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Abstract1

Bayesian models successfully account for several of dopamine (DA)’s effects on contextual calibration in2

interval timing and reward estimation. In these models, DA controls the precision of stimulus encoding,3

which is weighed against contextual information when making decisions. When DA levels are high, the4

animal relies more heavily on the (highly precise) stimulus encoding, whereas when DA levels are low,5

the context affects decisions more strongly. Here, we extend this idea to intertemporal choice tasks,6

in which agents must choose between small rewards delivered soon and large rewards delivered later.7

Beginning with the principle that animals will seek to maximize their reward rates, we show that the8

Bayesian model predicts a number of curious empirical findings. First, the model predicts that higher9

DA levels should normally promote selection of the larger/later option, which is often taken to imply that10

DA decreases ‘impulsivity.’ However, if the temporal precision is sufficiently decreased, higher DA levels11

should have the opposite effect—promoting selection of the smaller/sooner option (more impulsivity).12

Second, in both cases, high enough levels of DA can result in preference reversals. Third, selectively13

decreasing the temporal precision, without manipulating DA, should promote selection of the larger/later14

option. Fourth, when a different post-reward delay is associated with each option, animals will not learn15

the option-delay contingencies, but this learning can be salvaged when the post-reward delays are made16

more salient. Finally, the Bayesian model predicts a correlation between behavioral phenotypes: Animals17

that are better timers will also appear less impulsive.18

Keywords: dopamine, Bayesian inference, precision, impulsivity, interval timing, central tendency, post-19

reward delay20

Significance Statement21

Does dopamine make animals more or less impulsive? Though impulsivity features prominently in several22

dopamine-related conditions, how dopamine actually influences impulsivity has remained unclear. In in-23

tertemporal choice tasks (ITCs), wherein animals must choose between small rewards delivered soon and24

large rewards delivered later, administering dopamine makes animals more willing to wait for larger/later25

rewards in some conditions (consistent with lower impulsivity), but less willing in others. We hypothesize26

that dopamine does not necessarily influence impulsivity at all, but rather gates the influence of contextual27

information during decision making. We show that this account explains an array of curious findings in28

ITCs, including the seemingly conflicting results above. Our work encourages a reexamination of ITCs as a29

method for assessing impulsivity.30
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Introduction31

The neuromodulator dopamine (DA) has been repeatedly associated with choice impulsivity, the tendency to32

prioritize short-term over long-term reward. Impulsive behaviors characterize a number of DA-related psy-33

chiatric conditions (1), such as attention-deficit/hyperactivity disorder (2–6), schizophrenia (7, 8), addiction34

(9, 10), and dopamine dysregulation syndrome (11, 12). Furthermore, direct pharmacological manipulation35

of DA in humans (13, 14) and rodents (15, 16) has corroborated a relationship between DA and impulsiv-36

ity. The standard approach to measuring impulsive choice is the intertemporal choice task (ITC), in which37

subjects choose between a small reward delivered soon and a large reward delivered later (17). A subject’s38

preference for the smaller/sooner option is often taken as a measure of their impulsivity, or the extent to39

which they discount future rewards (18–21).40

In the majority of animal studies, higher DA levels have been found to promote selection of the larger/later41

option (inhibiting impulsivity). However, the inference that DA inhibits impulsivity has been challenged in42

recent years, in part because, when ITCs are administered to humans, DA seems to promote impulsivity43

(22). Perhaps relevant to this contrast is that, while impulsive choices in humans are assessed through44

hypothetical situations (‘Would you prefer $1 now or $10 in one month?’), ITCs in animals more closely45

resemble reinforcement learning tasks involving many trials of experienced rewards and delays. Complicating46

this picture further, the effect of DA, even within animal studies, is not straightforward. While in most47

studies, DA appears to decrease impulsivity, DA has been found to systematically increase impulsivity under48

some conditions, such as when the delay period is uncued (16) or when different delays for the larger/later49

option are presented in decreasing order across training blocks (23).50

Animal behavior in ITCs can be reinterpreted from a reinforcement learning perspective. With repeated51

trials of the same task, an optimal agent can learn to maximize its total accumulated rewards by estimating52

the reward rate for each option (reward magnitude divided by total trial duration) and choosing the option53

with the higher reward rate. Thus if the larger/later option has a sufficiently large reward or sufficiently54

short delay, it will be the optimal choice. However, if its reward were sufficiently small or its delay sufficiently55

long, the smaller/sooner option may be the superior choice instead, without any assumption of ‘discounting.’56

Under this view, animals do not necessarily discount future rewards at all, but rather make choices based on57

a reward-rate computation. The notion of true impulsivity in ITCs has persisted, however, because animals58

tend to choose the smaller/sooner option even when it objectively yields fewer rewards over many trials.59

To address the question of whether animals simply compare reward rates, a body of theoretical and ex-60
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perimental work has demonstrated that the suboptimal tendency to choose the smaller/sooner option is61

better explained by temporal biases than by biases of choice (24–26; see also 27). This work has shown62

that animals behave in a way consistent with maximizing their reward rates, but they underestimate the63

elapsed time—and in particular, the periods after receiving the reward and before beginning the next trial.64

Thus animals estimate the reward rates for each option based largely on the pre-reward delays. This bias65

disproportionately benefits the smaller/sooner option, which has a much shorter pre-reward delay. As a66

result, the animals make choices that can be interpreted as impulsive. Said differently, animals dispropor-67

tionately underestimate the total trial duration for the smaller/sooner option compared to the larger/later68

option, making the former more appealing. While this discounting-free view derives animal behavior from69

a normative framework (maximizing reward rates), how and why DA modulates choice preferences remains70

the subject of much speculation.71

In this paper, we build on recent theoretical work that cast DA in a Bayesian light (28, 29). Here, DA72

controls the precision with which cues are internally represented, which in turn controls the extent to which73

the animal’s estimates of the cues are influenced by context. In Bayesian terms, which we discuss below, DA74

controls the precision of the likelihood relative to that of the prior (the context). This framework predicts75

a well-replicated result in the interval timing literature, referred to as the ‘central tendency’ effect: When76

temporal intervals of different lengths are reproduced under DA depletion (e.g., in unmedicated Parkinson’s77

patients), shorter intervals tend to be overproduced and longer intervals tend to be underproduced, and DA78

repletion rescues accurate timing (30–32). We recently extended this framework to the representation of79

reward estimates (33). In this case, the Bayesian framework predicts that DA should tip the exploration-80

exploitation balance toward exploitation, in line with empirical findings (34–36, but see 37, 38).81

We show here that, under the Bayesian theory, DA should promote behaviors consistent with lower impulsiv-82

ity in the standard ITC task (selection of the larger/later option), but should have the opposite effect when83

the temporal precision of the delay period is selectively and sufficiently reduced. In both cases, high enough84

levels of DA should elicit preference reversals, and not only an amplification of the current preference. Fur-85

thermore, in manipulations of temporal precision, if animals are more likely to select the larger/later option86

at baseline, DA administration will tend to reverse that preference (promote the smaller/sooner option), and87

vice versa. We show that animals should not learn the contingencies between options and their post-reward88

delays, but that this learning can be salvaged if the post-reward delays are made more salient. Finally,89

we show that animals that display more precise behaviors in interval timing tasks should also appear less90

impulsive.91
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Figure 1: Contextual influence is stronger when the encoding precision is low. Plotted are
the distributions for two signals, one small and the other large. (A) When the encoding precision is high
compared to the prior precision, the posteriors do not deviate significantly from the likelihood. (B) As
the encoding precision decreases, the posteriors migrate toward the prior. The horizontal black segments
illustrate the difference in posterior means under high vs. low precision.

Results92

The Bayesian theory of dopamine93

An agent wishing to encode information about some cue must contend with noise at every level, including94

the information source (which is seldom deterministic), storage (synapses are noisy), and signaling (neurons95

are noisy; 39). We can formalize the noisy encoding as a mapping from an input signal (e.g., experienced96

reward) to a distribution over output signals (e.g., firing rates). For the purposes of this paper, we will97

remain agnostic about the specific neural implementation of the mapping, and instead discuss it in abstract98

terms. Thus a noisy encoding of some variable can be represented by a distribution over values: Tight99

distributions correspond to encodings with low noise (Fig. 1A), whereas wide distributions correspond to100

encodings with high noise (Fig. 1B).101

Consider, then, a scenario in which an animal must estimate the average yield of a reward source from noisy102

samples. Because of the animal’s uncertainty about the average yield (the encoding distribution has non-zero103

spread), its final estimate can be improved by utilizing other sources of information. For example, if the104

nearby reward sources tend to yield large rewards, then the animal should form an optimistic estimate of105
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the reward source’s average yield. Similarly, if nearby reward sources yield small rewards, then the animal106

should form a pessimistic estimate. Formally, the contextual information can be used to construct a prior107

distribution over average yield, and the encoding distribution can be used to construct a likelihood function108

for evaluating the consistency between the encoded information and a hypothetical average yield. Bayes’109

rule stipulates that the animal’s final probabilistic estimate should reflect the product of the likelihood and110

prior:111

p(µ|m) ∝ p(m|µ) p(µ), (1)

referred to as the posterior distribution. Here, µ is the variable being estimated (the reward yield), m is the112

stored value, p(m|µ) is the likelihood, and p(µ) is the prior. For simplicity, we take these distributions to be113

Gaussian throughout. Under standard assumptions for Gaussian distributions, the estimate µ̂ corresponds114

to the posterior mean:115

µ̂ =

(
λ0

λ0 + λ

)
µ0 +

(
λ

λ0 + λ

)
µ. (2)

Here, µ0, λ0, µ, and λ represent the prior mean, prior precision, likelihood mean, and encoding precision,116

respectively. In words, the agent takes a weighted average of the prior mean µ0 and the likelihood mean µ—117

weighted by their respective precisions λ0 and λ after normalization—to produce its estimate, the posterior118

mean µ̂. Intuitively, the tighter each distribution, the more it pulls the posterior mean in its direction.119

The Bayesian theory of DA asserts that DA controls the encoding precision λ, where the prior here represents120

the distribution of stimuli (i.e., the context). Thus when DA is high, the estimate µ̂ does not heavily depend121

on contextual information, whereas when it is low, Bayesian migration of the estimate to the prior is strong122

(compare Fig. 1A and B). Shi et al. (32) have applied this theory to interval timing and shown that it123

predicts DA’s effects on the central tendency: Parkinson’s patients who are on their medication will have124

high λ, qualitatively corresponding to Fig. 1A. Then the temporal estimates for the short and long durations125

will be very close to their true values (here, 4 and 8 seconds). On the other hand, patients who are off their126

medication will have low λ, corresponding to Fig. 1B. Thus the estimates for both durations will migrate127

toward the prior mean, or the average of the two durations. In other words, the estimate for the short128

duration will be overproduced, and the estimate for the long duration will be underproduced.129

The Bayesian model can also be applied to reward magnitudes. Imagine a bandit task in which an agent130

samples from two reward sources, one yielding small rewards on average and the other yielding large rewards131

on average. Under lower levels of DA, the central tendency should decrease the difference between the two132

reward estimates (compare lengths of black segments on the x-axis in Fig. 1A and B). Under standard133

models of action selection, animals are more likely to choose the large option when the difference between134
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the two estimates is large (a tendency to exploit the larger option; see Methods), and become more and more135

likely to sample other options as the difference decreases (a tendency to explore other options). This means136

that lower levels of DA should shift the exploration-exploitation trade-off toward exploration (selecting the137

smaller reward), as empirically observed (34–36, but see 37, 38). There is some behavioral evidence to suggest138

reward magnitude learning is indeed influenced by context in a way that follows our Bayesian framework139

(40, 41), although DA’s role in this framework has not been examined directly for the domain of rewards.140

In addition, notice here that the Bayesian framework subsumes the ‘gain control’ theory of DA, in which141

high DA levels have been hypothesized to amplify the difference between reward estimates during decision142

making (42–45, see Methods).143

Finally, we can compare the degree of the central tendency in temporal and reward estimation, which will144

be important in the next section. Empirically, the central tendency in temporal tasks is normally weak.145

While it can be unmasked in healthy subjects (46–50) and animals (51), it is most evident in unmedicated146

Parkinson’s patients (30), in whom the DA deficiency is profound. This implies a significant asymmetry147

at baseline: While decreasing the DA levels will have a strong behavioral signature (the central tendency),148

the effect of increased DA levels will be small (due to a ‘ceiling effect,’ in which the central tendency will149

continue to be weak). On the other hand, both increases and decreases to the DA level substantially affect150

the exploration-exploitation trade-off (34–36, 52, 53). This suggests a more significant central tendency for151

rewards at baseline, which can be amplified or mitigated by DA manipulations. Below we will find that DA’s152

effect in ITCs will depend on its relative contribution to each of the reward estimates and temporal estimates153

at baseline. Driven by the empirical observations, we take the baseline central tendency to be weaker in the154

domain of timing than in the domain of rewards.155

Dopamine and intertemporal choice156

ITCs involve choosing between a small reward delivered soon, and a large reward delivered later. In these157

tasks, the smaller/sooner delay is held fixed (and is often zero, resulting in immediate reward), while the158

larger/later delay is varied across blocks. When the delays are equal, animals will overwhelmingly choose159

the larger option, but as the delay for the larger option gets longer, animals become more and more likely to160

choose the smaller/sooner option (Fig. 3). This shift toward the smaller/sooner option has traditionally been161

explained in terms of reward discounting: The promise of a future reward is less valuable than that same162

reward delivered immediately, and becomes even less valuable as the delay increases. In other words, future163

rewards are discounted in proportion to the delay required to receive them. Previous computational models164
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have shown this reward discounting to be well-described by a hyperbolic (or quasi-hyperbolic) function165

(21, 54).166

A competing line of thought is that animals seek to maximize their reward rates (or equivalently, the167

total accumulated rewards in the task; 24, 25, 27), but are limited by a significant underestimation of the168

post-reward delays in the task (26). On this view, animals compute the reward rate for each option—169

i.e., the undiscounted reward magnitude divided by the total trial time—but base the trial time largely on170

the pre-reward delay. This causes the reward rate for the smaller/sooner option to be disproportionately171

overestimated compared to that of the larger/later option. This view, much like the discounting view,172

predicts that animals will choose the larger/later option when its delay is short, but will gradually begin173

to prefer the smaller/sooner option as the delay is increased. Furthermore, the smaller/sooner option will174

be preferred in some cases even when it yields a lower reward rate, although this is due to a temporal bias175

(underestimation of post-reward delays), rather than a choice bias (reward discounting).176

While the reward-rate interpretation can accommodate the aspects of the data explained by the discounting177

model (see Methods), it also captures aspects of animal behavior where the discounting model fails. In178

particular, Blanchard et al. (26) examined the effect of post-reward delays on behavior. Under the discounting179

model, behavior depends only on the reward magnitudes and pre-reward delays (over which the discounting180

occurs), and thus should be invariant to changes in the post-reward delays. The authors, however, found181

that monkeys modified their choices in line with a reward-rate computation, which must take into account182

both pre- and post-reward delays when computing the total trial time. Interestingly, the best fit to the data183

required that the post-reward delays be underestimated by about a factor of four, consistent with a bias of184

timing rather than a bias of choice in explaining animal behavior in ITCs. In what follows, we adopt the185

reward-rate interpretation in examining DA’s role in ITCs.186

Given DA’s effects on reward estimates and durations, it is not surprising that DA would influence behavior187

in ITCs, where the agent’s task is to maximize the ratio of these two, the reward rate R̄:188

R̄ =
wrµr + (1− wr)µr0
wtµt + (1− wt)µt0

, (3)

which follows from Eq. (2). Here, wr = λr

λr+λr0
, and µr0, λr0, µr, and λr in the numerator represent the189

prior mean, prior precision, encoding distribution mean, and encoding distribution precision in the domain190

of rewards, respectively, and similarly for the domain of time in the denominator. The Bayesian framework191

captures the hyperbolic pattern observed under the discounting model (see Methods).192
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The ultimate effect of DA will depend on its relative contribution to the numerator and denominator:193

In the numerator, a stronger central tendency for the estimated rewards causes an overestimation of the194

smaller reward and an underestimation of the larger reward, thus promoting selection of the smaller/sooner195

option compared to baseline. Because DA masks the central tendency, its effect on the numerator is to196

promote selecting the larger/later option (Fig. 2, top arrow). On the other hand, in the denominator, a197

stronger central tendency for the estimated durations causes an overestimation of the sooner duration and an198

underestimation of the later duration, thus promoting selection of the larger/later option. Because DA masks199

the central tendency, its effect on the denominator is to promote selecting the smaller/sooner option—the200

opposite of its effect in the numerator (Fig. 2, bottom arrow).201
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Figure 2: Behavior in ITCs depends on the relative change in reward precision compared
to temporal precision. Plotted are isolines representing pairs of relative precisions that yield the same
probability of selecting the larger/later option. Note that these isolines have different concavities: In the
top left, the isolines are concave up (or convex), whereas in the bottom right, the isolines are concave
down. Selectively increasing the reward precision promotes the larger/later option (top arrow), whereas
selectively increasing the temporal precision promotes the smaller/sooner option (bottom arrow). Based
on empirical findings, we assume that the temporal precision at baseline is large, compared to the baseline
reward precision (each normalized by its prior precision). This means that DA’s net effect is to promote
the larger/later option (right arrow). If, however, the temporal precision is sufficiently reduced, DA’s net
effect will be to promote the smaller/sooner option (left arrow). Plotted on each axis is the ratio of encoding
and prior precisions, which determines the central tendency: w = λ

λ+λ0
= (1 + ( λλ0

)−1)−1. LL: increase in
probability of selecting the larger/later option, SS: increase in probability of selecting the smaller/sooner
option, λt: temporal encoding precision, λt0: temporal prior precision, λr: reward encoding precision, λr0:
reward prior precision.
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As discussed in the previous section, the central tendency at baseline DA levels is stronger for reward202

estimates than temporal estimates. It follows that the central tendency in the numerator dominates DA’s203

influence in ITCs (Fig. 2, right arrow). Under normal conditions, then, the framework predicts that DA will204

promote the larger/later option, or behavior consistent with less impulsivity under higher DA levels (Fig.205

3E).206

This prediction matches well with empirical findings, as the majority of studies have found DA to decrease207

impulsivity in ITCs (15, 53, 55–60; see 22 for a recent review). For instance, Cardinal et al. (16) trained208

rats on an ITC involving a small reward delivered immediately and a large reward delivered after a delay209

that varied across blocks. After training, the authors administered DA agonists and tested the animals210

on the task. While the effect is smaller than in other studies (e.g., compare with Figs. 3C and 4A), the211

authors found that DA agonists promoted selection of the larger/later option when a visual cue was present212

throughout the trial (Fig. 3A).213

This prediction is based on the empirically motivated result that DA’s effect on the reward estimate dominates214

its overall effect in ITCs. However, it should be possible to elicit exactly the opposite result—an increased215

preference for the smaller/sooner option with DA—under conditions where the central tendency of temporal216

estimates dominates. For instance, timing precision has been shown to decrease when the interval salience is217

low (e.g., 61). Then selectively decreasing the salience during the delay period should promote the temporal218

central tendency and, if significant enough, overwhelm the central tendency of rewards in the numerator (Fig.219

2, left arrow). Cardinal et al. (16) examined exactly this manipulation: The authors found that DA, on220

average, promoted selection of the larger/later option only when a salient cue was available during the delay221

period. If, however, a cue was present during the task except for the delay period, DA uncharacteristically222

had the opposite effect (Fig. 3B), as predicted when the temporal precision is sufficiently reduced (Fig. 3F).223

It is important to note that DA manipulations can mediate preference reversals, which is captured by our224

model. For example, for the 20-second delay in Fig. 3A, the animal at baseline prefers the smaller/sooner225

option (chosen more than 50% of the time). But with high enough doses of DA agonists, it eventually comes226

to prefer the larger/later option (see also Figs. 3B,C,D and 4A). This empirical finding is important because227

it rules out hypotheses in which DA simply amplifies or mitigates existing preferences. For instance, and as228

mentioned above, a number of authors have proposed that DA serves a ‘gain control’ function on the action229

values during decision making (42–45). This would predict that preferences should become more extreme230

with higher DA levels: Preferences above the indifference (50%) line should increase, and those below the231

indifference line should decrease, which is inconsistent with the empirical results.232
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adapted from Cardinal et al. (2000)           adapted from Tanno et al. (2014)
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Figure 3: DA promotes selection of the larger/later option when the temporal precision is high
and the smaller/sooner option when the temporal precision is low. (A) Cardinal et al. (16) trained
rats on an ITC in which the animals must choose between a reward of magnitude 1 delivered immediately
and a reward of magnitude 4 delivered after a delay that varied across blocks. After training, the authors
administered DA agonists and examined changes in the animals’ behaviors. When a cue was present during
the delay period, the authors found that, with higher doses, the animals seemed less impulsive, or discounted
future rewards less. This finding held for moderate changes of DA, but not the largest manipulation. (B)
However, when a cue was absent during the delay period, the animals appeared more impulsive with higher
doses (i.e., discounted future rewards more strongly). (C) Tanno et al. (23) administered a similar task,
but varied the order in which the delays were presented. When the delays were presented in an ascending
order, the rats seemed less impulsive with higher doses of DA agonists. (D) However, when the delays
were presented in a descending order, the rats seemed more impulsive with higher doses. (E) Our model
recapitulates these effects: Under high temporal precision, such as in the presence of a visual cue during the
delay (cue condition) or as determined empirically by measuring response variability (ascending condition;
F1,5 = 0.11, p = 0.03), DA’s effect on the reward estimates will dominate in ITCs, which promotes selection
of the larger/later option. (F) On the other hand, under sufficiently low temporal precision, DA’s effect
on the temporal estimates will dominate, which promotes selection of the smaller/sooner option. (G) At
baseline, responses in the no-cue condition are biased toward the larger/later option compared to the cue
condition. Note that any zero-delay difference cannot be due to a difference in the cues, since the tasks are
identical in the absence of a delay. It is not clear whether these differences are statistically significant, as
error bars were not provided for the saline conditions (although when the conditions were tested immediately
before drug administration began, the difference was not statistically significant). Panel reproduced from
the saline conditions in (A) and (B). (H) Similarly, at baseline, responses in the descending condition are
biased toward the larger/later option compared to the ascending condition. (I) Our model recapitulates
these effects: Selective decreases to the temporal precision promote the larger/later option. For (E, F, I),
see Methods for simulation details. a.u.: arbitrary units of DA.
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Though the majority of studies have found behaviors consistent with a negative correlation between impul-233

sivity and DA, Cardinal et al. (16) found the opposite effect when the cue was selectively absent during the234

delay period, and we showed that the Bayesian framework captures this effect. We are aware of one other235

manipulation that may cause this opposite effect: In tasks where animals are trained on different delays236

for the larger/later option, Tanno et al. (23) have reported that DA’s effect depends on the ordering of237

the delays. In particular, they found that DA seemed to promote choosing the larger/later option, in line238

with most other studies, when the delays were presented in an ascending order. However, if the delays were239

presented in a descending order, DA had the opposite effect (see also 62). This finding would be consistent240

with our framework, if the temporal precision in the ascending case were higher than that in the descending241

case (Fig. 3C,D). This is indeed what the authors found: When learned in an ascending order, the delay242

responses were less variable than when learned in a descending order. It is not clear why such an ordering243

effect exists, although one possibility is that this arises from a primacy effect in the inference about the244

temporal sequence, on the assumption that the initial temporal precision is higher for the short delays (e.g.,245

63–66).246

Finally, the Bayesian framework makes a counterintuitive prediction about the relationship between baseline247

performance in ITCs and the effect of DA. According to our model, selectively increasing the temporal248

precision promotes the smaller/sooner option. However, DA’s effect, when the temporal precision is already249

high, is to promote the larger/later option (compare bottom and right arrows in Fig. 2). This implies250

that conditions in which DA promotes the larger/later option will be conditions in which animals are,251

at baseline, more likely to select the smaller/sooner option. The authors of both studies above indeed252

observed this relationship: For both the cue and ascending conditions, animals were more likely to select253

the smaller/sooner option at baseline, compared to the no-cue and descending conditions, respectively (Fig.254

3G,H), as predicted (Fig. 3I). Note, however, that this effect may also be due to baseline differences in the255

speed of the ‘internal clock,’ a point we turn to in the next section.256

Clock speed and precision during post-reward delays257

We previously mentioned the finding that temporal durations are underestimated during post-reward delays.258

In this section, we consider this finding more closely and examine its implications under the Bayesian259

framework.260

There is an interesting coupling in the interval timing literature wherein DA both increases the speed of261
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the internal clock (67–71) and masks the central tendency effect. This relationship may be causal, as clock262

speed may be the mechanism through which precision is modulated (e.g., see 33). Furthermore, previous263

theoretical work has argued that precision will only increase when properly incentivized (72–75)—i.e., when264

an increase in precision improves performance. This would imply that the clock should slow down in tasks265

in which precision does not improve performance as well as during post-reward delays or intertrial intervals,266

when the animal has less control over the outcomes. These predictions have some empirical support (26, 76).267

Normative arguments notwithstanding, in this work it will suffice to treat the coupling between clock speed268

and temporal precision as an empirical phenomenon and examine its implications.269

In recent primate work, Blanchard et al. (26) varied the post-reward delay in an ITC and found it to270

be systematically underestimated roughly by a factor of four, regardless of its total length (which varied271

across blocks from 0 to 10 seconds). What does a 4X reduction in clock speed imply about precision,272

and by extension, the central tendency? Should the presence of other post-reward delays in the same task273

significantly affect the animal’s estimates of these delays (significant central tendency)? It is not known274

how exactly clock speed translates to precision, but one reasonable assumption is that the clock speed and275

standard deviation (inverse square root of precision) scale linearly. For instance, suppose an animal learns276

that it should act 8 seconds after hearing a tone, which it encodes as 8 subjective seconds (e.g., 8 ticks of the277

internal clock), and due to timing noise stores the interval with a granularity of 1 subjective second. This278

means the animal will typically respond within 7.5 and 8.5 seconds. Now imagine the internal clock were279

running four times slower. In that case, the animal would encode the duration as being 2 subjective seconds280

long (2 ticks), with a typical response occurring between 1.5 and 2.5 subjective seconds, or 6 to 10 objective281

(actual) seconds. Thus the standard deviation of the responses stretches by four. This in turn means that282

the precision will be 16 times smaller. With a large decrease in precision, our framework predicts a profound283

central tendency, to the point that the two posterior distributions almost overlap. Thus the animal should284

not discern a difference between the post-reward delays following each option. (For instance, under standard285

assumptions, the overlap for a 3-second and 6-second interval increases from 3% to 68%; see Methods.) On286

the other hand, if, as in the previous section, the salience of the post-reward delay is increased, the central287

tendency should become less profound, and learning the contingencies should be possible. Indeed, Blanchard288

et al. (26) associated each option with a different post-reward delay, and found that the animals did not289

learn the contingencies. Furthermore, when the authors increased the salience of the post-reward delays290

with a small reward at the end of each one, they found that the animals’ ability to learn the option-delay291

contingencies was salvaged, as predicted. Note here that the posited relationship between clock speed and292

precision is distinct from Weber’s law, which asserts that longer intervals are more noisily encoded than293
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shorter ones, without assuming any modifications of the clock speed (77–79, see Methods).294

What does the underestimation of post-reward delays imply about behavior in ITCs? In the experiments295

modeled in the previous section, the authors did not impose a different post-reward delay for each option.296

Thus, the central tendency of the post-reward delays is not relevant, as the likelihoods, prior, and posteriors297

are overlapping. On the other hand, some authors have imposed different post-reward delays for each option,298

in order to keep the total duration for each trial constant. Thus the smaller/sooner option would have a longer299

post-reward delay, and the larger/later option would have a shorter post-reward delay. Notice, then, that any300

effect of DA on the central tendency for the post-reward delay will promote the larger/later option, which is301

the opposite of its effect on the pre-reward delay (what we simply referred to as the temporal duration in the302

previous section): With low DA, the larger/later option sees its long pre-reward delay underestimated, but303

its short post-reward delay overestimated, and vice versa for the smaller/sooner option. This may contribute304

to why DA is typically found to promote the larger/later option: Both the reward and post-reward delay305

have a stronger central tendency than the pre-reward delay, and for both, DA promotes the larger/later306

option. For instance, van Gaalen et al. (53) trained rats on an ITC in which the total duration for each307

trial was held constant by imposing different post-reward delays for each option. The authors found greater308

selection of the larger/later option with higher doses of DA agonists (Fig. 4A). Our model recapitulates this309

finding when it accounts for post-reward delays (Fig. 4B).310
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Figure 4: The central tendency of post-reward delays promotes the larger/later option. (A) van
Gaalen et al. (53) trained rats on an ITC as previously described, but introduced option-specific post-reward
delays to keep the total duration of each trial constant (100 seconds). By subsequently administering DA
agonists, the authors found behavior consistent with less impulsivity with higher doses. Shown is the effect
for the mixed DA-norepinephrine reuptake inhibitor methylphenidate. A more variable, but qualitatively
similar pattern was found for the DA agonist amphetamine. (B) Our model recapitulates this effect: The
interval more susceptible to the central tendency is the post-reward delay, due to its low precision, compared
to the pre-reward delay. Combined with the central tendency of the reward estimates, DA’s net effect is to
promote the larger/later option. See Methods for simulation details. a.u.: arbitrary units of DA.
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Finally, it should be noted that the coupling between clock speed and precision does not affect the DA311

results from the previous section. First, unlike in van Gaalen et al. (53), the post-reward delays (or intertrial312

intervals) in these experiments were the same for both options. Thus they are not affected by the central313

tendency (the likelihoods and posteriors are overlapping). Second, a faster clock amplifies temporal estimates314

by the gain on the clock speed. However, this amplification would only occur if the animals were trained315

(i.e., learned the durations) under the faster clock. Instead, the authors administered DA agonists only after316

the training phase.317

On the other hand, the coupling does affect comparisons across the cue and no-cue conditions, and across318

the ascending and descending conditions. This is because, in our framework, the animal is trained on the319

ITCs with different temporal precisions and thus different clock speeds. Thus the trial durations during320

the cue and ascending conditions would be perceived to be longer than those of the no-cue and descending321

conditions, as they would be under the control of faster clocks. This means that, at baseline, animals in the322

cue and ascending conditions should favor the smaller/sooner option, as the waiting time for the larger/later323

option would be overestimated compared to the no-cue and descending conditions (Fig. 3I). This was indeed324

empirically observed, as mentioned in the previous section (Fig. 3G,H).325

Correlating behavioral phenotypes326

We have considered DA’s effects on behaviors in interval timing and ITCs. Our final prediction, then, will327

be to examine how the behavioral phenomena covary with each other. Notably, we have predicted that328

higher DA should lead to more precise timing and lower apparent impulsivity in ITCs. Therefore, we predict329

that animals that are more precise timers should also appear less impulsive. Indeed, Marshall et al. (80)330

examined rats’ impulsivity and timing abilities. To assess their impulsivity, the authors trained the rats331

on a standard ITC. To assess their timing precision, the authors trained the rats on a bisection task (81):332

Here, the rats were trained to respond with, for example, a left lever press when presented with a short333

(4-second) interval, and with a right lever press when presented with a long (12-second) interval. They were334

then tested on intermediate-duration intervals, for which they could still only respond with either a left lever335

press (the short-duration response) or a right lever press (the long-duration response). The stochasticity of336

responses was taken to reflect timing noise. The authors found that the more precise timers also tended to337

be less impulsive (Fig. 5A), as predicted by our framework (Fig. 5B). McClure et al. (82) also examined338

the correlation between timing precision and impulsivity, but using a peak-interval task, in which animals339

are trained to reproduce experienced durations, rather than a bisection task, in which animals are trained340
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Figure 5: More precise timers are more likely to select the larger/later option. (A) Marshall
et al. (80) measured rats’ temporal precision and ‘impulsivity’ using a bisection task and ITC, respectively.
The authors found that lower noise in the bisection task correlated with a tendency to select the larger/later
option. LL: larger/later option, σ: parameter fit to computational model representing stochasticity of choices.
(B) Our model recapitulates this effect: Animals with higher DA levels are predicted to display more precise
timing and a tendency to select the larger/later option. See Methods for simulation details.

to estimate them, and reported similar findings.341

Interestingly, Marshall et al. (80) also examined the relationship between impulsivity and reward magnitude342

sensitivity, which they studied using a two-armed bandit task where the larger reward was varied across343

blocks. The authors did not find a relationship between the two, although, as they note, this may be due to344

an inadequate metric for quantifying reward sensitivity (ratio of large-reward lever press rate to the sum of345

large- and small-reward lever press rates).346

Discussion347

We have shown here that DA’s effects in ITCs are well-described by a Bayesian framework in which animals348

maximize their reward rates. Under this view, DA controls the relative influence of context in computing349

the reward and temporal estimates, whose ratio forms the reward rate. Most notably, the discounting-free350

model successfully predicts that DA should normally promote selection of the larger/later option, but should351

have exactly the opposite effect when the temporal precision is sufficiently low. The Bayesian view thus352

provides a principled framework for why DA would appear to inhibit impulsive choices in some paradigms353

but promote them in others.354
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We have followed previous theoretical and experimental work in adopting a discounting-free model of ITCs.355

However, our results do not necessarily rule out reward discounting more generally, nor a role for DA in356

this process. For instance, and as mentioned in the Introduction, humans tend to prefer smaller/sooner357

options even in the absence of repeated trials that make reward-rate computations meaningful. But why358

discount future rewards in the first place? One influential hypothesis from economics is that future rewards359

are discounted because of the risks involved in the delay (83). For example, a competitor may reach the360

reward first, or a predator may interfere in the animal’s plans to collect the reward. As the delay increases,361

these alternative events become more likely, and the expected reward (the average over all alternatives)362

decreases. Another idea is that subjects respond as if they will have repeated opportunities to engage in363

the same task (84), thus mimicking the reinforcement learning problem that defines the animal variant of364

ITCs. More recently, Gabaix and Laibson (85) have argued that reward discounting may be due to the365

simulation noise involved in mentally projecting into the future: With later rewards, subjects must mentally366

simulate further into the future, so the simulation noise increases, and the precision decreases. Assuming a367

Bayesian framework with a prior centered at zero, the reward estimates will be closer to zero when rewards368

are more distant in the future, i.e., rewards are discounted with time (see also Gershman and Bhui (75) for369

an extension of this hypothesis).370

Interestingly, as mentioned in the Introduction, DA seems to have the opposite effect in the human variant371

of the task than in the majority of animal experiments, with a promotion of the smaller/sooner option372

with higher DA levels. That DA may serve a qualitatively different function in the human variant is not373

completely unexpected, given the substantial differences in the experimental paradigms. Notably, in the374

human variant, (1) the subject does not actually experience the pre-reward delay, (2) there is no post-375

reward delay, (3) the subject does not necessarily receive an actual reward, (4) the subject may experience376

a single trial of this task, whereas animals are trained on many trials, and (5) the hypothetical delay is377

on the order of days (or months) and not seconds. Experience and repetitions may prove critical for our378

reinforcement learning task, and delays on the order of days engage different timing mechanisms than those379

on the order of seconds-to-minutes (86), which is the duration over which DA’s central tendency effect has380

been observed. Nonetheless, the human findings may still be reconcilable with our framework under the381

‘repeated opportunities’ hypothesis of Myerson and Green (84) mentioned above: It is possible that the382

temporal uncertainty surrounding durations that are not experienced, and that are on the order of days, is383

large and thereby dominates DA’s central tendency effects. Thus DA would be predicted to promote the384

smaller/sooner option.385

Our framework leaves open a number of theoretical and empirical questions. First, our model takes DA386
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to control the encoding precision, a property inherited from the Bayesian timing model of DA and further387

motivated by theories of DA as overcoming the cost of attention (33, 87). However, our results only require388

that DA control the ratio of the encoding precision to the prior precision but not necessarily the encoding389

precision itself. Instead, it is certainly possible that DA decreases the prior precision, as some authors have390

proposed (29). Interestingly, this ambiguity is not specific to theories of DA, and has been a point of debate391

for some Bayesian theories of autism as well (compare weak priors (88) with strong likelihoods (89)).392

A second open question concerns our assumption that reward estimates are biased by a central tendency393

effect. Thus far, this has been inferred mainly from exploration-exploitation paradigms (see 40, for a more394

direct examination), but a dopaminergic modulation of reward estimates has not, to our knowledge, been395

observed directly. Driven by the experimental literature, we have therefore focused our simulations on396

manipulations of temporal precision. Our work then opens the door to a fruitful line of experiments with397

novel predictions: For instance, one can develop ITCs where the large reward is varied rather than the delay.398

Our framework predicts that DA will promote the larger/later option only when reward precision is low399

at baseline, and the smaller/sooner option when reward precision is high. On the other hand, selectively400

increasing the reward precision will always promote the larger/later option (Fig. 2). Thus, once again, by401

simply controlling the central tendency, DA will appear to inhibit impulsivity under some conditions, but402

promote it in others.403

To our knowledge, this is the first framework that can accommodate the seemingly conflicting effects of404

DA in measures of impulsive choice, across species and experimental conditions. Nonetheless, our aim405

throughout this work is not to rule out a role for DA in true impulsivity, but rather to show how a single406

Bayesian framework can accommodate a wide range of otherwise perplexing behavioral and pharmacological407

phenomena.408

Methods409

Manipulating the precision mimics gain control of action values410

Following Mikhael et al. (33), we show here that manipulating the encoding precision mimics gain control411

of action values.412

Under standard models of action selection, the probability of selecting reward source Ai with expected reward413

18

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327775doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.327775


µ̂i follows a softmax function (90, 91):414

p(Ai) =
eβµ̂i∑
j e
βµ̂j

, (4)

where β is the inverse temperature parameter, which controls choice stochasticity. A number of authors415

have argued that DA implements gain control on the values µ̂i in reinforcement learning tasks, possibly by416

controlling β (36, 44, 92). Let us then examine the case of two reward sources, Al and As, yielding large417

and small reward, respectively. Eq. (4) can then be written as418

p(Al) =
1

1 + e−β(µ̂l−µ̂s)
. (5)

Notice here that the probability of exploiting the large reward depends on the difference between the reward419

estimates. As the quantity β(µ̂l − µ̂s) increases, p(Al) increases. Hence, manipulations that increase the420

estimated difference will encourage exploitation, whereas manipulations that decrease it will encourage ex-421

ploration. Changing the gain on the reward values (equivalent here to manipulating β) controls the influence422

of (µ̂l−µ̂s) on the animal’s behavior. However, this effect can also be achieved by manipulating the estimated423

difference (µ̂l − µ̂s) directly. Under Bayes’ rule, the encoding precision controls the resulting difference in424

posterior means (horizontal black segments in Fig. 1), thus mimicking gain control.425

Dopamine’s effect depends on its relative contribution to reward vs. temporal426

estimates427

Our results rest on the intuition that in ITCs, DA’s effect on reward estimation will dominate when temporal428

precision is high, but its effect on temporal estimation will dominate when temporal precision is low. We429

show this analytically here.430

We first take the derivative of R̄ in Eq. (3) with respect to the DA level d:431

∂R̄

∂d
=
ẇr(µr − µr0)µ̂t − ẇt(µt − µt0)µ̂r

µ̂t
2 , (6)

where ẇr = ∂wr

∂d and ẇt = ∂wt

∂d . We are interested in how DA affects ∆R̄ = R̄l − R̄s, the difference between432

the larger/later reward rate estimate (R̄l) and the smaller/sooner reward rate estimate (R̄s). According to433

the choice rule in Eq. (5), this quantity determines the animal’s behavior.434

When the temporal precision is sufficiently high, ẇt << ẇr. Intuitively, wt = λt

λt+λt0
approaches 1, so small435
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changes in DA do not affect it very strongly, compared to wr. Formally, ẇt = λ̇tλt0

(λt+λt0)2 and ẇr = λ̇rλr0

(λr+λr0)2 ,436

where λ̇t = ∂λt

∂d and λ̇r = ∂λr

∂d . Because the prior precisions are finite, we require that λ̇t

λ̇r
<<

λ2
t

λ2
r
, so that437

ẇt << ẇr.438

It follows that, in Eq. (6), the first term in the numerator dominates:439

∂R̄

∂d
' ẇr(µr − µr0)

µ̂t
. (7)

The term in the parentheses is positive for the larger/later option and negative for the smaller/sooner option.440

Then, ∂R̄l

∂d > 0 and ∂R̄s

∂d < 0. It follows that ∂∆R̄
∂d > 0, so DA promotes the larger/later option.441

Similarly, when the temporal precision is sufficiently low, ẇt >> ẇr. Formally, we require that λ̇t

λ̇r
>>442

λr0λt0

(λr+λr0)2 , so that small changes in DA strongly affect λt and, by extension, wt. In this case, the second term443

in the numerator of Eq. (6) dominates:444

∂R̄

∂d
' − ẇt(µt − µt0)µ̂r

µ̂t
2 . (8)

The term in the parentheses is positive for the larger/later option and negative for the smaller/sooner option.445

Then, ∂R̄l

∂d < 0 and ∂R̄s

∂d > 0. It follows that ∂∆R̄
∂d < 0, so DA promotes the smaller/sooner option.446

Note here that the approximation in Eq. (8) depends on the durations being different for each option.447

Otherwise, (µt−µt0) = 0, and the first term in the numerator in Eq. (6) will always dominate, regardless of448

how low the temporal precision is. In this case, DA will always promote the larger option. Said differently, if449

the delays are equal, the task reduces to a simple two-armed bandit task (the options are equivalent except450

for a difference in reward magnitudes), and our framework predicts that DA will always promote the larger451

option.452

The Bayesian framework preserves the hyperbolic relationship with delays453

A well-replicated result is that animals behave as though discounting future rewards hyperbolically or near-454

hyperbolically (21, 54). The hypothesis that animals seek to maximize their reward rates in ITCs preserves455

this empirical phenomenon. Here, the animal’s choice is determined by:456

R̄ =
r

PRE + POST
, (9)

20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327775doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.327775


where R̄ is the reward rate, r is the reward, PRE is the pre-reward delay, and POST is the post-reward457

delay (including the intertrial interval). The reward rate has a hyperbolic relationship with the pre-reward458

delay. An important concern, then, is whether the Bayesian framework preserves this relationship. We show459

here that it does.460

First, parametrizing over the delays while holding the reward magnitudes constant, we can rewrite Eq. (3)461

as462

R̄ =
A

wtµt + (1− wt)µt0 + POST
, (10)

where A is a constant. Because the prior is determined by the distribution of stimuli in the context, its mean463

µt0 and standard deviation st0 scale approximately linearly with µt (roughly, µt0 is the average of µts, which464

is small and fixed, and µtl, which we parametrize over). So we can further write:465

R̄ ' A

wtµt + (1− wt)(Bµt) + POST
(11)

=
A

(wt(1−B) +B)µt + POST
, (12)

where B is a constant. Notice that the discount factor (term in outer parentheses in second line) increases466

with the temporal precision. This is exactly our result from Fig. 3I.467

The hyperbolic relationship will only hold if wt is also a constant (thus making the discount factor constant).468

We can write this as:469

wt =
λt

λt + λt0
(13)

=
s2
t0

s2
t + s2

t0

, (14)

where st = 1√
λt

and st0 = 1√
λt0

are the standard deviations of the likelihood and prior, respectively.470

We assume that the standard deviation st changes in accordance with Weber’s law: st = αµt, where α is471

known as the Weber fraction (77–79), and, as stated above, st0 scales approximately linearly with the longer472

duration: st0 ' βµt, where both α and β are constants. Then,473

wt '
β2

α2 + β2
, (15)

which is a constant, as required. Thus, as a result of Weber’s law, Eq. (10) describes a hyperbolic relationship474

between the delay and the reward rate.475
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It is interesting that the hyperbolic relationship requires a linearity between the likelihood standard deviation476

and the delay, which is exactly the empirically observed Weber’s law. Because of Weber’s law, the Bayesian477

framework is characterized by scale invariance: Amplifying the temporal intervals in a task does not affect478

the extent of each interval’s central tendency. It is worth speculating whether this serves an evolutionary479

purpose.480

Simulation details481

For our results to hold, we require that the mapping between DA and encoding precision be monotonic over482

the relevant domain. Weber’s law applies in the domains of reward magnitudes (93–95) and interval timing483

(77–79); therefore, it will be convenient to refer to the encoding standard deviation s = 1√
λ

. We arbitrarily484

set s(d) = αµ+ε
d , where α is the Weber fraction, ε represents signal-independent noise, and d is the DA level.485

When the DA level is fixed to 1, this relation reduces to the generalized Weber’s law (e.g., 96). We treat486

a DA level of 1 as the baseline (e.g., saline) condition. Increasing the DA level d decreases the standard487

deviation s and thus increases the precision λ, as required. We set α and ε to 0.4 and 0.5, respectively for488

rewards, and to 0.15 and 1, respectively for timing.489

We have assumed in the Results that the central tendency is more profound in the domain of rewards than490

in the domain of timing under normal conditions (high temporal precision). This is achieved by setting the491

Weber fraction to be higher for rewards. For conditions in which the temporal precision is selectively and492

sufficiently reduced, we increase the encoding standard deviation by a factor of 8. Note that our choice of493

α = 0.15 is a typical Weber fraction for rodents in interval timing (97).494

The prior mean and standard deviation were set to the mean and standard deviation of the distribution of495

stimuli. The prior precision λ0 is an inverse function of the prior variance σ2
0 , λ0 = 1

1+σ2
0
, where the added496

‘1’ in the denominator is so the precision does not go to infinity when the two stimuli are equal (a form of497

Laplace smoothing).498

For Figs. 3 and 4, we set the reward magnitudes for the smaller/sooner and larger/later options to 1 and499

4, respectively, in accordance with the number of pellets used as reinforcement in both Cardinal et al. (16)500

and van Gaalen et al. (53). The post-reward delay was arbitrarily fixed to 50 in Fig. 3, whereas in Fig. 4,501

the post-reward delay was 100 minus the pre-reward delay (total trial length was fixed to 100 in van Gaalen502

et al. (53)). We assumed the post-reward delays were underestimated by a factor of 8. As per the Results,503

we assumed that the encoding standard deviation increases by the same factor (here, 8), compared to the504
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encoding standard deviation for pre-reward delays. Finally, the agent makes decisions based on the softmax505

choice rule in Eq. (4) with β = 25.506

For Fig. 5, the DA level was varied between 0.4 and 1.6 to mimic natural differences across animals, while507

being centered at 1. DA levels were sampled logarithmically between these two extremes. For the ITC, and508

in accordance with the experimental setup of Marshall et al. (80), the reward magnitudes were 1 and 2, and509

the post-reward delay was 120. The short duration was 2.5, 5, 10, or 30, and the long duration was always510

30. The mean log odds were computed by averaging over the log odds for each temporal pair. We assumed511

the post-reward delay was underestimated by a factor of 4. An inverse temperature parameter of β = 500512

was required to match the data well, although the mismatch between this β value and that of the previous513

experiments may in part be due to the arbitrarily defined effect of DA on the encoding precision (in Eq. (5),514

β is multiplied by the posterior mean difference, whose relationship with DA is monotonic, but arbitrarily515

set). All other parameters are identical to those used in the experiments above. Finally, for the bisection516

task, the probability of selecting the ‘long’ response was the probability of the long duration for each time517

point, divided by the sum of probabilities of the short and long durations. The stochasticity parameter σ518

was fit to the softmax function in Eq. (4), where σ = β−1.519

Effect of encoding precision on learning post-reward delays520

Under standard conditions, a 4X increase in the encoding standard deviation can result in a profound increase521

in the overlap between the posterior distributions for a short interval µs and a long interval µl. It will be522

convenient to consider the posterior standard deviations ŝ = 1√
λ+λ0

. The overlap can be computed by523

first identifying the time tc ∈ [µs, µl] at which the posterior probabilities are equal (intersection of the two524

distributions):525

tc =
µ̂sŝ

2
l − ŝs

(
µ̂lŝs + ŝl

√
(µ̂l − µ̂s)2 + 2(ŝ2

l − ŝ2
s) ln( ŝlŝs )

)
ŝ2
l − ŝ2

s

. (16)

Then the overlap is526

p(µs, µl) =

∫ tc

−∞
N (t; µ̂l, ŝ

2
l )dt+

∫ +∞

tc

N (t; µ̂s, ŝ
2
s)dt. (17)

Intuitively, this represents the sum of the area under both curves to the left and to the right of tc, respectively.527

As above, we take the Weber fraction to be 0.15. Plugging in, it follows that the overlap between the posterior528

distributions for a 3-second interval and a 6-second interval is 0.03 (area under the curves; maximum is 1)529

but increases to 0.68 when the Weber fraction is 0.15 x 4 = 0.6.530
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