range? And if the costs of individual signaling

systems are non-trivial [2, 4], could natural selection have driven these networks toward

optimized, energy-efficient solutions?

To investigate these issues, we focus on one of the canonical signaling circuits in biology,

the kinase-phosphatase “push-pull loop”, which often forms a basic unit of more compli-

cated signaling cascades [26–29]. An active kinase enzyme instigates the “push”, chemically

modifying a substrate protein via phosphorylation (consuming ATP in the process), while a

phosphatase enzyme provides the “pull”, dephosphorylating the modified substrate, revert-

ing it to its original state. We derive the relationships between three facets of the system:

i) the MI between the input (active kinase) and output (phosphorylated substrate) molec-

ular populations; ii) the timescales over which the input signal varies; and iii) the energy

requirements, expressed in terms of ∆µ and the rate of ATP consumption. Exploring the

entire spectrum of kinase/phosphatase enzymatic parameters from bioinformatic databases,

we find that physiological ∆µ values are just large enough to enable an MI of 1-2 bits for the

widest possible parameter range. However to achieve this MI for signals that vary rapidly in

time becomes more challenging, requiring both precise fine-tuning of parameters and a cer-

tain minimum rate of ATP consumption. In fact, taking advantage of results from optimal

noise filter theory [30, 31], we derive a remarkably simple analytical relationship that de-

scribes the tradeoffs between minimum ATP rate, the MI, and the maximum characteristic

signal frequency (the so-called bandwidth) which the push-pull network can handle. Verified

via extensive numerical simulations across the whole gamut of enzymatic parameters, this

relation is a novel theoretical prediction that can be directly tested in future experiments.

The relation rationalizes the observed range of MI by showing that values much higher than

1-2 bits would require sacrificing the ability to process fast-changing signals. Finally we

explore the question of whether there exist evolutionary pressures that would push such a

system to be energy efficient, optimizing the ATP consumption for a given target MI and

bandwidth. Using a recently developed formalism relating metabolic costs to the strength

of natural selection [32, 33], we show that these pressures can indeed be significant, particu-

larly for single-celled organisms. We highlight a kinase-phosphatase loop in the yeast Hog1

signaling pathway as a system that may have been optimized by such pressures.
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FIG. 1. (A) A schematic signaling pathway involving cascades of kinase phosphorylation, initiated

by a receptor embedded in the cell membrane that responds to extracellular ligands. The system

we focus on will be one stage of the pathway, a kinase-phosphatase push-pull loop, highlighted in

the dashed box. (B) The molecular species and reaction parameters of the push-pull loop. The

kinase (K) binds to the substrate (S), forming the complex (SK) that catalyzes the production

of phosphorylated substrate (S∗). Phosphatase (P ) binds to S∗, forming a complex (S∗P ) that

catalyzes the dephosporylation of the substrate. Forward reaction / binding rates are labeled in

black, while reverse reaction / unbinding rates are in red. (C) The loop serves to transduce an

input signal, defined as the total population of kinase (bound or unbound), X(t) = K(t) + SK(t),

into an output, defined as the total population of phosphorylated substrate, Y (t) = S∗(t) + S∗P (t).

The input signal has a characteristic autocorrelation time γ−1
x .

II. THEORY

A. Modeling an enzymatic push-pull loop

This push-pull network consists of two opposing reactions: a kinase enzyme instigates the

“push”, chemically modifying a substrate protein via phosphorylation, while a phosphatase

enzyme provides the “pull”, dephosphorylating the modified substrate, reverting it to its

original state [26–29]. Since a single kinase can catalyze the phosphorylation of many sub-

strate proteins, this loop can effectively act like an amplifier [28], translating a weaker signal

(a small cellular population of an active kinase) into a stronger one (a large population of a

phosphorylated substrate). Often the substrate itself is a kinase that can exist in catalyti-

cally inactive and active states, with activation triggered by phosphorylation. In this case

one can have multi-tiered signaling cascades enhancing the amplification (as shown schemat-
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ically in Fig. 1A) with the active substrate produced by one loop serving as the kinase for

a downstream loop [34]. More complex signaling networks are also possible, with multiple

cascades connected by crosstalk through shared components [35], feedback from downstream

to upstream populations [34], or activation requiring multisite phosphorylation [36]. How-

ever, the starting point for understanding any of these more complex signaling topologies

is the behavior of a single loop, with a substrate activated / deactivated through a single

phosphorylation site.

The reaction scheme of a single push-pull loop is shown in Fig. 1B. Binding of free

kinase (population K(t) at time t) to substrate (population S(t)) occurs with rate con-

stant κb, forming a kinase-substrate complex (population SK(t)). Phosphorylation of the

substrate and its subsequent release constitutes the catalytic step, with rate κr, yielding

free phosphorylated substrates (population S∗(t)). A phosphatase can subsequently bind,

with rate ρb, forming a phosphatase-substrate complex (population S∗P (t)), and catalyzing

the dephosphorylation / release of the substrate with rate ρr. These reactions also can

occur in reverse: kinase-substrate unbinding (rate κu), reverse kinase catalysis (rate κ−r),

phosphatase-substrate unbinding (rate ρu) and reverse phosphatase catalysis (rate ρ−r). Un-

der physiological conditions some of these reverse rates may be negligible compared to their

forward counterparts, but accounting for them is crucial to enforce thermodynamic consis-

tency. In fact the product of the ratios of the reverse rates relative to the forward ones must

satisfy a key thermodynamic relation arising from the principle of local detailed balance

(closely related to the Haldane relation for enzymes) [37, 38],

κ−rρuρ−rκu
κrρbρrκb

= e−β∆µ. (1)

This relation is derived in the Supplementary Information (SI), and reflects the fact that

for every complete traversal of the loop along the forward direction (clockwise along the

black arrows in Fig. 1B) a single ATP molecule is removed from the environment, hy-

drolyzed, and the products ADP and inorganic phosphate Pi released back into the sur-

roundings. ∆µ depends on the concentrations [ATP], [ADP], and [Pi] through ∆µ =

∆µ0 + kBT ln([ATP](1 M)/([ADP][Pi])), where ∆µ0 is the standard free energy of ATP

hydrolysis (∆µ0 ≈ 12 kBT at room temperature [24]). Living systems expend energetic

resources to maintain an imbalance of [ATP] relative to [ADP] and [Pi], making ∆µ in phys-

iological conditions larger than ∆µ0. Despite the wide variety of metabolic pathways used to

achieve this, measured ∆µ values in organisms from E. coli to humans lie within a relatively

narrow range, ∆µ ≈ 21−29 kBT [24]. This means reverse rates are sufficiently slow that the

numerator in Eq. (1) is 9-12 orders of magnitude smaller than the denominator. One of the

questions we tackle below is the significance of this disparity for transmitting information
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through the loop.

To quantitatively measure this information transfer, it is useful to explicitly describe the

network behavior in terms of transducing an input signal into an amplified output, with

degradation of the signal due to the stochastic nature of the reactions that mediate this

process. We take the time-dependent input X(t) = K(t) + SK(t) to be the population

of active kinases (both free and substrate-bound), and the corresponding output signal

Y (t) = S∗(t) +S∗P (t) as the population of phosphorylated substrates (free and phosphatase-

bound). For any specific system, the input kinases would be activated through a particular

upstream signaling network. Here, however, we are interested in a more general problem:

what is the effectiveness of this loop in processing a variety of possible input signals, spanning

different amplitudes and timescales. The simplest mechanism that allows us to tune the

dynamical characteristics of the input is to imagine the kinases activated at a constant rate

F and deactivated at a constant rate γK . We focus on the long-time limit where a stationary

state has been achieved, and so F allows us to regulate the amplitude of the input signal

while γK controls the autocorrelation time of the input fluctuations. While the analysis below

could be done for other, system-specific models of the input, our choice allows us to explore

a broad range of possible inputs to establish general bounds on information processing

through the loop. With this input model, the reaction network model is fully specified. For a

given set of parameters (drawn from distributions based on kinase/phosphatase biochemical

information collected in enzymatic databases, as described below) we can derive analytical

results for dynamical quantities using the linearized chemical Langevin approximation [39].

As shown in the SI, this provides excellent agreement with the exact kinetic Monte Carlo [40]

simulation results in the parameter ranges of interest.

In focusing on how X(t) is transduced to Y (t), we frame our analysis in terms of three

properties of the system. The first is the autocorrelation time of the input, γ−1
x , defined

through δX(t+ τ)δX(t) = δX2 exp(−γx|τ |), where the bar denotes an average over an en-

semble of trajectories in the stationary state and δX(t) ≡ X(t)−X. Note that instantaneous

averages like X ≡ X(t) and δX2 ≡ δX2(t) are independent of t in the stationary state. γ−1
x

is the characteristic timescale of the input fluctuations, and we will denote its inverse, γx,

as the effective “frequency” of the input. The second property is related to the mean rate

at which phosphorylated substrates are produced through the catalytic reaction step, κrSK ,

relative to the mean total number of activated kinases X. We define the gain parameter

R0 ≡ κrSK/X as a measure of the production of output for a given input level. Both γx

and R0 can be expressed, to a good approximation, in terms of the reaction rates as follows

(see SI for derivation):

γx =
C1

C1 + C2

γK , R0 =
C2

C1 + C2

κr, (2)
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where C1 ≡ κ−PγKρbρr + Fκ−rκuρ−, C2 ≡ S[Fκbκ−rρ− + PγK(κbρbρr + κ−rρ−rρu)]. Here

κ− ≡ κu + κr, ρ− ≡ ρu + ρr. Note the dependence on mean unmodified substrate S and

free phosphatase P populations: these two numbers are free parameters that (along with

the reaction rates) determine the network dynamics.

The final property of interest is the instantaneous stationary MI I between X(t) and Y (t).

This is defined in terms of the joint probability P (X, Y ) of observing input value X and

output value Y at the same moment of time, and the corresponding marginal probabilities

P (X) and P (Y ),

I =
∑
X,Y

P (X, Y ) log2

P (X, Y )

P (X)P (Y )
. (3)

The value of I is non-negative in all cases, and is measured in bits, with larger values

translating to a greater degree of correlation between input and output. For our parameter

ranges, P (X, Y ) can be approximated as a bivariate Gaussian, and so we use an expression

for I valid in this limit that is more convenient to evaluate [19]:

I ≈ −1

2
log2E, where E ≡ 1− (XY −X Y )2(

X2 −X2
)(

Y 2 − Y 2
) . (4)

Here E = 1− ρ2, where ρ is the Pearson correlation coefficient, and hence lies in the range

0 ≤ E ≤ 1. For E = 0 (or equivalently I = ∞) we have perfect correlation between the

input and output signal, while E = 1 (I = 0) corresponds to an output that is completely

independent of the input.

B. Determining the enzymatic parameter range

Once the input signal is specified through F and γK , there are ten parameters related

to the kinase, phosphatase, and substrate that determine the observables of interest γx,

R0, and I discussed above. These parameters are: κb, κu, κr, κ−r, ρb, ρu, ρr, ρ−r, S̄,

P̄ . We know from surveys of enzymatic parameters that each of these quantities can span

several orders of magnitude among different systems, often with an approximately log-normal

distribution [41, 42]. To understand the performance limits of enzymatic loops in general,

it makes sense to explore the entire range of biologically realistic parameters, rather than

focus on a single choice of parameters. Existing online databases are excellent resources for

this purpose, and Fig. 2 shows the resulting histograms of kinase / phosphatase parameters

(full extraction details are available in the SI). For the substrate protein (which we take as

a kinase) and the phosphatase, the concentrations [S] and [P ] in Fig. 2A are derived from

the PaxDb protein abundance database [43], using UnitProt gene ontology associations to
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identify kinases and phosphatases [44]. Enzymatic reaction parameters are available in

the Sabio-RK database [45]. The reaction rates κr and ρr (Fig. 2D) are typically listed

directly, but the others are most often in specific combinations: the Michaelis constants

Kkin
M = (κr + κu)/κb, K

pho
M = (ρr + ρu)/ρb for kinase/phosphatase respectively (Fig. 2B)

and the specificity ratios κr/K
kin
M , ρr/K

pho
M (Fig. 2C). For all of these parameters there is

a paucity of data on phosphatases relative to kinases, but the phosphatase ranges seem to

largely overlap with those of kinases. Thus for simplicity we take kinase and phosphatase

parameters to have the same distributions (log-normal) and use a numerical fitting procedure

to find an overall log-normal joint probability distribution for the eight underlying model

parameters represented in the data: κb, κu, κr, ρb, ρu, ρr, S̄, P̄ (see SI). Note that data in

concentrations units (like [S] and [P ] in molars) is converted to mean abundances (S̄ and

P̄ ) by assuming a volume of 30 fL (comparable to the cytoplasmic volume of yeast [24, 46]).

This procedure is designed so that the resulting joint distribution yields marginal probability

densities (solid curves in Fig. 2) that exhibit good agreement with the histogram data for

any of the measured parameter combinations. Despite this agreement, we note that the joint

distribution likely spans a portion of the parameter space larger than the true distribution

of biological values: this is because it cannot fully capture correlations between different

parameters. (Such correlations are difficult to reconstruct since many database entries are

incomplete, containing some but not all of the enzymatic parameters.) For our purposes,

having a distribution that effectively acts like a superset of the biological distribution is fine:

whatever performance bounds we infer from the whole distribution will then also apply to

the subset of the distribution that corresponds to current real-world systems. Moreover this

also allows us to explore a larger enzymatic design space, which may have been accessible

at earlier points in evolutionary history.

Two of the model parameters are still unaccounted for: the reverse reaction rates κ−r

and ρ−r. Though usually small in magnitude and typically not measured in enzyme kinetic

assays, we also know that they are crucially related to ∆µ through the local detailed balance

relation of Eq. (1). Thus, as explained in the next section, these become important free

parameters that we can vary to explore signaling efficiency and its dependence on ∆µ.

III. RESULTS

A. Minimum cost of transmitting information

Given the model described above, with a parameter set drawn at random from the em-

pirical joint distribution, we can ask a basic first question: what is the minimum chemical

potential difference ∆µ required to achieve a certain mutual information I? The answer
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FIG. 2. Enzymatic parameter ranges for kinases/phosphatases based on the PaxDb [43] and

Sabio-RK [45] databases. Because of the relative lack of phosphatase data (orange histograms)

relative to kinases (blue histograms), we fit an overall log-normal joint probability to the total

data set including both kinases and phosphatases. The marginal distributions from that global

fit are plotted as purple curves. The parameters are as follows: (A) kinase substrate [S] and

phosphatase [P ] concentrations; (B) kinase/phosphatase Michaelis constants Kkin
M , Kpho

M ; (C) the

corresponding specificity ratios κr/K
kin
M , ρr/K

pho
M ; (D) kinase/phosphatase catalytic rates κr and

ρr.

will depend on the nature of the input signal X(t), and thus we would like to test different

effective input frequencies γx. To do this we will fix the mean free kinase concentration at

the level of a low amplitude input, [K] = 5 nM, and vary γK , which varies γx according to

Eq. (2) with F = γKK̄ for fixed K̄. In the SI we also show the same analysis for [K] = 0.5

and 50 nM, with results qualitatively similar to those described below. After drawing en-

zyme parameters from the joint distribution and specifying γx at a given [K], the only two

free parameters are the reverse reaction rates κ−r and ρ−r.

Fig. 3A shows a contour diagram of I as a function of κ−r and ρ−r for a sample enzyme

parameter set and value of γx. Superimposed are dotted lines of constant ∆µ from Eq. (1).

If one were interested in achieving a particular I value, for example I = 1 bit, one can
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then numerically determine the κ−r and ρ−r point along the I = 1 bit contour where ∆µ is

smallest. For this specific enzyme parameter set and γx, the value turns out to be ∆µ = 6.72

kBT , which would then be recorded as the minimum necessary ∆µ to achieve 1 bit of MI.

Note that it is not guaranteed that a minimum ∆µ solution exists for every parameter set

sampled from the joint distribution. If the I contours plateau at a maximum less than 1

bit, no possible ∆µ will allow that particular system to achieve the desired MI target. We

will return to this important point below.

If one keeps the enzyme parameters (other than κ−r and ρ−r) fixed, and just varies γx,

an interesting trend appears in the minimum ∆µ results. Fig. 3B shows two examples of

minimum ∆µ curves, for target I values of 1 and 2 bits respectively. For a given I target,

the minimum ∆µ is nearly constant at low input frequencies, but then increases rapidly

and diverges at a maximum frequency which we will dub the “bandwidth” of the system.

This intuitively makes sense: the higher the input frequency, the more rapid the catalytic

reaction rates needed to accurately transmit the signal through the system, increasing the

required ∆µ threshold. However, there is an inherent limit, given finite enzyme catalysis

rates. Above the bandwidth, whose value depends on the enzyme parameters, the system

can no longer achieve the target I. The higher the informational burden (i.e. increasing the

target I from 1 to 2 bits) the lower the bandwidth: if one desires higher fidelity transmission,

the range of transmissible signal frequencies will suffer.

To make more sense of these results, it is useful to look at a broad sample of enzyme

parameters rather than a single set. To visualize global behaviors, we will calculate two

numerical results for each set drawn from our joint distribution. The procedure is as follows:

i) Sample an enzyme parameter set from the distribution; ii) Determine if it can achieve our

target I for any input frequency; iii) If the answer is yes, vary γK until one finds the maximum

possible value γmax
K where one can still achieve the I target. iv) Calculate the minimum ∆µ

for an input signal very near the bandwidth frequency, where γK = 0.95γmax
K . We will call

this result ∆µhigh. The corresponding input frequency is γhigh
x . v) Analogously, calculate

the minimum ∆µ for an input signal with a frequency much lower than the bandwidth,

where γK = 0.01γmax
K . This set of results we denote as ∆µlow and γlow

x . Fig. 3B shows

the two points (γhigh
x ,∆µhigh) and (γlow

x ,∆µlow) as blue and green dots respectively for that

particular parameter set at I = 1 bit. These two points encapsulate several key features

of the minimum ∆µ versus γx curve: ∆µlow roughly corresponds to an “entry level” price,

the minimum ATP hydrolysis chemical potential necessary to transmit the signal at any

frequency, while the difference ∆µhigh − ∆µlow is the premium one has to pay to transmit

signals near the highest possible frequencies. The value γhigh
x approximately corresponds to

the bandwidth.
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FIG. 3. (A) A representative contour diagram of I (solid curves) as a function of κ−r and ρ−r
for a parameter set drawn randomly from the joint distribution. Dotted lines denote contours of

constant ∆µ. In this case ∆µ = 6.72 kBT is the smallest value at which the system can achieve

I = 1 bit. (B) For a sample parameter set, the minimum ∆µ needed to achieve I = 1, 2 bits as a

function of input frequency γx. For the 1 bit case, the dashed line represents γhigh
x , the maximum

γx compatible with I = 1 bit for this parameter set. As described in the text, we highlight two

points along the curve: one at a frequency γhigh
x at roughly 95% of the bandwidth, and the other

at frequency γlow
x at roughly 1% of the bandwidth. The points will be plotted for a many random

draws of the enzyme parameters from the joint distribution in the lower panels of the figue. (C) For

each target value of I = 1, 1.5, 2 bits, the percentage probability of randomly drawing a parameter

set that has a γhigh
x higher than a given frequency. (D-F) The distribution of γhigh

x (blue) and γlow
x

(green) for many random parameter draws, keeping only those that can achieve I = 1 bit (D), 1.5

bits (E), or 2 bits (F). The probabilities of successfully drawing such a set are shown in red in each

panel. The blue and green circles denote the median of each distribution respectively. (G-I) The

same γhigh
x distributions as in panels (D-F), except plotted in terms of gain R0 on the vertical axis.

The solid line is the analytical maximum bandwidth bound γmax
x of Eq. (5). The purple circle in

panel G shows the estimated result for the near-optimal yeast Pbs2/Hog1 system.
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If one were to make numerous draws from the parameter distribution, and plot (γhigh
x ,

∆µhigh) and (γlow
x ,∆µlow) for each draw, one would get a cloud of blue and green dots. These

are shown in Fig. 3D-F for target I of 1, 1.5, and 2 bits respectively. As mentioned above,

not every draw will lead to a parameter set that can achieve the target, and the plots are

labeled by the fraction of draws that are capable of reaching that particular value of I. That

fraction decreases with I, from 13% for I = 1 bit down to only 2% for I = 2 bits. As I
increases not only does it become progressively more difficult to find enzymatic parameters

compatible with higher fidelity, but the accessible frequency range becomes more restricted.

Fig. 3C shows the percentage of the parameter space that can achieve bandwidths higher

than a given frequency for different I. For example let us consider the frequency 1.22×10−3

s−1, which is the I = 1 bit bandwidth for the yeast Pbs2/Hog1 system described in detail

in Sec. IIIC. (This system is part of the Hog1 osmotic stress response pathway, whose

overall bandwidth has been experimentally estimated to be of a similar scale [47]). From

Fig. 3C it is evident that only about 0.41% of the draws from the parameter distribution

have γhigh
x ≥ 1.22 × 10−3 s−1 for a target I = 1 bit. If one were to attempt to transmit

signals at such high frequencies for I = 2 bits, the fraction of compatible parameter space

shrinks to a miniscule 9 × 10−3%. This reflects the exquisite fine-tuning required to put

together a set of enzymatic loops capable of responding to quick, life-or-death variations of

the external environment on time scales of a couple of minutes. Going much beyond I = 1

bit and maintaining fast response times for a single push-pull loop is extremely difficult, and

hence it makes sense that biology settles for I in the vicinity of 1 bit in many circumstances.

Going much below 1 bit poses another set of difficulties, since such systems would not even

be able to reliably transmit the difference between high and low values of input signal. For

signaling that can occur over longer timescales (hours instead of minutes) it becomes much

easier to find compatible parameter sets, with the median of the distribution of γhigh
x for

I = 1 bit around ∼ 6× 10−5 s−1.

From the perspective of costs, the bulk of the distribution of entry level prices ∆µlow

for I = 1 bit is & 1 kBT . Any system much below this would be too close to equilibrium

(reverse rates comparable to forward rates) for effective information transfer to occur. The

median of the ∆µlow distribution in Fig. 3C is 4 kBT , increasing to about 6 kBT for I = 2

bits in Fig. 3E. These values are on the same scale as estimates of minimum ∆µ ∼ 4

kBT ln 2 required for 99% accurate readout of a ligand-bound receptor via the activation of

a downstream molecule, assuming an arbitrarily slow readout process [23]. In that system

(as in ours), processing information at faster time scales requires large ∆µ. Indeed we

find that the median values for ∆µhigh range between 8 − 10 kBT for I = 1 − 2 bits.

The minimum ∆µ near the bandwidth is typically shifted up by about 4 kBT , reflecting the

premium necessary to transmit near the frequency limit. Paying this premium is worthwhile:
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frequencies γlow
x accessible at ∆µlow prices are likely far too low to have biological relevance,

with the distributions of γlow
x largely below 10−5 s−1. To get the ability to respond to signals

at more biologically reasonable time scales thus means being capable of transmitting closer

to the bandwidth, making ∆µhigh a more useful measure of minimum biological costs.

The ∆µhigh distributions show that it is possible to have signaling systems that transmit at

least 1 bit of MI and operate at ∆µ lower than the current physiological range (∆µ ≈ 21−29

kBT [24], indicated in pink in Fig. 3D-F). This is true even for systems with the fastest

responses (large γhigh
x near the right edges of the distribution). This means the one can

imagine enzymatic signaling systems in the earliest stages of evolutionary history that can

reliably distinguish high and low inputs even before ATP metabolism (maintaining high

ATP concentrations relative to ADP and Pi) reached its modern levels of efficiency.

In fact a fascinating universal feature of the distributions is that the physiological ∆µ

range lies just above the top edge of the distributions. Naively it would seem as if the

physiological values are just high enough to allow these signaling loops to transmit I = 1−2

bits across the broadest possible parameter subset. This gives evolution the largest possible

space in which to tweak tradeoffs between fidelity and response times without running into

chemical potential limitations. Of course ∆µ influences not just signaling networks but

the entire range of cellular functions, so it is impossible to say with certainty what factors

played the largest role in determining the values of ∆µ we see in present-day organisms.

But at least from the perspective of signaling at the level of a push-pull loop, it is clear that

∆µ ≈ 21−29 kBT is more than good enough for basic information transfer needs, and there

would be no benefit in having a system with substantially higher ∆µ. To maintain ∆µ = 40

or 50 kBT for example, would require significant additional metabolic resources, with little

payoff in terms of either I or bandwidth.

B. Analytical bound describes tradeoff between bandwidth and information

The results above already illustrated the tradeoff between bandwidth and MI, with pa-

rameter sets that achieve very large γhigh
x becoming progressively harder to find as the

target I increases. Can we understand this relationship in more detail? For this purpose

we take advantage of optimal noise filter theories, originally developed in the context of

signal processing [48–50], and in recent years applied to a variety of biological signaling

networks [30, 31, 51–54]. The original motivation involved designing a filter for a signal

corrupted by noise, such that the output matched the uncorrupted input signal as closely

as possible. In the biological context, this same framework allows us to put bounds on the

maximum MI achievable between input and output signals for given input and enzymatic pa-

rameters. As shown in the SI, our enzymatic push-pull loop can be approximately mapped
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onto an effective two-species input-output system, which is then amenable to analytical

treatment using the Wiener-Kolmogorov optimal filter theory [30, 48–50].

The end result is a remarkably simple analytical relation between the maximum possible

bandwidth γmax
x achievable given a target value of I,

γmax
x =

R0

4I+1(4I − 1)
. (5)

The only other enzymatic parameter that appears in the relation is the gain R0, a measure of

output production relative to the input. Fig. 3G-I shows the same parameter set distribution

as the (γhigh
x ,∆µhigh) points in Fig. 3D-F, except replotted in terms of (γhigh

x , R0), where R0

is the gain for each parameter set. The solid line is the bound of Eq. (5). Even though

this bound is based on an approximation of the full enzymatic system, and hence is not

guaranteed to be exact, it still provides an excellent cutoff for the distribution of (γhigh
x , R0)

points. For systems at a certain R0, we see that as I is increased and the denominator in

Eq. (5) gets larger, the maximum bandwidth γmax
x shifts to lower values. If we are interested

in a fast response time, increasing I systematically reduces the compatible parameter space,

since we are forced to rely on cases with larger and larger R0. Thus Eq. (5) rationalizes

the earlier observation of limited options for networks that can simultaneously respond to

signals fluctuating on minute time scales and achieve I significantly larger than 1 bit.

C. Optimality and the yeast Pbs2/Hog1 push-pull loop

There is an alternative way of thinking about the R0 versus γhigh
x results in Fig. 3G-I.

Imagine a system working at γhigh
x with a certain gain parameter R0 and achieving a target

value I. Comparing other parameter sets with the same bandwidth γhigh
x and target I

(taking a vertical slice of one of the panels in Fig. 3G-I), they will have a variety of different

R0 values, but all of these will be bounded from below by the minimum value

Rmin
0 = 4I+1(4I − 1)γhigh

x . (6)

When R0 = Rmin
0 , the system sits on the optimality line of Eq. (5), with γhigh

x = γmax
x .

The discrepancy between R0 and Rmin
0 for a given system allows us to see how close the

signaling behavior is to optimality. Let us take a concrete biological example: the Pbs2/Hog1

enzymatic push-pull loop from yeast, part of the Hog1 signaling pathway that allows the

organism to respond to osmotic stress. As described in the SI, key parameters for this system

can be estimated based on an earlier model [46] fit to microfluidic experimental data where

yeast was exposed to periodic salt shocks [55]. The results for the bandwidth and gain for
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I = 1 bit are: γhigh
x = (1.22± 0.04)× 10−3 s−1 and R0 = 0.0621± 0.0001 s−1, with the error

bars reflecting uncertainties due to unknown parameters (where we used priors based on the

log-normal distributions in Fig. 2.) The scale of the predicted bandwidth γhigh
x is consistent

with microfluidic estimates. Ref. [47] found a steep dropoff in the mean amplitude of the

Hog1 response to periodic step-like changes in external osmolyte concentrations when the

frequencies of the changes increased from 10−3 s−1 to 10−2 s−1. At frequencies beyond the

dropoff the Hog1 output can no longer reproduce the osmolyte input at high fidelity. Though

the form of the input in this case is different than in our model, and the experiment probes

the entire pathway rather than just the Pbs2/Hog1 component, the similarity in scales to

our γhigh
x value suggests that the Pbs2/Hog1 system may play a major role in determining

the bandwidth of the whole pathway (since the bandwidth of the whole is constrained by

the bandwidths of the components).

Intriguingly, the estimated gain R0 is very close to the minimum possible value Rmin
0 for

signaling at the bandwidth γhigh
x with I = 1 bit, as seen in Fig. 3G. Using Eq. (6), we find

Rmin
0 = 0.059± 0.002 s−1. This naturally leads to the question: is the fact that this system

lies so close to optimality a coincidence, or are there reasons why natural selection might

favor minimizing R0 in this case? To answer this question, we first have to consider the

relationship between gain and ATP consumption.

D. Minimum ATP consumption to achieve a certain signaling fidelity and

bandwidth

This bound on the gain parameter in Eq. (6) is directly related to the metabolic cost

of signaling, since higher production of the output per given input level will generally re-

quire a higher rate of phosphorylation events. We can roughly quantify the average rate of

phosphorylation: in the stationary state this is just the mean rate of the kinase-catalyzed

reaction step, A = κrSK . Assuming one ATP hydrolyzed per reaction, A is the mean rate at

which ATP is consumed by the system, and is related to R0 through A = κrR0K/(κr−R0),

as shown in the SI. In the enzymatic parameter ranges we consider, κr is typically much

larger than R0, so we can approximate this relation as A ≈ R0K. Using Eq. (6) we can

then estimate the minimum possible ATP consumption rate given a target I and bandwidth

γhigh
x :

Amin ≈ Rmin
0 K̄ = 4I+1(4I − 1)γhigh

x K. (7)

Fig. 4A shows the same parameter set values as the (γhigh
x ,∆µhigh) points in Fig. 3D for

I = 1 bit, except plotted in terms of (γhigh
x , A). The A values are exact, but the approxi-

mate relation of Eq. (7) provides an excellent lower bound on the distribution. Qualitatively,
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FIG. 4. (A) The same (γhigh
x ,∆µhigh) point distribution as in Fig. 3C for I = 1 bit, except

plotted in terms of ATP consumption rate A on the vertical axis. The solid line is the approximate

lower bound Amin on ATP consumption given by Eq. (7). (B) This distribution replotted with

selection coefficient |s| on the vertical axis. |s| quantifies the fitness cost associated with a system

that achieves the target I = 1 bit but is sub-optimal in ATP consumption, relative to an optimal

variant where A = Amin. The value of |s| becomes evolutionarily significant when it is higher than

a “drift threshold” N−1
e , where Ne is the effective population of the organism (a measure of genetic

diversity). The ranges of N−1
e for different classes of organisms are shown on the right [32, 56].

The vertical dotted line corresponds to the estimated γhigh
x for the yeast Pbs2/Hog1 system.

the individual elements of Eq. (7) all make intuitive sense. An increase in any of the con-

stituent factors (the mean free input kinase population K, the target information I, the

bandwidth γhigh
x ) puts greater demands on the signaling system, requiring more catalytic

activity and hence faster ATP consumption. Note that the above results are easily general-

ized if the reaction step consumes more than one ATP: for example the effective model for

yeast Pbs2/Hog1 discussed above involves phosphorylation at two sites, which would lead

to expressions for A and Amin getting a prefactor of two.

E. Evolutionary pressure on the metabolic costs of signaling

It is clear from Fig. 4A that for many parameter set choices the ATP consumption rate

A is significantly larger than for a system near optimality (A ≈ Amin) given the same I and

γhigh
x . Let us consider a specific scenario where the bandwidth γhigh

x and the target I are

sufficient for the biological function of the signaling i.e. there are rapidly diminishing fitness

returns in going to higher bandwidth and signal fidelity. In this scenario a system with

A > Amin has no significant adaptive advantage over one with A ≈ Amin, but instead incurs

a fitness penalty because of the superfluous ATP consumption. Would there be evolutionary

pressure on this sub-optimal system to move toward optimality?
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The answer to this question has practical ramifications, because it will allow us to pre-

dict whether we should expect to see natural enzymatic push-pull loops cluster around the

optimality line (as we saw in the yeast Pbs2-Hog1 example). The alternative, in the absence

of strong evolutionary pressure to optimize, is a wider dispersion, more similar to Fig. 4A

where the points are drawn at random from the enzymatic parameter distribution. Note

that this is a question that is directly amenable to future kinetic experiments: for systems

where we can fully characterize the enzymatic parameters of the push-pull loop (for both the

kinase and phosphatase), all the relevant quantities like γhigh
x , A, and I can be calculated.

Naively one might expect evolution to always drive systems to optimality due to natural

selection, but genetic drift can play a significant competing role, allowing sub-optimal vari-

ants to flourish and even fix in a population [57]. To be specific, let us consider a unicellular

organism that reproduces via binary fission, and two genetic variants of that organism that

differ in the enzymatic parameters of a push-pull signaling loop: both variants achieve the

same γhigh
x and I, but one has A > Amin and one has A = Amin. Let us denote the relative

fitness of the sub-optimal versus the optimal type as 1 + s, defining a selection coefficient

s. In other words the sub-optimal variant will have on average 1 + s offspring relative to

the optimal one during the generation time of the optimal type. In the scenario described

above, where the extra production does not confer any adaptive advantage and only imposes

a metabolic cost, we will have s < 0, because the superfluous ATP consumption will lead to

slower growth.

The magnitude of s determines the degree of selective pressure on the sub-optimal variant.

The key quantity that sets the relevant scale for s is the effective population Ne of the

organism, the size of an idealized population that exhibits the same changes in genetic

diversity per generation due to drift as the actual population [56]. When s < 0 and |s| �
N−1
e , natural selection dominates drift, exponentially suppressing the probability of a sub-

optimal mutant fixing in a population of optimal organisms. On the other hand if |s| � N−1
e ,

drift dominates, and the fixation probability of sub-optimal mutants is roughly the same as

for a neutral (s = 0) mutation [58]. In this case it would be difficult to maintain optimality

in a population over the long term. Ne for organisms is typically smaller than their actual

population in the wild, and varies by several orders of magnitude among different classes:

for unicellular species it can be as high as ∼ 109 − 1010 in bacteria down to ∼ 106 − 108 in

single-celled eukaryotes [32, 56]. (It becomes even smaller among higher eukaryotes, going

down to ∼ 104 in vertebrates.) The corresponding ranges for the “drift threshold” N−1
e [32]

are shown on the right in Fig. 4B.

The question then becomes: how do we estimate s and how does it compare to the relevant

N−1
e for the class of interest? For the case where a variant imposes metabolic costs but no

adaptive advantage, there is a very useful relation that posits s ∼ −δCT/CT [32, 59, 60].
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Here CT is the total resting metabolic expenditure of an organism during a generation time,

measured for example in units of P, where 1 P = one phosphate bond hydrolyzed (ATP

or ATP equivalent consumed). δCT is the extra expenditure incurred by the more costly

mutant. This relation has already been used to explore selective pressures in yeast [60],

unicellular prokaryotes and eukaryotes [32], and viral infections [61]. It was recently derived

from first principles through a general bioenergetic growth model [33], where the relation

was refined with a more accurate prefactor: s ≈ − ln(Rb)δCT/CT . Here Rb is the mean

number of offspring per individual (i.e. Rb = 2 for binary fission).

The value of CT can be readily estimated for single-celled organisms, where it scales

roughly with cell volume [32, 33]. Given the 30 fL cell volume used in our calculations, and

assuming a generation time (cell division time) tr = 1 hr, we find CT ≈ 7×1011 P (see details

in the SI), comparable in magnitude to experimental estimates for yeast [32]. Since δCT

reflects the extra ATP consumed by the costly mutant (with consumption rate A) versus

the optimal variant (rate Amin) over one generation time, we can write δCT = (A−Amin)tr.

We can thus calculate s for all the near-bandwidth I = 1 bit parameter sets represented

in Fig. 4A. The results for |s| versus γhigh
x are plotted in Fig. 4B. Because increased ATP

consumption is required to achieve larger bandwidths (as seen in Eq. (7)), the distribution

of selective penalties |s| for being sub-optimal is pushed to larger values with greater γhigh
x .

In other words, higher bandwidths make the energetic stakes more significant.

We can now rationalize why the yeast Pbs2/Hog1 loop might be close to optimality.

The bandwidth for that system (indicated by a vertical dashed line in Fig. 4B) is near the

higher end of the spectrum. Suboptimal parameter values that achieve approximately the

same bandwidth at I = 1 bit span a range of |s| values between 10−8 and 10−4. Given

Ne = 106− 108 for single-celled eukaryotes [32, 56], and estimates of Ne ≈ 107 for wild yeast

populations [62], these suboptimal systems likely have |s| near or above the drift threshold

N−1
e . Thus we would expect yeast to be under evolutionary pressure to optimize the energy

expenditures associated with the enzymatic loop.

IV. DISCUSSION AND CONCLUSIONS

The kinase-phosphatase push-pull signaling network, which maintains a certain value of

mutual information I between input and output, incurs energetic costs in the form of ATP

consumption. These costs have two related facets: (i) the free energy expenditure ∆µ for

each hydrolysis reaction, and (ii) the number of such reactions A per unit time. Achieving

empirical values like I = 1 − 2 bits requires satisfying both aspects of the cost. There

is a minimal price in terms of ∆µ to achieve any given I, and this price increases if one

demands either greater fidelity (larger I) or the ability to process faster signals (larger γx).
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Modern cells are more than willing to pay this part of the price, with ∆µ sufficiently high

to meet the minimal requirements for any enzymatic parameter set that hits a target I on

the order of 1 bit. However, as the distributions in Fig. 3D-F illustrate, there are certainly

options for signaling systems that work at similar fidelities under conditions of smaller ∆µ,

the presumptive scenario earlier in evolutionary history. In all cases we require some degree

of fine-tuning of enzymatic parameters: the higher the fidelity or frequency demands, the

smaller the fraction of parameter space that satisfies them. This leaves vanishingly small

room to achieve networks that operate at I significantly larger than the known empirical

range.

For particular parameter combinations the system is optimal, exhibiting the maximum

possible bandwidth (γmax
x of Eq. (5)) with the minimal ATP consumption (Amin of Eq. (7)).

Is such optimality widely realized in nature? Analyzing the selective pressures due to su-

perfluous ATP expenditures indicates that this is a worthwhile question to pursue. We have

already identified one near-optimal candidate in the yeast Hog1 signaling pathway. Based on

the results of the previous section, we predict that the best place to look for others is among

signaling pathways with high bandwidths, for example ∼ 10−3 − 10−2 s−1 at the extremes

of the current biological distribution. Here the metabolic costs of being suboptimal would

be significant for single-celled organisms.

More broadly, strong selective pressure on the costs of running signaling networks in

single-celled organisms is likely to be a widespread phenomenon. To give another example,

the expenditure of running the chemotaxis machinery in E. coli has been estimated to be

about ∼ 107 P per ∼ 1 hr cell cycle [2, 4]. Compared to a value of CT ≈ 2× 1010 P for E.

coli [32, 33], we get an |s| ∼ 10−4, which is definitely significant for a bacterial population.

We have barely begun to understand the kinds of optimization that such selective pressure

has induced. Our approach readily generalizes beyond the kinase-phosphatase system, set-

ting the stage for exploring these issues in a much wider array of biochemical networks.

Data and code availability: The code for our analysis, along with the data used to

generate the figures, is available at: https://github.com/hincz-lab/cell-signaling.
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I. DERIVATION OF THE LOCAL DETAILED BALANCE RELATION

FIG. S1. The enzymatic push-pull loop from the perspective of an individual substrate molecule.

The protein can exist in one of four states: unmodified substrate (σ), bound to kinase (σK), phos-

phorylated (σ∗), and bound to phosphatase while phosphorylated (σ∗P ). The forward (clockwise)

transition rates between these states are indicated in black, while the reverse (counterclockwise)

rates are in red.

To derive the local detailed balance relation of main text Eq. (1), it is convenient to
focus on the reactions from the perspective of an individual substrate molecule [1]. A given
molecule in our model can be in one of four states, indicated in Fig. S1 with corresponding
forward and reverse transition rates. For example if the molecule is an unmodified sub-
strate (state σ) it can transition to a kinase-bound substrate (state σK) with rate κb[K],
proportional to the surrounding concentration [K] of kinase molecules. It can revert from
σK to σ with rate κu. The other transitions in Fig. S1 are defined analogously, with forward
rates colored black and reverse rates in red. Local detailed balance entails that product of
reverse rates divided by the product of forward rates is equal to exp(β∆G), where ∆G is the
free energy change of the system associated with a single forward traversal of the loop and
β = (kBT )−1 [1]. Since after one loop from σ to σ the substrate is back in the same state (as
well as the kinase and phosphatase), there is no contribution to ∆G from these molecules.
However a single loop leads to the hydrolysis of a single molecule of ATP, so ∆G = −∆µ,
as defined in the main text. Putting everything together, the local detailed balance relation
reads

e−β∆µ =
κu

κb[K]

κ−r[K]

κr

ρu
ρb[P ]

ρ−r[P ]

ρr
=
κ−rρuρ−rκu
κrρbρrκb

, (S1)

yielding main text Eq. (1).

II. CHEMICAL LANGEVIN APPROACH FOR THE KINASE-PHOSPHATASE

PUSH-PULL LOOP

In this section we derive the stationary state properties of the kinase-phosphatase push-
pull loop via the chemical Langevin approximation. The derivation will follow analogously to
Ref. [2], except here the system is more complicated due to the inclusion of reverse enzymatic
reactions. The end goal will be a method to estimate the mutual information I, given by
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main text Eq. (4),

I ≈ −1

2
log2E, where E ≡ 1− (XY −X Y )2(

X2 −X2
)(

Y 2 − Y 2
) , (S2)

which requires evaluating the variances of the input and output, var(X) = X2−X2
, var(Y ) =

Y 2 − Y 2
, as well as the covariance cov(X, Y ) = XY − X Y . The quantity E here will be

referred to as the “error” in signal propagation between input and output, and can be
equivalently expressed as E = 1− ρ2, where ρ is the Pearson correlation coefficient between
X and Y .

A. Dynamical equations

Our starting point is the full system of reactions for the enzymatic push-pull loop,

∅
F


γK
K,

K + S
κb


κu
SK

κr


κ−r

K + S∗,

P + S∗
ρb


ρu
S∗P

ρr


ρ−r

P + S,

(S3)

where ∅ represents the void (upstream deactivated kinase which does not enter into our
model). The corresponding chemical Langevin equations [3] are given by:

dK

dt
= F − γKK − κbKS + (κu + κr)SK − κ−rKS∗ + n1 + n2 + n3,

dSK
dt

= κbKS − (κu + κr)SK + κ−rKS
∗ − n2 − n3,

dS∗

dt
= κrSK − ρbPS∗ + ρuS

∗
P − κ−rKS∗ + n3 + n4,

dS∗P
dt

= ρbPS
∗ − (ρu + ρr)S

∗
P + ρ−rSP − n4 + n5,

dP

dt
= −dS

∗
P

dt
,

dS

dt
= −dSK

dt
− dS∗

dt
− dS∗P

dt
,

(S4)

where the last line ensures that the total populations of free or bound phosphatase (P +S∗P )
and free or bound substrate in all its forms (S + SK + S∗ + S∗P ) remain constant. The
noise terms ni(t) =

√
Πiηi(t), where ηi(t) are Gaussian noise functions with zero mean and

correlations ηi(t)ηj(t′) = δijδ(t − t′). The five noise terms are associated with reactions in
the system, and the corresponding prefactors represent the sum of the mean production
(forward) and deactivation/unbinding (backward) contributions to each reaction:

Π1 = F + γKK, Π2 = κbKS + κuSK , Π3 = κrSK + κ−rKS
∗
,

Π4 = ρbPS
∗

+ ρuS
∗
P , Π5 = ρrS

∗
P + ρ−rSP .

(S5)
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As described in the next section, we will be linearizing Eq. (S4), keeping terms up to first or-
der in deviations from the stationary state values. In this linearized approach, the stationary
state populations are given by:

K =
F

γK
, SK =

FC2

γKC1

, S
∗

=
C3

C1

, S∗P =
C4

C1

. (S6)

with the following definitions:

κ− ≡ κu + κr, ρ− ≡ ρu + ρr,

C1 ≡ κ−PγKρbρr + Fκ−rκuρ−,

C2 ≡ S
[
Fκbκ−rρ− + PγK(κbρbρr + κ−rρ−rρu)

]
,

C3 ≡ S(PγKκ−ρ−rρu + Fκbκrρ−),

C4 ≡ PS
[
PγKκ−ρ−rρb + F (κbρbρr + κ−rρ−rκu)

]
.

(S7)

The input (total kinase) is X = K + SK and the output (total activated substrate) is
Y = S∗ + S∗P , and hence Eq. (S6) can be used to calculate the stationary values X and Y .

B. Second moments

In order to calculate the variance and covariance of the input and output, we also need
to know X2, Y 2, XY . To estimate these quantities, the first step is to switch variables in
Eq. (S4) to focus on deviations from the stationary state values: δK ≡ K − K, δSK ≡
SK − SK , δS∗ ≡ S∗ − S∗, δS∗P ≡ S∗P − S

∗
P . We can in turn rewrite these four variables in

terms of the input and output deviations δX = X −X and δY = Y − Y :

δK =
C1

C1 + C2

δX + δXq,

δSK =
C2

C1 + C2

δX − δXq,

δS∗ =
C3

C3 + C4

δY + δYq,

δS∗P =
C4

C3 + C4

δY − δYq,

(S8)

where we have introduced two additional auxiliary variables δXq and δYq. Plugging Eq. (S8)
into Eq. (S4), we simplify the system through linearization, ignoring any terms of second
order or higher in the deviations. As demonstrated below in comparisons with kinetic
Monte Carlo (KMC) simulations [4] of the original system, this linearized chemical Langevin
approximation works well for our parameter ranges. Finally, we Fourier transform the
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linearized Eq. (S4), and the resulting system of equations takes the form

M(ω)


δ̃X

δ̃Xq

δ̃Y

δ̃Y q

 =


−ñ1

ñ2 + ñ3

−ñ3 − ñ5

ñ4 − ñ5

 (S9)

where Q̃(ω) denotes the Fourier transform of quantity Q(t). The matrix M is given by:

M(ω) =
iω− C1γK

C1+C2
γK 0 0

C1(κbS+κ−rS
∗
)−C2(κbK+κ−−iω)

C1+C2
κb(K+S)+κ−rS

∗
+κ−−iω

C3Kκ−r
C3+C4

−κbK Kκ−r

C2κr−C1κ−rS
∗

C1+C2
−κr−κ−rS

∗ −C3Kκ−r+C4ρr
C3+C4

+iω ρr−κ−rK

0 0
C3Pρb−C4(S

∗
ρb+ρ−−iω)

C3+C4
Pρb+S

∗
ρb+ρ−−iω

. (S10)

The Fourier-space system of equations Eq. (S9)-(S10) can be solved for δ̃X(ω) and δ̃Y (ω).
The expressions are complicated, but take the form of a linear combination of Fourier-space
noise terms:

δ̃X(ω) =
5∑
i=1

aXi (ω)ñi, δ̃Y (ω) =
5∑
i=1

aYi (ω)ñi, (S11)

where aXi (ω) and aYi (ω) are some prefactors which can be expressed as rational functions of
ω. The prefactors have the property aXi (−ω) = (aXi (ω))∗, aYi (−ω) = (aYi (ω))∗. In Fourier

space the correlations among the noise terms take the form ñi(ω)ñj(ω′) = 2πδijΠiδ(ω+ω′).
Hence we can calculate the input power spectral density (PSD) PX(ω), the output PSD
PY (ω) and the cross PSD PXY (ω), defined via

δ̃X(ω)δ̃X(ω′) = 2πPX(ω)δ(ω + ω′), δ̃Y (ω)δ̃Y (ω′) = 2πPY (ω)δ(ω + ω′),

δ̃X(ω)δ̃Y (ω′) = 2πPXY (ω)δ(ω + ω′).
(S12)

Plugging Eq. (S11) into Eq. (S12), we find expressions for the PSDs in terms of the prefactor
functions:

PX(ω) =
5∑
i=1

|aXi (ω)|2Πi, PY (ω) =
5∑
i=1

|aYi (ω)|2Πi, PXY (ω) =
5∑
i=1

aXi (ω)aYi (−ω)Πi.

(S13)
The final step is to calculate the second moments from integrals of the PSDs, using the
inverse Fourier transform of Eq. (S13) evaluated at t = t′:

X2 =

∫ ∞
−∞

dω

2π
PX(ω), Y 2 =

∫ ∞
−∞

dω

2π
PY (ω), XY =

∫ ∞
−∞

dω

2π
PXY (ω). (S14)

Given the explicit expressions for the prefactor functions in Eq. (S13) (which are available as
part of the Mathematica notebooks in the Github repository associated with the manuscript),
one can numerically evaluate the integrals in Eq. (S14) to get the moments.
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C. Comparison to kinetic Monte Carlo simulations for mutual information

The chemical Langevin calculation of the second moments allows us to use Eq. (S2) to
estimate the mutual information I. We can then check whether this estimate is consistent
with the results we would get from KMC simulations of the full system. Fig. S2 shows this
comparison for two sample parameter sets drawn from the enzymatic parameter distribution
described in Sec. IV. Since we are interested in exploring the full range of chemical potentials
∆µ, in each case we calculate I varying the reverse-to-forward rate ratio κ−r/κr, keeping all
other parameters constant. Through main text Eq. (1), increasing κ−r/κr corresponds to
decreasing the magnitude of ∆µ. At very large ∆µ (small κ−r/κr) the I curves saturate at
the maximum possible mutual information for that parameter set, while at small ∆µ (large
κ−r/κr) the mutual information approaches zero, the equilibrium limit. Across the whole
range we see that the chemical Langevin theoretical prediction is in close agreement with
the KMC results.

III. CHARACTERISTIC FREQUENCY γx, GAIN R0, AND THE CONDITIONS

FOR WIENER-KOLMOGOROV NOISE FILTER OPTIMALITY

A. Deriving the γx and R0 expressions in main text Eq. (2)

Since the effective frequency γx of the input and the gain R0 play central roles in the anal-
ysis, having simple closed form approximations for them [main text Eq. (2)] is useful. The
original definitions of these two variables, as described in the main text, are as follows: (i) γx
is related to the autocorrelation of input fluctuations, δX(t+ τ)δX(t) = δX2 exp(−γx|τ |);
(ii) R0 ≡ κrSK/X measures output production for a given level of input. As demonstrated
in the next section, both of these can be calculated from KMC simulations (at significant
computational expense for each different set of parameters). Alternatively, the chemical
Langevin approximation of SI Sec. II can be used to derive somewhat cumbersome analyti-
cal expressions.

However the most convenient option is to take advantage of the meaning of γx and R0 in
an effective, two-species description of the kinase-phosphatase reaction network. Imagine a
system with an input species population X(t), output Y (t), and a simplified chemistry with
only four reactions: production of input at rate F , deactivation of input at rate γxX(t),
production of output at rate R0X(t), and deactivation of output at rate γyY (t). In this
two-species system the inverse input autocorrelation time is given by the deactivation rate
parameter γx, and the coefficient R0 in the output production rate is also the gain parameter.
To relate this simplified model to the full reaction network of SI Sec. II, we compare analogous
quantities in the simplified and full schemes. For example, let us take the mean input
population X. In the simplified scheme this is given by

X =
F

γx
. (S15)

In the full network X = K + SK can be calculated from Eq. (S6) as

X =
F (C1 + C2)

C1γK
, (S16)
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FIG. S2. The mutual information I for the enzymatic push-pull loop as a function of the reverse-

forward rate ratio κ−r
κr

. The predictions from the chemical Langevin approach (dashed line) are

compared against the corresponding KMC simulation results (circles). The parameters sets are

as follows (all units are s−1 except for the mean populations; molar units have been converted

to populations by assuming a cell volume of 30 fL): (top) κb = 2.94 × 10−6, ρb = 3.68 × 10−7,

κu = 1.58×10−2, ρu = 4.42×10−4, κr = 12.8, ρr = 1.34, ρ−r = 2.50×10−5, F = 2.49×10−3, γk =

2.68× 10−5, S̄ = 614, and P̄ = 45; (bottom) κb = 2.32× 10−5, ρb = 1.46× 10−4, κu = 6.94× 10−2,

ρu = 5.48, κr = 0.994, ρr = 5.05 × 10−2, ρ−r = 2.06 × 10−8, F = 2.46 × 10−2, γk = 2.65 × 10−4,

S̄ = 2380, and P̄ = 127.

where the Ci are expressed in terms of full network parameters in Eq. (S7). Comparing
Eqs. (S15) and (S16) we see that γx should be given by

γx =
C1γK
C1 + C2

, (S17)

which is the first expression in main text Eq. (2). Similarly the mean production rate of
the output in the simplified scheme is R0X̄. In the full system the mean output production
is the average rate at which new phosphorylated substrate is produced via catalysis by the
kinase-substrate complex,

κrSK = κr
FC2

γKC1

= κr
C2

C1 + C2

X̄, (S18)
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where we have again used Eqs. (S6)-(S7). Comparing Eq. (S18) to R0X̄, we see that R0

should correspond to

R0 = κr
C2

C1 + C2

, (S19)

which is the second expression in main text Eq. (2).

B. Validation through kinetic Monte Carlo simulations

To verify that the expressions for γx and R0 derived above are good approximations,
we ran KMC simulations for various parameter sets drawn at random from the enzymatic
parameter distribution detailed in the SI Sec. IV. For each parameter set the simulation was
run long enough after reaching the stationary state to collect sufficient statistics for both
the mean population values and the input autocorrelation function. As described above,
these allow us to calculate γx and R0. The simulation results are compared against the
approximation from Eqs. (S17) and (S19) in Fig. S3. The agreement is excellent for both
quantities, across the entire range of γx and R0 values. Thus we can confidently use the
simple analytical expressions of Eqs. (S17) and (S19) to predict γx and R0 for any given
parameter set.

C. Relating maximum bandwidth, minimum ATP consumption rate, and mutual

information via Wiener-Kolmogorov optimal noise filter theory

One of the benefits of the approximate relation between the full system and the two-
species model described in Sec. IIIA is that it allows us to use results from the two-species
case to make predictions for the behavior of the kinase-phosphatase push-pull loop. The
two-species model has been analyzed in detail in Refs. [2, 5], where it was shown to be able
to map onto a Wiener-Kolmogorov optimal noise filter. The error E from Eq. (S2) for the
two-species case can be evaluated in closed form as [2]:

E = 1−
γ2
yR0

(γx + γy)2

[
γy +R0

γy
γy + γx

]−1

. (S20)

It achieves its minimum value (hence maximizing the mutual information I) when the
following condition is fulfilled:

γy = γx
√

1 + Λ, (S21)

where Λ = R0/γx. The corresponding minimum E, where the system behaves like an optimal
Wiener-Kolmogorov (WK) noise filter is given by:

EWK =
2

1 +
√

1 + Λ
. (S22)

Interestingly, this remains the bound even if we generalize the output production term
R0X(t) to be nonlinear in X(t) [2]. Using the relation between E and I in Eq. (S2), we can
translate the bound E ≥ EWK into an equivalent statement that γx ≤ γmax

x at a given value
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FIG. S3. Comparison of the simple analytical approximations for R0 from Eq. (S19) (top) and γx
from Eq. (S17) (bottom) versus KMC simulation results. Each point corresponds to a parameter

set drawn randomly from the enzymatic parameter distribution described in SI Sec. IV. The red

dashed line corresponds to perfect agreement. Error bars for R0 are smaller than the symbol size,

and hence not indicated in the figure.

of mutual information I. The value of γmax
x is shown in main text Eq. (5):

γmax
x =

R0

4I+1(4I − 1)
. (S23)

As shown in main text Figs. 3G-I, the above γmax
x expression provides an excellent approxi-

mate upper bound on the γhigh
x values calculated for the full enzymatic system. Even though

the effective two-species model lacks reverse rates, it provides a useful tool for deriving this
bound, since the maximum bandwidth is achieved when the reverse rates are negligible (large
∆µ).

As mentioned in the discussion around main text Eq. (6), the expression for γmax
x in

Eq. (S23) also has an alternative interpretation. This gives the minimum production rate
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Parameter x Unit log10 x̃ σx Data source

direct fits to database values:

kinase/phosphatase concentrations [S], [P] [M] -7.93 0.84 PaxDb [8]

Michaelis constants Kkin
M , Kpho

M [M] -4.26 1.21 Sabio-RK [9]

specificity ratios κr/K
kin
M , ρr/K

pho
M [M−1 s−1] 3.86 1.19 Sabio-RK [9]

reaction rates κr, ρr [s−1] -0.04 1.16 Sabio-RK [9]

results of joint fitting:

reaction rates κr, ρr [s−1] -0.06 1.18 joint fit

binding rates κb, ρb [M−1 s−1] 3.94 1.12 joint fit

dissociation constants Kkin
D , Krho

D [M] -7.00 1.31 joint fit

TABLE S1. Results of log-normal fits to various kinase/phosphatase enzymatic parameters. For

each fit the mean log10 x̃ and standard deviation σx are listed. The top rows of the table correspond

to individual fits to parameters collected from the PaxDb and Sabio-RK databases. The bottom

rows show the results of a joint fit, described in the text of SI Sec. IV.

Rmin
0 necessary to achieve mutual information I at a certain bandwidth γhigh

x :

Rmin
0 = 4I+1(4I − 1)γhigh

x . (S24)

By relating R0 in turn to the ATP consumption rate A = κrSK , we can convert Eq. (S24)
into an expression for the minimum necessary ATP consumption rate Amin. To accomplish
this, note that A can be rewritten as:

A = κrK
C2

C1

= κrK
R0

κr −R0
, (S25)

where we have used Eqs. (S6) and (S19). Finally, taking advantage of the fact that typically
κr � R0 for the parameter distributions of interest, we make the approximation A ≈ R0K.
This allows us to derive main text Eq. (7):

Amin ≈ Rmin
0 K̄ = 4I+1(4I − 1)γhigh

x K. (S26)

IV. ENZYMATIC PARAMETER DISTRIBUTION

Earlier surveys of enzymatic kinetic parameters in Refs. [6, 7], over broader classes than
just kinases and phosphatases, showed that their distributions could be approximately
described by log-normal distributions. For a given parameter x, we will denote this as
log10 x ∼ N (log10 x̃, σ

2
x), or in other words that the base-10 logarithm of x is distributed

according to a normal distribution with mean log10 x̃ and standard deviation σx. The value
x̃ is the median of the resulting log-normal distribution for x.

For our work the focus is on kinases and phosphatases, and we are interested in looking
at the push-pull loop signaling behavior over the entire distribution of biologically plausible
parameters. The parameter data we collected, summarized in the histograms of main text
Fig. 2, had far more representation of kinases than phosphatases, which is a well known
limitation of the existing experimental literature. Despite this sampling issue, the orders
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of magnitude spanned by phosphatase parameters were comparable to those of the kinases.
For each parameter type, we thus decided to fit both types of enzyme with a single overall
distribution, based on pooling of all the available kinase and phosphatase data together.
The data available from the databases took the forms listed below (all raw data and the files
used to process it are included in the Github repository associated with the manuscript).
The mean log10 x̃ and standard deviation σx values from the log-normal fits for the different
parameter classes are listed in the first four rows of Table S1.

Enzymatic data:

• Mean substrate [S] and phosphatase [P ] concentrations, where the substrate is taken
to be a kinase [main text Fig. 2A]. These numbers were derived from the PaxDb pro-
tein abundance database [8], taking advantage of UnitProt gene ontology associations
to focus on just kinases and phosphatases in signal transduction pathways [10]. Each
PaxDb data entry is in terms of ppm (parts per million) of abundance, relative to
the total number of proteins in the cell. To convert from ppm to molar concentra-
tions, we looked at data from human cells (which had the best representation in the
database), and used the estimated total concentration of 2.7 × 106 proteins per µm3

for human cells [11]. The latter concentration corresponds to 4.48×10−3 M. If y is the
abundance in ppm units, then 4.48(y/106)× 10−3 M is the corresponding molar con-
centration. Note that total concentrations are very similar across many different types
of species [11], so there should not be a strong species-dependence in the analysis. For
example the same analysis in mouse cells rather than human ones yields quantitatively
similar results: a mean kinase/phosphatase concentration 10−8.31 M (versus 10−7.93 M
in human cells), and a log-normal standard deviation of 1.03 (versus 0.84 in human
cells).

• Reaction parameters [main text Fig. 2B-D]. These values were taken from the Sabio-
RK database [9], where they were most often available in the following forms: Michaelis

constants Kkin
M = (κr + κu)/κb, K

pho
M = (ρr + ρu)/ρb for the kinase/phosphatase

(main text Fig. 2B), the corresponding specificity ratios κr/K
kin
M , ρr/K

pho
M (main text

Fig. 2C), and the reaction rates κr and ρr (main text Fig. 2D). The resulting distri-
butions were entirely consistent (though slightly narrower) with the distributions for
the same parameter types analyzed in Ref. [6], which considered all enzymes (not just
kinases and phosphatases).

Note that the six reaction parameter types that were collected from the Sabio-RK
database (Kkin

M , Kpho
M , κr/K

kin
M , ρr/K

pho
M , κr, ρr) are not directly in the form that we need

to calculate push-pull loop signaling properties. For the latter we would like to know
(κb, ρb, κu, ρu, κr, ρr), or equivalently (κb, ρb, K

kin
D , Kpho

D , κr, ρr). Here the dissociation

constants are defined as Kkin
D = κu/κb and Kpho

D = ρu/ρb. Let us denote the parameter

vector (κb, ρb, K
kin
D , Kpho

D , κr, ρr) as v, with components vα, α = 1, . . . , 6. We would like
to find a joint distribution for v that is self-consistent with the individual log-normal distri-
butions for the alternative parameter types fitted directly from the database values (first 4
rows of Table S1). We will assume the simplest form for the joint distribution Φ: a product
of individual log-normal distributions for each parameter vα, with median values ṽα and
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standard deviations σα:

Φ(v) =
6∏

α=1

1

vα ln(10)
√

2πσ2
α

exp

(
−(log10 vα − log10 ṽα)2

2σ2
α

)
. (S27)

Note that the vα ln(10) term in the denominator of the prefactor comes from the Jacobian due
to the variable change between log10 vα and vα. This ensures that the probability is properly
normalized:

∫∞
0

∏
α dvα Φ(v) = 1. As explained above, kinase and phosphatase parameters

are assumed to be drawn from the same distributions, so we enforce that ṽ1 = ṽ2, ṽ3 = ṽ4,
ṽ5 = ṽ6, and analogously for the standard deviations σα. This leaves six distinct values that
determine the distribution: ṽ1, ṽ3, ṽ5, σ1, σ3, σ5.

To estimate these six distribution parameters, we use the following iterative numerical
fitting procedure. We start with a guess for (ṽ1, ṽ3, ṽ5, σ1, σ3, σ5) and then draw 104

parameter sets v from the resulting distribution Φ(v). For each parameter set we can

calculate the alternative parameter types (Kkin
M , Kpho

M , κr/K
kin
M , ρr/K

pho
M , κr, ρr). We then

fit the resulting 104 values for these alternative types to individual log-normal distributions,
and compare the means and standard deviations to the empirical results in the top half of
Table S1. The sum of the relative absolute errors between the new joint fit values and the
empirical results for the means / standard deviations is our overall goodness-of-fit measure.
We perturb our guess for (ṽ1, ṽ3, ṽ5, σ1, σ3, σ5) and accept the perturbation if it improves the
goodness-of-fit. This procedure is iterated until convergence. The results of this joint fit are
shown in the bottom half of Table S1. The joint fit predictions for the binding rate (κb, ρb)

and dissociation constant (Kkin
D , Kpho

D ) distributions are consistent with earlier estimates of
these parameters in specific kinase/phosphatase systems [12]. As another consistency check,
the joint fit distribution for the reaction rates (κr, ρr) is nearly identical to the individual
empirical fit based on the Sabio-RK database values.

Finally we note that the simple joint distribution Φ(v) in Eq. (S27) is by construction too
broad: it may produce the correct marginal distributions for quantities collected from the
Sabio-RK database, but it ignores any correlations between those individual parameters that
may be present in natural systems. Estimating these correlations from the existing database
entries is quite challenging, because relatively few entries have a complete list of all the
parameters of interest. Hence, as explained in the main text, we take Φ(v) to be effectively
a superset: it should contain the true, presumably narrower, biological distribution plus
parameter sets that are less likely to be observed in nature. A convenient aspect of this
interpretation is that any collective conclusion we draw from the entire distribution Φ(v)
should also be true for the subset of biological parameters. Moreover we can thus explore a
larger design space (potentially available for evolution) than what we currently observe in
modern biological systems.

V. RESULTS FOR ALTERNATIVE INPUT KINASE CONCENTRATIONS

The results in main text Fig. 3D-F were for a mean input kinase concentration [K] = 5
nM. In Fig. S4 we show the analogous results for two different choices: [K] = 0.5 nM (left
column) and [K] = 50 nM (right column). The main conclusions remain unchanged: the
physiological ∆µ range (highlighted in pink) is always just above the upper edge of the
γhigh
x cloud, and the number of available parameter sets decreases rapidly as the mutual
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FIG. S4. Analogous to main Figure 3D-F, except for input kinase concentration [K] = 5 nM (left

column) and 50 nM (right column). The rows correspond to mutual information I = 1, 1.5, and

2 bits respectively. The probabilities of successfully drawing a parameter set that achieves the

specified I value are shown in red in panel.

information I is increased.

VI. ANALYSIS OF THE PBS2-HOG1 PUSH-PULL LOOP IN YEAST

To illustrate our theoretical framework in a concrete biological example, let us consider
a kinase-phosphatase loop from one of the most extensively studied signaling pathways:
the Hog1 mitogen-activated protein kinase (MAPK) pathway that allows yeast to adapt
to extracellular osmotic changes [13–15]. We will focus in particular on the final portion
of the pathway, where the active (phosphorylated) kinase Pbs2pp catalyzes the conversion
of inactive Hog1 into phosphorylated Hog1pp. The latter protein is interchanged quickly
between cytoplasm and nucleus, where it regulates a variety of responses to osmotic stress.
Hog1pp is dephosphorylated by a combination of phosphatases Ptp2 (mainly in the nucleus)
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and Ptp3 in the cytoplasm [16]. Thus Pbs2pp will play the role of K in our model, Hog1
will be S, Hog1pp will be S∗, and Ptp2/Ptp3 will be P . To parameterize our model, we
start with a more detailed theoretical description of the entire pathway developed by Zi et
al. [13]. A key appeal of this work is that its parameters were carefully fit to extensive
experimental data from yeast cells exposed to different time series of external salt shocks in
microfluidic experiments [14]. However since the parameters of Zi et al. are not expressed
in the same form as the enzymatic reaction rates of our model, we do have to convert from
their framework to ours, as described below.

A. Parameter estimation based on earlier literature

Ref. [13] explicitly distinguishes between the concentration of Hog1 and Hog1pp in the
cytoplasm and nucleus, denoted with c and n superscripts respectively: [Hog1c], [Hog1n],
[Hog1ppc], [Hog1ppn]. If we are interested in the average concentrations overall, we can
denote these as:

[S] ≡ [Hog1c]Vc + [Hog1n]Vn
Vc + Vn

, [S∗] ≡ [Hog1ppc]Vc + [Hog1ppn]Vn
Vc + Vn

, (S28)

where Vc and Vn are the volumes of the cytoplasm and nucleus respectively, taken to have a
ratio of Vn/Vc = 0.14 [13]. Eq. (S28) also implies:

d[S]

dt
=
d[Hog1c]

dt
f +

d[Hog1n]

dt
(1− f),

d[S∗]

dt
=
d[Hog1ppc]

dt
f +

d[Hog1ppn]

dt
(1− f), (S29)

where f = Vc/(Vc + Vn) = 0.88. As a simplification of Eq. (S28), we note in Ref. [13]
import and export of the Hog1 proteins is fast relative to other reactions, and for a
given input level the system rapidly reaches a stationary state with [Hog1n]≈[Hog1c]≈ [S],
[Hog1ppn]≈[Hog1ppc]≈ [S∗].

We can now look at individual reactions that contribute to the time derivatives on the
right-hand sides of Eq. (S29) and find their analogues in our model. For example the
phosphorylation step that converts Hog1c to Hog1ppc is expressed in Ref. [13] as an effec-

tive second order reaction of the form KHog1
pho [Pbs2pp][Hog1c], with rate constant KHog1

pho =

11.2 µM−1·min−1. This contributes positively to d[Hog1ppc]/dt and with a minus sign to

d[Hog1c]/dt, and so leads to contributions magnitude fKHog1
pho [Pbs2pp][Hog1c] to the right-

hand sides of Eq. (S29). Note that even though activation of Hog1 is actually a double
phosphorylation (of a threonine and tyrosine residue), the entire process in this case can be
well approximated through a single rate constant.

In our model the conversion of S to S∗ occurs through the intermediate state SK . How-
ever if we want to compare to the phosphorylation step of Ref. [13] in order to match
parameters, we can look at the deterministic contribution to the dynamics (ignoring fluc-
tuations) in the Michaelis-Menten approximation for enzyme kinetics [17]. In this pic-
ture the phosphorylation reaction contributes to d[S]/dt and d[S∗]/dt through a term of
magnitude κr[K][S]/(Kkin

M + [S]) ≈ (κr/K
kin
M )[K][S], where the last simplification is valid

when Kkin
M � [S]. If we compare (κr/K

kin
M )[K][S] to fKHog1

pho [Pbs2pp][Hog1c], noting that
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[K] = [Pbs2pp] and [S] ≈ [Hog1c], we can make the following identification:

κr
Kkin
M

≈ fKHog1
pho = 1.64× 105 M−1s−1. (S30)

The dephosphorylation steps in Ref. [13] are modeled as two pseudo-first-order reactions:

conversion of Hog1ppc to Hog1c with rate KHog1ppc

depho [Hog1ppc], and the conversion of Hog1ppn

to Hog1n with rate KHog1ppn

depho [Hog1ppn]. The pseudo-first-order rate constants are given by:

KHog1ppc

depho = 0.0906 min−1 and KHog1ppc

depho = 4.14 min−1. These reactions will lead to contri-

butions of magnitude (fKHog1ppc

depho [Hog1ppc] + (1 − f)KHog1ppn

depho [Hog1ppn]) to the right-hand
sides of Eq. (S29). In our model (using a similar Michaelis-Menten approximation to the

one described above, with Kpho
M � [P ]), the analogous expression for dephosphorylation is

effectively a second-order reaction with rate (ρr/K
pho
M )[P ][S∗]. Comparison of the two ex-

pressions, using the approximation [Hog1ppn]≈[Hog1ppc]≈ [S∗], leads to the identification:

ρr

Kpho
M

≈ [P ]−1
(
fKHog1ppc

depho + (1− f)KHog1ppn

depho

)
= 1.69× 105 M−1s−1. (S31)

Here we set [P ] = 0.058 µM as an average measure of phosphatase concentrations, to
facilitate the conversion from pseudo-first-order to second-order rate constants. The value
of [P ] is based on estimates of the concentrations of the two phosphatases in yeast from
Ref. [18]: 0.049 µM for Ptp3 in the cytoplasm, and 0.067 µM for Ptp2 in the nucleus, where
we have used Vc = f(Vc + Vn), Vn = (1− f)(Vc + Vn) and Vc + Vn ≈ 30 fL [13, 19] to convert
from populations to concentrations. Since the concentrations were of similar scale, we let
[P ] be the mean of the two values.

As a consistency check to make sure the final estimates of the specificity ratios κr/K
kin
M

and ρr/K
pho
M in Eqs. (S30)-(S31) are biologically plausible, we can compare them with the

distribution of these ratios among kinases/phosphatases from the Sabio-RK database in
main text Fig. 2C. The values for the Hog1/Pbs2 system are not unusual, and lie near
the higher end of the range, at about the 0.87 quantile. The final parameter value we can
estimate from the literature is the mean Hog1 concentration [S] = 0.38 µM, based on the
abundance reported in Ref. [18].

B. Estimation of remaining parameters

Based on the above analysis, we have estimates for four quantities in the Pbs2/Hog1

system drawn from the earlier literature: κr/K
kin
M , ρr/K

pho
M , [S], [P ]. These are summarized

in Table S2. The relationship of the enzymatic reaction/binding/unbinding rate parameters
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Parameter Value Data source

substrate concentration [S] 0.38 µM Hog1 abundance from Ref. [18]

phosphatase concentration [P ] 0.058 µM Ptp2/Ptp3 abundance from Ref. [18]

kinase specificity ρr/K
kin
M 1.64× 105 M−1s−1 analysis of Ref. [13] model fit to

experiments of Ref. [14]

phosphatase specificity ρr/K
pho
M 1.69× 105 M−1s−1 analysis of Ref. [13] model fit to

experiments of Ref. [14]

TABLE S2. Summary of parameters for the yeast Pbs2/Hog1 system estimated from earlier liter-

ature.

to the estimated values then takes the form:

κr =

(
κr
Kkin
M

)
Kkin
M = (1.64× 105M−1s−1)Kkin

M ,

κb =

(
κr
Kkin
M

)
Kkin
M

Kkin
M −Kkin

D

= (1.64× 105M−1s−1)
Kkin
M

Kkin
M −Kkin

D

,

κu =

(
κr
Kkin
M

)
Kkin
M Kkin

D

Kkin
M −Kkin

D

= (1.64× 105M−1s−1)
Kkin
M Kkin

D

Kkin
M −Kkin

D

,

ρr =

(
ρr

Kpho
M

)
Kpho
M = (1.69× 105M−1s−1)Kpho

M ,

ρb =

(
ρr
Krho
M

)
Krho
M

Krho
M −Krho

D

= (1.69× 105M−1s−1)
Krho
M

Krho
M −Krho

D

,

ρu =

(
ρr
Krho
M

)
Krho
M Krho

D

Krho
M −Krho

D

= (1.69× 105M−1s−1)
Krho
M Krho

D

Krho
M −Krho

D

,

(S32)

The above parameters depend on the values of Kkin
M , Kpho

M , Kkin
D , Kkin

D . While we do not know
what these are for the Pbs2/Hog1 system, we can draw their values from the corresponding
empirical log-normal distributions described in Table S1. By repeating the draw many
times, we can check how our final optimality analysis (see below) depends on the precise
values of the unknown parameters. As it turns out the dependence of R0, γhigh

x and Rmin
0

on the unknown values is quite weak, and we will be able to make robust estimates for
these quantities. In the cases of Kkin

M and Kpho
M , we constrain the random draw from their

log-normal distributions to enforce Kkin
M ≥ 100[S] and Kpho

M ≥ 100[P ]. This ensures self-

consistency with the assumptions Kkin
M � [S] and Kpho

M � [P ], which were used in the
previous subsection to match the form of the phosphorylation / dephosphorylation reactions
between Ref. [13] and our model. The final two parameters are the reverse reaction rates
κ−r and ρ−r. Since we do not have any experimental estimates of these for the Pbs2/Hog1
system, we assume that the physiological value of ∆µ in yeast (around 21 kBT [19]) is
sufficiently high that κ−r and ρ−r are negligible under normal conditions.
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C. Bandwidth and gain

Given the parameter estimation procedure described above, we can calculate γhigh
x , R0,

Rmin
0 for each draw of the unknown parameters. The results remain within a narrow dis-

tribution, relatively insensitive to the values of the unknown parameters. The mean and
standard deviations for 50 draws are: γhigh

x = (1.22± 0.04)× 10−3 s−1, R0 = 0.0621± 0.0001
s−1, Rmin

0 = 0.059± 0.002 s−1.

VII. ESTIMATION OF TOTAL RESTING METABOLIC EXPENDITURE

For single-celled organisms, the total resting metabolic expenditure CT can be estimated
by the approach outlined in Ref. [20]. CT has two contributions: CT = CG + trCM . Here
CG is the expenditure involved in growth during one generation time tr, and CM is the
maintenance cost per unit time. Using a large collection of metabolic data from Ref. [21],
covering both prokaryotes and single-celled eukaryotes, one can observe that both CM and
CT scale approximately linearly with cell volume V , agreeing with the prediction of the
bioenergetic growth model of Ref. [20]. The expression for CT based on the results of these
linear fits is [20]:

CT = (2.3× 1010 P/fL)V + (9.2× 104 P/(s · fL))trV. (S33)

where the unit P corresponds to the hydrolysis of a phosphate bond (i.e. the consumption
of one ATP or ATP equivalent). Using the main text values of V = 30 fL and tr = 3600 s,
we get CT = 7.0× 1011 P.
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