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Abstract

The decentralized cognition of animal groups
is both a challenging biological problem and
a potential basis for bio-inspired design. The
understanding of these systems and their ap-
plication can benefit from modeling and anal-
ysis of the underlying algorithms. In this
study, we define a modeling framework that
can be used to formally represent all com-
ponents of such algorithms. As an example
application of the framework, we adapt to
it the much-studied house-hunting algorithm
used by emigrating colonies of Temnothorax
ants to reach consensus on a new nest. We
provide a Python simulator that encodes ac-
curate individual behavior rules and produces
simulated behaviors consistent with empiri-
cal observations, on both the individual and
group levels. Our model successfully repro-
duces experimental results showing the high
cognitive capacity of colonies, their rational
time investment during decision-making, and
their ability to avoid and repair splits with the
help of social information. We also use the
model to make predictions about several un-
studied aspects of emigration behavior. The

results suggest the value of individual sensi-
tivity to site population for ensuring consen-
sus, and they indicate a more complex rela-
tionship between individual behavior and the
speed/accuracy trade-off than previously ap-
preciated. The model proved relatively weak
at resolving colony divisions among multiple
sites, suggesting either limits to the ants’ abil-
ity to reach consensus, or an aspect of their
behavior not captured in our model. It is our
hope that these insights and predictions can
inspire further research from both the biology
and computer science community.

1 Introduction

Complex biological systems are decentralized systems
that have many functionally diverse agents with a
global goal, no central control, and many biological
constraints. These agents interact with each other lo-
cally, selectively, and non-linearly — colony behavior
is not simply a sum of individual behavior. Despite
their constraints, many biological systems appear to
implement algorithms that are robust, noise tolerant,
yet efficient in time and communication. Some of the
most intricate such algorithms are found in social in-
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sects, and they have inspired fascinating engineer-
ing designs such as route optimization (the traveling
salesman problem) [1], task allocation among robot
swarms [2], and mobile sensor networks [3].

In this paper we present a general framework for
modeling biological distributed algorithms. We then
use this framework to explore a model system in col-
lective decision-making: nest site selection by ants of
the genus Temnothorax. We aim to show the value of
the framework by reproducing the results of earlier
models, extending them to account for more recent
empirical observations, and making novel predictions
to guide future work.

Househunting by Temnothorax makes a good sub-
ject for modeling distributed algorithms, because
these ants have notable collective decision-making
abilities whose behavioral underpinnings have been
well-studied. Colonies live in pre-formed cavities
such as rock crevices or hollow nuts; if their home
is damaged, they explore their surroundings for new
nests, evaluate each one’s quality, determine which is
the best, and move the entire colony to their choice
[4, 5, 6]. This is a distributed process, in that no
single ant knows about all the candidate nests. In-
stead, their decision emerges from the separate ef-
forts of many scouts, each independently recruiting
nestmates to the site it has found. Because recruit-
ment is quality-dependent, better sites accumulate
ants more rapidly. These differences are amplified by
a quorum rule under which scouts accelerate recruit-
ment to a site once its population crosses a threshold;
the winner of the race to attain a quorum becomes
the colony’s choice. Prior models have shown that
this algorithm helps the colony reach consensus on
the best site [7]. The algorithm can also be quantita-
tively tuned to emphasize either accuracy (choosing
the best nest with high probability) or speed (moving
as quickly as possible to minimize danger) [8].

Earlier models of this process are limited in that
they explored only the simple challenge of choosing
between two distinct and equidistant nests in a con-
trolled laboratory environment. Real colonies face
more complex scenarios, such as selecting among mul-
tiple sites of varying quality, avoiding splits when can-
didate nest sites are identical, and resolving colony
splits when they occur. It also remains unclear how

the colony maintains high performance with noisy
and heterogeneous individuals, and how individuals
modify their behavior to account for changes in con-
text or colony state. To that end, a simulator with ac-
curately encoded behavioral rules of individual agents
is likely to shed light on various aspects of emergent
collective behavior.

Therefore, our first aim is to accurately model the
behaviors of individual ants who together produce
coherent colony level patterns. By incorporating ob-
served and hypothesized individual level behaviors
into the model, computer simulations can predict the
collective properties of the group. Close comparison
with biological experiments on individual and colony
behavioral statistics then provides validation on the
hypothesized individual behaviors and local rules.

Secondly, we use our model to investigate ques-
tions that have incomplete experimental results or
none at all. These questions include: 1) How does
colony performance change as the number of nest op-
tions increases? 2) How do nest quality differences
affect the speed of decision making? 3) How does so-
cial/peer information affect the speed of finishing the
entire emigration when facing equal options? 4) How
does social/peer information affect the probability of
splitting when facing equal options? 5) How does the
quorum threshold affect the speed-accuracy trade-off,
where both metrics are defined for the whole process
instead of only for when the old nest becomes empty?
6) How well do colonies re-unify at one location if in-
dividuals are dispersed among many nests?

Our model touches on several aspects of the emer-
gence of collective intelligence in the house hunt-
ing process, but many more are yet to be explored.
Therefore one final important goal of our simulator is
to provide a versatile, easy-to-use and maintainable
modeling tool that can be used to quantitatively test
more hypotheses that we may not have included in
this paper. From an engineering perspective, such
tools can lead to better understanding of the roles of
local rules to achieve a global phenomenon. From a
biology perspective, they can inspire and provide di-
rections to new experiments in future research. From
a theoretical perspective, our simplified model (com-
pared to earlier models) opens the door to rigorous
proofs on convergence speed/accuracy.
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The rest of the paper is organized as follows: Sec-
tion 2 defines a general framework that we believe
will be useful not only for this algorithm but for other
agent-based distributed algorithms as well. Section 3
applies this framework, with designs and interpreta-
tions specific to the house hunting context. Section
4 describes our Python implementation of the house
hunting simulator, instructions on running simula-
tions, and their scoring goals and metrics. Section 5
validates our model with experimental statistics on
individual behaviors and the collective properties of
the colony. These validations give us confidence in
the accuracy of our model as we proceed into further
predictions of colony behaviors listed in Section 6.
These predictions show promising simulated results
but have limited or nonexistent experimental verifi-
cation. It is our hope that biological experiments
can be done later, to test the hypotheses shown by
our simulations. Finally, Section 7 summarizes our
results and proposes possible future research direc-
tions.

2 Modeling Framework

In this section, we introduce a general modeling “lan-
guage” that has the potential to be useful for a wide
range of applications. In Section 3 we instantiate this
language in the context of the house hunting process
in ant colonies.

2.1 Agent-based Model

Formally, the components below define the entities
in the system and their static capabilities. More ex-
planatory text follows after the list.
• agent-ids, a set of ids for agents. Each agent-

id uniquely identifies an agent. We also define
agent-ids′ to be agent-ids ∪{⊥} where ⊥ is a
placeholder for “no agent”. In general, we add ′

to a set name to denote the original set with the
addition of a default element {⊥}.
• external-states, a set of external states an

agent might be in. Each element in the set is
an external-state. In addition, all-externals
is the set of all mappings from agent-ids to

external-states. Each element of the set is an
all-external.

• internal-states, a set of internal states an agent
might be in. Each element in the set is an
internal-state.

• env-states, a set of states that the agents’ en-
vironment might take on. Each element in the
set is a env-state.

• action-types, a set of the types of actions
agents might perform. Each element in the set
is an action-type.
• env-choices, a set of values an agent can access

in the environment. Each element in the set is
an env-choice.
• actions, a set of quadruples of the form

(action-type, agent-id, agent-id ′, env-choice)
∈ action-types × agent-ids × agent-ids′×
env-choices. Each element in the set is an ac-
tion.

• select-action(agent-id, state, env-state, all-
external): A state is a pair of (external-state,
internal-state) ∈ external-states × internal-
states. Each (agent-id, state, env-state, all-
external) quadruple is mapped to a probability
distribution over the sample space of actions,
for which the second component is equal to the
input argument agent-id and the third compo-
nent is not equal to it. The function then out-
puts this probability distribution.

• transition(agent-id, state, all-external, action):
A state is a pair of (external-state, internal-
state) ∈ external-states × internal-states.
Each (agent-id, state, all-external, action)
quadruple determines a state as the resulting
state of the agent identified by the input argu-
ment agent-id. The function outputs the result-
ing state.

Each agent has a unique agent-id ∈ agent-ids, and
is modeled by a state machine. Agents can transi-
tion from one state to another. A state is a pair:
an external-state ∈ external-states that is visible
to other agents, and an internal-state ∈ internal-
states that is invisible to other agents.

We define all-externals to be the set of all map-
pings from agent-ids to external-states. Each ele-
ment of the set is an all-external and represents a par-
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ticular mapping from agent-ids to external-states
where each agent-id is mapped to an external-state.

The set env-states represents the set of states that
the agents’ environment might take on. In this paper,
we will assume that the environment is fixed. That is,
the env-state does not change during the execution
of the system. The reason we use a set here is to
enable us to model the same set of agents operating
in different environments.

Agents can also access values in the environment,
and each value is called an env-choice. The set env-
choices is the set of all possible values for env-choice.

An agent can transition from one state to another
by taking an action ∈ actions. Each action con-
sists of an action-type ∈ action-types, the id of the
initiating agent agent-id ∈ agent-ids, the id of the
(optional) received agent agent-id ′ ∈ agent-ids′, and
env-choice ∈ env-choices.

The function select-action(agent-id, state, env-
state, all-external) is intended to select an action for
the agent with the given agent-id, who is the initiat-
ing agent in the action. The function outputs a prob-
ability distribution over the sample space actions.
However the sample space limits its elements to have
the second component equal to the input argument
agent-id, and the third component not equal to it.
Thus, any sampled action will have agent-id being
the initiating agent’s id, and the (optional) receiving
agent necessarily has a different id.

The function transition(agent-id, state, all-
external, action) represents a transition to be per-
formed by the agent identified by the input argument
agent-id. Given the input arguments, the function
deterministically outputs the resulting state of the
transition.

2.2 Timing and Execution Model

In this section, we introduce the dynamic aspects of
our model, including the discrete and synchronous
timing model, and how different components in the
system interact with each other at different points
during the execution of the algorithm.

Our system configuration contains 1) an environ-
ment state, called env-state, and 2) each agent’s state,
which is a pair (external-state, internal-state), inde-

pendent of env-state. Agents receive inputs from and
react to the environment during the execution of the
system. In this paper, we will assume that the en-
vironment is fixed. That is, the env-state does not
change during the execution of the system.

Incorporating some theoretical ideas from [9, 10],
we divide the total time into rounds. Each round is a
discrete time-step, and times are the points between
rounds. At any time t, there is a corresponding sys-
tem configuration t. The initial time is time 0, and
the first round is round 1, taking the system from con-
figuration 0 at time 0 to configuration 1 at time 1.
In general, round t starts with system configuration
(t − 1). During round t, agents can perform various
transition’s, which take the system from configura-
tion (t− 1) at time (t− 1) to configuration t at time
t.

We now describe the execution of an arbitrary
round t. At any point in the execution of round t,
each agent x is mapped to a state, state x, which is
visible to agent x itself. However, to other agents,
only agent x’s external-state, external x is visible.
We denote all-external ∈ all-externals to be the
mapping from every agent-id ∈ agent-ids to the
corresponding external-state ∈ external-states in
round t. These mappings can be updated during the
execution.

Accounting for the randomness of the order of ex-
ecution for all the agents, a randomly chosen per-
mutation of agent-ids is generated at the begin-
ning of round t, serving as the order of execution
for the agents in the round. We also instantiate a set
Trans = ∅ at the beginning of the round. An agent
is prevented from changing its state further in the
round once it adds its agent-id to Trans, which can
happen during its turn (even if there is no resulting
state change) or when it performs a transition dur-
ing another agent’s turn. As a result, each agent can
change its state at most once in the round. After all
agents are in the set Trans, round t is over, and all
agents enter round t+ 1 synchronously.

The rest of this section describes all possible oper-
ations during one agent x’s turn in round t. When an
agent with agent-id x (a.k.a. agent x) gets its turn
to execute, it first checks whether x ∈ Trans. If so,
agent x does nothing and ends its turn here.
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Otherwise, agent x has not yet transitioned in
round t. Let state x denote the state of agent x.
Agent x calls the function select-action(x, state x,
env-state, all-external). The function outputs a prob-
ability distribution over the sample space of a sub-
space of actions, for which the second component is
x, and the third component is not x. Agent x ran-
domly selects an action, act = (a, x, x′, e), according
to this probability distribution.

Agent x then calls transition(x, state x, all-
external, act), to determine the resulting state,
new state x, for agent x. As the initiating agent,
x also gets added to Trans. Next, in the case where
x′ 6= ⊥, agent x′ also calls transition(x′, state x′,
all-external, act) where state x′ is the current state
of agent x′, maps itself to the function output, and
updates its entry in all-external. Note that x′ is
added to Trans if the function output is different
than state x′ in any way. This is the end of agent
x’s transition call. Agent x then maps itself to the
resulting state new state x, and updates its entry in
all-external. Agent x finally ends its turn here.

2.3 Discussion

Although our model keeps track of the external-state
of all the agents in all-external, when performing a
transition, an agent can only access local information
in it. Locality here is flexible to the context, i.e. local
to the location of the agent initiating an action.

Agent-based models are especially powerful for
simulating and analyzing collective behaviors given
their natural compatibility with object-oriented pro-
gramming methodologies and their flexibility for al-
lowing individual differences in realized state transi-
tion probabilities among the agents [11, 12, 13, 7].

3 House Hunting Model

This section uses the framework defined in Section 2
to describe the house-hunting process.

3.1 Informal Description

An ant colony is composed of adult workers and
brood items (immature ants), each group making up
40% to 60% of colony members. Adults are roughly
equally divided between active workers, who organize
and execute emigrations, and passive workers, who,
like brood items, are simply transported to the new
nest by active workers [7, 14].

There are four distinct phases for an active worker
in the house-hunting process. In the first, the Ex-
ploration phase, the ant randomly starts to explore
her surroundings for a suitable new nest. If she finds
a candidate site, she enters the Assessment phase,
where she individually assesses the site’s quality ac-
cording to various metrics [15, 16, 17]. If she judges
the site to be satisfactory, the ant accepts it and en-
ters the Canvassing phase, in which she returns to
the old nest to recruit other ants to the site by lead-
ing forward tandem runs (FTR). In a FTR, the
recruiter slowly leads a single follower (another ac-
tive worker) from the old nest to the new [18]. Upon
arriving at the nest, the follower ant goes directly
into the Assessment phase and evaluates the nest’s
quality independently of the leader ant. If she finds
the nest satisfactory, she will transition to the Can-
vassing phase and start leading FTRs to the nest.
A canvasser continues leading FTRs until she per-
ceives that the new nest’s population has exceeded a
threshold, or quorum [19]. At this point, she enters
the Transport phase, in which she fully commits to
the new nest as the colony’s home. She ceases FTRs
and instead switches to picking up and carrying nest-
mates from the old to the new nest. These transports
are faster than FTRs, and they are largely directed
at the passive workers and brood items, hence they
serve to quickly move the entire colony to the new
nest [14, 7]. Previous models and experiments indi-
cate that the quorum rule helps the colony to reach
consensus rather than splitting among multiple sites
[5, 20, 21]. Splitting becomes a danger if ants at
different sites, each ignorant of their nestmate’s dis-
coveries, launch FTRs to their respective sites. The
quorum rule makes it likely that whichever site first
hits the threshold will quickly end up with all or most
of the colony, due to the speediness of transport.
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Although experimental evidence is equivocal, we
assume that the quorum size is correlated with the
number of adult workers in the colony [22, 20]. We
also assume that passive workers can contribute to
quorum attainment. Once the quorum is met, the
switch to Transport phase is irreversible: an ant con-
tinues transporting nestmates to her new home nest
even if the nest population later drops below the quo-
rum size [19]. However, transporters do sometimes
interrupt transport to search for and assess alterna-
tive nest sites. If the search yields a new site that
is better than the ant’s current nest, then she exits
the Transport phase and enters the Assessment phase
with the new site as her candidate nest.

An ant in the Canvassing or Transport phase does
not recruit indefinitely. Once the site from which
she is recruiting is empty, she returns to her home
nest and transitions back to the Exploration phase.
However, this happens only upon meeting a “termi-
nation” condition consisting of ten occurrences of ei-
ther of the following events: 1) the worker tries to
lead a FTR where the solicited follower is also try-
ing to lead her own FTR, and 2) the worker tries to
carry another worker who is also in the Transport
phase. This condition is based on frequent observa-
tion of these events at recently emptied nests. We
hypothesize that an ant’s requirement of several such
events is a means of ensuring thorough exploration
of the old nest so that no nestmates are left behind.
We do not have a precise measure of how many such
events are required, but chose the number 10 as an
upper-bound estimate.

The emigration is completed when all ants in the
colony are relocated to the new nest, except possibly
for a few active scouts [5].

3.2 Formal Model

3.2.1 Model components

In this section, we show how each component in our
modeling framework (Section 2.1) is defined in the
house hunting algorithm context.

Fig. 1 shows our native data structures as used
by various components in the system: Nest objects,

Figure 1: Native data structures that define different
entities in the distributed system.

an array which constitutes an env-state; Ant objects,
each corresponding to an agent; State = (External-
State, InternalState) objects, each corresponding to
a state = (external-state, internal-state), and Action
objects, each corresponding to an action. Each of the
data structures contains a set of variables, as seen
in Fig. 1. Note that we consider all variables be-
longing to either the class ExternalState or the class
InternalState to belong to the class State as well.
Throughout the rest of the paper, we use the notation
object.variable to denote the value of a variable be-
longing to a class object. Using these data structures
as building blocks, we now show all possible values
for the components in the framework presented in
Section 2.1. Note that for consistency with our im-
plementation in Section 4, we use −1 or an empty
string “” to represent any invalid default integer or
string values represented by ⊥ in Section 2.

• agent-ids, the set containing all integers in the
range [0, num ants), where num ants is the to-
tal number of ants in the colony. In addition,
agent-ids′ = agent-ids ∪ -1. Each Ant is ini-
tialized with its corresponding ant id, which cor-
responds to a agent-id.
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• external-states, the set containing all possi-
ble values for an ExternalState class object, each
corresponding to an external-state. We designed
these variables to be in the external-state be-
cause these contain information that influences
other ants’ activities. Therefore, it is biologically
plausible that individuals have access to this in-
formation about one another.
In any ExternalState class object, phase has
one of four possibilities - Exploration (search-
ing for new nests), Assessment (assessing new
nests), Canvassing (leading other active work-
ers on FTRs to her accepted candidate nest),
and Transport (committing to the new nest and
rapidly carrying other ants to it). Note we ab-
breviate the four phases to names “E”, “A”,
“C” and “T”, respectively. The initialization of
an Ant ’s phase and state name can be found
in Section 3.2.3. For each phase, the variable
state name take values from a different set, as
follows:

The variable role can be one of (0,1,2) represent-
ing (active ant, passive ant, brood), and each Ant
is initialized with the appropriate value. The
variable location can be any integer in the range
[0, num nests) where num nests is the total num-
ber of nests in the environment, with 0 repre-
senting the original home nest. In addition, re-
call that all-externals is the set of all possible
mappings from agent-ids to external-states.
Each element of the set is an all-external.
• internal-states, the set containing all possible

values for an InternalState class object, each cor-
responding to an internal-state. The set of fields
we designed for the InternalState class repre-
sent information that should only be accessed
and modified by an ant’s internal memory. Each
of home nest (initial value = 0), candidate nest
(initial value = -1), and old candidate nest (ini-
tial value = -1) can take any integer in the
range [0, num nests), where num nests is the

total number of nests. Lastly, terminate count
(initial value = 0) takes any value in the range
[0, 10].

• env-states, a set of arrays, each being an array
of the Nest class objects. Each array corresponds
to an env-state. For an env-state, the Nest at
index 0 represents the original home nest and
has physical quality 0. All other Nest ’s have
physical quality in range [0, 4]. The maximum
quality 4 here is arbitrary. Recall that the array
does not change throughout the execution of the
system, and the array is read from a configura-
tion file introduced in Section 4.1.

• action-types, the set of the types of ac-
tions includes: “search”, “no action”, “find”,
“follow find”, “get lost”, “reject”, “no reject”,
“accept”, “recruit”, “quorum met”, “quo-
rum not met”, “stop trans”, “delay”, “termi-
nate”, “lead”, “carry”. Action-type is initialized
to “no action”. Each item in the set above is an
action-type.

• env-choices, the set of integers in [0,
num nests) ∪ -1 where num nests is the num-
ber of nests in the environment. Each element
in the set is an env-choice and is an integer rep-
resenting an index into env-state. An env-choice
has initial value -1.

• actions, the same set as defined in Section 2.1.
Note that not all actions require a receiving
agent, and not all actions require an env-choice.
In case that they are not needed, they take the
invalid default value -1.

• select-action(agent-id, state, env-state, all-
external): the same function as defined in Sec-
tion 2.1. Refer to Section 3.2.2 for details.

• transition(agent-id, state, all-external, action):
the same function as defined in Section 2.1. Re-
fer to Section 3.2.3 for details.

3.2.2 The select-action function

The function select-action(x, state x, env-state, all-
external) outputs a probability distribution over the
sample space of actions, for which the second com-
ponent is equal to the input argument agent-id and
the third component is not equal to it. Let any action
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in the sample space be denoted by (a, x, x′, ec), where
the second component is fixed. We now list out the
probability distribution on other components for each
possible value of the state name variable in state x,
as it is the only variable in state x that affects the
output probability distribution. The boldface words
are parameters that we can tune and whose values are
read from a configuration file, introduced in Section
4.1.
• For search, the probabilities of choosing a to

be “find” and “no action” are search find and
1-search find respectively, and all other action-
type’s have 0 probability. Both variables x′ and
ec take the invalid default value -1 with proba-
bility 1.
• For follow, the probabilities of choosing a to be

“follow find” and “get lost” are follow find and
1-follow find respectively, and all other action-
type’s have 0 probability. Both variables x′ and
ec take the invalid default value -1 with proba-
bility 1.
• For reverse lead, the probabilities of choosing a

to be“delay” and “no action” are transport and
1-transport respectively, and all other action-
type’s have 0 probability. Both variables x′ and
ec take the invalid default value -1 with proba-
bility 1.
• For quorum sensing, let the set X̃ be the

set containing id’s of all agents with external-
state having role ∈ {0, 1} and location =
state x.location. If the set size |X̃| ≥ quo-
rum threshold, the probabilities of choosing a
to be “quorum met” and “quorum not met” are
1 and 0 respectively, and are 0 and 1 otherwise,
and all other action-type’s have 0 probability.
Both variables x′ and ec take the invalid default
value -1 with probability 1.
• For lead forward, let X̃ be the set con-

taining id’s of the agents that are not x,
and whose external-state has role = 0 and
location = state x.location. The function
selects an action ãct = (ã, x, x′, ec) accord-
ing to the following probability distribution.
In case terminate count < 10, ã is chosen
among “lead” and “get lost” with probabili-
ties lead forward and 1-lead forward respec-

tively, and all other action-type’s have probabil-
ity 0. In case terminate count ≥ 10, ã is “termi-
nate” with probability 1. The variable ec is equal
to {state x.candidate nest} with probability 1.
The distribution of x′ depends on ã, as follows:

– For “lead”, if X̃ 6= ∅, the variable x′ is uni-
formly selected from X̃, and all other values
in agent-id ′ have 0 probability; otherwise,
x′ = −1 with probability 1.

– For “get lost”, x′ = −1 with probability 1.
– For “terminate”, x′ = −1 with probability

1.
• For transport, let X̃ be the set containing id’s

of all agents that are not x, and whose external-
state has location = state x.location. In ad-
dition, let X̃ ′ be the subset of X̃ containing
agents that have role ∈ {1, 2}. The func-
tion first selects an action ãct = (ã, x, x′, ec)
according to the following probability distribu-
tion. In case terminate count < 10, ã is chosen
among “carry” and “stop trans” with probabil-
ities transport and 1-transport respectively,
and all other action-types have probability 0.
In case terminate count ≥ 10, ã is “terminate”
with probability 1. The variable ec is equal to
{state x.home nest} with probability 1. The
distribution of x′ depends on ã, as follows:

– For “carry”, if X̃ ′ 6= ∅, x′ is uniformly
sampled from X̃ ′, and all other values in
agent-id ′ have 0 probability. Otherwise if
X̃ ′ = ∅ ∩ X̃ 6= ∅, x′ is uniformly sampled
from X̃, and all other values in agent-id ′

have 0 probability. Otherwise, x′ = −1
with probability 1.

– For “stop trans”, x′ = −1 with probability
1.

– For “terminate”, x′ = −1 with probability
1.

• For at nest, the probability of choosing a to be
“search” is 1−p(x), where x is the quality of the
nest option under assessment (Figure. 1) and
p(x) defined in Equation 2. There are always two
possible actions for a state with state name =
at nest, and the one that is not “search” nat-
urally has probability p(x). All other action-
type’s have 0 probability. Both variables x′ and
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ec take the invalid default value -1 with proba-
bility 1. To determine p(x), an ant is required
to assess the quality of a nest in the environ-
ment. The assessment of the quality of a nest
includes both its physical qualities [23, 24] and
the nest population [25, 22]. Therefore, we use
a simple linear combination of these two values
to denote the final nest quality with a new pa-
rameter called pop coeff as the coefficient of
the population effect. In other words, the final
nest quality of a nest with physical quality q
and population pop (obtained from all-external)
is

q

4
+ pop coeff× pop

num ants
, (1)

where 4 is the maximum value of nest qualities,
and num ants is the total colony size. We fur-
ther define the following sigmoidal function (Fig.
2)

p(x) =
1

1 + e−λ×x
(2)

where λ is a parameter that controls how “steep”
the sigmoidal function is, and x is the above de-
fined nest quality. Higher λ values correspond
to lower individual noise level, and bring p(x)
closer to a step function.

Figure 2: Sigmoidal function with λ = 4, 8, 16

• For arrive, the probabilities of choosing a to be
“reject” and “no reject” are 1−p(x) and p(x) re-
spectively, where x is the difference in quality of
the candidate nest compared to the home nest
(Equation 3) and p(x) defined in Equation 2.
All other action-type’s have 0 probability. The
variable x′ take the invalid default value -1 with

probability 1. The variable ec take the invalid
default value -1 with probability 1. To determine
p(x), an ant x is required to compare the quality
of its candidate nest (with physical quality q1
and population pop1) and its home nest (with
physical quality q0 and population pop0). We
still use the sigmoidal function in Equation 2,
with the change that the input x to the function
now is

q1 − q0
4

+ pop coeff× pop1 − pop0
num ants

(3)

where 4 is the maximum value of nest qualities,
and num ants is the total colony size.

3.2.3 The transition function

Passive Workers and Brood Items Active
worker scouts are defined as those who engage in the
emigration process by independently discovering the
new nests (entering without carrying or being car-
ried) or by carrying brood items or other adult ants
to the new nest or both. Passive workers remain in
the old nest until they are carried to the new nest.
Brood items are similar to passive workers but do not
contribute to quorum attainment [5, 14].

We use snp to denote a state with a certain
state name = sn and phase = p. Passive work-
ers and brood items together form the passive ma-
jority population in the colony. Their behavior
pattern is thus very simple — they only have one
state namephase, at nestE , available to them. They
can only allow one action with action-type “carry”
and themselves as the receiving agent. The action
results in the location variable in their state set to
the last component of the action, env-choice, and no
other variables in their state’s can change through-
out the execution. Therefore, the rest of the section
focus on the state transitions of active workers only,
including any initiating and receiving ants involved.

Initiation and Termination of Emigration All
ants start in at nestE . Their role variable val-
ues are assigned the corresponding numbers, and
home nest, location are both initiated with 0, the
original home nest. The variables candidate nest and
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old candidate nest are set to -1 as the default invalid
value. And terminate count starts with 0.

We do not designate a separate “termination state”
that disables an ant from exploring further, but at
the termination of the emigration process, we expect
most active workers to be in at nestE . This is en-
forced softly through the population effect introduced
in Section 3.2.2 - if an agent in at nestE is in a nest
with both a high physical quality and a high nest pop-
ulation it is highly likely that she is happy staying put
in this nest and stabilizes in the state at nestE . As a
result, the more agents stabilizes in the same nest, the
more likely that they will stay stable and that new
agents will stabilize as well. In the house hunting
algorithm, the conditions that trigger this “termina-
tion” behavior contains two cases, as mentioned in
Section 3.1. The details of this special “termination”
case handling is discussed in the next paragraph.

Special and General Cases In the house-hunting
algorithm, there are some special cases that the tran-
sition function handles before outputting the result-
ing state. To facilitate, we define a set allowed-
in(external-state) to be a mapping from external-
states to subsets of action-types. Consider an
external-state s, and the allowed subset is then
allowed-in(s), representing the set of actions the
agent in the external-state s is allowed to receive.
The four variables s contains (as shown in the Ex-
ternalState class) each affects allowed-in(s) in the
following way. location has no influence. If role is
1 (passive) or 2 (brood), allowed-in(s) = “carry”.
Otherwise, role = 0. Let state namephase denote the
state name and phase variables in s. For at nestE ,
at nestA, and at nestT , allowed-in(s) = “lead”,
“carry”. For searchE , searchA, searchC , searchT ,
and at nestC , allowed-in(s) = “carry”. For all other
cases, allowed-in(s) = ∅.

We now list out how the function transi-
tion(agent-id, state, all-external, action) handles
each of the special cases, and also the general case.
Let the input argument action be expanded to the
quadruple (act = a, x, x′, ec). Also recall that the
set Trans is a set containing the id’s of all the agents
that have completed a state change in the round (Sec-

tion 2.2).
• The first special case is if the input argument

agent-id = x′. This case only happens when
agent x′ 6= −1 invokes (in agent x’s turn) a
transition(x′, state, all-external, act), where
state = (external′, internal′) is the current state
of agent x′. If x′ ∈ Trans or if a 6∈ allowed-
in(external′), the function simply ends by re-
turning the input argument state. Otherwise,
the function adds x′ to Trans. It then finds
the black text box corresponding to state.phase
and state.state name in Fig. 3a, and the black
text box that a leads to contains the phase and
state name of the resulting state. The rest of
the variables in state are modified as well, and
the details are listed for each possible value of
the (phase, state name) pair at the end of the
section. The function then outputs the resulting
state.

• The second special case is if act satisfies
the termination condition mentioned earlier
in this Section. Specifically, the cases are
when agent-id = x, and act is either 1)
(lead forward, x, x′, state x.candidate nest)
and x′ 6= −1 has an external-state
with state name = lead forward, or
2) (transport, x, x′, state x.home nest)
and x′ 6= −1 has an external-state with
state name = transport. We call these the
“termination conditions”. When act satisfied
either clauses, after adding x to Trans, the func-
tion ends its execution by outputting a resulting
state that only differs from the input argument
state by adding 1 to the terminate count
variable.

• The third special case is if agent-id = x and act
does not satisfy the termination conditions, but
x′ 6= −1 and either of the following is true: 1)
x′ ∈ Trans, or 2) a 6∈ allowed-in(external′).
Note the second case here excludes cases that
satisfy our termination conditions stated in the
last bullet point. In other words, the second spe-
cial case has priority over this third special case.
In this third special case, the function adds x to
Trans, and ends its execution by outputting the
original input argument, state.
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(a) Action-types an active ant can receive from another ant and the corresponding state name and phase transitions.

Figure 3: States and actions modeling the behavior of active ants responsible for organizing colony emigra-
tions. As described in Section 3.1, the four distinct phases are in different boxes: Exploration, Assessment,
Canvassing, and Transport.

• Lastly, in the general case where none of
the above special cases applies, the function
first adds x to Trans. Then it finds the
black text box corresponding to state.phase and
state.state name in Fig. 3b, and the black text
box that a leads to contains the phase and
state name of the resulting state. The rest of
the variables in state are modified as well, and
the details are listed for each possible value of
the (phase, state name) pair at the end of the
section. The function then outputs the resulting
state.

We now walk through all state name’s and their
action-type’s in Fig. 3a and Fig. 3b in a phase by
phase fashion. In the figures, action-type’s are color-

Arrow Color Init/Recv Phase Change
blue Initiating No
red Initiating Yes

purple Receiving No
green Receiving Yes

Table 1: Color coding of arrows representing action-
type’s in Fig. 3a and Fig. 3b.

coded as shown in Table 1.

Exploration
• An ant in at nestE has four possible actions.

First, she can perform “no action” and remain
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(b) Action-type’s an active ant can initiate and the corresponding state name and phase transitions.

Figure 3: (Cont.) States and actions modeling the behavior of active ants responsible for organizing colony
emigrations. As described in Section 3.1, the four distinct phases are in different boxes - Exploration,
Assessment, Canvassing, and Transport.

in the current nest. Second, she can perform
“search” and go into the state searchE . Third,
she can receive a “lead” by another ant to follow
a FTR to a destination nest, ec ∈ env-choices,
in which case she sets old candidate nest to the
value of candidate nest, and sets candidate nest
to ec. Then she transitions to the state followE .
Finally, she can receive a “carry” by another
active worker ant to a destination nest ec ∈
env-choices, in which case her location and
candidate nest are changed to ec, and she stays
in at nestE .
• An ant is in the state followE if she is in the

middle of following an FTR, and has two pos-
sible actions. First, she can successfully follow

the FTR to the destination nest (“follow find”)
and change her location to her candidate nest,
which results in the state arriveE . Otherwise,
she may lose contact with her tandem leader
(“get lost”), and then enters the state searchE
and assigns the value of old candidate nest to
candidate nest.

• An ant in the state searchE has three possi-
ble actions. First, she can have “no action”
and transition to at nestE by going back to her
home nest. Second, she can “find” a new nest,
ec ∈ env-choices, in this round, assign the value
of candidate nest to old candidate nest and as-
sign ec to both location and candidate nest, and
transition into arriveE state to evaluate it fur-
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ther. Third, she can receive an action, “carry”,
and the results are the same as receiving the
“carry” action in at nestE .
• An ant in the state arriveE has two action

options. First, she can “reject” the nest she
just arrived at. She then assigns the value
of candidate nest to location and then that
of old candidate nest to candidate nest go into
the searchE state. Otherwise, if she per-
forms “no reject”, she transitions into the state
at nestA and assigns the value of candidate nest
to location.

Assessment

• An ant in the state at nestA is assessing a new
nest and is currently located at that nest. From
here, three actions are available. First, she can
“accept” the nest if she deems it high quality,
which results in her transitioning to at nestC .
Second, she may perform “search” to get into the
searchA state. Third, she can receive a “lead”
by another ant to follow a FTR to a destina-
tion nest, in which case she assigns the value
of candidate nest to old candidate nest and as-
signs the destination nest ec ∈ env-choices
to candidate nest, and then she transitions to
the state followA. Finally, she can receive a
“carry” by another active worker ant to a desti-
nation nest ec ∈ env-choices, in which case her
location and candidate nest are changed to ec
and transitions back to at nestE .
• An ant in the states followA or searchA has the

same options and variable changes as in followE
or searchE respectively, but the resulting state
sub-scripted with A except the “carry” action.
• An ant in arriveA state has the same options and

variable changes as in arriveE , but with “reject”
action leading to searchC .

Canvassing

• An ant in at nestC state has three available ac-
tions. First, she can decide to “recruit” and go
into quorum sensingC state. Second, she can
decide to “search” more and result in searchC
state. Third, she may receive a “carry” by an-

other active worker ant to a destination nest,
in which case her location and candidate nest
are changed to that nest and results back to
at nestE .

• An ant in quorum sensingC state is at a nest
different than her home nest, and has two op-
tions. If she estimates the current nest popu-
lation to be higher than the quorum threshold,
she performs “quorum met”, swap the values of
home nest and candidate nest, and enters the
state transportT . Otherwise, she performs “quo-
rum not met” and enters lead forwardC state.

• An ant in lead forwardC state has three ac-
tions available to her. First, she can “lead”
another active worker and lead her on an FTR
from the original home nest to the candidate new
nest. She changes her location to the value of
candidate nest, and enters at nestC state. Sec-
ond, she can “get lost” in the process if she loses
contact with the follower, and enters searchC
state. Lastly, she can “terminate” her emi-
gration if the termination conditions are met,
namely if she has repeated attempts to call other
active workers who are also in lead forwardC
state. In this case, she changes her location to
her home nest, resets terminate count to 0, and
enters state at nestE .

• An ant in searchC state has the same options
and variable changes as in searchE with the re-
sulting state sub-scripted with C.
• An ant in arriveC state has the same options

and variable changes as in arriveE , but with “re-
ject” action leading to searchC .

Transport

• An ant in at nestT state has the same op-
tions and variable changes as in at nestC with
the resulting state sub-scripted with T , except
that a “recruit” action results in transportT ,
and that it can receive one additional action
“lead”, in which case she assigns the value
of candidate nest to old candidate nest, as-
signs the destination nest ec ∈ env-choices to
candidate nest, and transitions to followT .
• An ant in transportT state has three available
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actions. First, she can decide to carry another
ant, active, passive, or brood, to her newly
committed nest. This results in her entering
reverse leadT mode, meaning she can lead a
reverse tandem run (RTR). These are tandem
runs lead from the newly committed nest to the
old home nest or another nest. Second, she can
decide to “stop trans” and stops her transport
to go into the state searchT . Third, similar to
the state lead forwardC , there is a “terminate”
action when the termination condition is met,
namely if she has repeated attempts to carry
other active workers who are also in transportT
state. In this case, she changes her location to
her home nest, resets terminate count to 0, and
enters state at nestE .
• An ant in reverse leadT only has two actions as

her options. First, she may perform no action
and returns to at nestT state. Second, she may
experience “delay” in her tandem runs, and will
stay in reverse leadT state. There’s no conclu-
sion on the purpose of RTRs at this point in the
research community, so we model it as a round-
trip from an agent’s candidate nest to the orig-
inal home nest and back, eventually ending up
with no state changes.
• An ant in the states followT or searchT has the

same options and variable changes as in followE
or searchE respectively, but the resulting state
are sub-scripted with T except the “carry” ac-
tion.
• An ant in arriveC state has the same options

and variable changes as in arriveA, but with “re-
ject” action leading to transportT .

4 Model Implementation and
Simulation

We implement the model described in Section 3 in
Python, with one configuration file that contains all
the parameters in the model.

4.1 Configuration File

Below is an example configuration file. There are
three kinds of parameters: environment, algorithm,
and settings. The values below for each parameter
are the baseline default values we use for our simula-
tions.

[ENVIRONMENT]

num_ants = 200

nest_qualities = 0,1,2

[ALGO]

lambda_sigmoid = 8

pop_coeff = 0.35

quorum_thre = 0.15

quorum_offset = 0

search_find = 0.005

follow_find = 0.9

lead_forward = 0.6

transport = 0.7

[SETTINGS]

plot = 0

total_runs_per_setup = 500

num_rounds = 4000

percent_conv = 0.9

persist_rounds = 200

Environment parameters are controlled by the envi-
ronment and not considered changable or tune-able.
These include the number of ants in the colony, and
the number and physical qualities of the nests as po-
tential new nest options.

Algorithm parameters are parameters that we can
manipulate in order to change the select-action func-
tion and hence the outcomes of our simulations.
These include the lambda for the sigmoid function in
Equation 2, the pop coeff value, parameters related
to quorum sizes, the probability of finding a new nest
in the environment, the probabilities of following and
leading a FTR without getting lost, and the probabil-
ity of continued transports instead of stopping trans-
portation. Related explanations are in Section 3.2
and 3.2.2.

Settings parameters control plotting features and
also convergence criteria. The setting in the default
configuration file shown here means that we would
like the program to generate a plot of one simulation
run. The maximum number of rounds is 4000 in this
run. And we conclude convergence if 90% of the
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colony population (not necessarily the same 90%) are
in a new nest. If this lasts for at least 200 rounds
in the same nest, we terminate the simulation and
conclude that the simulation has reached a persisted
convergence.

Baseline Default Parameter Values Compared
to the agent-based model in [7], our model places
less emphasis on assigning specific observed values to
a large number of parameters, but rather on a sim-
ple and elegant model that is more agile to a wider
range of possible behaviors. For that reason, some of
the parameter cannot be directly drawn from existing
empirical data. We estimate these parameter values
in a trial-and-error fashion until simulation results
matches well with the empirical results in [7]. These
baseline values are used as a default throughout Sec-
tion 5 and 6, unless otherwise specified.

The sources for determining the parameter values
are listed in Table 2. In particular, the values of
lambda sigmoid (range: 1 to 16) and pop coeff
(range: 0 to 1) are picked by trial-and-error to
model individual sensitivity to nest qualities, and
the significance of colony information versus individ-
ual judgements. The quorum size (quorum thre
× (num active+num passive) + quorum offset) is
observed to have a median value between 4 and 18
ants on worker sizes from 24 to 150, with the quorum
size having a significant positive correlation with the
number of adult ants [5, 21]. Therefore, with a colony
of size 200 (adult worker size 100), we choose to use
quorum thre to be 15% and set quorum offset
to 0, estimating a quorum size of 15. The value of
search find (range: 0 to 1) is determined experi-
mentally by trial-and-error. This parameter can be
influenced by many other factors such as the spatial
geometry of the nests and the experience level of the
individual. These nuances are not captured in our
model in the interest of simplicity. But they can sig-
nificantly affect the simulation outcomes, and are an
important future extension of our work. The parame-
ter follow find denotes the success rate of a tandem
run without the follower getting lost and starting a
new search. A successful tandem run requires that
neither ant gets lost. It is observed that individ-

Parameter Value Source
lambda sigmoid 8 trial-and-error, Sec. 6.3

pop coeff 0.35 trial-and-error, Sec. 6.3
quorum thre 0.15 [5, 21]
quorum offset 0 [5]

search find 0.005 trial-and-error
follow find 0.9 [26, 27]

lead forward 0.6 trial-and-error
transport 0.7 [7]

Table 2: Default parameter values and the sources
that helped determine these values.

ual tandem runs have a high successful rate rang-
ing from 61% to 94% allowing 1 minute re-connect
time after a contact loss [26]. And given enough
time a higher percentage of followers find the des-
tination nest [27], however possibly through a new
search. We thus use 0.9 as our FTR success rate.
The parameter lead forward (range: 0 to 1) is the
probability that an ant performs an FTR when in the
lead forward state. The alternative option, get lost,
is designed to model the slower speed of an FTR,
and is determined experimentally in a trial-and-error
fashion. The parameter transport is the probability
that an ant keeps transporting instead of stopping to
search around her area. The stopping probability is
observed to be between 0.06 and 0.44, meaning our
transport should take values between 0.56 and 0.94,
and we picked 0.7 to be our baseline value.

In addition, we believe that an average colony size
of 200 with 50 active, 50 passive, and 100 brood items
is within reasonable range of real colony compositions
[21]. One round approximately translates to 0.5-1
minutes, though this is a very rough estimate. A
simulation with 2000 rounds thus translates to 16-32
hours, and one with 4000 rounds translates to 32-64
hours. The values for variables percent conv and
persist rounds are determined by discussion and
our rough estimates from past empirical observations.

4.2 Speed and Accuracy Measures

We define the speed and accuracy metrics below for
the whole emigration process until either convergence
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or the end of simulation, including cases resulting in
splitting.

Convergence Score as Speed The final goal of
the house hunting algorithm is to achieve fast con-
vergence in any given environment and stabilize at
that convergence. More specifically, if convergence
has been reached in one simulation run, we design the
convergence score, to be the inverse of the round
number when a persisted convergence started. If no
persisted convergence was reached before the end of
the simulation, the convergence score is 0. Each sim-
ulation run has a convergence score.

Accuracy Another important metric is accuracy,
which is defined for a group of simulation runs. This
metric tells us how well the colony is at selecting the
best choice in the environment to emigrate to. Thus,
each of the nest options in the configuration has an
empirical probability of the colony converging to it,
called the nest’s convergence probability. Note
that we also get a probability of splitting. To calcu-
late the final accuracy, we also normalize the nests’
physical qualities, such that the best nest has quality
1 after normalization, and the worst nest which is the
home nest still has quality 0. The accuracy of the
configuration is then ∑

i∈nests
pi × qi

where pi is nest i’s convergence probability, and qi is
its normalized physical quality. If no convergence is
reached (splitting), the corresponding physical qual-
ity to that probability will be 0, thus not contributing
to the summation above. Our accuracy metric is not
defined for any individual simulation run.

4.3 Data Structures and Global Vari-
ables

We define four native data structures, as shown in
Fig. 1. The global variables include 1) the transition
tables defined in Fig. 3, 2) Nests, the array of all
nests including the home nest which by default has
quality 0 and id 0, and 3) Ants, the array of all ants
in the colony.

4.4 Simulation Overview

We describe our algorithm implementation in details
below. Our executable software and instructions are
available upon request.

Consider a colony of size num ants where all the
ants start the house-hunting task synchronously. We
divide the total time to completion into rounds, with
a maximum round number of total runs per setup.

At the beginning of round t, no ant has transi-
tioned yet (instantiate Trans = ∅). Then a random
permutation of all ant ids is generated as the order
of execution. When an ant gets her turn during this
round, she first checks if her ant id is in Trans. If
so, she does nothing. Otherwise, knowing its id and
current state, she chooses an action for this round ac-
cording to the probability distribution defined in the
select-action function.

The action picked by an ant x has an action type, a
receiving ant id, and a nest id. Please note here that
in real ant colonies, an action can involve either just
a single ant, or a pair of ants (tandem run and carry).
In the single ant action case, the receiving ant’s id is
assigned value −1. In the pair ant action case, the
action includes the valid ant id of the receiving ant
y. Similarly, not all actions require a nest, in which
case the nest id for the action is −1.

By looking up the Ants array, x can also get the
current external state of all ants including the receiv-
ing ant y, if any, of the picked action. These values
are enough for x to call the transition function, and
adds its own id to Trans. The special case handling is
detailed in Section 3.2.3, including the case where y
might also call a transition function and adds itself
to Trans.

When one round finishes, each ant has had one
chance to initiate or receive an action, and potentially
has a new state. Repeat rounds like the above until
the criteria is met for convergence with persistence,
or until the program reaches the maximum number
of rounds specified in the configuration file.
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5 Model Validation

We begin by validating our model against the same
empirical data that was successfully accounted for by
two earlier models [7, 8]. First, we examine a simple
scenario where colonies have only one candidate nest
in the environment. Then we consider a decision be-
tween two nests that clearly differ in quality. Finally,
we investigate how colonies trade off speed and ac-
curacy depending on the urgency of their move. For
all scenarios, we simulate the same data explored by
the earlier models, and compare our results, at both
individual and colony level, to the empirical observa-
tions.

5.1 Single-Nest Emigrations

The first question we ask is: does our model ac-
curately account for statistics on individual recruit-
ment acts in single-nest emigrations? Previous em-
pirical work showed the distributions across ants of
key behaviors contributing to the collective outcome
[7]. These include the numbers of recruitment acts
per ant, the numbers of ants performing each recruit-
ment type, and the numbers of ants arriving at the
new site by different routes. We asked whether our
model could replicate the empirical distributions. To
answer the question, we simulated the single-nest ex-
periments conducted in [7], on the six colonies with
compositions detailed in Table 3. We used default
parameter values, except we increased search find to
0.05. This increase is because for any individual ant,
all “find” actions after the first time are discovering
the nest that she already knows, which has a much
higher probability [7]. This causes an overall higher
“average” value for search find. In future work, this
variable should be expanded to depend on other fac-
tors, such as the number of nests in the environment
or the spatial geometry. We ran 500 simulations for
each colony.

Results We compared the resulting statistics to
the same statistics reported in [7] (Fig. 4). Fig. 4(a)
shows the histograms of individual workers grouped
by the number of recruitment acts. We see that more
than half of the workers never recruited, consistent

Colony Active Passive Brood Total
A4 70 28 228 326
A6 59 74 111 244
A8 62 95 106 263
A14 67 42 192 301
A16 53 88 61 202
A17 73 101 173 347

Table 3: Compositions of colonies used in two-nest
emigrations for model validation as shown in [7].

with the findings in [7] that show a little over 60%
non-recruiting active workers. The other bins also
show similar mean and variation trends. Fig. 4(b)
details the types of different worker ants, classified
by their recruitment behavior, and the breakdowns
are again consistent with the statistics gathered from
biological experiments by [7]. Fig. 4(c) shows the
percentages of workers categorized by the routes of
discovery of the candidate nest. The results show
consistency with the findings in [7] which contain bi-
ological experiments pooled over six emigrations by
three colonies. However, the proportions of the three
different routes vary a lot across emigrations - the re-
sults of the biological experiments from [7] differ sig-
nificantly from those from [28]. So we do not make
any stronger claims on the proportions of these three
different discovery routes here.

From the above results, we have validated that the
mechanisms that cause the different distributions in
recruitment behavior in single-nest emigrations are
correctly captured in our model.

5.2 Two Unequal Nest: Splits

The second question we ask is: does our model ac-
count for the degree of splitting in two-nest emigra-
tions with unequal qualities? In these circumstances,
colonies do not always move unanimously into a sin-
gle nest, but may temporarily split between them be-
fore eventually coalescing on a single nest. We focus
on splitting because it is a primary hindrance to con-
sensus. We measure splitting as the percentage of
brood items in the better candidate nest at the time
when the home nest first becomes empty.
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(a) Histogram of workers grouped by the number of re-
cruitment acts performed.

(b) Histogram of workers who performed different types
of recruitment acts.

(c) Histogram of workers grouped by the route by which
workers arrived at the new nest.

Figure 4: Blue bars show our simulations. Orange
bars are results from [7]. Bar values are averaged
over 500 simulations. Error bars show standard de-
viations.

Colony % Pred %Observed P
A4 59 ± 17 61 0.86
A6 61 ± 28 80 0.56
A8 63 ± 30 99 0.36
A14 59 ± 20 98 0.1
A16 61 ± 34 100 0.5
A17 60 ± 25 2 0.02

Table 4: Percentage of brood in the better nest for
each of the six colonies, predicted vs observed. The
last column is the p-value, with P < 0.05 indicating a
significant difference between predicted and observed
percentages.

We replicated the two-nest emigration tests from
[7], with six colonies whose member compositions are
listed in Table 3. We set nest qualities = [0,1,2],
representing a destroyed old nest and two candidate
nests of mediocre and good quality, respectively. The
rest of the configuration parameters are left at default
value.

We ran 500 simulations for each colony, and for
each colony we recorded the average percentage of
brood items in the better nest at the time the home
nest became empty. To compare the simulations with
empirical data, we measured for each colony the pro-
portion of simulations departing as far or farther from
the colony average as did the experimental value.
Twice this proportion gave the p-value for a test of
the null hypothesis that the observed value was drawn
from the same probability distribution as the simu-
lated values.

Results The results show no significant difference
between experiment and simulation for five of six
colonies (Table 4). This outcome validates our
model’s ability to reproduce observed patterns of
splitting in two-nest emigrations for a variety of
colony compositions.
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5.3 Two Unequal Nests: Speed-
Accuracy Trade-off

The third question we ask is: does our model reflect
the way that colonies trade off speed and accuracy
when the urgency of the emigration changes? In “ur-
gent” situations, ants face a critical need for imme-
diate new shelter and thus would prefer to move out
of the old nest location as fast as possible. In con-
trast, in less urgent situations they can deliberate
longer among alternatives to increase the likelihood
of moving directly to the best site [8, 29]. Exper-
iments have adjusted urgency by offering colonies a
choice between a mediocre and a good nest under two
circumstances: their old nest has just been destroyed
(high urgency) or their old nest is of acceptable qual-
ity but worse than either of the new candidates (low
urgency). Our simulations followed the same tactic
by tuning the physical quality of the home nest to
adjust urgency. Does our model exhibit the above
behavior?

To verify this, we ran 300 simulations each for
eleven home nest qualities in range [0,1], with can-
didate nest qualities of [1,2]. We used the default pa-
rameter values, except lambda sigmoid which is set
to 16 in order to increase the ants’ sensitivity to home
nest quality differences, and we set pop coeff to 0
in order to compare results with those from [8]. As
in [8], we measured the duration of emigration as the
time in rounds at which the old site was completely
abandoned and the accuracy of decision-making as
the proportion of the colony’s members inside the
good site at the time of old nest abandonment.

Results The results show that time that it took
to complete an emigration increased as urgency de-
creased (i.e., as old nest quality increased) (Fig. 5b).
This is consistent with the empirical observation that
higher urgency induces faster emigrations (Fig. 5a).
Furthermore, the simulations show that higher ur-
gency (lower old nest quality) reduces the likelihood
of the colony achieving consensus on the better site.
This also matches the empirical results, which show
that higher urgency leads to lower accuracy [8].

These results confirm that our model can ac-
count for the empirically observed speed and accu-

racy trade-off up to old nest abandonment. However,
it is worth noting that real colonies in the low ur-
gency situation were better able to reach consensus
than our simulated colonies. This might suggest that
our model relies more on reunification after splits in
order to achieve consensus, or that there are other
mechanisms at work that this experiment failed to
capture, such as a non-zero pop coeff.

6 Model Predictions

In this section we consider more complex scenarios
where the link between colony patterns and individ-
ual behavior has not previously been modeled. For
scenarios that have been explored empirically, we
determine how well our model can account for ob-
served results. We also use our model to develop
new hypotheses and predictions for future experimen-
tal study. All simulations in this section default to
the configuration file described in Section 4.1, unless
specified otherwise.

Please note that since our model places a heavy fo-
cus on the feedback between individuals and colonies
as a tie-breaking mechanism, we did not use the
model to predict behaviors of any one individual ant
without being part of a larger colony and being influ-
enced by any of her colony members. The research to
understand how individual ants achieve phase transi-
tions and make decisions without being able to assess
colony features (such as the number of nest mates) is
beyond the scope of this paper.

The rest of the section is organized as follows: Sec-
tion 6.1 shows consistent experimental and simulated
evidence of how colonies can achieve higher probabil-
ity emigrating to the best nest (a.k.a. higher accu-
racy) in complex environments; Section 6.2 focuses
on how nest quality differences can affect the speed
of emigrations in a two-nest environment. Section
6.3 discusses the correlations between pop coeff and
different levels of randomness in individual decision-
making. Section 6.4 reveals how pop coeff decreases
the degree of splits when facing two equal options.
Section 6.5 gives simulated evidence for a surpris-
ing speed-accuracy trade-off for the entire emigration
process, tuned by the quorum size. Finally, Section
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(a) From [8]: Speed and accuracy of decision-making
in forced and unforced emigrations. (Top) Time until
the old nest is empty for each treatment. The ends of
each box mark the upper and lower percentiles, and
the horizontal line inside the box gives the median.
The brackets show the data range, and circles are
outliers. (Bottom) Histograms of the degree to which
colonies split between the good and mediocre new
nest sites, for forced (blue bars) and unforced (yellow
bars) emigrations.

(b) Both top and bottom plots are the same as (a),
but the results are from simulations of our model,
and the results are more quantitative. (Top) Higher
home nest quality is equivalent to less urgency
in starting the emigration (more “unforced”).
(Bottom) The same histogram as in the bottom plot
of (a), but with more home nest quality options.

Figure 5

6.6 discusses colony re-unification after splits with an
increasing level of difficulty.

6.1 Colonies Have High Cognitive Ca-
pacity

How well do colonies perform when selecting from
many nests? A previous study [30] showed that
colonies are quite good at selecting a single good nest
from a set of eight nests, four of which are good and
four of which are mediocre. This is in contrast to in-
dividual ants, who are as likely to choose a mediocre
as a good nest when faced with the same scenario.

The colony advantage has been hypothesized to result
from sharing the burden of nest assessment: very few
of the scouts ever visit more than one or two nests,
whereas a lone ant visits several, potentially over-
whelming her ability to process information about
them successfully. We simulate this experiment to de-
termine whether we can reproduce both the colony’s
ability and the observed distribution of nest visits
across scouts.

We designed a simulated experiment with multi-
ple nests in the environment, half of which are poor
(physical quality 1.0) and the rest of which are good
(physical quality 2.0). We considered three environ-
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(a) Empirical results in 2-nest and 8-nest settings
[30].

(b) Simulation results from our model in 2-nest, 8-
nest, and 14 nest settings.

Figure 6: The percentages of colonies that eventually moved into poor or good nests.

ments with 2, 8, and 14 nests, respectively. For each
environment, We ran 600 simulations with a fixed
colony size 200, containing 50 active and passive ants
each, and 100 brood items.

Results First, we found that simulated colonies
reached consensus on a good nest with high prob-
ability, matching that seen in empirical data (Fig.
6). This was true even when the number of nests was
increased to 14.

Next, we verified that the high cognitive capac-
ity of colonies is associated with a low number of
nests visited by each scout. Simulation results in the
8-nest environment resonate with empirical results
shown in Fig. 7 [30]. Over 80% of individual ants
visited only one or two nests in the course of the em-
igration. A similar pattern is seen for the number
of transports: that is, if we focus only on the ants
who contributed to the emigration by transporting
nestmates, over 80% visited only one or two nests.
Thus, ants that access many nests have a minor role
in the transportation process, supporting the hypoth-
esis that colonies’ high cognitive capacity results from
avoiding the overloading of individual ants.

Figure 7: Percentage of transports and percentage of
ants as a function of nest visits. Blue and dark or-
ange bars are the percentage of transports done by
ants who visited different number of nests during the
emigration, both in the 8-nest environment with 4
good and 4 mediocre nests. Blue bars are for our
simulated results, and dark orange bars are empirical
results from [30]. Light orange bars show the dis-
tribution of individuals according to the number of
nests they visited.
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6.2 Colonies Make Rational Choices
about Decision Speed

For choices between two nests, how does the differ-
ence between the nests affect the speed of decision-
making? Counter-intuitively, a previous study [31]
found that colonies move more quickly when site
qualities are more similar. But this behavior accords
with decision theory predictions that decision-makers
should take less time if the consequences of their
choice are small; that is, since the nests are similar
in quality, the opportunity cost of making a wrong
decision is small, so it’s rational to save time costs by
taking on a higher risk of choosing the wrong nest.

We simulate this scenario to determine if we can
reproduce the same pattern, but we also explore a
broader range of quality differences to better describe
the relation between quality difference and decision
time. We designed an environment with two candi-
date nests, one good and the other mediocre. The
good nest has physical quality 2 in all simulations,
but the physical quality of the mediocre nest varies
across simulations from 0.2 to 1.7. We asked whether
the quality of the mediocre nest is correlated with
the convergence score (a measure of decision speed).
We ran 300 simulations for each environment with a
colony of size 200, consisting of 50 active workers, 50
passive workers, and 100 brood items. We repeated
this set of simulations for five different values of λ
values: [8,10,12,14,16].

Results If our model reproduces the rational time
investment choices of colonies [31], then we expect
the convergence score to increase as the mediocre
nest quality increases, thus becoming more similar
to the good nest. Our results partially match this
prediction, with convergence score increasing as the
mediocre nest quality goes from 0.2 to about 1 (Fig.
8). However, at higher mediocre nest qualities, the
pattern reverses and convergence score declines. This
basic pattern is seen for all tested values of λ.

We propose that the nest qualities studied in [31]
came from the region below the peak score that saw
an increase of speed with decreasing quality differ-
ence. But from our more granular simulations, we
predict that as the quality difference gets still smaller,

the convergence score will start decreasing, meaning
colonies will start investing more time.

Why might this happen? Recent studies have ex-
plained the behavioral difference between individuals
and colonies via two different decision models: the
tug-of-war model describes individual behavior, while
colony behavior is better accounted for by the horse
race model [32]. The tug-of-war correctly predicts
the irrational behavior of individual ants, in that
their decision-making slows down for options that
are more similar. The horse race, in contrast, cor-
rectly predicts colonies’ rational acceleration of de-
cision making for similar options. We hypothesize
that the applicability of these models to the colony’s
behavior changes as the quality difference changes.
More specifically in Fig. 8, before the peak score
is reached, the colony may effectively distribute its
decision-making across many ants with limited in-
formation, the situation envisioned in the horse-race
model. After the peak score is reached, the colony
may come to depend more on individual comparisons
between nest sites made by a few well-informed ants,
and thus to show the irrational slow-down predicted
by the tug-of-war model. It could also be the case
that more transports are performed between the two
candidate nests as the likelihood of the mediocre nest
achieving quorum attainment increases.

6.3 Balancing Personal and Social In-
formation

Individual ants are capable of directly comparing
nests and choosing the better one, but their discrim-
inatory ability is less than that of whole colonies.
This may be seen as a kind of “wisdom of crowds,”
in which the estimations of many noisy individuals
are integrated into a more precise group perception.
Ants do this via positive feedback loops based on re-
cruitment, which can amplify small differences in site
quality [33]. They also use social information via the
quorum rule, under which full commitment to a site
is conditioned on a minimum number of nestmates
“voting” for it by spending time there. The quo-
rum rule inspired us to consider another way that
ants might use social information to improve decision-
making: by taking site population into account when
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Figure 8: Average convergence score as a function of
the physical quality of the mediocre nest. The physi-
cal quality of the good nest is 2, and that of the home
nest is 0.

assessing a site’s quality. We do this via the param-
eter pop coeff, which controls the degree to which
the presence of nestmates increases a site’s perceived
value. We propose that this population sensitivity
might be able to complement the noisy perception
of individual ants, modeled by the parameter λ in
the Eq. 2. We hypothesize that the colony can ad-
just to different values of λ by changing the value of
pop coeff. In particular, the research question of
interest is: to achieve the highest convergence score,
does pop coeff have significant correlations with the
value of λ, and if so, what kinds of correlations?

To investigate this question, we ran simulations for
different combinations of pop coeff (ranging from
0.002 to 0.8) and λ (ranging from 2 to 16). We
ran simulations for two environments containing two
identical new nests [0,1,1]. For each combination of
pop coeff and λ, we ran 500 simulations with a
colony of size 200, consisting of 50 active workers,
50 passive workers, and 100 brood items.

Results The results show evidence for an inverse
relation between pop coeff and λ (Fig. 9). For
each value of λ in the range [2,16], there is a value
of pop coeff that maximizes the convergence score,

and this value increases as λ decreases. Thus, when
an individual ant makes noisy local decisions, she can
counteract this deficiency by relying more on the in-
put of her peers through a higher value of pop coeff.

However, a high value also has risks. Below we
discuss our interpretation of the advantages and dis-
advantages of increasing the value of pop coeff :

Advantages

• Higher momentum in the system. This can pro-
mote the colony to accumulate population at a
certain nest more quickly, and thus achieve faster
convergence.

• Better prevention of splits. Multiple candidate
nests may reach the quorum, especially when
the nests have similar physical qualities. This
can lead to the colony splitting between more
than one site. Social information via pop coeff
might help to break ties, by amplifying small
random differences in the populations of com-
peting sites.

Disadvantages

• Slower error correction. Since we are dealing
with a randomized algorithm, there is always
a chance that the colony will collectively make
a “bad” temporary decision, even if individuals
have low noise levels. The higher momentum
will then make the wrong decision more “sticky”
by accumulating more ants at a mediocre nest
even if a better one is available. The colony
would then have to move later to the better nest,
adding costs in time and risk. In this way, high
pop coeff can cause slower convergence, and
lead to “madness of the crowd”.

These trade-offs suggest that there is a optimal value
of pop coeff for a given λ as seen in Fig. 9. This
predicts that colonies may tune pop coeff accord-
ing to the uncertainty of individual behavior in order
to achieve the highest convergence score for a given
environment.
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Figure 9: Average convergence score (across 500 sim-
ulations) as a function of pop coeff. Different col-
ored curves represent different λ values as described
in the individual decision model (Fig. 2). This shows
that the optimal value of pop coeff increases as λ
decreases.

6.4 Avoiding Splits Between Two
Equal Nests

In this section we further explore how social informa-
tion can help colonies to reach consensus when faced
with two identical nests. Many social insects have
highly nonlinear recruitment mechanisms that lead
to symmetry breaking when faced with two identical
resources. For example, ant species that recruit via
trail pheromones will choose one of two identical food
sources rather than forming trails to both. This is be-
cause the attractiveness of a trail is a sigmoidal func-
tion of the amount of pheromone it contains, which
leads to rapid amplification of small random differ-
ences in the strengths of competing trails. However,
similar experiments on Temnothorax ants found that
they do not always break symmetry, instead exploit-
ing both feeders equally, a result that has been at-
tributed to the linear relationship between tandem
running effort and recruitment success.

An open question is whether this lack of symmetry
breaking also holds for nest site selection. When pre-
sented with identical nests, do colonies choose only

one or split between them? One possibility is that
the quorum rule provides sufficient non-linearity to
amplify small random differences in site population,
thus ensuring that the colony does not split. Another
possibility is that colonies have some other as of now
unrecognized mechanism of avoiding splits. A good
candidate for such a mechanism is incorporation of
site population into each scout’s assessment of site
quality, as discussed in Section 6.3. This would allow
amplification of early random differences in popula-
tion, by increasing the likelihood of recruitment to
the nest with more ants. We explore this question
by simulating emigrations in which a colony is pre-
sented with two identical nest sites. We assess how
well they reach consensus on a single one. We also
vary the degree of scout sensitivity to site population
by considering different values of pop coeff.

We ran 200 simulations each for pop coeff =
[0, 0.1, 0.2, 0.3, 0.4], in an environment with
nest qualities = [0,2,2]. We set lambda sigmoid
to 16 in order to be more sensitive to temporal dif-
ferences in nest populations. From an initial set of
simulations, we observed that almost all simulations
converge within the default value of num rounds.
Therefore in order to gain more insights on the effect
of pop coeff, we set it to a smaller value 1000. The
rest of the parameters take the default values.

Results The simulation results show strong sym-
metry breaking (Fig. 11). That is, a large majority
of simulations ended with 80% to 100% of the colony
in one of the two nests. When consensus was reached,
it was roughly equally likely to be in nest 1 or nest 2,
producing the distinctive U-shaped distribution seen
in Fig. 11. This pattern was true regardless of the
value of pop coeff, suggesting that the quorum rule
is enough to generate symmetry breaking in this case.
However, as the value of pop coeff increases, the
histograms also aggregate more towards the two end
bins, meaning there are fewer split cases. Thus we
confirm the positive effect of pop coeff in reducing
splits, either by prevention or by facilitating later re-
unification. These mechanisms can have significant
effects in more challenging environments with more
candidate nests.
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(a) pop coeff = 0. Speed and accuracy. (b) pop coeff = 0.35. Speed and accuracy.

(c) pop coeff = 0. Probabilities of converging to
each nest.

(d) pop coeff = 0.35. Probabilities of converging to
each nest.

Figure 10

6.5 Quorum Size and the
Speed/Accuracy Trade-off

Temnothorax colonies can adjust their behavior to
adaptively trade off the speed and accuracy of
decision-making [8, 29] (Section 5.3). One of the be-
havioral tools implicated in this adjustment is the
quorum rule. Colonies lower the quorum in more ur-
gent situations, increasing their reliance on individual
judgement. This allows them to make rapid decisions
and quickly move the colony out of the old nest, at
the cost of an increased probability of splitting or
choosing an inferior nest [34, 35].

When considering speed, previous studies focused
on the time to move out of the old nest, but the
completion of an emigration often requires more than
that. A fast “first” decision does not always mean a
fast emigration. In fact, a low quorum and hence a

fast “first” decision could lead to slower emigrations
[35] since it could cause more splitting, which the
colony must subsequently resolve in a second phase
of movement. Here, we explore the effect of quorum
size on the speed and accuracy as we have defined for
the whole process (Section 4.2). Within the accuracy
measure, we pay special attention to the split rate,
which is the percentage of emigrations that do not
reach a persistent convergence within the given num-
ber of rounds. A natural question arises: is there a
speed-accuracy trade-off if we define “speed” as (the
inverse of) the time taken to the final completion
of the emigration? In other words, do the conver-
gence score and accuracy have inverse correlations
with quorum thre, and are these relationships af-
fected by split rates?

We simulated an environment with candidate nests
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Figure 11: Histogram (percentage) of the number of
ants in the left nest, with results from experiments
and simulations.

[0.5, 1, 1.5, 2] and a home nest with quality 0 as
usual. We used a colony of size 200, consisting of
50 active workers, 50 passive workers, and 100 brood
items. Quorum size is assumed to be proportional to
the total number of adults in the colony, and is set
to quorum thre × num adults. We varied quo-
rum thre from 0.03 to 0.39, and set pop coeff to
either 0 or 0.35. We set num rounds to 2000 and
ran 100 simulations for each unique combination of
quorum thre and pop coeff.

Results The simulation results show that the con-
vergence score generally has a reverse-U shape that
peaks at quorum thre = 0.24-0.27 (Fig. 10a, Fig.
10b). In addition, the accuracy measure has a sim-
ilar shape, but peaks roughly at quorum thre =
0.1-0.15. The split rate, in contrast, has a U-shape,
with a trough around quorum thre = 0.15 to 0.18
(Fig. 10c and 10d).

The above results indicate a surprising speed-
accuracy trade-off in the segments where the two lines
form an “X” shape in Fig. 10(a) and (b): the increase
of quorum thre is accompanied by a decrease in ac-
curacy and an increase in speed. This is the opposite
of our findings in Section 5.3 and in the related ex-

perimental work [8, 29]. However, it is important to
note that the current definitions of speed and accu-
racy differ from those used in the prior work, which
defined both quantities only up to the point where
the old nest is empty. The results on split rate could
give more insight into the conflicting results - if split
repairs are costly, lowering the probability of splits by
increasing quorum would indeed significantly increase
the average convergence score. But another factor is
that if the quorum is too high to reach, it also de-
lays convergence. We conclude that it is essential to
investigate more about the little-known split repair
process and its relative cost to other sub-processes in
the entire emigration.

6.6 Reunification after Splitting

Finally, we touch on another aspect of the robust-
ness of the house hunting algorithm — reunifica-
tion after splitting. Experimental studies on the
speed-accuracy trade-off showed that colonies often
split in urgent emigrations, but they also noted that
split colonies were eventually able to reunite [34, 35].
Later studies [36, 37, 38] showed that artificially di-
vided colonies readily re-unite, using the same be-
havioral tools as in emigrations, but relying more
on the efforts of a small group of active workers.
These findings suggest the robustness and flexibility
of the algorithm. They show that emigrations depend
on a mixture of individual and colony-level decision
making. In this section, we explore how well our
model achieves convergence after an arbitrary divi-
sion among multiple nests. What can we learn about
the mechanisms that achieve re-unification?

We ran simulations in which colonies were ran-
domly divided among 2 to 9 nests. At the start of a
simulation, each ant’s location variable in her Exter-
nalState was sampled uniformly at random from all
env-choices. We ran one set of simulations in which
one nest was of quality 2 and the rest were of quality
1, and another set in which one nest was of quality
1 and the rest were of quality 2. We ran 300 simula-
tions for each environment with a colony of size 200,
consisting of 50 active workers, 50 passive workers,
and 100 brood items.
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(a) Convergence score and accuracy as a function of
the number of nests with quality 1 in the environ-
ment, with random start.

(b) Convergence score and accuracy as a function of
the number of nests with quality 2 in the environ-
ment, with random start.

(c) Convergence probabilities to different nests as a
function of the number of nests with quality 1 in the
environment, with random start.

(d) Convergence probabilities to different nests as a
function of the number of nests with quality 2 in the
environment, with random start.

Figure 12

Results As the number of equal quality nests in-
creases, the reunification task becomes increasingly
difficult. Additional candidate nests have a negative
effect on the convergence score and accuracy of reuni-
fication, but the marginal effect of each additional
nest diminishes (Fig. 12). As a result, the conver-
gence score eventually stabilizes.

However, we see that adding nests of quality 2
(highest quality in the environment) makes reunifi-
cation much harder since split rate increases quickly.
Intuitively speaking, having multiple nests that are
the highest quality nest in the environment can
greatly intensify competition among them. But
this hypothesis needs additional quantitative analy-

ses and empirical confirmation.

Please note that here we only randomized the lo-
cation at the start of our simulations, but not other
variables in the internal and external states of in-
dividual ants. In reality, when ants are distributed
among multiple nests, they most likely have a va-
riety of values for these other variables. We fur-
ther hypothesize that 1) randomizing the other vari-
ables may help with reunification, and/or 2) the ant
colonies may have mechanisms to prevent splitting to
this extent during the emigration. However, further
investigation is needed to test these hypotheses.
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7 Future Work

Our model captures many aspects of individual be-
havior, but it leaves out some important timing fea-
tures. These include 1) effects of the spatial distri-
bution of nests, 2) effects of individual experience
on recruitment probability and speed, and 3) actions
that may last a variable duration such as the evalu-
ation of a new nest. Adding these to the model can
shed more light on the timing of individual actions.
In addition, these may reveal important hidden vari-
ables and their influence on current variables such as
search find.

On the analysis side, there are many exciting di-
rections for further research. First, we note the
link between the effects of different quorum sizes
and the models mentioned in [32]. Specifically, it
is possible that tuning quorum sizes can change the
weights of the two different decision models in [32].
This prompts an interesting analytical project for our
readers, to derive a more quantitative model that
combines the tug-of-war model and the horse-race
model based on the same factors that affect how a
colony chooses the most beneficial quorum size.

Secondly, our model suggests that individual ants
take account of site population when assessing a site,
but this has not been experimentally established in
actual ants. Empirical testing of this idea would
be highly valuable. Our results suggest that it may
be important for preventing and repairing split de-
cisions. However, the amount of social information
that individuals should rely on is an intricate bal-
ance, as we described in Section 6.3. Quantitatively
acquiring the range of possible splits provided the
value for pop coeff would be extremely valuable in
further analysis on the speed and accuracy bound of
the algorithm. A related research direction is to find
out other factors that allow colonies to robustly re-
unify in split cases.

Thirdly, the predictions we made in Section 6 are
intriguing with carefully designed control environ-
ments, but mostly from simulation results. To draw
more solid conclusions, we strongly urge our readers
from the biology community to conduct correspond-
ing empirical experiments and provide more detailed
biological insights.

Finally, our modeling framework can be flexibly
adapted to other distributed algorithms inspired by
animal groups. It also serves as a stepping stone for
more rigorous mathematical formulations and proofs
of guaranteed bounds on any metrics of interest.

8 Acknowledgements

We thank Anna Dornhaus and Frederik Mallmann-
Trenn for discussing the background literature and
possible research directions early in the project. We
also thank Emily Y. Zhang and Lili Su for reviewing
the manuscript and providing valuable feedback.

References

[1] Marco Dorigo and Luca Maria Gambardella.
Ant colonies for the travelling salesman prob-
lem. Biosystems, 43(2):73 – 81, 1997.

[2] Michael J. B. Krieger, Jean-Bernard Billeter,
and Laurent Keller. Ant-like task allocation
and recruitment in cooperative robots. Nature,
406(6799):992–995, 2000.

[3] Wanmai Yuan, Nuwan Ganganath, Chi-Tsun
Cheng, Qing Guo, and Francis C. M. Lau. Tem-
nothorax albipennis migration inspired semi-
flocking control for mobile sensor networks.
Chaos: An Interdisciplinary Journal of Nonlin-
ear Science, 29(6):063113, 2019.

[4] Deborah M. Gordon. The ecology of collective
behavior in ants. Annual Review of Entomology,
64(1):35–50, 2019. PMID: 30256667.

[5] S.C. Pratt, E.B. Mallon, D.J. Sumpter, and
et al. Quorum sensing, recruitment, and collec-
tive decision-making during colony emigration
by the ant leptothorax albipennis. Behavioral
Ecology and Sociobiology, 52(2):117–127, 2002.

[6] E. Mallon, S. Pratt, and N. Franks. Individual
and collective decision-making during nest site
selection by the ant leptothorax albipennis. Be-
havioral Ecology and Sociobiology, 50(4):352 –
359, 2001.

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.10.07.328047doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.328047
http://creativecommons.org/licenses/by-nc-nd/4.0/


[7] Stephen C. Pratt, David J.T. Sumpter, Ea-
monn B. Mallon, and Nigel R. Franks. An
agent-based model of collective nest choice by
the ant temnothorax albipennis. Animal Be-
haviour, 70(5):1023 – 1036, 2005.

[8] Stephen C. Pratt and David J. T. Sumpter. A
tunable algorithm for collective decision-making.
Proceedings of the National Academy of Sci-
ences, 103(43):15906–15910, 2006.

[9] Mohsen Ghaffari, Cameron Musco, Tsvetomira
Radeva, and Nancy Lynch. Distributed house-
hunting in ant colonies, 2015.

[10] Tsvetomira Radeva. A Symbiotic Perspective on
Distributed Algorithms and Social Insects. PhD
thesis, Massachusetts Institute of Technology,
Cambridge, MA 02139, June 2017.

[11] H. De Vries and J.C. Biesmeijer. Modelling
collective foraging by means of individual be-
haviour rules in honey-bees. Behavioral Ecology
and Sociobiology, 44(2):109–124, 1998. cited By
92.

[12] D.J.T. Sumpter, G.B. Blanchard, and D.S.
Broomhead. Ants and agents: A process alge-
bra approach to modelling ant colony behaviour.
Bulletin of Mathematical Biology, 63(5):951–
980, 2001. cited By 35.

[13] Naoki Masuda, Thomas A. O’shea-Wheller, Car-
olina Doran, and Nigel R. Franks. Computa-
tional model of collective nest selection by ants
with heterogeneous acceptance thresholds. Royal
Society Open Science, 2(6):140533, 2015.

[14] Anna Dornhaus, Jo-Anne Holley, Victoria G.
Pook, Gemma Worswick, and Nigel R. Franks.
Why do not all workers work? colony size and
workload during emigrations in the ant tem-
nothorax albipennis. Behavioral Ecology and So-
ciobiology, 63(1):43–51, 2008.

[15] Christiane I. M. Healey and Stephen C Pratt.
The effect of prior experience on nest site evalu-
ation by the ant temnothorax curvispinosus. An-
imal Behaviour, 76:893–899, 2008.

[16] Nigel R Franks, Eamonn B Mallon, Helen E
Bray, Mathew J Hamilton, and Thomas C
Mischler. Strategies for choosing between al-
ternatives with different attributes: exempli-
fied by house-hunting ants. Animal Behaviour,
65(1):215 – 223, 2003.

[17] Stephen C Pratt. Behavioral mechanisms of
collective nest-site choice by the ant temnotho-
rax curvispinosus. Insectes Sociaux, 52:383–392,
2005.

[18] Michael H. J. Moglich. Social organization of
nest emigration in leptothorax (hym., form.).
1978.

[19] Stephen C. Pratt. Quorum sensing by encounter
rates in the ant Temnothorax albipennis. Behav-
ioral Ecology, 16(2):488–496, 01 2005.

[20] Nigel R. Franks, Anna Dornhaus, Charlotte S.
Best, and Elizabeth L. Jones. Decision making
by small and large house-hunting ant colonies:
one size fits all. Animal Behaviour, 72(3):611 –
616, 2006.

[21] Nigel R. Franks, Jonathan P. Stuttard, Carolina
Doran, Julian C. Esposito, Maximillian C. Mas-
ter, Ana B. Sendova-Franks, Naoki Masuda, and
Nicholas F. Britton. How ants use quorum sens-
ing to estimate the average quality of a fluctu-
ating resource. Scientific Reports, 5(1):11890,
2015.

[22] A. Dornhaus and N. R. Franks. Colony
size affects collective decision-making in the
ant temnothorax albipennis. Insectes Sociaux,
53(4):420–427, 2006.

[23] Dominic D.R. Burns, Ana B. Sendova-Franks,
and Nigel R. Franks. The effect of social infor-
mation on the collective choices of ant colonies.
Behavioral Ecology, 27(4):1033–1040, 02 2016.

[24] Takao Sasaki, Blake Colling, Anne Sonnen-
schein, May M. Boggess, and Stephen C. Pratt.
Flexibility of collective decision making during
house hunting in temnothorax ants. Behavioral
Ecology and Sociobiology, 69(5):707–714, 2015.

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.10.07.328047doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.328047
http://creativecommons.org/licenses/by-nc-nd/4.0/


[25] Stephen C. Pratt. Quorum sensing by encounter
rates in the ant Temnothorax albipennis. Behav-
ioral Ecology, 16(2):488–496, 01 2005.

[26] Simone M Glaser and Christoph Grüter. Ants
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