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Abstract 

What role do cognitive control regions like the dorsolateral prefrontal cortex (dlPFC) play in 1 

normative behavior (e.g., generosity, healthy eating)? Some models suggest that dlPFC activation 2 

during normative choice reflects the use of control to overcome default hedonistic preferences. 3 

Here, we develop an alternative account, showing that an attribute-based neural drift diffusion 4 

model (anDDM) predicts trial-by-trial variation in dlPFC response across three fMRI studies and 5 

two self-control contexts (altruistic sacrifice and healthy eating). Using the anDDM to simulate a 6 

variety of self-control dilemmas generated a novel prediction: although dlPFC activity might 7 

typically increase for norm-consistent choices, deliberate self-regulation focused on normative 8 

goals should decrease or even reverse this pattern (i.e., greater dlPFC response for hedonic, self-9 

interested choices). We confirmed these predictions in both altruistic and dietary choice contexts. 10 

Our results suggest that dlPFC response during normative choice may depend more on value-based 11 

evidence accumulation than inhibition of our baser instincts.12 
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Introduction. 13 

Self-control dilemmas typically involve trade offs between short-term, hedonic considerations and 14 

longer-term or more abstract standards and values. For example, social interactions often force an 15 

individual to weigh self-interest against norms favoring equity and other-regard. Similarly, dietary 16 

decisions often require weighing the immediate pleasure of consumption against personal 17 

standards or societal norms favoring healthy eating. Understanding when, why, and how people 18 

choose normatively-preferred responses (e.g., generosity over selfishness, healthy over unhealthy 19 

eating, etc.) has represented a central goal of the decision sciences for decades. What neural and 20 

computational processes must be engaged to support more normative behavior? What makes such 21 

choices frequently feel so conflicted and effortful, and how can we make them easier? To what 22 

extent does following social or personal norms depend on activation in brain regions associated 23 

with cognitive control, such as the dorsolateral prefrontal cortex (dlPFC)? 24 

 25 

Previous research has provided a wealth of evidence suggesting that the dlPFC may promote 26 

normative choices in both the social and non-social domain. For instance, compared to unhealthy 27 

food choices, healthier choices in successful dieters were accompanied by greater activation in a 28 

posterior region of the dlPFC1. Greater dlPFC response in a similar region has also been observed 29 

when individuals make normatively-favored choices in both social decision making2,3 and 30 

intertemporal choice4,5. Moreover, activation in the dlPFC increases when individuals explicitly 31 

focus on eating healthy6 or on decreasing craving for food7. Electrical disruption of this area also 32 

decreases patience8 and reduces normative behavior in social contexts like the Ultimatum game9. 33 

Collectively, these results support the notion that the dlPFC may be recruited to modulate values 34 
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or bias choices in favor of normative responses, perhaps especially when those responses conflict 35 

with default preferences. 36 

 37 

Yet a variety of results seem inconsistent with this view. For example, researchers often fail to 38 

observe increased dlPFC recruitment when individuals make pro-social or intertemporally 39 

normative choices10-12. Moreover, electrical disruption of the dlPFC has been observed both to 40 

decrease appetitive valuation of foods13, and increase generous behavior in the Dictator Game9. 41 

Such findings conflict with the idea that this region consistently promotes normative concerns over 42 

immediate, hedonistic desires. Thus, how to predict whether and when one might observe a 43 

positive association between dlPFC response and choices typically associated with successful self-44 

control remains unclear. 45 

 46 

Here, we propose a computational account of fMRI BOLD response in the dlPFC that may resolve 47 

many of these apparent inconsistencies. This account draws on prior research in both perceptual 48 

and value-based decision making, which consistently finds that the posterior dlPFC region 49 

associated with normative “self-control success” also activates during choices that are more 50 

difficult to discriminate in simple perceptual and value-based choices lacking a self-control 51 

conflict, e.g., 14-16. Our account is also inspired by findings that the dlPFC may be one hub in a 52 

larger neural circuit (encompassing additional regions like the dorsal anterior cingulate cortex 53 

[dACC], supplementary motor area [SMA] and inferior frontal gyrus/anterior insula [IFG/aIns]) 54 

that selects actions for execution using a process of evidence accumulation and lateral inhibition 55 

among competing action representations17,18. Based on this evidence, we developed a 56 

computational model of self-control dilemmas that successfully predicts not only when an 57 
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individual will choose in normative rather than hedonistic fashion, but also when, why, and to 58 

what degree response in the dlPFC will be recruited during that process. We note also that, 59 

although we focus here on the dlPFC, our model also applies in theory when observing similar 60 

relationships to other brain areas frequently associated with conflict and cognitive control, 61 

including regions of the IFG/aIns and dACC. 62 

 63 

As with similar models of simple perceptual and value-based choices, our attribute-based neural 64 

drift diffusion model (anDDM) assumes that the brain makes decisions through a process of value-65 

based attribute integration and competition (Figure 1). More specifically, choices are resolved via 66 

competitive interactions between neuronal populations that output responses based on 67 

accumulated information about the value of choice attributes, weighted by their momentary goal 68 

relevance. Some of these attributes are associated with hedonism (e.g., self-regarding concerns in 69 

altruistic choice) and some are associated with social norms and standards for behavior (e.g. other-70 

regarding concerns). For expository purposes, we refer to these respectively as hedonic and 71 

normative attributes. Intuitively, whether our computational algorithm makes a hedonistic or 72 

normative choice depends not only on the magnitude of hedonic and normative attributes, but also 73 

on their weight: higher weights on normative attributes lead to more norm-consistent responses.  74 

 75 

What role does the dlPFC play in the anDDM? The observation of increased posterior dlPFC 76 

response when people choose consistently with normatively favored goals (e.g., healthy over 77 

unhealthy choices) has been taken to suggest that this region acts either to modulate the processing 78 

of attribute values or their weights in favor of normatively-favored goals1,6, or to inhibit hedonistic 79 

reward-related responding19,20. In contrast, we propose that activity in this region reflects processes 80 
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related to the response selection stage of decisions. This suggests that dlPFC response during 81 

normative choice represents a downstream consequence of valuation processes, rather than a direct 82 

causal influence upon them. To support this argument, we use the anDDM to simulate when and 83 

why we might observe greater activity in the dlPFC (and regions with similar response profiles) 84 

when resolving a choice. As we describe below, these simulations suggest that normative choices 85 

should be associated with greater neural activation in the dlPFC only when two things are true: 86 

hedonic attribute values directly oppose normative attribute values, and hedonic attributes receive 87 

more weight as inputs to the anDDM. In contrast, when normative attributes receive more weight, 88 

hedonistic choices should produce greater activity in the dlPFC and other areas associated with 89 

response selection.  90 

 91 

We then used these observations to make two predictions. First, if people by default favor hedonic 92 

over normative attributes, then most studies will observe greater dlPFC response when people 93 

choose the normatively-favored option. This prediction does not strongly distinguish our account 94 

from alternatives. However, our model makes a second, more novel prediction: if a normally 95 

hedonistic decision maker focuses on normative goals, this should reduce activation in the dlPFC 96 

when choosing the normatively-favored option. A straightforward reading of an attribute-97 

weighting account predicts the opposite: a normally hedonistic individual who deliberately 98 

attempts to focus on normative responding should show increased activation in the dlPFC in order 99 

to alter attribute weighting in favor of normative goals19,21. We test these two alternative 100 

predictions across three studies and two canonical self-control contexts in which people frequently 101 

struggle to align their actual behaviors with normative goals: altruistic and dietary choice. In all 102 

cases, results strongly supported the predictions of the anDDM. These findings raise new and 103 
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important questions regarding the role of the dlPFC– and effortful self-control more generally – in 104 

promoting normative choice.  105 

 106 

Results 107 

Simulating the dilemma of self-control 108 

Although self-control dilemmas can take a variety of forms, for expository purposes we 109 

here take a single, typical self-control dilemma: a decision maker deciding whether to indulge in 110 

a decadent snack or opt for something healthier. This example allows us to capture two critical 111 

features: first, self-control dilemmas typically involve making decisions about options that vary in 112 

the magnitude or value of hedonic and normative attributes (e.g. tastiness and healthiness). Second, 113 

the decision-maker must weigh these attributes based on goals that can vary in their relative 114 

strength at different times. At a nice restaurant, tastiness may be prioritized. When trying to lose 115 

weight, healthiness is prioritized. We used simulations to explicitly capture these two features. 116 

 117 

Simulations were realized using a neural network instantiation of our anDDM18 where choices 118 

result from dynamic interactions between two separate but intermingled pools of neurons 119 

representing the different options under consideration (Figure 1). Activation in each pool 120 

accumulates noisily based on a combination of external inputs from hedonic and normative 121 

attributes weighted by their current subjective importance, inhibitory inputs from the other pool, 122 

and recurrent self-stimulation (see Methods for details). This model generated predictions for how 123 

magnitudes and weights for hedonic and normative attributes influence the likelihood of a virtuous 124 

(i.e., healthy) choice, response time [RT], and neural response. These simulations yielded three 125 

key observations about behavior and neural response, which we describe in the context of food 126 
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choice but apply in theory across any self-control dilemma that requires weighing hedonic rewards 127 

against normative values and goals. 128 

 129 

 130 

Figure 1. Attribute-based neural drift diffusion model (anDDM) of normative choice. Each 131 
option’s hedonic and normative attributes (e.g., tastiness = +5 and healthiness = 0 for the sundae) 132 
are weighted by their current importance (e.g., wTaste [wT] and wHealth [wH]) and summed to 133 
construct relative option values [VO1 – VO2]. These values, corrupted by momentary noise at time 134 
t [ε1(t)], serve as the external inputs to two mutually inhibitory neuronal pools representing the two 135 
options. Neural activation in these two pools (red and green lines in upper right plot) accumulates 136 
over time until one hits a predefined threshold, determining both the simulated response time (RT) 137 
and the simulated choice. Choices are classified as normative if the option with higher normative 138 
attribute value (in this case, higher healthiness, i.e. the apple in option 2) is selected. The sum of 139 
neural activation across the two pools can be used to simulate expected neural signals at the time 140 
of choice, and can be convolved with the canonical hemodynamic response function to construct 141 
a predicted BOLD signal for each choice (lower right inset). 142 
 143 

 144 

Observation 1: The likelihood of a normative choice depends on the value of hedonic and 145 

normative attributes. To capture the idea that some choices (e.g. ice cream vs. Brussels sprouts) 146 

represent more of a self-control conflict than others (e.g. strawberries vs. lard), we simulated a 147 

single decision maker facing choices between hypothetical options that independently varied the 148 
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relative value of normative and hedonic attributes (e.g. the foods’ relative healthiness and tastiness). 149 

In the context of food choice, we classified a simulated choice as normative (healthy) when the 150 

simulation selected the option with higher healthiness. Choices were classified as hedonistic 151 

(unhealthy) otherwise. To determine the effect of current behavioral goals, we simulated the 152 

decision maker’s choices for a variety of different weights on healthiness (wHealth) and tastiness 153 

(wTaste). 154 

 155 

Figure 2a illustrates how variation in tastiness and healthiness of an option relative to the 156 

alternative affects a decision maker’s general propensity to make a healthy choice (i.e., averaging 157 

over different instances of wTaste and wHealth). As can be seen, the magnitude and sign of the two 158 

attributes matters: she tends to choose more healthily when one option dominates on both 159 

healthiness and tastiness (no-conflict trials). She chooses less healthily when one option is tastier 160 

while the other is healthier (conflict trials). She is least likely to choose normatively when the 161 

difference in tastiness is large and the difference in healthiness is small. Thus, our simulations 162 

make the commonsense prediction that attribute values matter in determining the overall likelihood 163 

that an individual makes a healthy/normative choice. 164 

 165 

Observation 2: The likelihood of a normative choice depends on weights given to normative and 166 

hedonic attributes. We next attempted to capture the idea that an individual might vary from 167 

context to context in the goals that they prioritize, and that the essence of self-control is to prioritize 168 

(i.e., assign a higher weight to) normative attributes like healthiness, or to deprioritize (i.e., assign 169 

a lower weight to) hedonic attributes like tastiness. We thus simulated the decision maker in 170 

different goal states by assuming different weights on hedonic and normative attributes (i.e. 171 
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tastiness and healthiness). We show two example simulations in Figure 2b-d. Unsurprisingly, the 172 

decision maker chooses healthily less frequently when weight on tastiness is higher than weight 173 

on healthiness. However, these differences are starkest in conflict trials, and essentially vanish for 174 

no-conflict trials (Figure 1d). 175 

 176 

 177 

Figure 2. Simulating the dilemma of self-control. Top: The computational model can be used to 178 
simulate decision making for any self-control context requiring an integration of normative and 179 
hedonistic considerations (healthy eating displayed). (a) On average across multiple different goals, 180 
the likelihood of a healthy choice depends on the relative attribute values of one option vs. another, 181 
and is less likely when tastiness and healthiness conflict. Warmer colors indicate a higher 182 
likelihood of choosing the healthier option. Specific goals (b) prioritizing tastiness or (c) 183 
prioritizing healthiness alter the overall frequency of healthy choice, although in both contexts 184 
unhealthy choices are more likely for large differences in tastiness and small differences in 185 
healthiness. (d) The overall likelihood of a healthy choice (averaged for all combinations of 186 
conflict or no conflict choices). Goals prioritizing tastiness (black bars) produce fewer healthy 187 
choices than goals prioritizing healthiness (gray bars), but only when tastiness and healthiness 188 
conflict. Bottom: e-g) The computational model can also simulate expected neural activity (i.e. 189 
aggregate activity in the two neuronal pools, summed over decision time: ∑ 𝑂𝑝𝑡𝑖𝑜𝑛1 +𝑇𝑖𝑚𝑒190 
𝑂𝑝𝑡𝑖𝑜𝑛2) when choosing healthy [H] or unhealthy [UH] options, as a function of relative option 191 
values and different goals. Warmer colors indicate more activity when a healthy choice was made 192 
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(i.e., Activity H > Activity UH). h) Overall difference in neural activity for H compared to UH 193 
choices for goals prioritizing tastiness (black bars) and healthiness (gray bars), divided as a 194 
function of attribute conflict. In no conflict trials, healthy choices elicit less activity regardless of 195 
goal (i.e. Activity H < Activity UH). In conflict trials, however, healthy choices elicit more activity 196 
(i.e. Activity H > Activity UH), but only when goals prioritize tastiness. Identical results are obtained 197 
when substituting RT for neural response (see Supplementary Figure 1). 198 

 199 

 200 

Observation 3. Normative choices result in higher neural response only if attributes conflict and 201 

the decision maker weights hedonic attributes more. The last and most important goal of our 202 

computational model simulations was to examine how neural response in a cognitive control 203 

region like the dlPFC (assuming its activity correlates with the anDDM) might depend on weights 204 

given to hedonic and normative attributes (Figure 2e-h). We characterized this simulated response 205 

as aggregate activity of the two neuronal pools, summed over the duration of the choice, as this is 206 

what would contribute to observable BOLD responses.  207 

 208 

Comparing differences in simulated neural response for healthy and unhealthy choices yields two 209 

important conclusions. First, when options do not conflict on healthiness or tastiness (i.e. one 210 

option is better on both), healthy choices generally elicit less activity than unhealthy ones (Figure 211 

2e). Notably, for no-conflict trials this holds true irrespective of whether a decision maker is 212 

currently prioritizing tastiness or healthiness (Figure 2f-g). Second, and more importantly, when 213 

attributes conflict, network activity during healthy vs. unhealthy choices shows a striking 214 

dependence on an individual’s goals (i.e. the relative balance of wHealth and wTaste). In conflict trials, 215 

hedonism-favoring goals (i.e., wTaste > wHealth) result in higher activity on average when choosing 216 

healthily (Figure 2h). This difference becomes exaggerated as the magnitudes of tastiness and 217 

healthiness increase (Figure 2f). In contrast, when goals prioritize normative attributes like 218 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2020.10.06.328476doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.328476


12 
 

healthiness (i.e., wHealth > wTaste), simulated neural responses are lower on average for healthy 219 

compared to unhealthy choices (Figure 2g,h). Thus, neural response is positively associated with 220 

normative choice (i.e., greater neural activity to choose normatively instead of hedonistically) only 221 

when the decision maker places a higher weight on hedonistic than normative attributes. The same 222 

is true of simulated RTs, which are often used as a proxy for both choice difficulty and the presence 223 

of control (Supplementary Figure 1). Thus, in the anDDM the observation that normative choices 224 

activate brain areas associated with cognitive control might simply indicate that hedonic attributes 225 

are currently weighted more highly.  226 

 227 

Testing computational predictions using fMRI data 228 

The anDDM accurately predicts dlPFC activity across a variety of contexts.  229 

It is currently unknown whether activity in the dlPFC region frequently associated with self-control 230 

might reflect activation patterns in the anDDM in the same manner as simple choice18. We thus 231 

began by verifying that trial-by-trial simulated neural activity in the anDDM correlated with 232 

activity in this region for complex, multi-attribute choices typical of different real-world self-233 

control dilemmas. Note that, while this correlation could occur because the dlPFC performs the 234 

precise computations carried out by the anDDM, such a correlation could also occur if the dlPFC 235 

performs separate computational functions that activate proportionally to anDDM activity. In 236 

either case, we would expect trial-by-trial activity of the dlPFC to correlate with predictions of the 237 

anDDM. 238 

 239 

Our analysis focused on three previously-collected fMRI datasets22,23 (see Methods for details). 240 

Study 1 (N = 51) and Study 2 (N = 49) utilized an Altruistic Choice Task trading off different 241 
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monetary outcomes for self and an anonymous partner in a modified version of a Dictator game 242 

(Figure 3a, b, see Methods for details). Study 3, completed on a subset of participants from Study 243 

2 (N = 36), utilized a Food Choice Task (Figure 3c) with different foods varying in tastiness and 244 

healthiness. In Study 1, choices were made with the instruction to simply choose the most-245 

preferred option. In Studies 2 and 3, participants made choices in three separate conditions that 246 

manipulated goals/attribute weights by instructing participants to focus on different normative or 247 

hedonistic attributes (a point we return to below). Studies 1 and 2 involved only trials involving 248 

conflict between hedonic and normative attributes. Study 3 included trials both with and without 249 

such conflict. 250 

 251 

 252 

  253 

Figure 3. FMRI task designs. (a) In Study 1, participants made choices involving tradeoffs 254 
between monetary payoff for another person ($Other; normative attribute) and for themselves 255 
($Self; hedonic attribute) in an Altruistic Choice Task. (b) In Study 2, participants made choices 256 
similar to the Altruistic Choice Task in Study 1, while we manipulated the weights on normative 257 
and hedonic attributes using instructions presented at the beginning of each task block. These 258 
instructions asked participants to focus on different pro-social motivations (ethical considerations, 259 
partner’s feelings) as they made their choice. (c) In Study 3, we examined the generalizability of 260 
the model-based predictions in another choice domain. Here, we manipulated weights on food’s 261 
healthiness (normative attribute) and tastiness (hedonic attribute) using a Food Choice Task. In all 262 
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studies, participants had 4 seconds to decide, and gave their response on a 4-point scale from 263 
“Strong No” to “Strong Yes”. 264 

 265 

We predicted that dlPFC activity should correlate parametrically with simulated activity of the 266 

anDDM during self-control dilemmas. To test this notion, we first fit computational parameters of 267 

the anDDM to each participant’s behavior (see Supplemental Figure 2 for model fits). We then 268 

asked whether parametric variation in the measured BOLD signals within the dlPFC ROI 269 

correlated with simulated response across all three fMRI studies (see Methods for detail). To this 270 

end, data of each study were thresholded at a voxel-wise P < .001, and a cluster-defining threshold 271 

of P < .05, small-volume corrected within a 10-mm spherical region of interest (ROI) centered on 272 

the peak coordinates of activity for the contrast of normative (healthy) vs. hedonistic (unhealthy) 273 

choice in a previous study of self-control in dieters1. The results of a three-way conjunction at this 274 

a priori threshold show that anDDM responses correlate with activation in the dlPFC across all 275 

three data sets (Figure 4a, center-of-mass x = -56, y = 19, z = 21). Results for our key questions 276 

reported below (Figure 4 e-f) are based on the dlPFC cluster identified in this conjunction analysis. 277 

Supplemental analyses confirmed that simulated activity of the anDDM covaried with observed 278 

BOLD responses in the DLPFC in each condition of Study 2 and 3.  279 

 280 

Intriguingly, although they are not the focus of this study, we also observed a whole-brain 281 

corrected conjunction of activation across all three studies in two other regions often associated 282 

with conflict and cognitive control: the dorsal anterior cingulate cortex (dACC) and anterior 283 

insula/inferior frontal gyrus (Ps < .001, whole-brain corrected across all three studies, 284 

Supplemental Figures S3 and S4). No other regions showed a similarly consistent, three-way 285 

conjunction across all three studies. 286 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2020.10.06.328476doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.328476


15 
 

 287 

Recruitment of the dlPFC when choosing normatively only occurs when goals are hedonistic and 288 

attributes conflict (Observation #3).  289 

The preceding analysis confirmed that activity in the left dlPFC covaries with predicted activity 290 

simulated in the anDDM in three independent fMRI studies. We next confirmed the central 291 

prediction of our simulations concerning the relationship between normative choices and activity 292 

in the dlPFC. In particular, models suggesting that the dlPFC promotes normative choices1,6,20 293 

imply that norm-consistent choices should be accompanied by greater activation in the dlPFC (as 294 

has been observed previously). Moreover, this should be especially true when people focus on 295 

normative goals6,7, since those goals support norm-sensitive behavior and might require the 296 

override of default hedonistic preferences19,24. The anDDM makes the opposite prediction. While 297 

neural activity in the model (and by extension the dlPFC) can be higher for normative compared 298 

to hedonistic choices, this should be true only when goals lead to stronger weighting of hedonic 299 

attributes and attribute values conflict (c.f. Figure 2h). Thus, if a regulatory focus on normative 300 

attributes increases their weight in the evidence accumulation process, this should increase 301 

normative choices, but result in lower, not higher, neural activity for those choices. We tested these 302 

predictions by performing a region-of-interest (ROI) analysis in the dlPFC region identified by the 303 

three-way conjunction above, examining the contrast of activity for normative compared to 304 

hedonistic choices in different contexts. In Study 1 (altruistic choice) this involved choices made 305 

only during natural, unregulated decision making. In Study 2 (altruistic choice) and Study 3 (food 306 

choice) we examined choices made under different regulatory goals that were designed to increase 307 

or decrease weights on hedonic and normative attributes (i.e. self and other in altruistic choice, 308 

tastiness and healthiness in food choice). 309 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2020.10.06.328476doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.328476


16 
 

 310 

Generous vs. selfish choices (Study 1). In Study 1, choices were defined as normative (i.e., 311 

generous) if the participant selected the option with less money for themselves and more money 312 

for their partner. Choices were defined as hedonistic (i.e., selfish) otherwise. Weights from the 313 

best-fitting model parameters indicated that subjects naturally placed more weight on their own 314 

outcomes (mean wSelf = .0036±.0011s.d.) than the other person’s outcomes (mean wOther 315 

= .0008±.0015, paired-t50 = 12.37, P = 2.2×10-16) or on fairness (i.e., |Self – Other|, mean wFairness 316 

= .0008±.001, paired-t50 = 8.30, P = 7.82×10-11). Given the higher weight on self-interest, a 317 

hedonic attribute, and the fact that all trials in this study involved conflict between normative and 318 

hedonic attributes, we predicted that we should observe greater neural response when people chose 319 

generously. An ROI analysis of BOLD response in the dlPFC for generous vs. selfish choices 320 

strongly supported this prediction (Figure 4d, paired-t43 = 2.98, P = .005). A whole-brain analysis 321 

confirmed that this pattern was specific to the dlPFC, as well as the dACC and insula/IFG regions 322 

also associated with the anDDM, rather than a general property of neural activity (see 323 

Supplementary Table 3 for details). 324 

 325 
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 326 

Figure 4. BOLD responses in the left dlPFC during self-control dilemmas. Top: Trial-by-trial 327 
BOLD response in the dlPFC correlates with predicted activity of the anDDM across three separate 328 
studies, including during both altruistic choice (a, b) and during dietary choice (c). All maps 329 
thresholded at P < .001 uncorrected for display purposes. Bottom: Within the dlPFC ROI defined 330 
by the three-way conjunction of anDDM response across all studies, BOLD response during 331 
normative choice (black) vs. hedonistic choice (light gray) when attributes conflict, in d) Study 1 332 
for all trials, as well as in e) Study 2 and f) Study 3 as a function of regulatory goals. As predicted, 333 
normative choices activate the dlPFC, but only when goals result in a greater weight on hedonistic 334 
than normative attributes. * P < .05; ** P < .01. 335 
 336 

 337 

 338 

Regulatory effects on generous vs. selfish responding (Study 2). In Study 2 (also anonymous 339 

altruistic decision making and conflict trials only), we sought to replicate and extend these results. 340 

More specifically, we sought to test the anDDM prediction that if regulatory goals increase the 341 

weight on normative attributes, this should result in decreased activation in the dlPFC when 342 

choosing normatively. To manipulate weights on hedonic and normative attributes, we used an 343 
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instructed cognitive regulation manipulation in which we asked participants on different trials 344 

either to “Respond Naturally” (mirroring the natural preferences expressed by participants in Study 345 

1) or to focus on one of two different goals (“Focus on Ethics” [Ethics], “Focus on your Partner’s 346 

Feelings” [Partner]) that both emphasize normative attributes, but in different ways (see Methods 347 

for details). To confirm that the manipulation influenced attribute weights, we performed one-way 348 

repeated-measures ANOVAs with condition (Natural, Ethics, Partner) as a fixed effect and best-349 

fitting attribute weight parameters wSelf, wOther, and wFairness as dependent variables. This analysis 350 

confirmed that our manipulation yielded significantly different weights on the attributes across the 351 

conditions (all F2,96 > 13.54, all P < 6.59×10-6, see Methods for details of model fitting). As 352 

expected, weights for self-interest (a hedonic attribute, wSelf) were highest in the Natural condition 353 

(MNatural = .0073±.0035 s.d.), lower in the Ethics condition (MEthics = .0061±.0047), and lowest in 354 

the Partner condition (MPartner = .0037±.0065). By contrast, weights on the partner’s outcomes and 355 

fairness (attributes related more strongly to social norms) increased with regulation (wOther: MNatural 356 

= .0010±.0038, MEthics = .0041±.0045, MPartner = .0051±.0038; wFairness: MNatural = .0017±.0033, 357 

MEthics = .0053±.0046, MPartner = .0024±.0035). 358 

 359 

Having confirmed that the regulatory focus manipulation altered weights on hedonic and 360 

normative attributes, we next asked if this manipulation affected BOLD response during generous 361 

vs. selfish choice in the dlPFC, consistent with predictions of the anDDM. In particular, given that 362 

all trials involved conflict between normative and hedonic attributes, we predicted that in the 363 

Natural condition, where participants generally placed higher weight on self-interest (a hedonic 364 

attribute), generous choices should elicit higher activation. In contrast, in the Partner condition, 365 

which elicited higher weight on normative attributes (i.e., other’s outcomes and fairness), selfish 366 
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choices should elicit the greatest activity in the dlPFC. The Ethics condition, which elicited similar 367 

weights across the attributes, should lie in between.  368 

 369 

To test these predictions, we performed one-way repeated measures ANOVAs with condition 370 

(Natural, Ethics, Partner) as a fixed effect and average BOLD response in the dlPFC ROI for the 371 

contrast of generous vs. selfish choice as the dependent variable. This analysis revealed a 372 

significant effect of condition on dlPFC response (F2,96 = 4.67, P = .01). Post-hoc planned 373 

comparisons confirmed that in the Natural condition, generous choices elicited significantly 374 

greater activity in the dlPFC (P = .04, Figure 4e), replicating the observed difference during 375 

Natural choices of Study 1. By contrast, in the Ethics and Partner focus conditions, generous 376 

choices no longer elicited significantly greater activation. Instead, selfish choices elicited greater 377 

activation, although the effect did not reach statistical significance. Thus, in the same individuals, 378 

the association between generous choices and higher activation in the dlPFC depended on whether 379 

goals emphasized selfishness rather than social norms (Figure 4e). Supplemental whole-brain 380 

analyses confirmed these findings (see Supplementary Results, and Supplementary Table 3 for 381 

details). 382 

 383 

Regulatory effects on healthy vs. unhealthy choice (Study 3). In Study 3, we sought to replicate the 384 

finding that a regulatory focus on normative attributes reduces activation in the dlPFC, but in a 385 

new, non-social domain: healthy eating. During the Food Choice Task in Study 3, we manipulated 386 

attribute weights by instructing participants either to “Respond Naturally”, “Focus on Health”, or 387 

“Focus on Taste” while making their choice. Normative (i.e., healthy) choices were defined as 388 

selecting the food with higher subjectively perceived healthiness (see Methods for details). Note 389 
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that the “Focus on Health” instruction aimed to increase weight on healthiness (wHealth), a 390 

normative attribute. Extending results of Study 2, the “Focus on Taste” condition was designed to 391 

enhance the weight on tastiness (wTaste), the hedonic attribute, which should preserve or even 392 

enhance the difficulty of normative choices that we observed in natural choice settings in study 1 393 

and 2. This allowed us to verify that our findings are specifically driven by changes in weights, 394 

not simply because we asked participants to perform a cognitive task. 395 

 396 

To confirm that the regulatory manipulation influenced attribute weights, we performed one-way 397 

repeated-measures ANOVAs, similar to Study 2, with condition (Natural, Taste, Health) as a fixed 398 

effect and estimated attribute weight parameters wTaste and wHealth as dependent variables. This 399 

analysis confirmed that our manipulation yielded significantly different weights on the different 400 

attributes across the conditions (all Fs > 104.2, all P < 2.2×10-6). As expected, weights on tastiness 401 

(a hedonic attribute) were highest in the Taste condition (MTaste = 0.0077±.0029), similar but 402 

slightly lower in the Natural condition (MNatural = 0.0074±.0027) and lowest in the Health condition 403 

(MHealth = 0.002±0.0028). Weights on healthiness (a normative attribute) showed the opposite 404 

pattern, being lowest in the Taste condition (MTaste = -0.0008±0.0018), similar though slightly 405 

higher in the Natural condition (MNatural = -0.0002±0.0018) and highest in the Health condition 406 

(MHealth = 0.0055±0.0034). 407 

 408 

Given these weights, we predicted that on the subset of trials involving conflict between 409 

healthiness and tastiness, healthy compared to unhealthy choices should elicit the greatest 410 

activation in the dlPFC in the Taste condition. In contrast, unhealthy choices should elicit greater 411 

activation in the Health condition. The Natural condition should lie in between these two extremes, 412 
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being more similar to the Taste condition. To test these predictions, we performed a one-way 413 

repeated measures ANOVA, similar to Study 2, with condition (Natural, Taste, Health) as a fixed 414 

effect and the average dlPFC BOLD response in the contrast of healthy vs. unhealthy choice 415 

(limited to trials with attribute conflict) as the dependent variable. As hypothesized, this analysis 416 

revealed a significant effect of condition on response (F = 4.269, P = .018). Follow-up t-tests 417 

confirmed the predicted direction of activation (Figure 4f). BOLD response during healthy 418 

compared to unhealthy choices was significantly greater in the Taste condition for the dlPFC 419 

(paired-t32 = 2.67, P = .01). In the Health condition by contrast, activity was significantly greater 420 

for unhealthy choices in the left dlPFC (paired-t34 = 2.061, P = .05). Response for healthy vs. 421 

unhealthy choice in the Natural condition lay in between these two extremes. Thus, in the same 422 

individuals, healthy choices could be accompanied by higher activation in brain regions typically 423 

associated with cognitive control (when goals emphasized hedonism), or lower activation (when 424 

goals emphasized health norms). Supplemental whole-brain analyses confirmed that this pattern 425 

of results was specific to the dlPFC and other regions associated with the anDDM (see 426 

Supplementary Results, and Supplementary Table 3 for details). 427 

 428 

Regulatory effects in the absence of conflict (Study 3).  429 

Our analyses so far focused on conflict trials, since simulations suggest that these trials show the 430 

biggest differences as a function of attribute weights (Figure 2). The design of Study 3, which 431 

included a subset of trials with no attribute conflict, also allowed us to test one further prediction 432 

of the anDDM. In Observation #3, we found that normative choices should only be associated with 433 

increased neural activity when hedonic and normative attributes conflict (Figure 2h). When 434 

attributes do not conflict, the anDDM predicts that normative choices should on average result in 435 
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lower neural response. Moreover, the anDDM suggests smaller differences in response across goal 436 

contexts favoring hedonism or health norms. This suggests that, in contrast to conflicted choices, 437 

there should be less effect of regulatory focus on dlPFC response during no-conflict choices.  438 

 439 

To test this prediction, we first performed a one-way repeated measures ANOVA with condition 440 

(Natural, Taste, Health) as a fixed effect and the average BOLD in the dlPFC for the contrast of 441 

healthy vs. unhealthy choice as the dependent variable, focusing only on the subset of trials with 442 

no conflict between tastiness and healthiness of a food (i.e., when the value of the option was 443 

positive or negative for both). As predicted, there was no significant influence of regulatory 444 

condition on the difference in neural activity between healthy and unhealthy choice (F2,68 = 0.477, 445 

P = .62). Given this lack of effect across conditions, we averaged the three conditions together to 446 

analyze the main effect of healthy vs. unhealthy choice. This analysis indicated that healthy choices 447 

were accompanied by non-significantly lower response in this region (paired-t35 = 1.51, p = .07, 448 

one-tailed). Results in other regions correlating with the anDDM, including the dACC and 449 

insula/IFG showed an even stronger pattern (see Supplemental Results for more details). In other 450 

words, as expected from model simulations, activation in the dlPFC for normative choices when 451 

normative and hedonic attributes did not conflict is generally low, and shows little to no effect of 452 

regulatory focus or the relative weight on tastiness and healthiness. 453 

 454 

Regulation-related differences in overall activation (Studies 2 & 3).  455 

Our analyses so far confirm predicted patterns of response in the dlPFC during normative choice, 456 

suggesting that altering weights on normative vs. hedonic attributes alters the association between 457 

the dlPFC and normative choice. This raises the obvious question: which regions of the brain 458 
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produce these changes in weight? Some models attribute this role to the dlPFC itself, arguing that 459 

increases in activation in this area when focused on specific attributes (e.g. focusing on healthy 460 

eating) reflect computations necessary to redirect attention and alter weights. We thus interrogated 461 

the dlPFC for evidence that activation in this area during either Study 2 or Study 3 might increase 462 

generally when people focus on regulating their attention, as might be expected if this region 463 

implements changes in weights. However, we observed no effect of regulatory focus on overall 464 

response in this region in either Study 2 (F2.96 = 1.12, P = .33) or Study 3 (F2.70 = 1.294, P = .28). 465 

Thus, we found no evidence that this region activates to drive changes in weights. 466 

467 
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Discussion 468 

When and why do normative choices (i.e., those choices that conform to abstract standards and 469 

social rules) recruit regions associated with cognitive control like the dorsolateral prefrontal cortex 470 

(dlPFC)? Simulated activity from an attribute-based neural drift diffusion model (anDDM) 471 

suggests a straightforward answer: normative behavior may only trigger the dlPFC when 472 

normative attributes conflict with hedonic ones, and the decision maker values hedonic attributes 473 

more. Across three separate fMRI studies and two different choice domains (generosity and 474 

healthy eating), we show several results that confirm predictions of the anDDM. First, we show 475 

that activation in the dlPFC correlates consistently with predicted activity of the anDDM across 476 

all contexts examined. Second, we show that even in individuals who show a natural bias towards 477 

selfishness, regulatory instructions to focus on socially normative attributes increase generosity 478 

but reduce dlPFC response when choosing generously. Third, this pattern replicated in the domain 479 

of healthy eating, suggesting a general principle that may apply across a variety of self-control 480 

dilemmas. Finally, we found little evidence that overall activation in the dlPFC predicted 481 

regulation-induced changes in weight. Our results provide empirical support for recent theories 482 

positing that successful self-control—defined as choosing long-term or abstract benefits over 483 

hedonic, immediate gratification25—depends importantly on value computations. They stand in 484 

contrast to the predictions of models of posterior dlPFC function suggesting that the strength with 485 

which the dlPFC activates during choice determines whether prepotent hedonistic responses are 486 

resisted19,21,24,26. Our results point to a modified conceptualization of the role played by the dlPFC 487 

in promoting normative choice. 488 

 489 
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A large literature, generally consistent with models that assume normative behavior requires 490 

controlled processing, suggests that the dlPFC activates when prepotent responses conflict with 491 

desired normative outcomes27,28. The neural activity of the anDDM, which arises from mutually 492 

inhibitory pools of option neurons receiving weighted inputs from hedonic and virtuous attributes, 493 

is in some ways consistent with such an interpretation. However, it calls into question assumptions 494 

that prepotency equates to hedonism, or even to automaticity29 more generally. Instead, our model 495 

suggests that the “prepotent response” may correspond, at least in the realm of value-based 496 

decision making, to choices consistent with the choice attribute that is currently receiving higher 497 

weight, regardless of the source of that weight. In other words, even when higher weights on 498 

normative attributes derive primarily from a deliberative, regulatory focus, as in our final two 499 

studies23, this results in reduced activity in the dlPFC when making normative choices (and greater 500 

activity when choosing hedonistically). Mechanistically, these patterns result from the fact that 501 

higher weights on normative attributes reduce the computation required for competitive neural 502 

interactions to settle on the normative response. Thus, while virtuous choices associated with 503 

successful self-control may sometimes recruit the posterior dlPFC, manipulations that increase the 504 

weight on normative attributes, either by making it more salient in the exogenous environment or 505 

focusing endogenous attention towards it, should both promote normative behavior and make it 506 

easier to accomplish. 507 

 508 

This observation may help to explain why some researchers have found evidence consistent with 509 

greater response in the dlPFC promoting normative choice1,3,6,9,30,31, while others have not10-12. 510 

Variations that influence the weight on normative attributes—whether across individuals, goal 511 

contexts, or paradigms—will tend to reduce statistical significance and increase heterogeneity in 512 
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the link between neural activation in the dlPFC and normative choice. Fortunately, our model 513 

provides a way to predict both when and why dlPFC activity will be observed. For example, in the 514 

domain of intertemporal choice, our model predicts that making future outcomes more salient 515 

should amplify their weight in the choice process, promoting patience while decreasing dlPFC 516 

activation. This is exactly what is observed empirically12. Thus, researchers would do well to 517 

interpret activation of the dlPFC for a particular kind of choice (be it generous or selfish, healthy 518 

or unhealthy, patient or impatient) with caution. Such a pattern may say less about whether the 519 

dlPFC (and by extension, cognitive control more generally) is required to inhibit instinctual 520 

responses and preferences, and more about what kinds of attributes are most salient or valuable in 521 

the moment. 522 

 523 

Our results have important implications for theories of self-control suggesting that the dlPFC 524 

promotes self-control by modulating attribute weights in the choice process1,31,32. The region of 525 

dlPFC that we observe here correlating with the anDDM is nearly identical to areas observed when 526 

dieters made healthy compared to unhealthy choices1, and when participants are required to 527 

recompute values based on contextual information32. Yet we find that the relationship between 528 

self-control “success” and “failure” in this region reverses when participants actively focus on 529 

health: dlPFC now responds more strongly to unhealthy choices. These results thus seem 530 

incongruent with the notion that this area down-regulates weight on norm-inconsistent 531 

considerations and up-regulates norm-consistent ones, since we observed decreased responses in 532 

this area in the context of increased normative choice and increased weight on normative attributes 533 

(Figure 4, c.f. 23). Moreover, we found no evidence that regulatory instructions led to greater 534 

overall activation in the dlPFC, as might be expected if this area implements changes in the weight 535 
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given to normative attributes. Instead, this region appeared to correlate with the evidence 536 

accumulation stage of decisions, rather than with the evidence construction stage, responding 537 

during decision conflict generally, regardless of whether that conflict derived from greater 538 

weighting of hedonic or normative attributes.  539 

 540 

We emphasize, however, that our results and conclusions apply narrowly to the area of dlPFC 541 

identified. The anDDM-related dlPFC region in this study lies posterior and dorsal to another 542 

dlPFC area that we have observed, in these same datasets, to track hedonistic and normative 543 

attributes in a goal-consistent manner and to serve as a candidate for mediating regulation-induced 544 

changes23. Furthermore, gray matter volume in this more anterior dlPFC area, but not in the 545 

posterior dlPFC region identified here, correlates with regulatory success33. Thus, while some 546 

areas of the dlPFC may indeed play an important role in promoting self-regulation and normative 547 

behavior by altering attribute weights in decision value, we suspect that they are anatomically and 548 

computationally distinct from the region of the posterior dlPFC sometimes assumed to serve this 549 

role. Future work will be needed to better delineate subregions of the dlPFC, and to determine the 550 

unique role each one plays in promoting normative choices. 551 

 552 

The close correspondence between predictions of the anDDM and activation patterns in the dlPFC 553 

makes it tempting to conclude that this region performs this computational function. While this 554 

hypothesis is consistent with results from single-cell recordings17,34, we also acknowledge that the 555 

dlPFC has been associated with many computational functions and roles, not all of which are 556 

mutually incompatible. Thus, it is possible that the dlPFC region observed here performs some 557 

sort of process that is correlated with, but not identical to, the neuronal computations of the anDDM. 558 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2020.10.06.328476doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.328476


28 
 

Future work, including computational modifications or additions to the anDDM, as well as 559 

recordings from other modalities34, may help not only to elucidate the precise computational 560 

functions served by this area, but also the ways in which it promotes adaptive choice and normative 561 

behavior. Work extending these findings to other domains of normative choice, such as moral 562 

decision making or intertemporal choice, may also help to identify the commonalities and 563 

differences across different self-control dilemmas. 564 

565 
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Methods 566 

Computational Model Simulations 567 

Our attribute-based neural drift diffusion model (anDDM: Figure 1) assumes that brain areas 568 

involved in decision making (particularly those that convert preferences into action) contain two 569 

spatially intermingled populations of neurons representing the options under consideration (here 570 

denoted as Option 1 and Option 2), with instantaneous firing rates (FR) at time t of FR1(t) and 571 

FR2(t). At the beginning of the choice period FR1(0) = FR2(0) = 0. Firing rates in each population 572 

evolve dynamically from the onset of choice based on the sum total of excitatory and inhibitory 573 

inputs (detailed below). A choice results at time t’, the first moment at which the firing rate of one 574 

of the two populations exceeds a predetermined threshold or barrier B. The total response time RT 575 

is t’ plus a constant non-decision time (ndt) that accounts for perceptual and motor delays. 576 

 577 

Firing rates in the two pools evolve noisily over time according to the following two equations: 578 

{
𝐹𝑅1(𝑡) = max(0,  𝛾 × 𝐹𝑅1(𝑡 − 1) − 𝜁 × 𝐹𝑅2(𝑡 − 1) + (𝑣1 − 𝑣2) + 𝜀1(𝑡))

𝐹𝑅2(𝑡) = max(0,  𝛾 × 𝐹𝑅2(𝑡 − 1) − 𝜁 × 𝐹𝑅1(𝑡 − 1) + (𝑣2 − 𝑣1) + 𝜀2(𝑡))
} 579 

where the noise terms 𝜀𝑥(𝑡) are normally distributed ~N(0,.1), 𝛾 ≥ 1 represents recurrent auto-580 

stimulation from the pool onto itself, 𝜁 ≥ 0 represents inhibitory input from the other pool, and 𝑣1 581 

and 𝑣2 represent external inputs proportional to the overall values of Options 1 and 2, determined 582 

by the weighted sum of their choice-relevant attribute values: 583 

{

𝑣1 = ∑ 𝑤𝑖𝐴𝑡𝑡𝑟𝑖𝑏𝑖
1

𝑖

𝑣2 = ∑ 𝑤𝑖𝐴𝑡𝑡𝑟𝑖𝑏𝑖
2

𝑖

}. 584 

 585 
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Thus, each pool’s activity receives an external input proportional to its value relative to the other 586 

option. In our simulations, we assumed two independent attributes: one related to hedonism (e.g., 587 

tastiness of a food) and one related to norms and standards (e.g. healthiness), although in principle 588 

any number and type of attribute could occur. Using these equations allowed us to simulate the 589 

dynamically evolving balance of excitation and inhibition across the two neuronal populations, 590 

and to derive distributions of both response times (RTs) and neural response. We label the final 591 

output (i.e., choice) of the system as “normative” if it results in selecting the option with the higher 592 

unweighted value for the normative attribute (e.g., the option with higher healthiness). 593 

 594 

To simulate everyday self-control dilemmas using this framework, we simulated choices between 595 

two options representing different combinations of hedonistic and normative attributes, allowing 596 

the relative value difference between an option and its alternative on a given attribute to vary 597 

independently in the arbitrarily chosen range [-3, -2, … +2, +3]. This permitted us to explore how 598 

the likelihood of a normative choice changes depending on how much better or worse one of the 599 

two options is along hedonic and normative attribute dimensions, as well as what happens when 600 

the relative values of the two attributes conflict (i.e. take opposite signs) or do not.  601 

 602 

We also sought to capture in our simulations the notion that a decision maker can vary from 603 

moment to moment in their commitment to and desire for hedonistic vs. normative goals. For 604 

example, a dieter may begin to relax the importance they place on norm-consistent attributes like 605 

healthiness once they reach their target weight, resulting in more unhealthy choices. In the main 606 

text (and Figure 2), we focus on simulations for two different goal contexts: one with a higher 607 

weight on tastiness, a hedonic attribute (i.e., wT = .05, wH = .02) and one with a higher weight on 608 
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healthiness, a normative attribute (wT = .02, wH = .05). For simplicity, we assumed that all choices 609 

used a choice-determining threshold B=0.15, selected to produce RTs in the range typically 610 

observed in human subjects. Thus, for purposes of illustration, we simulated a decision-maker in 611 

two different contexts with different weights on the two attributes, facing 49 distinct choices 612 

representing different combinations of attribute values. To ensure that our conclusions held across 613 

a variety of weights, we also simulated an additional 34 different goal contexts, fully covering the 614 

factorial combination of weights on wT and wH in the range of 0, .01, .02 … .05. Using these values 615 

and weights, we simulated choice frequencies, total neural activation (summed across the two 616 

neuronal pools), and RTs for each of the different hypothetical option pairs/attribute combinations, 617 

probing the effects of attribute weights, attribute magnitudes, and attribute conflict (i.e. match or 618 

mismatch between the signs of normative and hedonic attribute). Results of these simulations are 619 

displayed in Figure 2. Code is available at [link released after publication]. 620 

 621 

Experimental Studies 622 

Details about portions of Studies 1, 2 and 3, as well as neuroimaging parameters, have been 623 

reported previously22,23. Here, we highlight in brief the most important details for the current work. 624 

 625 

Participants. For Study 1, we analyzed data from 51 male volunteers (mean age 22, range 18-35). 626 

All participants received a show-up fee of $30 as well as an additional amount ranging from $0-627 

$100, depending on the outcome of the task (see below). For Study 2, we analyzed data from 49 628 

volunteers (26 male, mean age 28, range 19-40). For Study 3, 36 individuals from Study 2 returned 629 

to the lab for a separate session on a separate day to complete a dietary choice task. For each 630 

session in Studies 2 and 3, participants received a show-up fee of $50. Participants completing the 631 
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altruistic choice task in Study 2 also received from $0-$40 in additional earnings, depending on 632 

the outcome of the task (see below). Caltech’s Internal Review Board approved all procedures. 633 

Participants in all studies provided informed consent prior to participation.  634 

 635 

Tasks and Stimuli 636 

Altruistic Choice Task (Studies 1 & 2). We examined self-control dilemmas pitting self-interest 637 

against generosity using an Altruistic Choice Task for Studies 1 and 2. On every trial in the scanner, 638 

the participant chose between a proposed pair of monetary prizes to herself and a real but 639 

anonymous partner, or a constant default prize-pair to both ($50 in Study 1, $20 in Study 2) (Figure 640 

3a-b). Proposed prizes in the prize-pair varied from $0 to $100 in Study 1 and $0 to $40 in Study 641 

2, and always involved one individual receiving an amount less than or equal to the default, while 642 

the other individual received more. Thus, on every trial the participant had to choose between 643 

generous behavior (benefitting the other at a cost to oneself) and selfish behavior (benefitting 644 

oneself at a cost to the other). 645 

 646 

Upon presentation of the proposal, participants had up to four seconds to indicate their choice 647 

using a 4-point scale (Strong No, No, Yes, Strong Yes), allowing us to simultaneously measure 648 

both their decision and strength of preference at the time of choice. The direction of increasing 649 

preference (right-to-left or left-to-right) varied for each round of the task in Study 1, and across 650 

participants in Study 2. If the subject did not respond within four seconds, both individuals 651 

received $0 for that trial. 652 

 653 
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To increase the anonymity of choices, the participant’s choice was implemented probabilistically: 654 

in 60% of trials he received his chosen option, while in 40% of trials his choice was reversed and 655 

he received the alternative, non-chosen option. This reversal meant that while it was always in the 656 

participant’s best interest to choose according to her true preferences, her partner could never be 657 

sure about the actual choice made. Probabilistic implementation does not strongly influence the 658 

choices participants make22,23, but permits more plausible anonymity, increasing the self-control 659 

challenge involved in choosing generously. The participants were informed that the passive 660 

partners were aware of the probabilistic implementation, and the outcome was revealed on every 661 

trial 2-4 seconds following the response.  662 

 663 

Study 1 included 180 trials total, with no specific instructions for how to respond. Study 2 included 664 

270 trials, 90 each in three instructed focus conditions. See the Manipulating Normative Goals 665 

(Studies 2 & 3) section below for details on these instructions.  666 

 667 

Dietary Choice Task (Study 3). We examined self-control dilemmas in a second context pitting 668 

hedonism against healthy eating using a Dietary Choice Task for Study 3. Prior to the task, 669 

participants rated a set of 200 different foods for their healthiness and tastiness. These ratings were 670 

used to 1) select a pool of 90 foods that covered a range of health and taste ratings and 2) select a 671 

neutral reference food rated as neutral on both health and taste.  672 

 673 

On each of 270 trials in the scanner, participants saw one of the 90 different pre-selected foods 674 

(Figure 3c), and had to decide whether they would prefer to eat the displayed food or the reference 675 

food. As in the altruistic choice task, participants had up to four seconds to indicate their choice 676 
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using a 4-point scale (Strong No, No, Yes, Strong Yes). If the subject did not respond within four 677 

seconds, one of the foods was selected randomly. To match the instructed attention manipulation 678 

used in the Altruistic Choice Task, participants completed 90 trials each in one of three instructed 679 

focus conditions. See the Manipulating Normative Goals (Studies 2 & 3) section below for details. 680 

 681 

To match the probabilistic outcome used in the altruistic choice task, the participant’s choice was 682 

also implemented probabilistically in the Food Choice Task. In 60% of trials he received his chosen 683 

option, while in 40% of trials his choice was reversed and he received the alternative, non-chosen 684 

option. To reduce the length of the task, participants did not see this outcome on every trial. Instead, 685 

three trials were selected randomly at the end of each scan, and participants viewed their choice as 686 

well as the probabilistic outcome on that trial. 687 

 688 

Manipulating Normative Goals (Studies 2 & 3) 689 

Our computational model simulations suggested that the extent to which normative choices are 690 

associated with greater neural response depends to a large extent on the priority or weight given 691 

to normative vs. hedonic attributes. We thus capitalized on the design of Studies 2 and 3, which 692 

manipulated attention to different attributes (and corresponding weights), allowing us to test 693 

specific predictions of the anDDM. 694 

 695 

Generosity Manipulation (Study 2). To manipulate attention to different attributes, during the 696 

Altruistic Choice Task in Study 2, participants completed trials in one of three different instructed 697 

focus conditions: Respond Naturally, Focus on Ethics, and Focus on Partner. During Natural trials, 698 

participants were told to allow whatever feelings and thoughts came most naturally to mind, and 699 
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to just choose according to their preferences on that trial. During Ethics trials, participants were 700 

asked to focus on doing the right thing during their choices. They were encouraged to think about 701 

the justice of their choice, as well as its ethical or moral implications, and to try to bring their 702 

actions in line with these considerations. During Partner trials, participants were asked to focus 703 

on their partner’s feelings during their choices. They were encouraged to think about how the other 704 

person would be affected, as well as whether they would be happy with the choice, and to bring 705 

their actions in line with these considerations. 706 

 707 

Each participant completed 90 trials per condition, presented in randomly interleaved blocks of 708 

ten trials. A detailed set of instructions informing participants of their task for the upcoming block 709 

of trials was presented for 4 seconds prior to the block, and participants were asked to focus on the 710 

specific instruction for all trials within that block. 711 

 712 

Healthiness Manipulation (Study 3). Analogous to the Altruistic Choice Task in Study 2, we 713 

manipulated healthy eating in Study 3 using an instructed focus manipulation. Each participant 714 

completed 270 choice trials, 90 each in one of three attentional conditions: Natural Focus, Taste 715 

Focus, or Health Focus. During Natural trials, participants were told to allow whatever feelings 716 

and thoughts came most naturally to mind, and to just choose according to their preferences on 717 

that trial. During Taste trials, participants were asked to focus on how tasty each food was, and to 718 

try to bring their actions in line with this consideration. During Health trials, participants were 719 

asked to focus on the health implications of their choice. As in the Altruistic Choice Task, 720 

attentional instructions were given prior to each block of 10 trials, and participants were asked to 721 

focus on the specific instruction given for all trials within a block. However, participants knew 722 
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that they would receive the outcome of one of their choices, and were told that they should choose 723 

according to their preferences regardless of the instruction, thus encouraging participants to choose 724 

in a way that reflected their current decision value for the item.  725 

 726 

Defining Normative Choice 727 

Behavioral definition of generosity. All choices involved a tradeoff between maximizing outcomes 728 

for the self or for the other. We therefore label specific decisions as normative (i.e., generous) if 729 

the participant accepted a proposal when $Self < $Other, or rejected one when $Self > $Other. 730 

Choices were labeled as hedonistic (i.e., selfish) otherwise. 731 

 732 

Behavioral definition of healthy choice. In the Dietary Choice Task, we separately examined trials 733 

requiring a tradeoff between taste and health (i.e. conflict trials where a food was rated either as 734 

healthy but not tasty, or as unhealthy but tasty) as well as trials with no tradeoff (i.e., no-conflict 735 

trials where a food was both tasty and healthy, or both unhealthy and not tasty). In both cases, we 736 

label specific decisions as normative (i.e., healthy) if the participant either accepted a healthy food, 737 

or rejected an unhealthy food. All other choices were labeled as hedonistic (i.e., unhealthy).  738 

 739 

 740 

Computational Model Fitting 741 

We used a Bayesian model-fitting approach to identify best-fitting model parameters of the 742 

anDDM (i.e. attribute weight parameters, threshold B, non-decision time ndt, auto-excitation 743 

parameter 𝛾 and lateral inhibition parameter 𝜁) to account for choices and RTs, separately for each 744 

participant in each study and (in Studies 2 and 3) each condition. More specifically, we obtained 745 
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estimates of the posterior distribution of each parameter using the Differentially-Evolving Monte-746 

Carlo Markov Chain (DEMCMC) sampling method and MATLAB35 code developed by 36. This 747 

method uses the anDDM described above (Computational Model Simulations) to simulate the 748 

likelihood of the observed data (i.e. choices and RTs) given a specific combination of parameters, 749 

and then uses this likelihood to construct a Bayesian estimate of the posterior distribution of the 750 

likelihood of the parameters given the data. 751 

 752 

For each individual fit, we used 3 x N chains, where N is the number of free parameters (7 in 753 

Studies 1 and 2, 6 in Study 3), using uninformative priors and constraining parameter values as 754 

shown in Supplementary Table S1 based on previous work22,23 and theoretical bounds. To 755 

construct the estimated posterior distributions of each parameter, we sampled 1500 iterations per 756 

chain after an initial burn-in period of 500 samples. Best-fitting values of each parameter were 757 

computed as the mean over the posterior distribution for that parameter. These parameter values 758 

(see Supplementary Table S1) were used to simulate trial-by-trial activation across the two 759 

neuronal pools for use in the GLMs described below. Importantly, parameter values identified by 760 

this fitting procedure suggested that the model provided a good fit to behavior across all three 761 

studies (Supplementary Figure 2). 762 

 763 

Neuroimaging Analyses 764 

 765 

GLM 1a: Correlates of the anDDM (Study 1). We used GLM 1a to identify brain regions where 766 

activation varied parametrically according to the predictions of the anDDM in Study 1 (Altruistic 767 

Choice Task). To this end, we determined that the best BOLD approximation of the anDDM was 768 
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a parametric modulator with a value consisting of the sum total of the simulated response across 769 

both pools of neurons, averaged over all simulations terminating in the observed choice on that 770 

trial within ±250ms of the observed RT, and modulating a boxcar function with onset at the 771 

beginning of the choice period and having a duration of the RT on that trial (see Supplemental 772 

Methods for further detail on selecting the best regressor). To simulate expected anDDM activation 773 

on each trial, we generated 5000 simulations using the best-fitting parameters for each participant 774 

and the estimated value of the proposal and default on each trial (i.e., wSelf*$Self + wOther*$Other 775 

+ wFairness*|$Self - $Other|). 776 

 777 

Then, for each subject we estimated a GLM with AR(1) and the following regressors of interest: 778 

R1) A boxcar function for the choice period on all trials (duration = RT on that trial). R2) R1 779 

modulated by the subject’s stated preference on that trial (1 = Strong No, 4 = Strong Yes). R3) R1 780 

modulated by the estimated activation of the anDDM on that trial. R4) A boxcar function of 3 781 

seconds specifying the outcome period on each trial. R5) R4 modulated by the outcome for the 782 

self on each trial. R6) R4 modulated by the outcome for the partner on each trial. R7) A boxcar 783 

function (duration = 4 seconds) specifying missed trials. Parametric modulators were 784 

orthogonalized to each other in SPM. Regressors of non-interest included six motion regressors as 785 

well as session constants. 786 

 787 

We then computed subject-level contrasts of the anDDM parametric modulator (R3) against an 788 

implicit baseline. Finally, to test the hypothesis that anDDM responses might correlate with 789 

activation in the dlPFC, we subjected this contrast to a one-sample t-test against zero, thresholded 790 

at a voxel-wise P < .001, and a cluster-defining threshold of P < .05, small-volume corrected within 791 
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a 10-mm spherical region of interest (ROI) centered on the peak coordinates of activity for the 792 

contrast of normative (healthy) vs. hedonistic (unhealthy) choice in a previous study of self-control 793 

in dieters1. In addition to this ROI-analysis, we performed supplemental analyses at the whole-794 

brain level at a voxel-level threshold of P < .001 uncorrected and a whole-brain cluster-corrected 795 

level of P < .05. 796 

 797 

GLM 1b: Correlates of the anDDM (Study 2). GLM1b was similar to GLM1a, with the exception 798 

that we estimated regressors for each condition separately. R1, R4, and R7 were boxcar functions 799 

representing the choice period for the Natural, Ethics, and Partner conditions, respectively. R2, 800 

R5, and R9 modulated R1, R4 and R7 with the decision value on that trial. R3, R6, and R9 801 

modulated R1, R4, and R7 using the estimated activation of the anDDM on that trial. A single 802 

contrast representing neural correlates of the anDDM was constructed by combining R3, R6 and 803 

R9 at the subject-level and performing a one-sample t-test against zero, thresholded at a voxel-804 

wise P < .001 and a small-volume cluster-corrected level of P < .05 within the dlPFC ROI 805 

described above. 806 

 807 

GLM1c: Correlates of the anDDM (Study 3). GLM1c was similar to GLM1b, but applied to the 808 

Food Choice Task. R1, R4, and R7 were boxcar functions representing Natural, Taste, and Health 809 

focus conditions. R2, R5, and R8 were parametric modulators representing the decision value on 810 

that trial, and R3, R6, and R9 were modulators consisting of anDDM activity simulated using 811 

healthiness and tastiness ratings as attributes. Similar to Studies 1 and 2, correlates of the anDDM 812 

were identified in this study thresholded at a voxel-wise P < .001 and a small-volume cluster-813 

corrected level of P < .05 within the dlPFC ROI described above. 814 
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 815 

Data-driven ROI definition. Based on GLMs 1a, b and c, we identified a region of the left dlPFC 816 

consistently associated with the anDDM across all three studies through a three-way conjunction 817 

analysis using the imcalc function in SPM12, with each individual study map thresholded at P 818 

< .05, small-volume corrected, and a minimum overlap of > 5 contiguous voxels. Outside of this 819 

ROI, we also identified regions significant across all three studies at P < .05, whole-brain corrected. 820 

This identified just three regions, located in the left dlPFC, left IFG, and dACC (Figure 4 and 821 

Supplemental Figures S3 and S4). We then interrogated activation within these regions specifically 822 

for the contrast of normative vs. hedonistic choice, using GLMs 2a, b and c, as specified below. 823 

 824 

GLM 2a: Generous vs. Selfish decisions in Altruistic Choice (Study 1). We used GLM 2a to test 825 

predictions about activation on trials in which subjects chose generously or selfishly. The analysis 826 

was carried out in three steps. 827 

 828 

First, for each subject we estimated a GLM with AR(1) and the following regressors of interest: 829 

R1) A boxcar function for the choice period on trials when the subject chose selfishly. R2) R1 830 

modulated by the value of 4-point preference response (i.e., Strong No to Strong Yes) at the time 831 

of choice. R3) A boxcar function for the choice period on trials when the subject chose generously. 832 

R4) R3 modulated by behavioral preference. Regressors of non-interest included six motion 833 

regressors as well as session constants. 834 

 835 

Second, we computed the subject-level contrast image [R3 – R1], which identified regions with 836 

differential response for generous compared to selfish choices. Seven subjects were excluded from 837 
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this analysis for having fewer than 4 generous choices over the 180 trials. We computed the 838 

average value of this contrast within the three anDDM ROIs specified above. As a supplementary 839 

analysis, we also asked whether any voxels beyond these regions demonstrated a significant effect, 840 

using a whole-brain analysis thresholded at P < .001, uncorrected (see Supplementary Table S3). 841 

 842 

GLM 2b: Generous vs. Selfish decisions in Altruistic Choice (Study 2). We used GLM 2b to test 843 

predictions about activation on trials in which the subject chose generously or selfishly in Study 2, 844 

and to compare how instructed attention altered these responses. All unreported details are as in 845 

GLM1a. Regressors of interest consisted of the following: R1) A boxcar function for the choice 846 

period on trials when the subject chose selfishly in Natural Focus trials. R2) R1 modulated by the 847 

value of 4-point preference response (i.e., Strong No to Strong Yes) expressed at the time of choice. 848 

R3) A boxcar function for the choice period on trials when the subject chose generously in Natural 849 

Focus trials. R4) R3 modulated by behavioral preference. R5-R8) Analogous regressors for 850 

generous and selfish choices during Ethics Focus trials. R9-12) Analogous regressors for generous 851 

and selfish choices during Partner Focus trials. R13-15) A boxcar function of 3 sec duration 852 

signaling the outcome period for Natural, Ethics, or Partner Focus trials. R16-18) R13-15 853 

modulated by the amount received by the subject at outcome. R19-21) R13-15 modulated by the 854 

amount received by the partner at outcome.  855 

 856 

We then computed the subject-level contrast images [R3 – R1], [R7 – R5], and [R11 – R9], which 857 

identified regions with differential response for generous compared to selfish choices in each 858 

condition. We computed the average value of each of these contrasts within the three anDDM 859 

ROIs specified above. As a supplementary analysis, we also asked whether any voxels beyond 860 
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these regions demonstrated a significant effect in any condition, using a whole-brain analysis 861 

thresholded at P < .001, uncorrected (see Supplementary Table S3). 862 

 863 

GLM 2c: Healthy vs. Unhealthy decisions in the Food Choice Task (Study 3). GLM 2c was 864 

analogous to GLM 2b, but examined healthy vs. unhealthy choices in the Dietary Choice Task, 865 

separately for conflicted trials (i.e. healthy but not tasty foods and tasty but unhealthy foods) and 866 

for unconflicted trials (i.e. healthy and tasty foods or unhealthy and not tasty foods). It included 867 

the following regressors of interest: R1) A boxcar function for the choice period on conflicted 868 

trials when the subject made a healthy choice (i.e., accepted a healthy-but-not-tasty or rejected a 869 

tasty-but-unhealthy food) in Natural Focus trials. R2) R1 modulated by the value of behaviorally 870 

expressed preference at the time of choice. R3) A boxcar function for the choice period on 871 

conflicted trials when the subject made an unhealthy choice in Natural trials. R4) R3 modulated 872 

by behavioral preference. R5-8) Analogous regressors for healthy and unhealthy choices during 873 

conflicted Taste Focus trials. R9-12) Analogous regressors for healthy and unhealthy choices 874 

during Health Focus trials. R13) Healthy choices on unconflicted Natural Focus trials. R14) 875 

Unhealthy choices on unconflicted Natural Focus trials. R15-16) R13 and R14 modulated by 876 

preference. R17-R20) Analogous regressors for healthy and unhealthy choice on unconflicted 877 

trials in the Health Focus trials. R21-R24) Analogous regressors for healthy and unhealthy choice 878 

on unconflicted trials in the Taste Focus trials. Subject-level contrast images of healthy vs. 879 

unhealthy choices, in each condition separately and separately for conflicted vs. unconflicted trials, 880 

were computed in a manner identical to GLM2b. We analyzed activation for these contrasts 881 

specifically within the three ROIs identified as anDDM regions. As a supplementary analysis, we 882 
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also report results at the whole-brain level at P < .001, uncorrected, in Table S3. Unreported details 883 

are as in GLM 2a.  884 

 885 

 886 

Data Availability. Behavioral data and all analysis code are available on the Open Science 887 

Framework at [link released after acceptance for publication]. Neuroimaging data are available 888 

upon request to the authors. 889 

 890 

891 
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Supplementary Materials 991 
 992 
Supplementary Methods 993 

Choosing the appropriate fMRI regressor for the anDDM model (GLMs 1a, b and c) 994 

The attribute-based neural drift diffusion model (anDDM) produces a dynamic accumulation 995 

signal that builds over hundreds of milliseconds. This raises a question about the appropriate way 996 

to model this signal in the hemodynamic response, which evolves more slowly over 5-10 997 

seconds. To determine the appropriate regressor for GLMs 1a, b, and c, we simulated 5000 998 

instantiations of the anDDM for every subject and trial in Study 2, using a time step of 5 ms. For 999 

each subject, we then averaged the 5000 simulations at each time point to produce a single time 1000 

course of total activity across the two neuronal pools for a given set of trials. We convolved this 1001 

simulated time course with the canonical form of the hemodynamic response function (HRF) to 1002 

construct an expected BOLD time series given the inputs. We refer to this as the ideal BOLD. 1003 

We then compared the shape of the ideal BOLD to two different possible instantiations within a 1004 

traditional GLM analysis in SPM. Version 1 consisted of a parametric modulator of a stick 1005 

function placed at the onset of the trial, consisting of the sum total activity in the anDDM for 1006 

each trial, ∑ 𝐹𝑅1(𝑡)𝑅𝑇
𝑡=1 + 𝐹𝑅2(𝑡). Version 2 consisted of a parametric modulator identical to 1007 

Version 1, but modulating a boxcar function placed at the onset of the trial with duration equal to 1008 

RT for that trial. Each of these regressors was convolved with the canonical form of the HRF and 1009 

correlated with the ideal time series to determine the one providing the closest match.  1010 

Results suggested that version 2 provided a closer match (Pearson’s r ranging from .90-.99, 1011 

average = .96) compared to version 1 (Pearson’s r ranging from .62-.94, average = .82). Note 1012 

also that the inclusion of the unmodulated boxcar function with duration equal to the RT on each 1013 
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trial controls for non-specific activation related to response times that does not build over time in 1014 

the manner expected based on the anDDM. 1015 

 1016 

Supplementary Results 1017 

In the main paper, we focus on the effects of normative vs. hedonistic choice within the dlPFC 1018 

ROI defined by the conjunction of anDDM-correlated trial-by-trial activity across all three 1019 

studies. However, in addition to this dlPFC ROI, we identified two other regions, in the dorsal 1020 

anterior cingulate cortex (dACC, see Figure S3) and left inferior frontal gyrus (IFG)/anterior 1021 

insula (IFG/aIns, see Figure S4) whose activity correlated with the anDDM across all three 1022 

studies (P < .001, whole brain corrected within each study). Here, we report analogous results on 1023 

measures of BOLD response in these regions during normative vs. hedonistic choice, for the sake 1024 

of completeness. These results suggest that our results are a general principle of areas correlating 1025 

with anDDM response. 1026 

dACC response during normative vs. hedonistic choices in Studies 1, 2, and 3 1027 

We began by examining whether activity in the dACC correlated with the contrast of normative 1028 

(generous) vs. hedonistic (selfish) choices in Study 1. As expected, and similar to the dlPFC, this 1029 

region showed a significantly greater response during generous compared to selfish choices 1030 

(paired t43 = 3.4825, P = .001, Figure S3d). Similarly, in Study 2, we observed a significant 1031 

effect of normative goals on the difference in response between normative and hedonistic 1032 

choices (F2,96 = 13.67, P = 5.97 × 10-6). Follow-up t-tests confirmed that this was driven by a 1033 

stronger response in the dACC to normative (generous) choices in Natural trials (paired-t43 = 1034 

3.53, P = .0009) as well as significantly stronger response to hedonistic choices (paired-t43 = 1035 

2.41, P = .02) during Partner-focused trials. Finally, we replicated a similar pattern of effects in 1036 
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Study 3, showing a significant influence of normative (i.e., health-focused) goals on the contrast 1037 

of normative vs. hedonistic choices (F2,96 = 3.64, P = .03), which was driven by a stronger 1038 

response on normative (healthy) choices in the Natural and Taste conditions, and a marginally 1039 

stronger response on hedonistic (i.e., unhealthy) choices during Health Focus trials (paired-t43 = 1040 

1.96, P = .058). 1041 

 1042 

IFG/aIns response during normative vs. hedonistic choices in Studies 1, 2, and 3 1043 

As expected if IFG/aIns response correlates with the anDDM, we observed similar patterns of 1044 

responding on normative vs. hedonistic choices across all three studies within this region. 1045 

IFG/aIns showed a significantly greater response during generous compared to selfish choices 1046 

(paired t43 = 3.22, P = .002, Figure S4d). Similarly, in Study 2, we observed a significant effect 1047 

of normative goals on the difference in response between normative and hedonistic choices (F2,96 1048 

= 17..66, P = 2.93 × 10-7, Figure S4e). Follow-up t-tests confirmed that this was driven by a 1049 

stronger response in the dACC to normative (generous) choices in Natural trials (paired-t43 = 1050 

5.06, P = 6.57× 10-6) as well as significantly stronger response to hedonistic (i.e., selfish) choices 1051 

(paired-t32 = 2.66, P = .01) during Partner-focused trials. Finally, we replicated a similar though 1052 

non-significant pattern of the effects of normative goals in Study 3 (F2,96 = .75, P = .39, Figure 1053 

S4f). However, planned post-hoc comparisons confirmed that activation in the left IFG/aIns was 1054 

stronger on normative (healthy) choices in the Natural condition (paired-t43 = 2.65, P = .01), 1055 

while activation for this same condition was non-significantly reversed on Health Focus trials (P 1056 

= .66). The direct comparison of normative vs. hedonistic choices during Natural vs. Health 1057 

Focus was also significant (paired-t34 = 2.18, P = .04). 1058 

1059 
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Supplementary Figures 1060 

 1061 
Figure S1. Computational simulations of response time (RT). (a) Similar to neural response, 1062 

model simulations suggest that response times when making normative (i.e., healthy, H) choices 1063 

instead of hedonistic (i.e. unhealthy, UH) ones (i.e., RTH – RTUH) depends on relative healthiness 1064 

and tastiness for goal contexts that prioritize both (b) hedonism and (c) normative goals. Warmer 1065 

colors indicate longer RTs for healthy choices, indicated by larger differences in RTH – RTUH. (d) 1066 

Average differences in RT for health compared to unhealthy choices (averaging over different 1067 

options with different attribute values) are displayed for contexts in which health or taste are 1068 

prioritized, divided as a function of whether relative healthiness and tastiness conflict (i.e., take 1069 

opposite signs) or do not (no conflict trials). In no conflict trials, on average, healthy choices are 1070 

easy regardless of whether taste is prioritized (black bars) or health is prioritized (gray bars), 1071 

indicated by comparatively faster RTH than RTUH. In conflict trials, however, on average, healthy 1072 

choices are difficult only in when taste is prioritized (when wTaste > wHealth), reflected in relatively 1073 

longer RTH than RTUH.  1074 

 1075 
 1076 
 1077 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2020.10.06.328476doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.328476


53 
 

 1078 

Figure S2. Model fits to behavior. (a) Choices and RTs for observed behavior (colored bars) and 1079 

model simulations (blue dots) for different choice types in Study 1. (b) Observed and model-1080 

simulated choices and RTs in Study 2, separately by regulatory condition. (c) Observed and model-1081 

simulated choices and RTs in Study 3, separately by regulatory condition. Error bars show standard 1082 

error of the mean. 1083 
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 1084 

Figure S3. BOLD responses in the anterior cingulate cortex during self-control dilemmas. Top: 1085 
Trial-by-trial BOLD response in the dACC correlates with predicted activity of the anDDM across 1086 
three separate studies, including during both altruistic choice (a, b) and during dietary choice (c). 1087 
All maps thresholded at P < .001 uncorrected for display purposes. Bottom: Within the dACC ROI 1088 
defined by the three-way conjunction of anDDM response across all studies, BOLD response 1089 
during normative choice (black) vs. hedonistic choice (light gray) when attributes conflict, in d) 1090 
Study 1 for all trials, as well as in e) Study 2 and f) Study 3 as a function of regulatory goals. As 1091 
predicted, normative choices activate the dACC, but only when goals result in a greater weight on 1092 
hedonistic than normative attributes. + P < .05, one-tailed; * P < .05; ** P < .01. 1093 
 1094 

1095 
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 1096 
Figure S4. BOLD responses in the inferior frontal gyrus (IFG)/anterior insular cortex during self-1097 
control dilemmas. Top: Trial-by-trial BOLD response in the IFG/insula correlates with predicted 1098 
activity of the anDDM across three separate studies, including during both altruistic choice (a, b) 1099 
and during dietary choice (c). All maps thresholded at P < .001 uncorrected for display purposes. 1100 
Bottom: Within the IFG/insula ROI defined by the three-way conjunction of anDDM response 1101 
across all studies, BOLD response during normative choice (black) vs. hedonistic choice (light 1102 
gray) when attributes conflict, in d) Study 1 for all trials, as well as in e) Study 2 and f) Study 3 as 1103 
a function of regulatory goals. As predicted, normative choices activate the IFG/insulas, but only 1104 
when goals result in a greater weight on hedonistic than normative attributes. + P < .05, one-tailed; 1105 
* P < .05; ** P < .01. 1106 

 1107 
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Table S1. Estimated Model Parameters 

Parameter 

A priori 

constraints  Study 1 

Study 2, 

Natural Study 2, Ethics 

Study 2, 

Partner 

Study 3, 

Natural Study 3, Taste 

Study 3, 

Health 

wSelf -.5 to +.5 .0036±.0011 .0073±.0035a .0061±.0047a .0037±.0065b - - - 

wOther -.5 to +.5 .0008±.0015 .001±.0038a .0041±.0045b .0051±.0038b - - - 

wFairness -.5 to +.5 .0008±.001 .0017±.0033a .0053±.0046b .0024±.0035a - - - 

wTaste -.5 to +.5 - - - - .0074±.0027a .0077±.0029a .002±.0028b 

wHealth -.5 to +.5 - - - - -.0002±.0018a -.0008±.0018a .0055±.0034b 

B 0 to +1.0 .3181±.1425 .2773±.1373a .3628±.1453b .4062±.1586b .1691±.0501a .1821±.0616a,b .2009±.0819b 

ndt 0 to +2.0s .8002±.215 .5989±.2219a .4835±.1448b .4859±.1322b .5442±.1321a .5397±.1361a .5399±.1589a 

𝜁 0 to +2.0 .583±.3034 .5531±.3086a .7469±.2814b .7592±.2806b .4102±.0768a .4093±.0865a .3958±.0848a 

𝛾 +1.0 to +3.0 1.8979±.3575 2.0148±.3881a 2.2043±.3744a,b 2.2952±.3467b 1.6435±.1279a 1.654±.1578a 1.6802±.1455a 

 

Note. Parameter values were estimated using a Differential-Evolution Markov Chain Monte Carlo method developed by Holmes and 

Trueblood1. Parameters beginning with w indicate weighting parameters applied to different attributes (Studies 1 and 2: proposed 

payoff to self vs. the default, proposed payoff to other vs. the default, and fairness [|$Self - $Other|]; Study 3: tastiness and healthiness 

vs. the default). B: choice-defining threshold. ndt: non-decision time. 𝜁: lateral inhibition parameter from one neuronal pool onto the 

other. 𝛾: auto-excitation parameter from a neuronal pool onto itself. A priori constraints on the parameters, determined based on 

previous work and on theoretical limits, restricted them to the range indicated. In Studies 2 and 3, columns indicated by different 

subscripts differ significantly from each other at P < .05, corrected for multiple comparisons. 
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Running head: DLPFC AND NORMATIVE CHOICE 

 

Table S2. Neural correlates of the attribute-based neural drift diffusion model across 1 
studies 2 

Region BA 

Cluster 

Size Z score x y z 

Study 1 (GLM 1a) 

L Dorsal Anterior Cingulate 6/8/32 235 4.89 -6 27 42 

L Inferior Frontal Gyrus 47 271 5.01 -33 27 -6 

R Inferior Frontal Gyrus 47 175 4.87 39 27 -6 

L Dorsolateral Prefrontal Cortex 45/46 60 4.32 -57 21 24 

L Supplementary Motor Area 6/8 142 4.23 -21 12 57 

R Inferior Parietal Lobule 40 319 5.76 54 -66 36 

L Inferior Parietal Lobule 40 281 5.51 -48 -78 33 

        

Study 2 (GLM 1b) 

R Dorsal Anterior Cingulate 6/8/9/32 936 5.27 -3 35 46 

L Inferior Frontal Gyrus 45/47 373 4.82 -45 32 -8 

R Inferior Frontal Gyrus 47 268 5.06 39 23 -11 

L Dorsolateral Prefrontal Cortex 45 7† 3.6 -57 20 22 

L Middle Frontal Gyrus 6/8 293 4.52 -24 20 52 

L Posterior Cingulate Cortex 31 100 5.12 -6 -40 34 

L Middle Temporal Gyrus 21 38 4.07 -60 -31 -8 

L Inferior Parietal Cortex 39 285 5.57 -39 -70 40 

R Occipital Cortex  120 4.9 42 -73 34 

        

Study 3 (GLM 1c) 

R Dorsal Anterior Cingulate 6/8/9/32 472 5.28 9 23 40 

R Dorsolateral Prefrontal Cortex  684 5.21 54 23 19 

 Inferior Frontal Gyrus  * 4.11 33 17 -11 

L Dorsolateral Prefrontal Cortex  671 5.23 -51 20 19 

 Inferior Frontal Gyrus 47 * 4.43 -33 26 -5 

 Note. Regions are reported at a voxel-level of P < .001, uncorrected and a whole-brain cluster 3 
corrected level of P < .05, unless otherwise noted. * Distinct peak within larger cluster. † 4 
Significant at P < .05, small-volume corrected within a 10-mm spherical region of interest 5 
centered on the left dlPFC.6 
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Table S3. Differences in neural response for virtuous vs. hedonistic choices  7 

Region BA 

Cluster 

Size Z score x y z 

        

Study 1, Generous vs. Selfish (GLM2a) 

anDDM Regions 

L Dorsomedial Prefrontal Cortex 9/32 86 4.03 -3 33 36 

R Dorsolateral Prefrontal Cortex 44/45 24 3.87 54 12 21 

L Dorsolateral Prefrontal Cortex 45/46 18* 3.06 -45 12 18 

R Inferior Frontal Gyrus 47 23 4.12 30 21 -12 

L Inferior Frontal Gyrus 47 13 3.73 -42 39 -3 

L Inferior Parietal Lobule 40 14 3.56 -60 -54 39 

        

Other Regions 

 No regions significant       

Study 2, Generous vs. Selfish, Natural Focus trials only (GLM2b) 

anDDM Regions 

L Dorsomedial Prefrontal Cortex 9/32/24 2225 5.21 -3 11 67 

 Dorsomedial Prefrontal Cortex  ** 4.79 -9 38 37 

 Dorsolateral Prefrontal Cortex  ** 3.85 -42 14 31 

R Dorsolateral Prefrontal Cortex 46 38 3.68 57 23 25 

L Inferior Frontal Gyrus 47 381 5.21 -42 20 -8 

R Inferior Frontal Gyrus 47 10 3.47 33 17 -11 

R Inferior Parietal Lobule 40 20 3.66 48 -37 46 

L Inferior Parietal Lobule 40 180 4.42 -39 -67 46 

L Inferior Parietal Lobule 40 18 3.59 -57 -37 46 

        

Other Regions 

L Mid-Cingulate Cortex 24 30 4.33 -3 -4 31 

R Posterior Cingulate Cortex 31 54 3.79 12 -40 31 

R Inferior Parietal Lobule 40 32 3.76 48 -58 46 

L Lingual Gyrus 18 37 3.64 -9 -73 1 

R Cerebellum  21 3.57 0 -52 -23 

L Frontal Pole 10 11 3.38 -9 62 13 

        

Study 2, Generous vs. Selfish, Ethics Focus trials only (GLM2b) 

 No regions significant       

        

Study 2, Generous vs. Selfish, Partner Focus trials only (GLM2b) 

anDDM Regions 

L Dorsomedial Prefrontal Cortex 24 54 -3.64 -3 41 22 
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R Dorsolateral Prefrontal Cortex 46 16* -3.81 57 29 22 

R Inferior Frontal Gyrus 47 47* -3.36 36 23 -2 

        

Other Regions 

 No regions significant       

        

Study 3, Healthy vs. Unhealthy, Natural Focus conflict trials only (GLM2c) 

anDDM Regions 

L Dorsomedial Prefrontal Cortex 9 23* 3.82 -12 29 37 

L Dorsolateral Prefrontal Cortex 46 7* 3.02 -48 26 16 

L Inferior Frontal Gyrus 47 21* 3.09 -27 20 -11 

R Inferior Frontal Gyrus 47 14 3.99 30 20 -8 

        

Other Regions 

R Frontal Pole  38 4.19 9 62 4 

R Orbitofrontal Cortex  16 3.6 39 41 -5 

        

Study 3, Healthy vs. Unhealthy, Taste Focus conflict trials only (GLM2c) 

anDDM Regions 

R Dorsomedial Prefrontal Cortex 9 8* 3.02 6 23 46 

        

Other Regions 

 No regions significant       

        

Study 3, Healthy vs. Unhealthy, Health Focus conflict trials only (GLM2c) 

 No regions significant       

             
 Note. Regions are reported at a voxel-level threshold of P < .001, uncorrected, and a minimum 8 
volume of k = 10 voxels, unless otherwise noted. * Significant at P < .005, uncorrected, reported 9 
for completeness. anDDM regions are defined by their correspondence with predictions of the 10 
attribute-based neural drift diffusion model (anDDM, see Table S2).11 
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