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ABSTRACT 

Background and Objective: Heart rate variability (HRV) is a promising clinical marker 

of health and disease. Although HRV methodology is relatively straightforward, accurate 

detection of R-peaks remains a significant methodological challenge; this is especially 

true for single-lead EKG signals, which are routinely collected alongside EEG 

monitoring and for which few software options exist. Most developed algorithms with 

favorable R-peak detection profiles require significant mathematical and computational 

proficiency for implementation, providing a significant barrier for clinical research. Our 

objective was to address these challenges by developing a simple, free, and open-

source software package for HRV analysis of single-lead EKG signals. 

Methods: CardioPy was developed in python and optimized for short-term (5-minute) 

single-lead EKG recordings. CardioPy’s R-peak detection trades full automation and 

algorithmic complexity for an adaptive thresholding mechanism, manual artifact removal 

and parameter adjustment. Standard time and frequency domain analyses are included, 

such that CardioPy may be used as a stand-alone HRV analysis package. An example 

use-case of HRV across wakefulness and sleep is presented and results validated 

against the widely used Kubios HRV software. 

Results: HRV analyses were conducted in 66 EKG segments collected from five 

healthy individuals. Parameter optimization was conducted or each segment, requiring 

~1-3 minutes of manual inspection time. With optimization, CardioPy’s R-peak detection 

algorithm achieved a mean sensitivity of 100.0% (SD 0.05%) and positive predictive 

value of 99.8% (SD 0.20%). HRV results closely matched those produced by Kubios 

HRV, both by eye and by quantitative comparison; CardioPy power spectra explained 
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an average of 99.7% (SD 0.50%) of the variance present in Kubios spectra. HRV 

analyses showed significant group differences between brain states; SDNN, low 

frequency power, and low frequency-to-high frequency ratio were reduced in slow wave 

sleep compared to wakefulness.  

Conclusions: CardioPy provides an accessible and transparent tool for HRV analyses. 

Manual parameter optimization and artifact removal allow granular control over data 

quality and a highly reproducible analytic pipeline, despite additional time requirements. 

Future versions are slated to include automatic parameter optimization and a graphical 

user interface, further reducing analysis time and improving accessibility.  

 

Keywords: Heart Rate Variability, HRV, Analysis Software, Python, Slow Wave Sleep 
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1. INTRODUCTION 

Heart rate variability (HRV) is a measure of fluctuations in cardiac beat-to-beat 

interval lengths produced by heart-brain interactions that regulate the autonomic 

nervous system [1]. As such, it provides a functional index of nervous system regulation 

across a diversity of applications ranging from athletic fitness [2] to psychological stress 

[3] to cardiac mortality risk [4]. Single and multi-lead electrocardiograph (ECG/EKG) 

signals required for HRV analysis are routinely collected during many clinical 

applications, providing a wealth of raw data available for clinical research.  

 A number of HRV software programs have been developed and scientifically 

validated through the peer-review process (Table 1) [5–9]. Each program outlined in 

Table 1 calculates various time and frequency domain analyses standard to HRV 

estimations. Each of the above-described metrics is calculated from the base 

tachogram of NN intervals, derived as the differences between subsequent R-peaks in 

the EKG QRS complex after removal (or “cleaning”) of ectopic and abnormal beats. 

Time domain analyses (Table 2) are calculated directly from the tachogram of interbeat 

intervals; these metrics quantify the overall variability of intervals between successive 

heart beats, while frequency metrics allow for characterization of the origins of this 

variability [10]. Frequency domain analyses (Table 2) are calculated from spectral 

density of the interbeat interval tachogram in discrete frequency bands, standardized 

into ultra-low-frequency (ULF, ≤0.003 Hz), very-low-frequency (VLF, 0.003-0.04 Hz), 

low-frequency (LF, 0.04-0.15 Hz), and high-frequency (HF, 0.15-0.40 Hz). The ratio 

between LF and HF components has been proposed to represent the interplay between 

sympathetic and parasympathetic nervous system activation, with sympathetic tone 
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tending toward the low-frequency component and parasympathetic tone toward the 

high-frequency component [11]. Additionally, a number of tools calculate non-linear 

analyses, which approximate the statistical complexity of the NN tachogram. 

Notably, most validated tools are built in the proprietary MATLAB environment, 

which may limit transparency and analytic flexibility. Moreover, many require R-peak 

detection and cleaning to be completed prior to data loading. This provides a particular 

challenge for analysis of single-lead EKG signals, which are not typically supported by 

HRV software. To address this gap, we developed CardioPy as a novel R-peak 

detection and HRV analysis program for single-lead EKG. It is written in python and 

leverages the vetted functionalities of NumPy, Pandas, and SciPy, allowing for quick 

and flexible time and frequency domain analyses, as well as a highly reproducible 

analytic pipeline for production of high-quality scientific studies.  

  

Kubios 
HRV 

(Standard) 

Kubios 
HRV 

(Premium) gHRV HRVanalysis ARTiiFACT  PhysioLab  CardioPy 

Price Free Paid Free Free Free Free* Free 

Open 
Source No No Yes No No Yes Yes 

Operating 
System 

Windows, 
MacOSX, 

Linux 

Windows, 
MacOSX, 

Linux 

Windows, 
MacOSX, 

Linux 
Windows Windows Windows, 

MacOSX 

Windows, 
MacOSX, 

Linux 

Language MATLAB MATLAB Python MATLAB MATLAB MATLAB Python 

Interface GUI GUI 
GUI and 

spreadsheet-
like 

GUI GUI GUI 
Command 

line, 
Jupyter 

R-peak 
Detection No Yes No Yes Yes No Yes 

HRV 
Analyses 

Time & 
frequency 
domain, 

non-linear 

Time & 
frequency 
domain, 

non-linear 

Time & 
frequency 
domain,  

non-linear 

Time & 
frequency 
domain,  

non-linear 

Time & 
frequency 

domain 

Time & 
frequency 

domain 

Time & 
frequency 

domain 

Table 1 | Overview of commonly used peer-reviewed HRV software tools. CardioPy is 
included in grey shading for a comparative overview. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.06.328856doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.328856
http://creativecommons.org/licenses/by-nc-nd/4.0/


  6 

Table 2 | Standard Time and Frequency Domain HRV Analyses. Calculations are 
appropriate for short-term (5 minute) recordings and exclude statistics that require longer data 
segments. In the CardioPy toolkit, total power is calculated across the spectrum and for each 
frequency band. Log power, peak power, and % power are calculated for each frequency 
band. Power (nu) is calculated for LF and HF bands. 

 In the following sections we provide an introduction to the CardioPy toolbox. We 

then apply CardioPy to an example analysis of HRV in five healthy individuals, first 

validating our results against the widely-used Kubios HRV software, and then examining 

differences in HRV between wakefulness and sleep states.  

 

2. METHODS 

2.1 Project Vision 

CardioPy was born out of the desire to conduct HRV analyses on single-lead 

EKG data collected from clinical EEG monitoring. Despite significant interest in HRV as 

Analysis Description 
Time Domain Calculated from the cleaned NN tachogram 

Average interbeat 
interval Average of NN intervals (milliseconds) 

Average Heart Rate Mean interbeat interval in beats per minute (bpm) 

Max/Min Heart Rate Max/min of the sequence of mean heart rates (bpm) calculated over a moving window 
of 5 NN internals 

SDNN Standard deviation of NN intervals 

RMSSD Root mean square of the difference between successive NN intervals 

pNN20 Sample percentage of consecutive NN intervals differing by more than 20 milliseconds 

pNN50 Sample percentage of consecutive NN intervals differing by more than 50 milliseconds 

Frequency Domain Calculated from power spectrum of the cleaned, interpolated, and resampled NN 
tachnogram 

Total power Total power (milliseconds2) 

Log Power Log of power 

Peak Power Frequency with maximum power (Hz) 

% Power Proportion of power across the spectrum 

Power (nu) Power expressed as the proportion of combined power in the LF and HF bands 
(normalized units, nu) 

LF/HF Ratio Power in the LF band divided by power in the HF band 
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a clinically useful physiological metric, we found the practice of conducting HRV 

analyses on clinical data to require a high bar of domain-specific expertise. The two 

major obstacles that we encountered were: (1) a scarcity of freely available R-peak 

detection and cleaning tools and (2) a failure of highly successful published R-peak 

detection algorithms to supply easy-to-implement code for reproducible analyses. 

Accordingly, our goal was to produce an HRV analysis toolkit for single-lead EKG that 

was freely available, open source, and easy to understand and implement. 

2.2 Usability and Computational Efficiency 

CardioPy is written in python, leveraging the language’s readability and wealth of 

open-source libraries and troubleshooting resources. It requires a python 3 distribution 

including standard data processing and visualization dependencies, all of which can be 

obtained through Anaconda (Anaconda Software Distribution). Analyses can be run 

through any python interpreter, although jupyter notebook use is recommended for 

analytic documentation and reproducibility. 

For structure, CardioPy utilizes a single EKG class allowing for self-contained 

methods for R-peak detection, analysis, and visualization in matplotlib. Data is stored 

largely in Pandas DataFrames for easy inspection. The strategic choice of using 

Pandas data structures in combination with matplotlib visualizations results in an EKG 

object that is highly readable in exchange for moderate computational efficiency. For 

this reason, CardioPy is optimized for datasets of approximately 5 minutes in length — 

the gold standard for short-term EKG recordings (11). While CardioPy may be used for 

longer datasets, it will likely suffer lagging visualizations and statistical analyses, 

particularly in the frequency domain. 
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2.3 Data Compatibility & Documentation 

Plain text (.txt) data derived from single-lead EKG, either as a single column or 

as part of a larger EEG file are compatible with CardioPy. Input assumes two rows with 

column headers specifying both channel and column type, such that line 1 of the EKG 

column is labeled “EKG” and line 2 “Raw”. CardioPy is compatible with previously 

cleaned data, allowing for the presence of missing rows and NaN values. Full 

documentation is available on GitHub (github.com/CardioPy/CardioPy), complete with 

installation instructions and example analyses.  

 

3. RESULTS 

The following section provides an overview of CardioPy. First, we explain various 

CardioPy functions, including R-peak detection and parameter optimization, artifact 

rejection, HRV analysis, and data export. For parameter optimization, we report 

algorithm performance in terms of detection sensitivity (percentage of true peaks 

detected) and positive predictive value (PPV) (percentage of detections that are true 

peaks). We then provide an example use-case complete with code snippets 

(Supplementary Material) to demonstrate how to implement various functionalities. 

3.1 R-peak Detection 

3.1.1 Detection Algorithm. To detect R-peaks, a dynamic threshold is calculated 

as the average signal over a moving window (default: 100 milliseconds) shifted upwards 

by a percentage of the signal value (default: 3.5%). R-peaks are identified as the local 

maxima between positive- and negative-slope threshold crossings. Figure 1 

demonstrates algorithm performance on a typical EKG signal with default threshold 
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parameters. For this signal, the thresholding algorithm correctly detected 328 out of 328 

R-peaks with 0 false detections, resulting in a sensitivity of 100% and a positive 

predictive value of 100%.  

3.1.2 Algorithm Flexibility. The two main parameters of CardioPy’s detection 

threshold are easily modified for varying signal amplitude and noise levels. The moving 

window length can be decreased or increased to produce more or less responsiveness 

to signal shifts, respectively. Percentage upshift adjustment allows for adaptation to 

varying R-peak amplitudes between signals. Parameters can be adjusted individually or 

in tandem. Figure 2 demonstrates the effects of parameter adjustment on a signal for 

which the applied parameters performed poorly (sensitivity = 100%, PPV = 60.5%) 

(Figure 2, Top Panel). In this example, shrinking the moving window size from 300 to 

100 milliseconds drastically improved algorithm performance (sensitivity = 100%, PPV = 

99.7%) (Figure 2, Center Panel). Alternately, increasing the percentage upshift from 

2.0% to 3.5% achieved threshold optimization (sensitivity = 100%, PPV = 100%) 

(Figure 2, Bottom Panel).  

Figure 1 | Illustration of R-peak detections. Dynamic threshold and resulting R-
peak detections on a standard single-lead EKG dataset. Raw EKG is shown in 
blue, detection threshold in orange, and peak detections in red. 
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Additionally, CardioPy can handle pre-cleaned data without error. For data with 

missing segments, artificially long interbeat intervals are automatically removed in the 

artifact rejection step, described in detail in the following section. 

3.2 Data Inspection & Artifact Rejection 

3.2.1 Data Visualization. The EKG object provides self-contained methods for 

visualization and artifact rejection. These methods are built on the matplotlib interactive 

graphical user interface, which can be leveraged from a python interpreter or through a 

jupyter notebook.  

Threshold parameters can be visualized using the plotpeaks method, which 

includes interbeat intervals with corresponding R-peak detections (Figure 4). Potential 

detection errors can be identified using the interbeat interval graph combined with 

matplotlib’s interactive zoom (Figure 4, inset) and scrollbars. 

Figure 3 | Illustration of EKG smoothing. Top panel) Example of a noisy EKG 
signal with default detection parameters, resulting in many false peak detections. 
Bottom panel) The same signal with pre-detection smoothing applied, producing 
marked improvement in detection accuracy. Raw EKG is shown in blue and 
smoothed EKG in green. Detection thresholds are shown in orange and peak 
detections in red. 
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Figure 4 | Illustration of data inspection using the plotpeaks method. Raw EKG 
signal, detection threshold, and peak detections across a 5-minute dataset (Top 
Panel) are displayed with a time-locked plot of interbeat interval lengths (Bottom 
Panel). Irregularly short or long interbeat intervals can be inspected using the 
matplotlib gui’s built-in zoom and scroll functions, allowing for easy identification of 
missed or false R-peak detections (Inset), as well as ectopic or abnormal beats. 

3.2.2 Artifact Rejection. False detections can be removed and missed peaks 

added by calling the rm_peak and add_peak methods, respectively, and specifying the 

time of detection error.  To simplify time estimation, the exact millisecond value under 

the cursor is visible in either the lower left or right corner of the plotting window, 

depending on the matplotlib backend in use. All cleaning is tracked in artifact logs, 

stored as attributes of the EKG object (named rpeak_artifacts, rpeaks_added, and 

ibi_artifacts for false peaks, missed peaks, and removed interbeat intervals, 

respectively). If a true peak is mistakenly removed or a new peak added in a false 

position, these actions can be reversed with the undo_rm_peak and undo_add_peak 

methods, respectively.  
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 3.2.3 Missing Data. Missing data will result in falsely exaggerated interbeat 

intervals. To prevent potential dilution of true variability by interpolating missing data, we 

chose to handle missing data as NaN artifact. The rm_ibi method will automatically 

remove any interbeat intervals longer than a specified threshold, defaulted at 3000 

milliseconds. In the case of ectopic or abnormal beats that affect multiple intervals, 

individual interbeat intervals can be manually specified for removal. Of note, any false or 

missed peaks must be corrected prior to interbeat interval artifact handling, since the 

former methods re-calculate interval values with each new call. Once all artifacts are 

removed, the resulting NN tachogram (indicating Normal interbeat intervals) is used for 

HRV statistics. 

 

3.3 HRV Analysis 

Standard HRV analyses (Table 2) are conducted with the hrv_stats method 

(Supplementary Code Snippet 6). For frequency calculations, CardioPy applies cubic 

interpolation to the NN tachogram to produce an evenly sampled time series, which is 

then resampled to the sampling frequency of the original signal to minimize fiducial point 

shift [12]. The power spectrum is calculated using welch or multitaper methods (default: 

multitaper), with options to specify window type (default: Hamming) or resolution 

bandwidth (default: 0.008 Hz), respectively [13]. Spectra are analyzed according to 

standard HRV frequency bands (upper bounds inclusive) and visualized using the 

plotPS method. 
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 3.4 Data Export 

  CardioPy EKG objects contain built-in methods for the export of cleaned data, 

calculations, and summary statistics. Using the export_RR method, peak detections and 

interbeat interval tachograms (cleaned or uncleaned) can be exported into plain text 

files compatible with major HRV analysis programs. If the RR intervals have been 

cleaned, this method also exports artifact logs for analytic reproducibility. The 

export_RR method can be called before, after, or without statistical analysis; 

accordingly, CardioPy can be used as an R-peak detector and cleaning module 

upstream of other software packages. 

 HRV analyses can also be exported into reports containing all calculated 

statistics for each file using the to_report method. The to_spreadsheet method writes 

statistics for each analyzed file to a new row of a master excel spreadsheet for group 

analyses.  

3.5 CardioPy Validation & Application Example: HRV across wakefulness and 

sleep 

3.5.1 CardioPy Validation. To test the validity of the CardioPy package, we compared 

our analysis against Kubios HRV software [5]; Kubios is the most widely used HRV 

software in the scientific community, with over 1200 citations to date. For validation and 

the subsequent HRV example, data was collected from 5 healthy subjects using 

continuous 24-hour EEG with single-lead EKG at a sampling rate of 250 Hz (Natus 

Neuroworks, San Carlos, CA). Written informed consent was obtained from each 

subject for data collection and publication under protocols approved by Rockefeller 

University and Weill Cornell Medicine IRBs.  
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Sleep was scored in 30-second epochs according to standard sleep scoring 

criteria [14]. Each continuous period of wake, rapid-eye-movement (REM) sleep, or slow 

wave sleep (SWS) was divided into five-minute segments and EKG exported. For each 

subject, a maximum of six segments were analyzed from each brain state (mean = 4.5, 

SD = 1.2, contingent on availability) for a total of 66 segments. R-peaks were cleaned 

and interbeat intervals exported using CardioPy. HRV analysis of the NN tachogram 

was then conducted with CardioPy and Kubios software in parallel. 

Visual inspection showed little difference in time domain results between Kubios 

and CardioPy. To determine the CardioPy multitaper bandwidth parameter that most 

closely approximated Kubios’ default power spectral estimates, we calculated the mean 

squared error between spectra generated by CardioPy and Kubios for each segment, 

using 0.0005 Hz intervals between 0.005 Hz and 0.10 Hz for CardioPy multitaper 

estimates (Figure 6). According to minimal mean squared error, 0.008 Hz was chosen 

as the default bandwidth parameter and applied to all subsequent analyses. 

 For each segment, we then quantitatively compared power spectra generated by 

each program. Default parameters were used for both CardioPy and Kubios, 

Figure 6 | CardioPy bandwidth 
selection. Power spectra were 
calculated with CardioPy using 
multitaper bandwidths ranging from 
0.005 to 0.010 Hz for all segments. 
Mean squared error was calculated 
against corresponding spectra 
generated with Kubios HRV to 
determine the multitaper bandwidth 
parameter that most closely 
approximated Kubios defaults. 
Dotted line represents minimum 
mean squared error at 0.008 Hz. 
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Figure 7 | Representative power 
spectra generated by Kubios 
HRV and CardioPy from a 
single EKG segment. Spectra 
were produced using default 
parameters for both CardioPy 
(red) and Kubios HRV (blue). 

corresponding to multitaper estimation with 0.008 Hz bandwidth and welch estimation 

with 300 ms window length and 50% overlap, respectively. Across segments, the 

CardioPy spectra explained an average of 99.7% (SD 0.5%) of the variance present in 

the corresponding Kubios spectra. Figure 7 demonstrates representative corresponding 

power spectra generated by CardioPy and Kubios HRV for a single EKG segment.  

3.5.2 Sleep Stage Analysis. To demonstrate utility, we used CardioPy to 

compare HRV metrics across wakefulness, REM, and SWS. For each segment, 

detection parameters were optimized, data cleaned, and statistics calculated (see 

Supplementary Material for a step-by-step example). Optimization of detection 

parameters achieved a minimum detection sensitivity of 98.9% and PPV of 97.0%.  

Across all segments, parameter optimization achieved average sensitivity and 

PPV values of 100.0% (SD 0.05%) and 99.8% (SD 0.2%), respectively (Table 3). Of 

note, since ectopic beats contain a valid R-peak in the EKG signal, they were 

categorized as true peaks and corresponding interbeat intervals were subsequently 

removed during clearning. 
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Standard time-domain and frequency-domain metrics (outlined in Table 2) were 

compared according to brain state (Awake, REM, SWS) in a combined group analysis 

using Tukey’s HSD (alpha = 0.05). There were no differences between states in 

RMSSD, HF power or average heart rate. However, SDNN, LF power and LF/HF ratio 

were significantly reduced during SWS compared to awake. SDNN and LF power were 

also significantly reduced during SWS compared to REM sleep (Table 4).  

To examine the robustness of these findings, we then compared between-state 

differences at the individual subject level. Of note, group trends did not always hold true; 

no single metric was found to consistently vary in all subjects. However, RMSSD and 

SDNN were both significantly reduced during SWS compared to wake in 3 of 4 subjects 

where SWS was present. LF power was less consistent, showing a significant increase 

from wake to REM in 2 of 5 subjects, and reduction from REM to SWS in 2 of 4 

subjects. Between-state differences in HF power and LF/HF ratio were found in only 2 

subjects, while average heart rate significantly varied between wake and SWS in 3 of 4 

subjects, although in differing directions (Table 4). 

Table 3 | R-Peak detection statistics. Detection parameters were optimized for each 
segment and results tabulated across all segments for each subject. Total values are 
cumulative across segments. Sensitivity and PPV values were calculated for each 
segment and mean value taken across segments. Standard deviations are displayed in 
parentheses.  
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4. DISCUSSION 

 Here we present a novel open-source package for the analysis of single-lead 

EKG data. Our goal was to reduce the barrier to entry for HRV research using clinical 

EKG signals by introducing a simple, free, OS agnostic and easy-to-implement analysis 

toolkit. CardioPy requires minimal programming experience and can be run interactively 

through Jupyter Notebook, leveraging the built-in user-friendly functionalities of both 

jupyter and matplotlib, while also facilitating a high level of scientific reproducibility. We 

Table 4 | HRV results according to brain state for group and individual analyses. 
States that are significantly different according to Tukey’s HSD are grouped by superscript 
(*,† = p < 0.05; **,†† = p < 0.01; ***, ††† = p ≤ 0.001). Where only a single segment was 
available for analysis, no standard deviation value is listed. N/A values indicate that no 
segments were available for analysis. 
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provide thorough documentation of the functionalities and use of the CardioPy toolkit, as 

well as demonstrate analytic validity through comparison against Kubios HRV and 

example analysis of HRV in different brain states. 

4.1 Performance & Validation 

 In HRV analyses, minor artifacts in R-peak detection can produce significant 

skewing of the NN tachogram and corresponding HRV statistics. For this reason, and in 

accordance with the recommendations of the European Task Force (1996), we made 

the strategic decision to exclude automatic artifact detection from the CardioPy 

program. While established detectors have reported excellent accuracy with automatic 

artifact detection algorithms, in our experience many automatic detection methods had 

the conservative effect of washing out a portion of true variability in our data. Instead, 

we implemented a highly flexible detection algorithm in combination with manual data 

inspection and artifact rejection.  

From our example analyses, we show that adaptation of the detection 

parameters to varying signal-to-noise ratios produced an average detection sensitivity of 

100.0% and PPV of 99.8% (Table 3). The few remaining artifacts were removed with 

CardioPy’s built-in artifact removal methods. A potential disadvantage of this method is 

the time required for manual parameter adjustment and artifact removal. We found 

parameter optimization to be the most time-intensive step of this approach, although for 

no dataset did parameter optimization require more than 2-3 minutes. In future 

improvements on the CardioPy algorithm we plan to streamline this step with automatic 

parameter adjustments based on the signal-to-noise characteristics of each dataset. 

Additionally, although manual artifact rejection is slower than automated options, 
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manual rejection requires a high degree of data inspection and ensures the overall 

quality of the resultant NN tachogram, which is critical for accurate and reproducible 

results. 

We further validated CardioPy’s calculations against the Kubios HRV software. 

CardioPy spectra closely approximated those produced by Kubios, explaining 

approximately 99.7% (SD 0.5%) variance of the Kubios spectra. Final time and 

frequency domain HRV statistics similarly showed minimal variation, demonstrating the 

statistical validity of the CardioPy analysis pipeline. 

4.2 Example Application: HRV in Wakefulness and Sleep 

 In our HRV statistics calculated across waking, REM, and SWS states in 5 

healthy subjects, we show results consistent with reported sleep-related changes in 

autonomic tone from waking into different stages of sleep [15,16]. Specifically, we found 

that LF power and SDNN were significantly reduced during SWS sleep compared to 

awake and REM sleep states (Table 4). Similar to what has been reported in other 

studies of healthy individuals [17,18], calculated LF/HF ratios were significantly lower 

during SWS sleep compared to awake states (Table 4), likely reflecting an increase in 

parasympathetic tone with increasing sleep depth. This metric is fairly robust against 

variations in power spectral calculation methods and has shown clinical utility across a 

variety of conditions [19–21].  

 Notably, we also underscore the individual variability of HRV analyses, finding 

that group-level differences were largely driven by highly significant changes in a 

minority of subjects (Table 4). This result highlights the caution that must be taken with 

HRV interpretation; we suggest future studies on intra-individual HRV analyses account 
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for potentially mediating factors that may affect autonomic regulation, such as time of 

night [22]. 

4.2 Limitations 

 A significant current limitation of the CardioPy toolkit is the lack of a graphical 

user interface. Although CardioPy utilizes matlplotlib’s interactive functionality, analyses 

must be run through the command line, requiring the minimal programming capabilities 

of setting up an Anaconda distribution and operating within the jupyter interface. To 

mitigate this limitation, we have provided a template jupyter notebook to produce a plug-

and-play implementation. In future versions of CardioPy, we hope to further address this 

limitation by developing a more approachable graphical user interface.  

 Secondly, CardioPy is optimized for short-term recordings and may not be 

appropriate for longer datasets. The CardioPy pipeline relies heavily on Pandas data 

structures, which are efficient for five-minute datasets but produce significant 

computational overhead and may slow with increased file sizes. CardioPy also does not 

include calculations that require long-term recordings, such as ULF power and 

detrended fluctuation analysis. As short-term recordings are currently the most common 

form of HRV data in published studies [10], this limitation is unlikely to significantly affect 

usability. 

4.3 Future Directions 

 In future versions of CardioPy, we hope to implement a graphical user interface, 

as well as support for additional commonly used data formats. Although the decision 

against implementing an automatic artifact rejection algorithm increases the time 

required for data cleaning, we feel it has the potential to improve the accessibility and 
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quality of clinical HRV research by (1) being computationally simple and easy to 

understand, and (2) requiring a degree of data inspection for each analysis. 

Furthermore, we intend to streamline the CardioPy algorithm by implementing automatic 

detection parameter adjustment, which will expedite this preprocessing step. 

CardioPy provides the contribution of a freely available R-peak detection tool that is 

not restricted to the Windows operating system and is not reliant on the proprietary 

MATLAB environment. It is an open-source program, and we encourage collaboration 

and improvements from the larger community of researchers and programmers. We 

hope that CardioPy provides a useful addition to the growing set of excellent resources 

that facilitate meaningful clinical research. 
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