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1 Abstract1

What are the contents of working memory? In both behavioral and neural computational models, the working mem-2

ory representation of a stimulus is typically described by a single number, namely a point estimate of that stimulus.3

Here, we asked if people also maintain the uncertainty associated with a memory, and if people use this uncertainty4

in subsequent decisions. We collected data in a two-condition orientation change detection task; while both condi-5

tions measured whether people used memory uncertainty, only one required maintaining it. For each condition, we6

compared an optimal Bayesian observer model, in which the observer uses an accurate representation of uncertainty7

in their decision, to one in which the observer does not. We find that this “Use Uncertainty” model fits better for all8

participants in both conditions. In the first condition, this result suggests that people use uncertainty optimally in a9

working memory task when that uncertainty information is available at the time of decision, confirming earlier results.10

Critically, the results of the second condition suggest that this uncertainty information was maintained in working11

memory. We test model variants and find that our conclusions do not depend on our assumptions about the observer’s12

encoding process, inference process, or decision rule. Our results provide evidence that people have uncertainty that13

reflects their memory precision at an item-specific level, maintain this information over a working memory delay, and14

use it implicitly in a way consistent with an optimal observer. These results challenge existing computational models15

of working memory to update their frameworks to represent uncertainty.16

17
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2 Introduction19

Visual working memory, the process involved in actively maintaining visual information over a short period, is essen-20

tial for numerous everyday behaviors as “simple” as integrating visual information across saccades and as “complex”21

as reading comprehension, problem solving, and decision making (Baddeley & Hitch, 1974; Baddeley, 2003; Fukuda,22

Vogel, Mayr, & Awh, 2010; Conway, Kane, & Engle, 2003; Just & Carpenter, 1992). As important as it is, visual23

working memory is also a notoriously limited process, resulting in an imperfect and incomplete picture of the world it24

aims to represent.25

Both behavioral (e.g., Zhang & Luck, 2008; Bays & Husain, 2008; van den Berg, Shin, Chou, George, & Ma,26

2012; Fougnie, Suchow, & Alvarez, 2012) and neural (e.g., Ermentrout, 1998; Wang, 2001; Compte, 2006) models of27

visual working memory typically represent people’s memory as a single number, a noisy estimate of the value of the28

stimulus. For example, someone may remember a 34� oriented line as 37�. It is, however, important in many visual29

working memory decisions to represent more than just a point estimate of the remembered stimulus, but the uncertainty30

as well. Uncertainty is technically defined as the width of a belief distribution over a stimulus, but intuitively represents31

how unsure an observer is about the stimulus. This is different from memory precision, which is how precisely an32

observer actually remembers the stimulus. An ideal observer’s uncertainty will reflect the precision with which they33

remembered an item, such that they are less uncertain for more precise memories. In a variety of domains, taking34

uncertainty into account would increase performance and thus should be used. For example, high uncertainty over the35

memory of the location of a coffee cup may result in someone looking at it before reaching for it. High uncertainty36

over whether a friend changed their appearance may result in someone being less likely to comment on it.37

Does uncertainty get taken into account in working memory-based decisions? An intuitive first place to look38

is the literature on working memory confidence, since confidence can be thought of as a readout of uncertainty.39

Experimenters have probed memory confidence by asking people to provide a rating (Rademaker, Tredway, & Tong,40

2012; Vandenbroucke et al., 2014; Samaha & Postle, 2017), choose the best remembered item (Fougnie et al., 2012;41

Suchow, Fougnie, & Alvarez, 2017), or make a memory-based bet (Yoo, Klyszejko, Curtis, & Ma, 2018; Honig,42

Ma, & Fougnie, 2020). These studies have demonstrated that people have higher working memory confidence on43

trials that are remembered more accurately (but see Sahar, Sidi, & Makovski, 2020; Bona, Cattaneo, Vecchi, Soto,44

& Silvanto, 2013; Bona & Silvanto, 2014; Vlassova, Donkin, & Pearson, 2014; Maniscalco & Lau, 2015; Adam &45

Vogel, 2017; Samaha, Barrett, Sheldon, LaRocque, & Postle, 2016 for conflicting results), and a computational model46

in which memory judgements and confidence ratings are derived from the same underlying memory precision can47

quantitatively account for these joint data (van den Berg, Yoo, & Ma, 2017).48

All these studies ask the participant to consciously access the quality of their memory. However, in naturalistic49

settings, people are typically not directly interrogated about their uncertainty, but use it implicitly in other decisions.50

For example, looking before reaching for one’s coffee cup or commenting on a friend’s appearance are decisions that51

presumably use uncertainty without conscious report. In this study, we take inspiration from perceptual decision-52

making studies, which have demonstrated that people implicitly incorporate uncertainty in a variety of decisions (e.g.,53

van Beers, Sittig, & Gon, 1999; Ernst & Banks, 2002; Alais & Burr, 2004; Körding & Wolpert, 2004; Knill & Pouget,54
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2004; Ma, Navalpakkam, Beck, van den Berg, & Pouget, 2011; Jazayeri & Shadlen, 2010; Stocker & Simoncelli,55

2006).56

There is already some evidence that people use uncertainty implicitly in working memory-based decisions. Kesh-57

vari and colleagues had humans complete a four-item orientation change detection task (Keshvari, van den Berg, &58

Ma, 2012); Devkar and colleagues had humans and monkeys complete a three-item orientation change localization59

task (Devkar, Wright, & Ma, 2017). Stimuli in both studies were ellipses, which were independently assigned to60

be longer and narrower, providing “high-reliability” orientation information, or shorter and wider, providing “low-61

reliability” orientation information. The reliability of ellipses affected the precision with which they were encoded,62

and thus should have affected the memory uncertainty associated with each item. To maximize performance in both63

tasks, participants’ uncertainty would need to reflect this variability in item-specific precision. Both studies found that64

a computational model that assumes participants use item-specific uncertainty accounted better for people’s choices65

than alternative models.66

Crucially, while these two studies provide evidence that people can implicitly use uncertainty, some experimental67

design choices do not allow us to conclude that people are actually maintaining uncertainty per se. First, participants68

in the study by Devkar and colleagues received trial-to-trial feedback on the correctness of their response. It is thus69

possible that participants simply learned a stimulus-response mapping (Maloney & Mamassian, 2009) rather than per-70

forming Bayesian inference or other forms of probabilistic computation (i.e., still using uncertainty in their decision;71

Ma, 2010). Second, precision in both studies was experimentally manipulated through ellipse reliability, which was72

held constant through a working memory delay. Thus, participants could have used this ellipse reliability as a proxy for73

uncertainty, rather than maintaining this exact information over the working memory delay (Barthelme & Mamassian,74

2010).75

Thus, the goal of this study was to investigate whether and how uncertainty is maintained over a working memory76

delay and used implicitly in a working memory task. To reach this goal, we collected data in a two-condition orienta-77

tion change detection task and developed computational models to test different hypotheses about uncertainty. In the78

first condition, we established that people use uncertainty if a proxy to it is provided to them, replicating the results79

from Keshvari and others (2012). In the second condition, we asked if people still use uncertainty if this proxy is not80

provided at the time of decision. In other words, we asked if uncertainty is being maintained in working memory.81

3 Experimental Methods82

3.1 Participants83

Thirteen participants (11 female; mean age M = 21.1 years, SD = 2.5) completed both conditions. All participants had84

normal or corrected-to-normal vision. Participants were naive to the study’s hypotheses and were paid $12/hour and85

a $24 completion bonus. We obtained informed, written consent from all participants. The study was in accordance86

with the Declaration of Helsinki and was approved by the Institutional Review Board of New York University (IRB-87

FY2019-2490). Seven other participants were excluded because they did not meet performance criteria (explained in88
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the Cross-session procedure section).89

3.2 Stimuli90

Stimuli were four, light-grey, oriented ellipses on a medium-grey background. Each ellipse could be long or short,91

to provide respectively higher or lower reliability information regarding the orientation of the ellipses. All ellipses92

had an area of 1.19 degrees of visual angle (dva). The high-reliability ellipse had an ellipse eccentricity of 0.9, such93

that the major axis and minor axes were 1.02 and 0.37 dva, respectively. The low-reliability ellipse eccentricity was94

determined separately for each participant to equate performance (details in Procedure).95

On every trial, a stimulus display consisted of four ellipses. The probability of each ellipse being high reliability96

was 0.5, independent of the reliability of the other ellipses. The location of the first ellipse was drawn from a uniform97

distribution between polar angles 0� and 90�. Each ellipse after that was placed such that all ellipses were 90� apart98

on an imaginary annulus that was 7 dva away from fixation. Afterward, the x- and y- location of the ellipses were99

independently jittered -0.3 to 0.3 dva. In one condition, there were additionally oriented line stimuli, which were set100

to have approximately the same area as the ellipses. Stimuli were displayed on a 23 inch LED monitor with a refresh101

rate of 60 Hz and a resolution of 1920 x 1080 pixels.102

3.3 Procedure103

3.3.1 Trial Procedure104

Ellipse condition. A trial began with a fixation cross presented for 1000 ms. Four ellipses were presented for 100 ms,105

followed by a 1000 ms delay, then by another four ellipses for 100 ms. On half of the trials, all ellipses in the second106

stimulus presentation were identical to the ellipses in the first stimulus presentation. On the other half of the trials, one107

ellipse changed in orientation. This change was drawn from a uniform distribution, so change of any magnitude had108

equal probability. Each ellipse had an equal probability of containing the change. “Change” and “no change” trials109

were randomly interleaved throughout the experiment. The participant indicated with a keyboard button press whether110

they believed there was an orientation change between the two displays.111

Line condition. In the Line condition, the stimuli in the second presentation were oriented lines rather than112

ellipses. The task was otherwise identical. An example of a trial in the Ellipse and Line conditions is illustrated in113

Figure 1.114
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Until

response1000 ms
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Figure 1: Trial sequence. Participants fixated on a cross, saw four ellipses (here showing one high-reliability ellipse

and three low-reliability ellipses), maintained them over a delay, saw four stimuli again, and reported whether they

believed there was an orientation change or not. In the Ellipse condition, ellipses in the second presentation were of

the same reliability as in the first. In the Line condition, lines replaced ellipses in the second stimulus presentation, to

avoid providing cues to the precision with which the first items were maintained.

3.3.2 Cross-Session Procedure115

Participants completed both conditions over six one-hour sessions. They began their first session with a Practice116

block, designed to ease the participants into the task. They then completed 2000 trials of each condition, preceded117

by a Threshold block to set the “short” ellipse reliability for each condition. Participants completed all of one con-118

dition before completing the other, and the order was counterbalanced across participants. Participants were verbally119

informed that each trial had a 0.5 probability of a change occurring, that a change (if present) would occur in exactly120

one ellipse, and the change could be “of any magnitude; big changes are as possible as small changes.” Participants121

were also verbally informed that some ellipses would be more elongated than others, that this may affect performance,122

and that half of the experiment would involve the stimuli changing from ellipses to lines. They were informed that123

their task did not change; the goal was always to indicate whether there was a change in orientation.124

The Practice block consisted of 256 trials and was designed to ease naive participants into the speed of the task.125

The stimulus presentation time decreased throughout the course of the Practice block, from 333 ms to 100 ms, in 33126

ms increments every 32 trials. Unlike the actual task, the ellipse eccentricities (i.e., reliabilities) of all ellipses within127

each trial were the same, but changed across trials. The stimuli in the second stimulus presentation corresponded to128

the condition that the participant completed first. For example, the stimuli in the second presentation were lines if the129

participant completed the Line condition first.130

The Threshold block consisted of 400 trials and was used to set the ellipse eccentricity of the low-reliability ellipse131

in each condition. Like the Practice block, the ellipse eccentricities of all ellipses on each trial were the same, but132

changed on a trial-to-trial basis. The second stimulus presentation set were either ellipses or lines, corresponding to133

which condition the threshold was being set for. A cumulative normal psychometric function was fit to the accuracy as134

a function of ellipse eccentricity, and the low-reliability ellipse eccentricity was set as the value that corresponded to a135

predicted 65% accuracy. If the ceiling performance of the participant was estimated to be less than 75%, the Threshold136

block was repeated. If the psychometric function could not estimate an ellipse reliability for which performance would137

6

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.06.328310doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.328310
http://creativecommons.org/licenses/by-nc/4.0/


hit 65% after the second try, the participant was excluded from the experiment. Seven participants were excluded based138

on these criteria.139

4 Experimental Results140

The goal of our study was to investigate whether people maintained and used uncertainty implicitly in a working141

memory-based decision. To do this, we conducted a two-condition orientation change detection task. People could use142

memory uncertainty to maximize performance in both conditions, but only the Line condition required maintenance of143

that uncertainty. We conducted five repeated-measures ANOVAs to test whether condition (Ellipse, Line), the number144

of high-reliability ellipses displayed (Nhigh: 0, 1, 2, 3, 4), or their interaction significantly affected the following values:145

proportion report change, false alarm rate, hit rate (for all items), hit rate (when the changed item was a low-reliability146

ellipse), and hit rate (when the changed item was a high-reliability ellipse). These values are visualized in Figure 2,147

and the statistics are reported in Table 1.148
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Figure 2: Behavioral data. Illustration of behavioral data for (A) Ellipse condition and (B) Line condition. For

each condition, the left plots illustrates proportion report change as a function of magnitude of change. Data are

binned by quantile, and different colored lines illustrate data from trials with different numbers of high-reliability

ellipses presented on the first display. The right plots illustrate the proportion report change as a function of number

of high-reliability ellipses, conditioned on whether there was no actual change (false alarm (FA): gold), a change in a

low-reliability ellipse (Hlow: blue), a change in a high-reliability ellipse (Hhigh: green), or a change in any ellipse (hit

(H): purple). The color legend is displayed above the plots. Note that the aggregated hits are a weighted combination

of the reliability-conditioned hits. The “Z” shape formed by the hit lines are an instance of Simpson’s paradox.
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Dependent Variable Factor Statistics p e h

2

Proportion Report Change

Nhigh F(1.38,16.50) = 3.37 0.07 0.34 0.03

Condition F(1,12) = 1.33 0.27 – 0.01

Nhigh x Condition FFF(((222...111222,,,222555...333888))) === 666...333222 000...000000555 000...555222 000...000444

False Alarm Rate

Nhigh FFF(((111...999333,,,222333...111777))) === 111888...222111 222...000777⇥⇥⇥111000�5 000...444888 000...111444

Condition FFF(((111,,,111222))) === 666...555000 000...000333 – 000...000888

Nhigh x Condition FFF(((111...999555,,,222333...333666))) === 444...999444 000...000222 000...444999 000...000555

Hit Rate (all)

Nhigh FFF(((111...333666,,,111666...333000))) === 555...222999 000...000333 000...333444 000...000444

Condition F(1,12) = 2.47 0.14 – 0.03

Nhigh x Condition FFF(((222...000444,,,222444...444888))) === 555...333333 000...000111 000...555111 000...000333

Hit Rate (low-reliability)

Nhigh FFF(((111...777666,,,222111...000777))) === 222333...222666 888...444333⇥⇥⇥111000�6 000...555999 000...000888

Condition F(1,12) = 0.29 0.60 – 0.005

Nhigh x Condition F(2.01,24.15) = 0.37 0.69 0.67 0.002

Hit Rate (high-reliability)

Nhigh FFF(((111...999888,,,222333...777999))) === 333555...444444 777...777222⇥⇥⇥111000�08 000...666666 000...111333

Condition FFF(((111,,,111222))) === 111444...666666 000...000000222 – 000...111777

Nhigh x Condition F(2.15,25.80) = 0.75 0.49 0.72 0.003

Table 1: Results of two-way repeated-measures ANOVA. Independent variables are Nhigh (0,1,2,3,4) and condition

(Ellipse, Line), and dependent variables are displayed as the first column. Statistics of significant effects are bolded.

For all ANOVAs, we report the Greenhouse-Geisser corrected results and e (sphericity correction) when appropriate.

There was a statistically significant interaction between Nhigh and condition on proportion report change. In only149

the Ellipse condition, the proportion report change was modulated by the number of high-reliability ellipses (left plot150

of Fig. 2 A, B). There were significantly more false alarms in the Line condition (M = 0.14, SEM = 0.03) than in151

the Ellipse condition (M = 0.09, SEM = 0.02; purple lines in right plots of Fig. 2 A, B). Perhaps people mistook the152

change in stimulus as a change in orientation. Both reliability-conditioned hit rates (blue and green lines in right plots153

of Fig. 2 A, B) decreased with increasing Nhigh. Additionally, participants had significantly lower high-reliability hits154

in the Line condition and the Ellipse condition.155

There is an interesting reverse in the qualitative trend when looking at all hit rates across all trials: hit rate increases156

as a function of Nhigh. This Simpson’s paradox is a result of weighted averaging and the performance difference157

between the reliability-conditioned hit rates. As the number of high-reliability ellipses in a display increases, so does158

the probability of a change occurring in a high-reliability ellipse. Thus, the total hit rates for higher Nhighs contain more159

high-reliability hits than low-reliability hits, driving this value upward. Similarly, the trials to compute hit rates for160

lower Nhighs predominantly contain changes in low-reliability ellipses, thus driving the average downward. There was161

also a significant interaction between condition and Nhigh because this increase was greater in the Ellipse condition.162

This unsurprisingly reflects the results of proportion report change, for they are related values.163
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These statistics show that differences between factors and conditions exist, but are dissatisfying because they do not164

offer explanations of what these differences mean. In this paper, we take an approach to understand underlying working165

memory processes through computational modeling. Computational modeling plays a crucial role in the interpretation166

of data and the understanding of the underlying working memory and decision-making processes (Levenstein et al.,167

2020; Edwards, 1954). It allows us to make explicit assumptions and precise quantitative predictions, which provide168

committal, falsifiable explanations of the processes involved.169

5 Modeling Methods170

To test whether people are maintaining and using uncertainty when making their change detection decision, we use171

Bayesian observer models. Bayesian models provide a normative, flexible, and interpretable framework to study the172

working memory process. These models are particularly useful in cases where the observer is trying to make a decision173

without full knowledge of task-relevant information. In working memory, people do not have full knowledge because174

information is not remembered perfectly. While Bayesian decision theory describes how an observer should behave175

in order to maximize performance, different components of the model can be easily substituted with incorrect beliefs176

or suboptimal use of information, and thus provides a good template for building models with “imperfectly optimal177

observers” (Maloney & Zhang, 2010) or “model mismatch” (Orhan & Jacobs, 2014; Beck, Ma, Pitkow, Latham, &178

Pouget, 2012; Acerbi, Ma, & Vijayakumar, 2014).179

We model the observer’s decision process as consisting of an encoding stage and decision stage. The encoding180

stage describes the task statistics and our assumptions about how memories are generated. In the decision stage,181

the observer calculates a decision variable based on their belief of the encoding stage and decides whether to report182

Change or No change based on some decision rule. We compared two models: one in which uncertainty is maintained183

and used and another that is not, named the “Use Uncertainty” and the “Ignore Uncertainty” model, respectively. This184

section describes how these models were defined, fit, and compared.185

5.1 Encoding Stage186

In this section, we define the statistical structure of the experiment and define our assumptions about how memories187

are generated in an observer. On every trial, there is a 0.5 probability of there being a change, p(C = 1) = 0.5, where C188

takes values 0 (no change) and 1 (change). On change trials, exactly one item changes in its orientation, and each item189

is equally probable to be changed. The orientation change, D, is drawn from a uniform distribution, p(D) = 1
2p

. (For190

mathematical convenience, and without loss of generality, we doubled the actual orientation of stimuli in all model191

specifications such that the values span 0 to 2p rather than 0 to p. We do not double these values when illustrating192

model fits.)193

We denote the vector of all orientations of the items presented on the first display by x

x

x, in which each element is an194

independent draw from a uniform distribution over orientation space. The vector of orientations at the second display,195

f

f

f, was identical to x

x

x in no change trials. In change trials, the ith element of f

f

f, the location of change, was equivalent196
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to xi +D.197

We model the memory process for each item of each display according to the Variable Precision model (van den198

Berg et al., 2012; Fougnie et al., 2012), by which memories are described as a continuous resource that randomly199

fluctuates across items and trials. The noisy measurements of each item on each display, xxx = (x1, ...,xN) and yyy =200

(y1, ...,yN), are conditionally independent and drawn from a Von Mises distribution centered on the actual orientation201

presentation,202

p(xxx|xxx;k

k

kx) =
N

’

i=1
p(xi|xi,kx,i) =

N

’

i=1

1
2pI0(kx,i)

ekx,i cos(xi�xi)

p(yyy|fff;k

k

ky) =
N

’

i=1
p(yi|fi,ky,i) =

N

’

i=1

1
2pI0(ky,i)

eky,i cos(yi�fi).

The ks are the concentration parameter of the Von Mises distribution, and are related to the precision with which each203

item is remembered; a higher k corresponds to higher precision. The subscript of each k indicates which item it refers204

to (e.g., kx,i is concentration parameter for xi, the ith item the first stimulus presentation). We assume that memory205

precision varies across items, above and beyond the precision differences due to stimulus reliability. In other words,206

kx,i and ky,i are themselves random variables, rather than single values. Rather than sampling k itself, we sample the207

Fisher information of the Von Mises distribution, J, from a gamma distribution:208

p(J) =
1

G

⇣
J̄
t

⌘
t

J̄/t

J
J̄
t

�1eJ/t,

where t is the scale parameter of the gamma distribution and J̄ is the mean precision. The relationship between J and209

k is the following:210

J = k

I1(k)

I0(k)
,

where I0 is a modified Bessel function of the first kind of order 0 and I1 is a modified Bessel function of the first kind211

of order 1 (van den Berg et al., 2012; Keshvari et al., 2012). We allow the mean precision to differ across stimulus212

shape; the precisions of memories corresponding to low-reliability ellipses are drawn from a gamma distribution with213

mean J̄low and high-reliability ellipses with mean J̄high. Parameter t is shared across both distributions. Because items214

in the first display were presented earlier, there are certainly differences in the precision with which items in the first215

and second display are maintained, independent of ellipse reliability. However, the amount that the first and second216

displays contribute to the overall measured change are extremely hard to tease apart in the model. Thus, we use one217

parameter per reliability and recognize that this estimate will be some average of the precisions of the first and second218

display.219

When modeling the Line condition, we have an additional parameter, J̄line, which corresponds to the mean precision220

with which each line on the second display is remembered by the observer. To limit model complexity, the gamma221

function from which each line’s precision is drawn shares the same scale parameter t as the distributions from which222

the ellipse precisions are drawn.223
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5.2 Decoding Stage224

5.2.1 Decision Variable225

The essence of Bayesian inference is that an observer can compute a posterior over task-relevant latent variables, and226

should if they want to maximize performance. In this case, the observer should calculate the probability of the state227

of the world (i.e., change or no change) given their observations, p(C|xxx,yyy), which they can compute using Bayes rule.228

With a scenario in which there are only two states of the world, it is convenient to combine these into a ratio. Thus,229

we assume the observer calculates, for each item, the ratio of the likelihood of there being change and the likelihood230

of there being no change:231

d =
p(C = 1|xxx,yyy)
p(C = 0|xxx,yyy) =

p(xxx,yyy|C = 1)p(C = 1)
p(xxx,yyy|C = 0)p(C = 0)

. (1)

Details of the derivation can be found in Appendix 8.1, but this simplifies to the following expression:232

d =
p(C = 1)
p(C = 0)

1
N

N

Â

i=1
di, (2)

where233

di =
I0(kx,i)I0(ky,i)

I0

⇣q
k

2
x,i +k

2
y,i +2kx,iky,i cos(xi � yi)

⌘ . (3)

I0 is a modified Bessel function of the first kind of order 0, and the ks are the concentration parameters of the noise234

distributions for the item indicated in the subscript. Intuitively, di provides a measure of the evidence of change for the235

ith item. It increases with the measured amount of change, xi �yi, weighted by a function of the precisions with which236

xi and yi are remembered. The dis are averaged in the decision variable d, providing the optimal measure of evidence237

of change of the entire display.238

This is the step in which the use of uncertainty comes in. Observers who correctly maintain and use uncertainty239

(i.e., observers who act in accordance with the optimal, “Use Uncertainty” model) compute exactly di as described.240

However, observers acting in accordance with the “Ignore Uncertainty” model do not know or do not consider that241

the precision of their memories for all items in both displays varies. Computing the decision rule for the Ignore242

Uncertainty observer is the same as replacing all ks in Eq. 3 with a constant, resulting in the following local decision243

variable:244

di =
I2
0 (kass))

I0

⇣
kass

p
2+2cos(xi � yi)

⌘ , (4)

where kass is the assumed precision for all items on all displays. The decision variable thus becomes just a function of245

cos(xi � yi), because the remainder of the expression is constant.246

5.2.2 Decision Rule247

The observer maps this decision variable onto a response by reporting Change whenever the probability of there being248

a change is greater than 0.5. An optimal observer would thus respond Change when the ratio of the likelihood of there249
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being a change and the likelihood of there being no change (Eq. 2) is greater than 1 (Figure 3). However, we allow250

the observer to have some response bias (e.g., due to unequal priors, rewards, or motor costs), and thus implement the251

following decision rule:252

1
N

N

Â

i=1
di > k, (5)

where k is a free parameter. For both models, we implemented global decision noise by adding zero-mean Gaussian253

noise with standard deviation sd to the log of decision variable d (Keshvari et al., 2012; Acerbi et al., 2014; Mueller254

& Weidemann, 2008). Additionally, participants randomly guess with probability l, due to factors such as lapses in255

attention.256

no change

change

measured change (º)

0-90 90

p
ro

b
a

b
il
it
y

report

“change”

report

“change”

Low uncertainty

High uncertainty

Figure 3: Model didactics. This didactic illustrates a simplified one-item version of this task. The probability of the

measured change for an item given that the item did (orange) or did not (blue) change orientation, as estimated by the

optimal observer. Uncertainty modulates the width of the no change distribution, such that higher uncertainty makes

the no change distribution wider (bottom). The optimal observer (with k = 0) places their decision boundaries at the

intersection of the change and no change distributions (vertical dashed lines), reporting “change” whenever that state

of the world is more probable (shaded region) and “no change” otherwise.
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5.3 Parameter Estimation and Model Comparison257

5.3.1 Parameters258

Both models in both conditions have parameters J̄high, J̄low,t,k,l, and sd. Parameters J̄high and J̄low correspond to the259

mean precision of the high- and low-reliability ellipses, respectively. Precision is also affected by the scale parameter260

of the gamma distribution from which item-wise precision is drawn, t; this value is shared across the two ellipse types261

and the line when applicable. Parameter k is the observer’s response bias; l is the probability on each trial that the262

observer lapses and responds randomly; sd is the standard deviation of the Gaussian from which decision noise is263

simulated.264

When fitting data from the Line condition, there is an additional parameter J̄line, corresponding to the mean preci-265

sion with which the line stimulus is represented. The Ignore Uncertainty model has one additional parameter: Jass, the266

assumed precision of all stimuli in both displays.267

5.3.2 Parameter Estimation268

The likelihood of the parameter combination q

q

q for a given participant and model is the probability of the data given269

the parameter combination. We used the log likelihood, which we denote LL:270

LL(qqq) = log p(qqq|data, model)

= log
Ntrials

’

t
p(rt |qqq)

=
Ntrials

Â

t
log p(rt |qqq),

where rt is the participant’s response on the t th trial. For each participant, we used maximum-likelihood estimation271

to find which parameter combination best describes participant’s data. Computing the LL analytically is intractable,272

so we used Inverse Binomial Sampling (van Opheusden, Acerbi, & Ma, 2020), a method which efficiently computes273

an unbiased estimate of the LL. This calculation is stochastic, so we additionally used an optimization algorithm that274

can account for stochasticity and expensive LL evaluations (BADS; Acerbi & Ma, 2017). BADS explicitly incorpo-275

rates uncertainty in the estimated LL and converges in fewer function evaluations than other stochastic optimization276

methods (e.g., CMA-ES, genetic algorithms), making it an ideal optimization method when likelihood calculations are277

computationally expensive and stochastic. We used 20 different starting positions, using Latin hypercube sampling, to278

reduce the probability of finding a local minimum. We took the parameter combination corresponding to the minimum279

negative log-likelihood of our runs as the ML parameter estimate. The estimated LL at the candidate optimum was280

reevaluated using 1000 samples in IBS, in order to reduce the standard deviation of estimation noise to less than 1. We281

denote the maximum log-likelihood by LL*.282
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5.3.3 Model Comparison283

We compared models using corrected Akaike Information Criterion (AICc; Hurvich & Tsai, 1987) and the Bayesian

Information Criterion (BIC; Schwarz, 1978). BIC penalizes for additional parameters harsher than AICc.

AICc =�2LL*+2Npars +
2Npars(Npars +1)
Ntrials �Npars �1

BIC =�2LL*+2Npars logNtrials

5.4 Modeling Results284

We compared the fits of the Use Uncertainty and Ignore Uncertainty models to each of the conditions separately. The285

Use Uncertainty model provides a good qualitative fit to the data in both conditions (top row of Figure 4A), while the286

Ignore Uncertainty model is unable to capture the data (bottom row of Figure 4A). This result is reflected quantitatively287

(Figure 4B). For both conditions, all of the 13 participants were better fit by the Use Uncertainty model than the Ignore288

Uncertainty model (median [95% bootstrapped confidence interval (CI)] DAICc across subjects – Ellipse: 208 [109,289

368], Line: 108 [58, 370]. DBIC – Ellipse: 221 [122, 381], Line: 122, [71, 383]). The summed DAICc and DBIC are290

consistent and are available in Appendix 8.4. Parameter estimates for the Use Uncertainty model in the Ellipse and291

Line condition can be found in the Appendix (Tables 4 and 5, respectively).292
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Figure 4: Model fits. A. M ± SEM data (error bars) and model fits (fills) for the Use (top) and Ignore (bottom)

Uncertainty models and the Ellipse (left) and Line (right) conditions. For each model and condition, the left graph

illustrates the proportion report change as a function of amount of change. Data and models are binned by quantiles,

and color indicates the number of high-reliability ellipses. The right graph illustrates the proportion hits for high-

reliability items (green), hits for low-reliability items (blue), total hits (purple), and false alarms (gold) as a function

of number of high-reliability items. B. Model comparison for the Ellipse (left) and Line (right) conditions. Each

bar indicates the individual-subject DAICc between the Use and Ignore Uncertainty models, where a positive value

indicates that the Use Uncertainty model is favored. The vertical grey line indicates the median across participants,

and the shaded region illustrates the 95% bootstrapped confidence interval of the median. Only DAICcs are illustrated

because the two model comparison metrics gave similar results.
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6 Model Variants293

While the Use Uncertainty model provides a good fit to the data, the two models we have considered thus far contain294

assumptions that could be modified. In this section, we factorially compare different formulations of the encoding,295

inference, and decision stage of the model (van den Berg, Awh, & Ma, 2014; Acerbi, Wolpert, & Vijayakumar, 2012;296

Keshvari et al., 2012). A factorial model comparison is an effective way of testing which assumptions we made were297

critical for accounting for human behavior, and thus which are reasonable to make conclusions about. In this section,298

we demonstrate that our general conclusions about the use of uncertainty do not depend on the specific assumptions299

we made when defining our model. We only discuss the results of the Line condition here, since it is the only condition300

that investigates the maintenance of uncertainty in working memory. However, we did the same analysis to the Ellipse301

condition data and found consistent results (Appendix 8.3).302

6.1 Encoding303

In both the Use and Ignore Uncertainty models, we assumed that observers’ encoding noise followed that of a Variable304

Precision model (van den Berg et al., 2012; Fougnie et al., 2012). Here, we also consider that observers’ memory pre-305

cision varies only based on stimulus type, and does not fluctuate on an item-to-item basis. With this “Fixed Precision”306

assumption of encoding noise, the k for each item is determined only by its stimulus type; high-reliability ellipses307

would be encoded with parameter khigh, low-reliability ellipses with klow, and lines with kline.308

6.2 Inference309

Observers calculate the decision variable according to some inference process, which we allow to be independent of310

the true generative process. The potential model mismatch (Orhan & Jacobs, 2014; Beck et al., 2012; Acerbi et al.,311

2014) between the true and believed generative process could be due to a result of wrong beliefs about the generative312

process or computation limitations that prevent accurate representation of the generative model. We consider that313

observers may use partial knowledge of uncertainty, rather than fully Using or Ignoring uncertainty.314

We consider that the observer may have one of four inference models, listed below in decreasing order of how315

many factors the observer takes into account in their uncertainty:316

1. Variable precision (V): the observer believes that mean memory precision varies with the exact stimulus shape317

(low-reliability ellipse, high-reliability ellipse, line) and that there is additional noise for each item at each318

presentation. This inference model is optimal when the true generative process is Variable precision.319

2. Fixed precision (F): the observer believes that memory precision varies with the exact stimulus shape (low-320

reliability ellipse, high-reliability ellipse, line), but does not consider that there is additional noise for each item321

at each presentation. This inference model is suboptimal when the true generative process is Variable precision,322

but optimal when the true generative process is Fixed precision.323
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3. Limited (L): the observer believes that memory precision varies across shapes (ellipse vs. line). This observer324

does not consider differences in precision between high- and low-reliability ellipses or additional noise for each325

item at each presentation. This observer is suboptimal.326

4. Same precision (S): the observer believes that memory precision is the same throughout the condition, and does327

not vary with stimulus shape or anything else. This is the “Ignore Uncertainty” observer and is suboptimal.328

Note that the Variable and Same precision inference schemes here are identical to that of Keshvari and others’ (2012),329

and the Fixed precision here is equivalent to their “Equal” precision inference scheme.330

6.3 Decision Rule331

The Use and Ignore Uncertainty models use the optimal decision rule (Eq. 5). Note that participants may have332

incorrect assumptions about the noise in their memory, but still be acting in accordance with Bayesian decision theory333

(i.e., still using the correct decision rule), resulting in “imperfectly optimal observers” (Maloney & Zhang, 2010).334

Alternatively, participants could be calculating the optimal decision variable, but be using a suboptimal decision rule.335

Here, we consider observers who use the max rule, responding Change whenever the maximum evidence of change is336

greater than some criterion, k,337

max
i

di > k, (6)

rather than averaging dis. These observers are not Bayes-optimal, but are still using probabilistic computation (i.e., still338

using their uncertainty) in the calculation of di. In fact, in many cases these decision rules do not result in substantially339

different behavior (Ma, Shen, Dziugaite, & van den Berg, 2015). For example, if all dis are similar, then a max and an340

average will result in similar values. If the maximum di is substantially larger than the others, both decision rules can341

result in similar behavior by adjusting k.342

6.4 Parameters343

There are two possible encoding schemes ((V)ariable, (F)ixed), four possible inference schemes ((V)ariable, (F)ixed,344

(L)imited, (S)ame), and two possible decision rules ((O)ptimal, (M)ax). Factorially combining each of these char-345

acteristics would yield 16 different models. We choose not to consider the models in which the generative model is346

“F” but the observer assumes “V” under the assumption that people tend not to assume the (perceptual) world is more347

complicated than it actually is; thus, we test a total of 14 models. We denote each model by the letters corresponding to348

their encoding scheme, inference scheme, and decision rule (e.g., VVO is the model with Variable precision encoding,349

an observer assumes Variable precision, and an Optimal decision rule). The VVO model is the Use Uncertainty model;350

the VSO model is the Ignore Uncertainty model.351

Encoding parameters. Like before, observers with Variable precision encoding have parameters J̄high, J̄low, J̄line,352

and t. Observers with Fixed precision encoding have parameters Jhigh, Jlow, and Jline.353
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Inference parameters. For the observer who correctly infers their encoding process (i.e., VVO, VVM, FFO, or354

FFM), there are no additional parameters. If the observer has Variable precision encoding but does not take into account355

individual-item variations (i.e., VFO or VFM), then the assumed precision is Jhigh = J̄high, Jlow = J̄low, and Jline = J̄line356

for high-reliability ellipses, low-reliability ellipses, and lines, respectively. Limited inference observers (i.e., VLO,357

VLM, FLO, FLM) have two additional parameters: Jass, e and Jass, l, corresponding to the assumed precision of the358

ellipses and lines, respectively. Same inference observers, who do not take any memory variations into account (i.e.,359

VSO, VSM, FSO, FSM), have one additional parameter Jass, corresponding to the assumed precision of all items.360

Decision parameters. Observers using both the optimal or max decision rule have parameter k, corresponding to361

the decision criterion. If any item has a decision variable greater than k, then they will respond Change.362

Each model and their corresponding parameters is listed in Table 2. Note that the Same inference observer who363

uses the max rule (i.e., VSM, FSM) has one less parameter than their Optimal decision rule counterpart (i.e., VSO,364

FSO) because making a decision depends only on the item with the largest measured change.365

Encoding Inference
Decision Rule

(O)ptimal (M)ax

(V
)a

ria
bl

e

(V)ariable J̄high, J̄low,t,k,l,sd(, J̄line) J̄high, J̄low,t,k,l,sd(, J̄line)

(F)ixed J̄high, J̄low,t,k,l,sd(, J̄line) J̄high, J̄low,t,k,l,sd(, J̄line)

(L)imited J̄high, J̄low, J̄ass,et,k,l,sd(, J̄line, J̄ass,l) J̄high, J̄low, J̄ass,et,k,l,sd(, J̄line, J̄ass,l)

(S)ame J̄high, J̄low, J̄ass,t,k,l,sd(, J̄line) J̄high, J̄low,t,k,l,sd(, J̄line)

(F
)ix

ed

(F)ixed Jhigh,Jlow,k,l,sd(,Jline) Jhigh,Jlow,k,l,sd(,Jline)

(L)imited Jhigh,Jlow,Jass,e,k,l,sd(,Jline,Jass,l) Jhigh,Jlow,Jass,e,k,l,sd(,Jline,Jass,l)

(S)ame Jhigh,Jlow,Jass,k,l,sd(,Jline) Jhigh,Jlow,k,l,sd(,Jline)

Table 2: Model parameters. Model parameters for Line condition. Parameters unnecessary for fitting the Ellipse

condition are displayed in parentheses. The top colored cell corresponds to parameters of the Use Uncertainty (VVO)

model. The bottom colored cell corresponds to the parameters of the Ignore Uncertainty (VSO) model.

6.5 Model Comparison Results366

As previously described, we estimated parameters for each participant and compared models using AICc and BIC. In367

this section, we only discuss the results of the Line condition using median AICc and BIC differences between the368

VVO (Use Uncertainty) and other models. However, we report the results of the Ellipse condition in the Appendix369

8.3.370

The factorial model comparison results corroborate our earlier result. Models in which observers correctly used371

their memory uncertainty (i.e., VVO, VVM, FFO, FFM) were indistinguishable from one another according to DAICc372

and DBIC (Table 3, bar graphs in Figure 5). These four models, however, fit substantially better than the remaining373

10 models in which the observer does not fully know or use their memory uncertainty in their decisions, indicated374
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by the 95% CI of the median DAICc and DBIC being greater than 0. These results imply that the specific encoding,375

inference, and decision rule do not matter as much the match between the encoding and inference scheme. In other376

words, the models that are able to capture the data are those in which observers’ uncertainty reflects that of the true377

encoding process.378

In the Appendix, we additionally report the sum of the DAICc and DBIC and group Bayesian Model Selection379

(BMS) for both conditions (Appendix 8.4 and 8.5, respectively). Summing the DAICc and DBIC explicitly assumes380

that participants are all fit by the same model, while group BMS allows for participant heterogeneity and directly infers381

the distribution of participants across models. Using these alternative model comparison metrics do not change the382

results; behavior was overwhelmingly best explained by a model that assumes that uncertainty is maintained accurately383

and used.384

Encoding Inference

Decision Rule

(O)ptimal (M)ax

DAICc DBIC DAICc DBIC

(V
)a

ria
bl

e

(V)ariable 0 [0, 0] 0 [0, 0] 4 [-1, 13] 4 [-1, 13]

(F)ixed 11 [4, 26] 11 [4, 26] 22 [11, 50] 22 [11, 50]

(L)imited 97 [43, 256] 123 [69, 283] 255 [30, 366] 282 [56, 392]

(S)ame 108 [58, 370] 122 [71, 383] 170 [138, 235] 170 [138, 235]

(F
)ix

ed

(F)ixed 3 [3, 19] -10 [-16, 9] 19 [9, 38] 6 [-4, 25]

(L)imited 53 [23, 82] 66 [37, 96] 51 [24, 100] 64 [37, 113]

(S)ame 39 [17, 91] 39 [17, 91] 148 [84, 167] 135 [70, 154]

Table 3: Median DAICc and DBIC: Line condition. The median and 95% bootstrapped confidence interval of

the DAICc and DBIC. A positive value indicates that the VVO model provides a better fit to the data. The cells

corresponding to the Use (VVO) and Ignore (VSO) Uncertainty models are colored in blue.
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Figure 5: Factorial model comparison. Model predictions and performance of all possible combinations of different

encoding, inference, and decision rules. M±SEM data (error bars) and model fits (fills) for all models, organized into

two columns by decision rule. For each model (each row within each column), the left graph illustrates the proportion

report change as a function of amount of change. Color indicates the number of high-reliability ellipses (legend at

the top of the figure). The middle graph illustrates the proportion hits for high-reliability items (green), hits for low-

reliability items (blue), hits averaged across the display (purple), and false alarms (gold) as a function of number

of high-reliability items (legend at the top right of the figure). The right graph illustrates the individual-participant

DAICc, where positive numbers indicate the VVO model is a better fit to the data. The grey horizontal line and shaded

region illustrates median and the 95% bootstrapped confidence interval of the median across participants.20
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7 Discussion385

In this paper, we investigated whether uncertainty is maintained and implicitly used in a working memory-based386

decision. First, we demonstrated that people use uncertainty implicitly in a working memory task if that uncertainty387

information was available after the delay (i.e., if uncertainty did not need to be maintained). Second, and more388

importantly, we showed that people not only use uncertainty, but maintain this information over the working memory389

delay. Finally, we factorially tested different model encoding schemes, inference schemes, and decision rules and390

found that people were best described by models in which observers accurately maintain and use uncertainty in their391

decision.392

First, we demonstrated that people could use uncertainty implicitly in a working memory task if that uncertainty393

information was experimentally available. While the change detection task has been an experimental staple in the394

working memory literature (e.g., Luck & Vogel, 1997; Phillips, 1974; Pashler, 1988), the majority of these tasks395

feature large, categorical changes in the stimulus. In contrast, our task, which is a direct experimental replication of396

that of Keshvari and others (2012), featured changes that varied on a trial-to-trial basis. Trial-to-trial fluctuations in397

stimuli and witholding of feedback allow for a strongest test of probabilistic computation because observers would398

need to maintain a belief distribution over stimulus values to maximize performance in this task (Ma & Jazayeri,399

2014). Through formal model comparison, we showed that all participants in the Ellipse condition are better fit by the400

Use Uncertainty model than the Ignore Uncertainty model. The Use Uncertainty model was identical to the model that401

was found to describe participant data best in the study by Keshvari et al. (2012). These results are also qualitatively402

consistent with Devkar and others’ (2017) work, despite being slightly different tasks.403

Second, and more importantly, we showed that people not only use uncertainty, but maintain this information404

over the working memory delay. Like in the Ellipse condition, we found that all participants in the Line condition405

were better fit by the Use Uncertainty model than the Ignore Uncertainty model. However, the conclusion of this406

model comparison is critically different. In the Ellipse condition as well as in previous studies (Keshvari et al., 2012;407

Devkar et al., 2017), the ellipses were presented after the working memory delay, with the same reliability as before.408

With these experimental designs, reliability information could be used as a heuristic to inform uncertainty, thus not409

requiring this information to be maintained in memory. In other words, these previous studies cannot make any410

conclusions about the contents of working memory, only the decision-making process that follows it. Our result, in411

contrast, demonstrates that uncertainty was actually maintained in working memory, since the information was not412

available to the participants through a heuristic such as ellipse reliability.413

These results provide evidence that people can maintain and use uncertainty in an implicit decision-making414

paradigm. This is in agreement with studies that asked participants to make an explicit reports such as confidence415

ratings (Rademaker et al., 2012; Vandenbroucke et al., 2014; Samaha & Postle, 2017). This is also in agreement with416

the “choose best” (Fougnie et al., 2012; Suchow et al., 2017) and wager paradigms (Yoo et al., 2018; Honig et al.,417

2020). These paradigms are explicit in the sense that partipants deliberate on a decision that is directly related to their418

conscious uncertainty in a memory, but implicit in the sense that this uncertainty must be taken into account in another419

perceptual decision.420

21

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.06.328310doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.328310
http://creativecommons.org/licenses/by-nc/4.0/


Finally, we conducted a factorial model comparison to investigate whether our conclusions were due to specific421

assumptions about model encoding schemes, inference schemes, and decision rules. We found that the most important422

aspect of a model was that its encoding and inference schemes were matched, providing strong evidence that people423

accurately maintain and use their uncertainty in working memory-based decisions. Our results are somewhat incon-424

sistent with research showing strong support for Variable precision encoding over Fixed precision encoding (van den425

Berg et al., 2014; Keshvari et al., 2012), and consistent with research showing that optimal and max decision rules are426

difficult to distinguish through model comparison (Ma et al., 2015). Future experiments may attempt to tease apart427

these two decision rules by manipulating the prior probability of change trials or the behavioral relevance of individual428

items.429

Our results suggest that existing computational models of working memory that currently ignore uncertainty should430

be updated. For example, attractor network models currently maintain a point estimate of a single item feature through431

the mean of a stereotyped bump in a network of neurons (Ermentrout, 1998; Wang, 2001; Compte, 2006). Thus,432

there is typically no notion of uncertainty in this framework. Lim and Goldman (2014) demonstrated that altering the433

network connectivity and dynamics results in “negative-derivative feedback models,” in which networks can vary not434

only in mean but also in amplitude. Probabilistic population coding (PPC) and neural network models have imple-435

mented precision through input gain (Ma, Beck, Latham, & Pouget, 2006; Orhan & Ma, 2017). Additional research436

must investigate whether these negative-derivative feedback models can represent a memory’s precision through the437

amplitude of the network maintaining it, precision which could be read out from the observer as uncertainty.438

Additionally, computational models could be used to decode uncertainty from neural activity in working memory439

tasks. Work in visual perception demonstrates that uncertainty information is represented in primary visual cortex440

(van Bergen, Ma, Pratte, & Jehee, 2015; van Bergen, 2019; Walker, Cotton, Ma, & Tolias, 2020; Hénaff, Boundy-441

Singer, Meding, Ziemba, & Goris, 2020). These studies built normative Bayesian models to infer stimulus value from442

BOLD signal. The likelihood of the stimulus, and thus uncertainty, could be read out from the models. Estimates443

of trial-specific uncertainty are positively correlated with error, suggesting that primary visual cortex held uncertainty444

information. Since working memories have been shown to be maintained in the same sensory areas with which they445

are perceived (e.g. Curtis & D’Esposito, 2003; Postle, 2006; D’Esposito & Postle, 2015; Harrison & Tong, 2009),446

perhaps visual working memory uncertainty is also stored in visual cortex. To more rigorously test the representation447

of uncertainty decoded from BOLD data, future studies can correlate decoded uncertainty with behavioral measures of448

uncertainty such as confidence ratings (Rademaker et al., 2012) or post-decision wagers (Yoo et al., 2018; Honig et al.,449

2020). Additionally, future studies can try to fit individual-trial data using these methods, which is more compelling450

evidence in favor of a model than a correlation.451

Overall, this paper shows that people have uncertainty that reflects their memory noise at an item-specific level452

and they maintain this information over a working memory delay. This research demonstrates that there is other453

information, beyond a point estimate, maintained in working memory and used in later decisions.454
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