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Cortical columns interact through dynamic routing of neuronal activity. Monitoring 
these interactions in animals performing a behavioral task as close as possible to real 
time will advance our understanding of cortical computation. We developed the 
Multiplane Mesoscope which combines three established concepts in microscopy: 
spatio-temporal multiplexing, remote focusing, and random-access mesoscopy. With 
the Multiplane Mesoscope, we recorded excitatory and inhibitory neuronal 
subpopulations simultaneously across two cortical areas and multiple cortical layers in 
behaving mice. In the context of a visual detection of change task, we used this novel 
platform to study cortical areas interactions and quantified the cell-type specific 
distribution of neuronal correlations across a set of visual areas and layers. We found 
that distinct cortical subnetworks represent expected and unexpected visual events. Our 
findings demonstrate that expectation violations modify signal routing across cortical 
columns and establish the Allen Brain Observatory Multiplane Mesoscope as a unique 
platform to study signal routing across connected pairs of cortical areas. 
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Introduction 

Monitoring spatially distributed neuronal populations with single-neuron resolution is one of the 
grand challenges in experimental neuroscience. External signals to the brain are indeed represented 
through distributed, often spread-out cortical networks (Steinmetz et al., 2019), whose interactions 
are dynamic and depend on the context and predictability of those signals (Keller and Mrsic-Flogel, 
2018; Marques et al., 2018). At the micro-circuit level, cortical interactions are regulated through 
distinct excitatory and inhibitory cell types (Gouwens et al., 2019). Therefore, analysis of the 
activity of individual cell types across functionally connected cortical areas is necessary to 
understand cortical interactions in different behavioral contexts. While in vivo calcium imaging 
with two-photon laser scanning microscopes (TPLSM) is an effective tool for monitoring the 
activity of specific cell types, sampling spread-out networks of neurons in brain volumes with this 
method has been difficult. This is because TPLSM, if not limited to a single field-of-view (FOV), 
often restrict size and number of accessible regions-of-interest (ROIs) and doesn’t allow adequate 
sampling rates for simultaneous recordings at multiple cortical planes. 

Mesoscopic imaging systems with a large FOV of 3 – 5 mm (Tsai et al., 2015; Sofroniew et al., 2016; 
Stirman et al., 2016), permit to investigate information processing across multiple cortical areas in 
small animals. Such a large FOV two-photon random access mesoscope (2P-RAM) was recently 
developed (Sofroniew et al., 2016) and since commercialized by Thorlabs Inc. It combines several 
advanced imaging features and technical solutions. In addition to the FOV being increased to 
5 mm, it utilizes remote focusing (Botcherby et al., 2007, 2008) to achieve fast and nearly aberration-
free axial scanning. While such a system can access a very large volume of the cortex, it remains 
limited in its imaging throughput, since a single laser beam is employed to sequentially scan the 
brain tissue.  

In the past two decades, a variety of methods have been introduced to increase imaging 
throughput. Examples include imaging with extended focus beams or Bessel beams (Lu et al., 2017, 
2020), imaging with engineered point spread function (PSF) (Prevedel et al., 2016; Weisenburger et 
al., 2019), targeted path galvanometer scanning (Botcherby et al., 2012), 3D random-access 
scanning with acousto-optic deflectors (AODs) (Duemani Reddy et al., 2008), dual-axis two-photon 
imaging (Lecoq et al., 2014), and techniques based on light sheet illumination (Ahrens et al., 2013). 
Throughput-pushing techniques also include multiplexed TPLSM methods enabling simultaneous 
multi-site recordings with multiple excitation beams and either a single detector (Cheng et al., 
2011; Ducros et al., 2013; Chen et al., 2016; Stirman et al., 2016; Beaulieu et al., 2020) or a dedicated 
detector associated with each laser beam (Rumyantsev et al., 2020). 

To overcome these limitations, we developed Multiplane Mesoscope by combining mesoscopic 
random-access imaging and spatiotemporal multiplexing. Our system increases imaging 
bandwidth by a factor of two, which allows doubling the number of simultaneously imaged planes, 
while distributing them laterally and axially. Using this Multiplane Mesoscope, we simultaneously 
imaged 2 visual areas, and 4 cortical depths in mice performing an image-change detection task, 
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which involved expected and unexpected events. We found that distinct cell-class activity patterns 
and cortical interactions occur when visual expectations are violated.  

MATERIALS AND METHODS 

System design  

The design and operation of the original 2P-RAM was described previously (Sofroniew et al., 2016). 
Our modification added three custom modules to the original system, highlighted in Fig. 1a. We 
detailed this system in a previous publication along with in vitro characterization (Tsyboulski et al., 
2018). The first custom module controls power distribution between imaging planes and encodes 
excitation beams with laser pulse delay and polarization. The beam from an 80 MHz femtosecond 
laser (Chameleon Ultra-II, Coherent), emitting at 910 nm with a pulse duration of ~120 fs and 
output power of 2.5 W, passes through an electro-optical modulator (EOM1), a prism pulse 
compressor (PPC), and a second modulator (EOM2) with the internal polarizer removed. Next, two 
orthogonal laser beams are generated by a polarizing beam splitter, one beam is delayed by 6.25 ns 
by free-space propagation before the beams are recombined by a polarizing beam splitter and 
directed towards the Mesoscope’s periscopic input. EOM1 controls the total input power, EOM2 
rotates the beam polarization and defines the power ratio between both beams.   

The second highlighted custom module, includes an additional remote focusing (RFM2) unit 
(Fig. 1a), converting an original Mesoscope to a Multiplane Mesoscope. SolidWorks design files of 
the module are available upon request. The incoming orthogonally polarized beams are separated 
by another polarizing beam splitter and pass through wave plates, remote focusing objectives, and 
are reflected by movable mirrors (RFM1, RFM2). The reflected beams, rotated by 90˚ polarization, 
are then recombined by the same polarized beam splitter and directed to the optical scanners. This 
dual remote focusing assembly independently controls the axial positions of two focal planes and, 
provides spherical aberration compensation at different beam defocus values associated with 
remote focusing mirror positions (Botcherby et al., 2007, 2008).  

The third added module is the custom demultiplexing circuit we developed to electronically 
separate time-interleaved fluorescence signals from different imaging planes detected by a single 
photomultiplier (PMT). This module was described in details previously (Tsyboulski et al., 2018). 
Circuit diagrams are available upon request.  

System characterization 

To obtain point spread functions (PSF) we acquired and analyzed image stacks of 200 nm -sized 
fluorescent beads embedded in 4% aqueous agarose gel over the 5 mm FOV at depths between 
0 µm and 500 µm (Fig. 1b). Nearly identical PSFs were observed in both imaging channels and 
were similar to reported data for the 2P-RAM system (Sofroniew et al., 2016). 
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Laser power throughput was measured with a thermal power meter in selected locations along the 
optical path of each beam, revealing a 2% power loss in the delayed compared to the main beam 
due to the additional mirrors in the delay line. Overall system throughput was 16% for non-delayed 
beam and 14% for the delayed one. This difference can be easily compensated for by steering more 
laser power into the delayed beam. 

Animal head-implants and cortical window implantation 

Surgical headpost and cranial window implantation was performed as described elsewhere (de 
Vries et al., 2020; Garrett et al., 2020; Groblewski and Sullivan, 2020). Headpost and cranial window 
surgery was performed on healthy mice ranging in age from p37 to p63, weighing no less than 15 g. 
Dexamethasone (3.2 mg/kg, S.C.) was injected at 12 hrs and 3 hrs before surgery. Mice were 
initially anesthetized with 5% isoflurane (1–3 min) and placed in a stereotaxic frame (Model #1900, 
Kopf, Tujunga, CA). During surgery isoflurane levels were maintained at 1.5–2.5%. After a 1- to 2-
week-recovery, animals underwent intrinsic signal imaging for retinotopic mapping before 
behavioral training. Custom surgery tools and implants were designed at the Allen Institute and 
are described in detail elsewhere (Groblewski and Sullivan, 2020).  

Intrinsic imaging and mapping of the visual cortex 

Intrinsic signals were used to delineate functionally defined boundaries of visual areas and to target 
the in vivo two-photon calcium imaging to retinotopically defined locations in primary and 
secondary areas. Target maps were created from eccentricities at the center of V1 within 10o from 
the origin and were limited to negative retinotopic values for both altitude and azimuth. These 
maps were overlaid on an image of the surface vasculature providing fiducial landmarks to guide 
optical recording sessions and to ensure imaged locations were retinotopically matched across 
areas. 

Mice were lightly anesthetized with 1-1.4% isoflurane (SomnoSuite model #715; Kent Scientific, CT) 
at a flow rate of 100 ml/min supplemented with ~95% O2-containing air (Pureline OC4000; Scivena 
Scientific, OR). Eye drops (Lacri-Lube) maintained hydration and clarity of eyes during anesthesia. 
Mice were placed on a lab jack platform and head-fixed for imaging normal to the cranial window. 

The brain surface was illuminated with two independent sets of LEDs: green (peak/FWHM 
527/50 nm) and red (635/ 20 nm) mounted directly on the imaging lens creating a ring light. A pair 
of camera lenses (Nikkor 105mm f/2.8, 35mm f/1.4, Nikon), provided 3.0x magnification onto a 
sCMOS camera (Andor Zyla 5.5 10tap). A bandpass filter (Semrock; FF01-630/92 nm) selected red 
light reflected from the brain. 

The visual stimulus consisted of a drifting bar containing a checkerboard pattern, alternating black 
and white as it sweeps on a grey background along the four cardinal axes 10 times in each direction 
at a rate of 0.1 Hz. The drifting bar measures 20° x 155°, with individual squares of 25º. To account 
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for the close viewing angle of the mouse, a spherical warping was applied to all stimuli to ensure 
apparent size, speed, and spatial frequency were constant across the monitor as seen from the 
mouse’s perspective. To ensure maximal FOV coverage, a 24” monitor was positioned 10 cm from 
the right eye. The monitor was rotated 30° relative to the animal’s dorso-ventral axis and tilted 70° 
off the horizon to ensure the stimulus was perpendicular to the optic axis of the eye. 

Visual stimulation for behavioral experiments 

Visual stimuli were generated using custom scripts written in PsychoPy (Peirce, 2007, 2008) and 
displayed using an ASUS PA248Q LCD monitor, with a 1920 x 1200 display resolution. Visual 
stimuli were spherically warped as for all intrinsic imaging experiments. The monitor’s screen 
spanned 120° x 95° of visual space without accounting for stimulus warping. Each screen was 
gamma calibrated using a USB-650 Red Tide Spectrometer (Ocean Optics). Luminance was 
measured using a SpectroCAL MKII Spectro-radiometer (Cambridge Research Systems). Monitors 
brightness (30%) and contrast (50%) corresponded to a mean luminance of 50 cd/m2. 

Behavioral training 

Details of training are explained in a previous study (Groblewski et al., 2020). In brief, animals 
learned to detect image changes using the following procedure. Water-restricted mice were 
habituated to progressively longer duration of head fixation in the behavior enclosure over a five-
day period. On day 1 of training, full-field, static square-wave gratings were presented. Mice 
received automatic water rewards whenever the grating orientation switched between 0o and 90o. 
In the sessions thereafter, mice were rewarded if they licked within a 750 ms time window after 
the visual stimulus changed. In stage 1, static gratings were presented as on day 1. In stage 2, static 
gratings were presented for 250 ms interleaved with 500 ms gray screens. Stage 3 was similar to 
stage 2, except static gratings were replaced with natural images. Progression through each stage 
required mice to achieve a peak dprime of 2 during two of the last three sessions. Once in stage 3, 
mice were considered ‘ready for imaging’ when two out of three sequential sessions had a dprime 
>2 and mice had performed at least 100 trials. 

Image changes happened randomly during GO trials, according to a geometric distribution (p=0.3) 
after 5-11 image repetitions following a period where mice consistently withheld licking. 5% of the 
images were randomly omitted, excluding “change images” and the preceding image to avoid 
interfering with behavior performance (“omissions”, see Fig. 3b). Training sessions lasted for 
60 min.  

EXPERIMENTAL DESIGN AND STATISTICAL ANALYSES 

Description of datasets  
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Three mouse lines were used in this study: excitatory mouse line: Slc17a7-IRES2-Cre;Camk2a-
tTA;Ai93(TITL-GCaMP6f), inhibitory subpopulation VIP: Vip-IRES-Cre;Ai148(TIT2L-GC6f-ICL-
tTA2), and inhibitory subpopulation SST: Sst-IRES-Cre;Ai148(TIT2L-GC6f-ICL-tTA2). 

For the excitatory cell line, 22 sessions from 6 mice; for the SST cell line, 17 sessions from 4 mice; 
for the VIP cell line, 25 sessions from 7 mice were recorded. 

Processing of calcium imaging movies 

The preprocessing of all calcium imaging data was done within the Allen Institute’s image 
processing pipeline described in detail elsewhere (de Vries et al., 2020), and crosstalk removal was 
applied after pre-processing. Briefly, all data were corrected for brain motion by performing rigid 
registration in two dimensions. Then, cell-segmentation identified spatial masks of active neurons. 
Further, mask-matching and crosstalk removal was done by independent component analysis 
(ICA) and ghost cells were excluded. Finally, fluorescence from spatially-overlapping neuronal 
masks was unmixed and corrected for neuropil contamination, and lastly, ΔF/F was computed on 
corrected masks.  

Crosstalk characterization and removal 

Crosstalk is a fundamental limitation in multiplexed microscopy systems. One factor defining the 
amount of inter-plane crosstalk is the combined pulse rate of the multiplexed beams since it limits 
the maximum temporal separation between fluorescent signals. In our case, multiplexing generates 
a total pulse rate of 160 MHz which defines the width of the signal integration window, i.e., 6.25 ns. 
Thus, the detected fluorescence signals are decoded in the demultiplexing circuit using a temporal 
window of ≤ 6.25 ns. Another fundamental factor determining the amount of crosstalk is the 
duration of fluorescence signals. The fluorescence lifetime τ of calcium indicators derived from GFP 
is in the range of 2.7 – 3.2 ns (Akerboom et al., 2012; Pliss et al., 2012).  

To minimize crosstalk between channels, fluorescence signals in two planes were compared while 
adjusting the temporal alignment of the multiplexing gates. We fine-tuned the amount of crosstalk 
for in vivo imaging by adjusting the pulse delay while monitoring excitatory neurons. We recorded 
signals in both imaging channels, exciting with only one beam. Optimal alignment with respect to 
the fluorescent signals was observed at 4.5 ns delay, with a residual crosstalk of ~ 15%.  

Crosstalk removal was performed on fluorescence traces by ICA, using the FastICA method from 
the scikit-learn package (Pedregosa et al., 2011), where independent components are estimated by 
minimizing Gaussianity of the data (Hyvärinen, 1999). The assumption is that observations at the 
two planes are a linear mix of two clean sources. We assume a mixing matrix of the form [[1-a, a], 
[b, 1-b]], where a and b are in [0,1]. After FastICA, we transform the resulting mixing matrix to be 
of this form to recover the proper scaling and polarity of the mixed signals. Prior to FastICA, data 
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undergo a whitening transformation; performed independently of the scikit module to scale the 
output signals. Details about this crosstalk-removal algorithm can be found in the platform 
whitepaper on https://portal.brain-map.org/explore/circuits/visual-behavior-2p.   

Population averages of neuronal responses 

Traces were aligned to the onset of image omission. The median of neural responses was computed 
across trials. The average response was then computed across neurons, for each session. A grand 
average was then computed across sessions (see Fig. 3c, left). To quantify the image-evoked 
responses, the calcium trace of each neuron was averaged over 350 ms after image onset for 
excitatory and SST neurons, and over a window of [-250, 100] ms relative to image onset for VIP 
neurons to account for their anticipatory response. Response quantification was done on the mean 
(across trials) trace of each neuron. The same quantification was performed for omission-evoked 
responses, except a 500 ms window was used for quantification. The responses were averaged 
across neurons, for each session, and then a grand average was computed across sessions (see 
Fig. 3c, right).  

Correlation of neural responses across cortical planes 

On omission-aligned traces, the Spearman correlation coefficient was computed between pairs of 
neurons across trials, i.e. omissions. Correlations were computed for every individual frame, over 
[-1, 2] sec relative to the omission. This procedure was done for all pairs of neurons; then an average 
value was computed across all pairs (Fig. 4a). Neuron pairs were present within the same plane, 
or in 2 different planes. This analysis allowed studying how the response of neurons (within the 
same plane or in different areas/layers) covaried across trials, and how this coactivation changed 
at different moments (e.g. after images vs. omissions). 

Spearman correlation coefficients were also computed on shuffled traces which were driven by 
independently shuffling trial orders for each neuron. For each neuron pair, shuffling was repeated 
50 times, resulting in a distribution of correlation coefficients for shuffled data.  

To compute “noise” correlations, we measured pairwise correlations of “signal”-removed traces. 
“Signal” was computed by taking the average neural response to each image type (there were 8 
images in each session), and subtracting the average from the response of individual trials of that 
image type.  

To quantify coactivation of neurons (Fig. 4b), correlations coefficients (“cc”) were first averaged 
over 500 ms after images for excitatory and SST neurons, and over [-250, 250] ms relative to image 
onset for VIP neurons, accounting for their anticipatory response. Then, correlation coefficients 
were averaged across baseline frames. We call this quantity “image cc”. To quantify omission-
evoked coactivation, we averaged correlation coefficients over 750 ms after omissions. We call this 
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quantity “omission cc”. Next we quantified baseline coactivation by averaging correlation 
coefficients across baselines frames. Baseline was defined as the frame immediately preceding each 
image presentation, for excitatory and SST neurons, and 250 ms earlier than each image 
presentation for VIP neurons. We call baseline quantification of correlation “baseline cc”. Finally, 
we measured the change in coactivation during images or omissions by subtracting out “baseline 
cc” from “image cc”, or “omission cc”.  

The Python package scipy (Virtanen et al., 2020) (scipy.stats.spearmanr) was used for computing 
correlations. P-values were computed in two ways: 1) using the p-value output of the spearmanr 
package; 2) manually computing the p-value by comparing the correlation coefficient of real (non-
shuffled) data with the shuffled distribution using 2-sided, 1-sample t-test (using the Python 
package scipy.stats.ttest_1samp).   

Statistical tests 

We used two-way ANOVA, followed by Tukey HSD to compare population averages across cortical 
layers. Two-sided t-test was used to compare correlations between real and shuffled data, for each 
cortical plane. A p-value of 0.05 was used as the significance threshold. For comparison of the 
correlation coefficients, we used two-tailed, two-sample Kolmogorov–Smirnov tests.  

Instrument availability 

Instrument CAD and optical design files are available upon request for non-commercial use. 
Additionally, the dual-beam add-on module for Mesoscope was licensed to Thorlabs. Inc. and is 
available there. 

Data availability 

The data that support the findings of this study are publicly available on Allen Institute website 
(https://portal.brain-map.org/explore/circuits/visual-behavior-2p).  

CODE AVAILABILITY  

The code used for processing calcium imaging data is publicly available as part of the Allen 
Software Development Kit (SDK) at https://github.com/AllenInstitute/AllenSDK/. Crosstalk 
removal was performed using custom routines employing FastICA which is available as part of 
scikit-learn python package (https://scikit-learn.org/) and as part of the Allen SDK at 
https://github.com/AllenInstitute/AllenSDK/. Code for the analysis of calcium responses (Fig. 3 
and Fig 4) can be found at https://github.com/AllenInstitute/mesoscope_manuscript 
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RESULTS 

Optical design of the Allen Brain Observatory Multiplane Mesoscope.  

The detailed layout of the Multiplane Mesoscope is shown in Fig. 1a, with the components added 
to the original Mesoscope highlighted in gray: a Multiplexing Unit containing both an electro-
optical modulator and a pathway to delay the orthogonally polarized second excitation beam, a 
second remote focusing unit (RFU), and a demultiplexing electronic circuit.  

To achieve doubling of the imaging throughput, we added a second imaging channel by splitting 
the laser beam in two and encoding each beam with its own polarization and pulse time-of-arrival 
(delay). Using polarization encoding, each beam was routed through a dedicated remote focusing 
unit to achieve independent axial positioning of two focal planes. Fluorescence generated by each 
laser beam was decoded in a custom demultiplexing circuit using it’s known pulse time-of-arrival. 
Thereby, we achieved nearly aberration-free simultaneous imaging from two focal planes, 
independently positioned in the axial direction. As a result, the Multiplane Mesoscope achieves a 
unique balance of optical resolution, optical field of view, and imaging throughput.  

Two sequential electro-optical modulators (EOM) control the excitation power of both imaging 
planes, distributing it efficiently between imaging depths. EOM1 controls the total amount of laser 
power, while EOM2 and a polarizing beam splitter distribute the power between two beams and 
convert the incoming laser pulses into two orthogonally polarized trains. The delay line separates 
both trains by half a pulse period. Another polarizing beam splitter combines both beams, creating 
two interleaved, temporally encoded excitation pulse trains. The input polarizing beam splitter of 
the dual-plane RFU steers those trains to two separate RFUs, controlling the beams’ collimation 
independently. Beams are then recombined and directed to the shared XY scanner. Thus, the two 
imaging planes are positioned independently in axial dimension while remaining laterally coupled 
during scanning.  

Time-interleaved fluorescence signals from the two imaging planes are detected by a single PMT. 
The signal separation in the 100 MHz range is challenging and required two critical issues to be 
resolved. First, since the 80 MHz laser pulse frequency slightly fluctuates in time, detection 
electronics must be synchronized with excitation. Second, signals at the PMT output corresponding 
to neural activity vary significantly, from high-bandwidth single-photon detection events to 
significantly higher and longer bursts from high-count photon fluxes. Previous reports utilized 
different approaches for signal demultiplexing, including gated photon counting (Stirman et al., 
2016) and more recently high-frequency sampling at rates near or above 1 GHz and digital 
unmixing with field-programmable gate arrays (Weisenburger et al., 2019; Beaulieu et al., 2020). 
We developed a simple and efficient analog demultiplexing method which is compatible with 
standard data acquisition hardware commonly used for two-photon microscopy (see Methods). 
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We validated that the Multiplane Mesoscope maintained a high optical resolution throughout the 
full FOV for both beams (lateral PSF < 1 µm and axial PSF < 6 µm for all measured imaging 
locations, see Fig. 1b-c). 

Imaging modalities and flexibility of the Allen Brain Observatory Multiplane 

Mesoscope imaging platform.  

The Multiplane Mesoscope was designed to provide a large flexibility of experimental set-up as our 
intent was to create the future basis of the Allen Brain Observatory imaging platform. We can 
match imaging modes with the density and spatial distribution of neural labeling in various Cre-
lines. Multiple ROIs can be positioned in arbitrary X-Y locations within the total 5 mm optical 
access FOV, while axially, simultaneously scanned planes can be within the 2 mm range of the 
remote focusing units. For denser excitatory cell lines, one could benefit from imaging a single 
column with as many z-planes as possible. When imaging a layer-specific cell line, given the desired 
scan rate, the operator can decide to image 2 or more lateral areas with axial planes positioned in 
the labeled cortical layer.  

Two configurations currently used on the Allen Brain Observatory platform are shown in Fig. 2. In 
imaging mode 1, (Fig. 2A), we aimed to image two cortical columns (for example V1 and one 
adjacent higher-visual areas) with 4 axial planes in each. To optimize laser power distribution, we 
coupled the most superficial plane with the deepest one and imaged the two middle planes as a 
pair. In this configuration, the resulting scan rate for each plane was ~10.7 Hz. Fig 2.c shows single 
planes acquired in this mode with single-cell resolution along with example extracted calcium 
traces. 

Imaging mode 2 used in the Brain Observatory consisted of four lateral ROIs distributed across 
four areas of the visual cortex, and two axial planes. This mode was used primarily for Cre lines 
where neural labeling was confined to a smaller cortical depth and was sampled with the same 
scan-rate (10.7 Hz).  

Simultaneous characterization of cell-type specific neuronal responses across brain areas during a visual 

behavior task. 

To establish this imaging platform as a tool to study cortical computation, we integrated this 
microscope with a standardized behavior training cluster (Garrett et al., 2019; Groblewski et al., 
2020). In this study, we used this integration to study cortical column interactions during active 
behavior (Fig. 3). Since distinct cortical pathways are suggested to carry sensory vs. prediction 
signals (Bastos et al., 2012; Keller and Mrsic-Flogel, 2018), we hypothesized that cortical 
interactions between pairs of areas and layers should be distinct in response to expected vs. 
unexpected events. To address this question, we trained mice on a go/no-go, image-change 
detection task that was previously established (Garrett et al., 2020; Groblewski et al., 2020). In brief, 
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water-restricted animals were presented with a constant stream of natural images (250 ms) 
interleaved with gray screens of matched luminance (500 ms) (Fig. 3b). On go trials, a change in 
image identity occurred and mice received a water reward if they licked within 500 ms after the 
image change. During imaging sessions in well-trained mice, a pseudo-random 5% of non-change 
images were replaced with a gray screen (“omissions”). As the mice had extensive experience with 
the highly regular timing of image presentations in the task (every ~750 ms), the rare stimulus 
omissions were unexpected events, while the frequent, repeated image presentations were 
expected events. We recorded the activity of excitatory cells as well as inhibitory somatostatin-
expressing neurons (SST) and vasoactive intestinal polypeptide-expressing (VIP) neurons, using 3 
distinct mouse lines (see Methods). We imaged at 4 cortical depths in 2 visual areas (V1 and LM; 
Fig. 3a).  

To test if expected and unexpected events are encoded by different neuronal circuitries, we first 
studied how the activity of excitatory and inhibitory subtypes (VIP, SST) is modified in response 
to image presentations and omissions, and how it depends on cortical area and depth in the same 
mice. The population average of neural activities demonstrated a clear difference across cell classes: 
images activated excitatory neurons and, more robustly, SST neurons (Fig. 3c, top, middle). 
Excitatory neurons did not respond to omissions in any visual area (Fig. 3c, bar plots, top; black: 
V1; blue: LM). SST neurons were slightly inhibited after omissions in all recorded locations (Fig. 3c, 
bar plots, middle). In sharp contrast to excitatory and SST neurons, VIP neurons, in all layers and 
areas, were robustly activated after omissions (Fig. 3c, bottom). They also demonstrated small 
anticipatory activity approximately 250 ms prior to each image presentation and were inhibited 
immediately after the image (Fig. 3c, bottom), confirming previous results obtained with more 
conventional TPLSM imaging instruments using the same behavioral task (Garrett et al., 2020). 

The Multiplane Mesoscope allowed unbiased comparison of neuronal responses across cortical 
depths of V1 and LM, all recorded simultaneously in each experiment. We found excitatory 
neuronal responses to images became progressively stronger in deeper layers of V1(Niell and 
Stryker, 2008) and LM (Fig. 3c, top). SST responses to images were strongest in V1 layer 2/3 
compared to other layers but did not differ among cortical layers of LM (Fig. 3c, middle; V1: one-
way ANOVA: p=0.005, Tukey HSD: p<0.05 for 1st vs. 2nd depth and 1st vs. 3rd depth comparison, 
p>0.05 for all other pairwise depth comparisons; LM: one-way ANOVA: p=0.32). VIP responses to 
omissions were significantly stronger in deeper layers of V1 but did not differ among LM layers 
(Fig 3c, bottom; V1: one-way ANOVA: p=0.001, Tukey HSD: p<0.05 for 3rd vs. 1st and 3rd vs. 2nd 
depth comparison, p>0.05 for all other pairwise depth comparisons; LM: one-way ANOVA: p=0.12). 

Our analyses indicated that image presentations were more robustly represented by excitatory and 
SST neurons, particularly in deeper layers; in contrast, unexpected omissions were represented in 
VIP neuron activity. Previous studies have suggested that feedback pathways convey prediction 
signals from higher order cortical areas to superficial layers of V1(Yang et al., 2016; Keller and 
Mrsic-Flogel, 2018; Marques et al., 2018). In light of these studies, we used simultaneous multi-
plane recording to investigate if cortical interactions might be different when expectations are 
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violated, i.e. during omissions. Importantly, this analysis could only be carried out with the multi-
area, multi-plane capabilities of the Multiplane Mesoscope. 

Neural correlations across cortical areas and layers following expected and 

unexcepted events. 

To study cortical interactions, we correlated neural responses across repeated image presentations, 
as well as omissions, for each cell type (pairwise “noise” correlations; Fig. 4). We measured 
correlations within each area (V1-V1, LM-LM; Fig. 4, middle, right), as well as across areas (V1-
LM; Fig. 4, left). In the excitatory network, after image presentations, correlations in neural activity 
were significantly stronger between neurons in deep layers of V1 and LM compared to those in the 
superficial layers (V1-LM: Fig. 4a,b, top left; V1-V1: Fig. 4b, top middle; LM-LM: Fig. 4b, top right; 
see Table 1 for statistical details). In the SST network, correlations increased broadly across all 
layers and areas after image presentations (Fig. 4b, middle. One-way ANOVA: P>0.05). Omissions 
did not modify neural correlations for the excitatory or the SST network (Fig. 4b, top and middle 
for excitatory and SST, respectively).  

In the VIP network, coactivation patterns were strikingly different compared to other cell types: 
neural correlations were significantly increased after omissions. This occurred for neuron pairs 
across all layers and areas. On the other hand, the coactivation pattern of the VIP network did not 
change following images, among any of the cortical planes (Fig. 4b, bottom). Notably, correlations 
were overall much weaker among excitatory neurons compared to inhibitory neurons, confirming 
previous results and indicating stronger local connectivity between inhibitory neurons (Packer and 
Yuste, 2011; Najafi et al., 2020). 

DISCUSSION 

While they are common in many fields, integrated high-throughput in vivo imaging platforms are 
scarce in systems neuroscience. This is due to the complex integration of experimental designs and 
instrumentation. It is currently more practical for individual laboratories to purchase dedicated 
equipment and specialize its use to a few ongoing experiments, sometimes in collaboration with 
neighboring laboratories. This practice incentivizes the development of new technologies at the 
cost of their integration into robust and scalable data collection workflows. Here our goal was to 
combine novel technology (dual-remote focusing) and existing imaging technologies (2p-RAM and 
temporal multiplexing) with a scalable behavioral task. We shared both the data and the 
experimental platform. Indeed, this imaging platform was used to generate the dataset recently 
released to the public (https://portal.brain-map.org/explore/circuits/visual-behavior-2p) and will be 
available in the coming years for experimental proposals as part of the OpenScope project funded 
by the NIH (NS113646-01A1). We hope that future developments in imaging techniques will be 
fueled by this approach, allowing the integration of complex, nascent technologies (Lecoq et al., 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2020.10.06.328294doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.328294


 

Page 13 of 26 

2019) for high throughput neuronal recordings, and involving modern machine learning tools 
(Lecoq et al., 2020).  

Here, we combined three existing technical solutions to double the throughput of a large field of 
view two-photon mesoscope and study interactions of neuronal networks distributed across visual 
areas and layers. The system combines benefits of random accessing regions of interest across an 
ultra-large FOV and dual-beam scanning which increases imaging throughput. Similar systems 
have been developed to enable imaging of distributed cortical networks. For example, a dual-beam 
system with fully independent scan engines and an ultra-large FOV (Stirman et al., 2016) was 
reported and is disseminating it under open-source license. Our approach is distinct, as we 
combined our system with a behavioral platform, and eventually made it available as an integrated 
experimental platform (NIH OpenScope project). 

While temporal multiplexing was introduced to two-photon imaging a decade ago (Cheng et al., 
2011), it is not yet widely used, given the challenge of unmixing high-frequency PMT signals and 
the associated technical complexity. Here we integrated this technology with a commercially 
available instrument as an add-on module. This modularity was central to our design. This 
approach proves to be effective as external laboratories have already integrated our module in their 
research on cortical computation (Stringer et al., 2021). Similarly a Bessel beam module was 
recently introduced to the mesoscope (Lu et al., 2020). A recent modification of our approach 
focused additional beams along the axial direction, further scaling up population recording (Demas 
et al., 2021). Once challenges associated with residual plane crosstalk in these instruments are fully 
addressed, we anticipate that disseminating and integrating multiplexing approaches will unlock 
our access to cortex-wide recordings with single-cell resolution.   

To validate our imaging platform, we integrated our instrument with a previously established 
versatile behavior task. The image-change detection task we used in our study allowed studying 
the representation of expectation violation signals in the brain: First, it included repeated 
presentations of the same image, hence forming a prediction signal; second, it involved unexpected 
image omissions, hence generating a prediction violation signal.  

Predictive coding requires communication across brain areas for generating and updating 
predictions (Rao and Ballard, 1999; Hamm et al., 2018; Keller and Mrsic-Flogel, 2018; Keller et al., 
2020). Therefore, to investigate the neural circuit mechanisms that underlie predictive coding, we 
need to study signal flow across cortical areas while animals make and update predictions. The 
Multiplane Mesoscope allowed us to study cortical columns during our visual task which involved 
predictive signals.  

We found that the correlation among deeper layers of excitatory neurons goes up after image 
presentations, aligned with the bottom-up sensory inputs from the thalamus to deeper layers of 
the cortex. Following omissions on the other hand, excitatory neurons in most layers were barely 
active, and the coactivation patterns among excitatory neurons did not change either. This is at 
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odds with the deviant detection studies that show excitatory neurons encode deviant stimuli 
(Hamm et al., 2018). This difference could be due to the fact that omissions and deviant stimuli, 
although both representing expectation violation events, are encoded via distinct circuits.  

We previously found that VIP neurons in the visual cortex show robust responses after unexpected 
omissions (Garrett et al., 2019). In the current study, we further characterized the response of VIP 
neurons across cortical layers of V1 and LM. Our results demonstrate that VIP neurons in V1 and 
LM are broadly coactivated in both superficial and deep cortical layers when unexpected omissions 
occur. Previous studies suggested that VIP neurons may carry a prediction signal (Krabbe et al., 
2019). Given their inputs from association areas and the neuromodulatory system, VIP neurons 
may also play a central role in gating sensory inputs and driving context-dependent behavior (Fu 
et al., 2014; Kuchibhotla et al., 2017; Garrett et al., 2020). But, what is the source of the VIP omission 
signal in our study? The omission response occurs in the VIP network in all visual areas and layers, 
suggesting that it may arise from broad shared inputs onto the VIP network. The neuromodulatory 
system represents a good candidate for this shared input. Future studies examining the role of the 
neuromodulatory system in generating the VIP omission response will shed light on the 
mechanisms underlying the VIP omission response. 

Conclusion 

In summary, the Allen Brain Observatory Multiplane Mesoscope enables experiments requiring in-
vivo simultaneous imaging at different depths across multiple areas of the cortex. Importantly, we 
accomplished this without trading image quality for temporal resolution. Imaging with this 
instrument during a behavioral task, we demonstrated, for individual excitatory and inhibitory cell 
types, that interactions across cortical columns are distinct following expected and unexpected 
events. As a central piece of the Allen Brain Observatory two-photon data pipeline (de Vries et al., 
2020) and of the OpenScope project (NIH U24 resource, https://alleninstitute.org/what-we-
do/brain-science/research/products-tools/openscope/) the Multiplane Mesoscope will be used to 
generate open datasets in service of the neuroscience community.  
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Excitatory, V1-LM correlations Omission responses: one-way ANOVA: F=1.96, 

p=0.30; TUKEY HSD: p>0.05 for all pairwise 
comparisons. 
 
Image responses: one-way ANOVA: F=5.01, p<0.001; 
TUKEY HSD: p<0.05 for the following pairwise 
comparisons: 
 
[LM depth, V1 depth] vs [LM depth, V1 depth]: 
[0 0] vs [2 2] 
[0 0] vs [2 3] 
[1 0] vs [2 2] 
[1 0] vs [2 3] 
[3 0] vs [2 2] 
[0 1] vs [2 2] 
[0 1] vs [2 3] 
[1 1] vs [2 2] 
[1 1] vs [2 3] 
[2 1] vs [2 2] 
[2 1] vs [2 3] 
[3 1] vs [2 2] 
[3 1] vs [2 3] 
[2 2] vs [0 3] 
[2 2] vs [1 3] 
[1 3] vs [2 3] 
 

Excitatory, V1-V1 correlations Omission responses: one-way ANOVA: F=0.59434, 
p=0.79; TUKEY HSD: p>0.05 for all pairwise 
comparisons. 
 
Image responses: one-way ANOVA: F=9.849076, 
p<0.001; TUKEY HSD: p<0.05 for the following 
pairwise comparisons: 
 
[LM depth, V1 depth] vs [LM depth, V1 depth]: 
[0 0] vs [2 2] 
[0 0] vs [2 3] 
[0 0] vs [3 3] 
[0 1] vs [2 2] 
[0 1] vs [2 3] 
[0 1] vs [3 3] 
[1 1] vs [2 2] 
[1 1] vs [2 3] 
[1 1] vs [3 3] 
[0 2] vs [2 2] 
[0 2] vs [3 3] 
[1 2] vs [2 2] 
[1 2] vs [3 3] 
[2 2] vs [0 3] 
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[2 2] vs [1 3] 
[0 3] vs [3 3] 
[1 3] vs [2 3] 
[1 3] vs [3 3] 
 

Excitatory, LM-LM correlations Omission responses: one-way ANOVA: F=5.76883, 
p<0.001; TUKEY HSD: p<0.05 for the following 
pairwise comparisons: 
 
[LM depth, V1 depth] vs [LM depth, V1 depth]: 
[0 0] vs [3 3] 
[0 1] vs [3 3] 
[1 1] vs [3 3] 
[0 2] vs [3 3] 
[1 2] vs [3 3] 
[2 2] vs [3 3] 
[0 3] vs [3 3] 
[1 3] vs [3 3] 
[2 3] vs [3 3] 
 
 
Image responses: one-way ANOVA: F=2.822217, 
p=0.01; TUKEY HSD: p<0.05 for the following pairwise 
comparisons: 
 
[LM depth, V1 depth] vs [LM depth, V1 depth]: 
[0 0] vs [2 2] 
[0 1] vs [2 2] 
[2 2] vs [3 3] 
 

SST, V1-LM correlations Omission responses: one-way ANOVA: F=0.470705, 
p=0.93; TUKEY HSD: p>0.05 for all pairwise 
comparisons. 
 
Image responses: one-way ANOVA: F=0.439109, 
p=0.95; TUKEY HSD: p>0.05 for all pairwise 
comparisons. 
 

SST, V1-V1 correlations Omission responses: one-way ANOVA: F=0.270538, 
p=0.97; TUKEY HSD: p>0.05 for all pairwise 
comparisons. 
 
Image responses: one-way ANOVA: F=1.114853, 
p=0.39; TUKEY HSD: p>0.05 for all pairwise 
comparisons. 
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SST, LM-LM correlations Omission responses: one-way ANOVA: F=2.368675, 
p=0.06; TUKEY HSD: p<0.05 for the following pairwise 
comparisons: 
 
[LM depth, V1 depth] vs [LM depth, V1 depth]: 
[0 3] vs [3 3] 
 
Image responses: one-way ANOVA: F=1.901994, 
p=0.12; TUKEY HSD: p>0.05 for all pairwise 
comparisons. 
 

VIP, V1-LM correlations Omission responses: one-way ANOVA: F=0.47, 
p=0.95; TUKEY HSD: p>0.05 for all pairwise 
comparisons. 
 
Image responses: one-way ANOVA: F=0.58, p=0.88; 
TUKEY HSD: p>0.05 for all pairwise comparisons. 
 

VIP, V1-V1 correlations Omission responses: one-way ANOVA: F=0.22, 
p=0.99; TUKEY HSD: p>0.05 for all pairwise 
comparisons. 
 
Image responses: one-way ANOVA: F=1.67, p=0.13; 
TUKEY HSD: p<0.05 for the following pairwise 
comparisons: 
 
[LM depth, V1 depth] vs [LM depth, V1 depth]: 
[1 1] vs [3 3] 
 

VIP, LM-LM correlations 
Omission responses: one-way ANOVA: F=0.64, 
p=0.76; TUKEY HSD: p>0.05 for all pairwise 
comparisons. 
 
Image responses: one-way ANOVA: F=0.50, p=0.87; 
TUKEY HSD: p>0.05 for all pairwise comparisons. 
 

 Table 1. Statistical tests comparing correlation coefficients of neuronal activity among pairs of cortical planes. Depth 

0 to 3 denote the 4 depths recorded in V1 and LM (Fig. 4b). 
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Figure 1. Dual Plane Mesoscope enables large-scale multi-plane, multi-area functional imaging. 
a, Instrument schematic for time-multiplexed excitation and detection. Beam power of Ti:Sapphire laser controlled by 
electro-optical modulator (EOM1). Multiplexing unit generates doubles laser pulse rate using polarizing beam splitters, 
orange arm delayed by 6.25 ns. EOM2 acts as dynamic waveplate, controlling power splitting ratio. Remote focusing 
mirrors RFM1 and RFM2 control axial positioning of focal planes by changing beams’ collimation. Quarter-wave plate 
rotates beam polarizations by 90o at RFU output, steering beams towards scanners. b. Optical resolution of Multiplane 
Mesoscope. Profiles correspond to Point Spread Function (PSF) of 200 nm beads in agarose gel, imaged 300 µm deep 
at different FOV locations. c. PSF measurement in Z (top) and X-Y (bottom) for different FOV positions and depths. 
Colored circles represent full (5 mm) FOV, depth represents position from the surface, color represent optical resolution 
at different positions of the FoV.  
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Figure 2. Dual Plane Mesoscope pipeline enables two complementary imaging modes. a. Imaging mode 1 
samples two cortical areas with 4 planes in each area. Superficial planes are coupled with deeper planes to balance the 
laser power budget. b. Imaging mode 2 samples four cortical areas with a pair of axial planes in each. In both modes, 
pairs of planes are imaged simultaneously. c. Example two-photon images and set of calcium traces recorded in 
imaging mode 1 in V1 and LM in an awake Slc17a7-IRES2-Cre;Camk2a-tTA;Ai93 mouse visual cortex. Scale bars 100 
µm.  
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Figure 3. Excitatory and SST neurons in cortical columns of V1 and LM represent images, while VIP neurons 
represent omissions. a, Left: Intrinsic imaging of visual areas V1 and LM. Right: Simultaneous imaging of four 
cortical depths of V1 and LM during image-change detection task. Scale bar: 100 µm. b, Left: Images presented to 
head-fixed mice on a running disc. Right: Behavioral task included repeated natural image presentations (“images”; 
shaded rectangles), 5% of which were randomly omitted (“omissions”; dashed rectangle). c, Left: population-averaged 
calcium responses to images (shaded rectangles) and omissions (dashed rectangle) in 3 different mouse lines tagged 
for excitatory and two inhibitory subpopulations (mean +/- SEM; n = 24, 22, 24 sessions for excitatory, SST, and VIP, 
respectively). ΔF/F traces normalized to baseline standard deviation. Right: quantification of neural responses 
averaged over 350 ms after images, and 500 ms after omissions (time-windows used for quantification of image and 
omission-evoked responses are indicated by orange and gray horizontal lines above top left panel).  
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Figure 4. Distinct cortical interactions across visual areas following expected and unexpected events. a, 
Spearman correlation coefficients between V1 and LM neurons at different cortical depths (colors indicate LM depths; 
each subplot corresponds to a given V1 depth). b, change in correlation coefficients during images (left) and omissions 
(right) relative to baseline, shown for pairs of neurons across V1 and LM (left), within V1 (middle), or within LM (right). 
Correlation coefficients quantified over 500 ms after images, and 750 ms after omissions. Traces and heatmaps: mean 
+/- SEM; n = 8, 6, 9 mice for excitatory, SST, and VIP cell types, respectively. 
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