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Abstract 

Studies of microbial communities by live imaging require new tools for the robust             
identification of bacterial cells in dense and often inter-species populations, sometimes over            
very large scales. Here, we developed MiSiC, a general deep-learning-based segmentation           
method that automatically segments a wide range of spatially structured bacterial           
communities with very little parameter adjustment, independent of the imaging modality.           
Using a bacterial predator-prey interaction model, we demonstrate that MiSiC enables the            
analysis of interspecies interactions, resolving processes at subcellular scales and          
discriminating between species in millimeter size datasets. The simple implementation of           
MiSiC and the relatively low need in computing power make its use broadly accessible to               
fields interested in bacterial interactions and cell biology. 

Bacterial biofilms and microbiomes are now under intense study due to their importance in health and                
environmental issues. Within these spatially-structured communities, analysis of cell-cell interactions          
requires powerful descriptive tools to link molecular mechanisms in single cells to cellular processes              
at community scales. Microscopy-based imaging methods combining multiple imaging modalities (e.g.           
bright-field, phase-contrast microscopy, fluorescence microscopy) directly record morphological,        
spatio-temporal, and intracellular molecular data in a single experiment. However, extraction of            
quantitative high-resolution information at high-throughput requires accurate, automatized        
computational tools. Methods such as MicrobeJ 1 and Oufti 2 are highly performant to study single               
bacterial cells, but they are ill-suited to perform automated segmentation of dense bacterial             
communities, mostly because intensity-based segmentation is poorly applicable when the bacteria are            
in tight contact. The Oufti toolbox can segment single bacteria within micro-colonies, but requires              
extensive hand-tuning of multiple parameters limiting its robustness for high throughput, automatic            
data extraction 2,3.  

Machine-learning based techniques are powerful alternatives to overcome the limitations of traditional            
segmentation approaches. However, these techniques necessitate training which requires a large           
body of ground truth data often produced for a particular bacterial species and under specific imaging                
modalities, thus limiting the breadth of their application 3,4. To develop a tool that can be generally                
applicable to studies of bacterial communities, we used a convolutional neural-network (CNN)-based            
segmentation method (Microbial Segmentation in dense C olonies, MiSiC) that can segment densely            
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packed bacterial cells of different species while being insensitive to the microscopy source and              
modality. Specifically, MiSiC is based on U-net, a CNN encoder-decoder architecture that has             
previously been applied for detection and counting of eukaryotic cells5 . U-net type architectures are              
attractive when ground truth data is scarce, because the embedded skip-connections allow the             
convolutional kernels between both encoder and decoder ends to be shared 5 . This property allows              
fast learning from a relatively small body of labeled data. The challenge remains that the labeled data                 
must be representative of the broadly varying experimental conditions to produce reliable outputs: in              
our case, different bacterial species recorded under varying imaging modalities. Therefore, we sought             
to develop a prediction workflow that converts an input image taken under a given imaging modality                
(phase contrast, fluorescence, bright field) into a binary mask for cell bodies (Figure 1). To minimize                
the impact of image intensity fluctuations that inevitably arise from varying imaging sources, the input               
images were transformed into intermediate image representations obtained from the shape and            
curvature (the Hessian or second-order differentiation) of the imaged objects. This strategy is possible              
because in rod-shaped bacteria, the characteristic dome-shaped curvatures of the poles is remarkably             
conserved across division cycles6 . The curvature changes in the intensity field of an image are thus                
represented in a so-called Shape Index Map (SIM) derived from the eigenvalues of the Hessian of the                 
image 7 (see Methods section). Therefore, all microscopy images can be transformed into SIM images              
with intensity values ranging from -1 to 1, with -1 representing a negative dome-shape and +1                
representing a positive dome-shape 7 . We then trained a U-Net to segment images of bacterial cells               
acquired under various experimental conditions based on SIMs. 

A schematic of the training strategy is shown in Figure 1 and detailed in the Methods section.                 
Specifically, the U-Net was trained to segment cells by learning shapes of individual bacteria and               
patterns emerging from the tight contact between cells. Accordingly, we curated a hand-segmented             
dataset of 128 bright-field images of two rod-shaped bacterial species, Escherichia coli and             
Myxococcus xanthus. We further enriched the dataset with synthetic data obtained with a simple              
model for rod-shaped bacteria with a 0.5 µm width corresponding to 8-10 pixels in the image. The                 
ground truth data has two classes: one with the mask of bacteria and the other with the contour of the                    
detected cell (Figure 1). This allows other algorithms like watershed, conditional random fields, or              
snake segmentation to be used for post-processing to separate bacteria in cases where there is not                
enough edge information for proper separation of tightly connected bacterial cells. Prior to             
segmentation, two parameters must be adjusted to generate a SIM image from an input image: (i)                
Due to the scale of the training data-set, obtaining a satisfactory segmentation with the trained               
network requires the input image to be scaled so that the average width of the bacterial cell is                  
contained in 10 pixels. (ii), The scaling often smoothens the original image, which in turns smoothens                
the corresponding SIM. This is potentially problematic because the U-Net distinguishes smooth            
curvatures with well-defined boundaries and noise reduction can lead to increased false positive             
segmentation in the scaled images. We solved this problem by adding synthetic noise to the scaled                
images. Thus, the MiSiC workflow takes raw input images of any imaging modality, scales them and                
adds noise to generate SIMs that are then segmented with the above described U-Net (Figure 1). 
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Figure 1. MiSiC: A U-net based bacteria segmentation tool. 
A set of annotated bright-field images of Escherichia coli and Myxococcus xanthus along with synthetic labeled                
data with additive Gaussian noise was used to generate a training dataset of input images, X, consisting of                  
Shape Index Map of intensity images (at three scales) and segmented images, Y, consisting of contours (Y1)                 
and cell body (Y2). A CNN with U-net architecture was trained to segment the Shape Index Maps into cell body                    
and contour of bacterial cells. Prediction using MiSiC requires that the width of the bacteria in the input image be                    
contained in 9-11 pixels, which is easily obtained by rescaling the input image based on the average width of the                    
bacteria under consideration. Gaussian noise may be added to the input image to reduce false positives                
(Methods). 
 

The SIM representation effectively allows MiSiC to efficiently segment images of bacteria in dense              
colonies, either from phase contrast, fluorescence or brightfield modalities (Figure 2a, Figure S1a for              
a statistical analysis). MiSiC works equally well with noisy backgrounds often encountered with low              
exposure conditions required for fluorescence time-lapse imaging (Figure S1b and comparison with            
the performance of another available software 3 ). MiSiC can also readily segment bacterial species of              
distinct shapes such as Pseudomonas aeruginosa , Caulobacter crescentus and filamentous Bacillus           
subtilis captured using various microscopy modalities from different laboratories (Figure 2b, Table            
S1). As MiSiC was trained using rod-shaped bacteria, we expected the quality of the segmentation to                
decay as bacterial shapes deviate from the straight rod. To quantitatively evaluate this deviation we               
compared manual-segmentation (Figure 2c, Methods) to MiSiC-based segmentations of bacterial          
species with various shapes, classical rod shapes (E. coli and B. subtilis), curved “crescent” shapes               
(Caulobacter crescentus and Desulfovibrio vulgaris) and non-rod shape filament-forming bacteria          
(Anabaena sp). MiSiC was able to segment a large variety of bacterial species in absence of any                 
parameter tuning. As expected, cells with non-rod shapes (ie Anabaena forming septated filaments)             
were less robustly segmented by MiSiC (See Discussion). 
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Figure 2. MiSiC segmentation for multiple imaging modalities and bacterial species of different shapes.  
a) MiSiC mask prediction of bacterial colonies captured in phase contrast, fluorescence and bright field modes.                
Left panels: source images, Right panels: MiSiC mask predictions. 
b) MiSiC mask prediction of three different bacterial species of distinct shapes : top panel: C. crescentus                 
(curved), middle panel: P. aeruginosa (rounded small rod) and bottom panel: B. subtilis (filamentous).  
Left panels: source images, Right panels: MiSiC mask predictions. 
c) Accuracy assessment of the predicted shapes by MiSiC against manual ground truth segmentation. Five               
species with different morphologies were tested. Two parameters were calculated : the Dice similarity coefficient8               
and a morphological index meaning geometrical features normalized to 1 for perfect identity (see Methods). As                
the morphology of the target species deviates from the rod shape, the variance of the morphological prediction                 
increases and the similarity slightly decreases from 0.90 to 0.80 (Images in Figure S2) 

Encouraged by these results, we tested whether MiSiC could be further used to study bacterial               
multicellular organization and inter-species interactions accurately at very large scales. As a model             
system we used Myxococcus xanthus, a delta proteobacterium living in soil, that predates collectively              
in a process whereby thousands of cells move together to invade and kill prey colonies9 . In the                 
laboratory, spotting a Myxococcus colony next to a prey colony (here E. coli ) results in invasion and                 
complete digestion of the prey cells in 48 H (Figure 3a). To capture predator-prey interactions at                
single cell resolution, we set up a predation assay where Myxococcus and E. coli interact on a 1 cm2                   
agar surface directly on a microscope slide (Figure S3a). Under these conditions, the entire invasion               
process occurs over a single prey cell layer allowing identification of single predator and prey cells at                 
any given stage. This area is nevertheless quite large, and to record it with cell-level resolution, we                 
implemented a multi-modal imaging technique termed ’Bacto-Hubble’ (in reference to the Hubble            
telescope and its use for the reconstruction of large scale images of the galaxies) that scans the entire                  
bacterial community with a 100X microscope objective and reconstructs a single image by near              
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neighbour end-joining of multiple tiles of 80 nm/pixel resolution images (Figure S3b). Application of              
this method requires addressing practical considerations that are detailed in the methods section.             
Bacto-Hubble images (phase contrast and multi-channel fluorescence) thus capture cellular          
processes in native community environment. We next tested whether MiSiC addresses the            
computational challenges posed by the analysis of such complex (dense population and mixed             
species) and large size data sets.  

First, we tested the capacity of MiSiC to segment closely-packed swarms of Myxococcus xanthus              
cells captured in a single image tile. To test the fidelity of segmentations in these conditions, we                 
imaged a swarm composed of cells expressing SgmX-sfGFP, a motility protein that localizes to the               
cell pole 10 in both fluorescence and phase contrast modalities (Figure 3b). Phase contrast images              
were used to obtain a MiSiC segmentation mask (Fig. 3c). Subsequently, the mask was filtered using                
MicrobeJ1 to remove objects that do not correspond to cells (Methods, less than 1.4 % , n=1695).                 
Next, we calculated the localization pattern of SgmX-GFP foci with respect to the long axis of each                 
segmented cell (Figure 3d). As expected, SgmX-GFP loci localized to a cell pole, consistent with most                
Myxococcus cells in swarms being properly segmented by MiSiC . 

Second, to show that MiSiC can be used to quantitatively study cellular processes in entire               
Bacto-Hubble images, we mapped a Myxococcus cellular process directly during prey invasion. Cell             
division is expected to occur mostly in prey-areas in absence of any other source of nutrients. Like all                  
rod-shaped bacteria, dividing Myxococcus cells assemble a polymeric FtsZ bacterial tubulin ring to             
initiate cell division 11 . When it is fused to fluorescent proteins, the FtsZ ring is observed as a dot at                   
mid-cell 12 , which can be used as a proxy to determine which cells enter division. Thus, we first                 
engineered M. xanthus cells expressing FtsZ fused to Neon-Green (NG, Methods6 ) and mixed             
Myxococcu s FtsZ-NG+ (5 %) with non-labeled cells (95 %) in the presence of an Escherichia coli prey                 
cell colony. A fluorescence Bacto-Hubble image spanning ~5 mm2 (representing 225 tiles of 500x500              
pixels images) of the community during the invasion phase (Figure 3e) was then captured and               
segmented tile-by-tile using MiSiC (Figure 3e-h). Cells with mid-cell FtsZ-NG fluorescence clusters            
were clearly observed suggesting that cell division is ongoing (Figure 3g). Dividing cells were              
therefore counted across the entire image (Figure 3h, Methods) to determine where they localize              
spatially within the community. Figure 3i, shows that cell division is markedly increased in the prey                
area, demonstrating directly that Myxococcus grows during prey invasion. Thus, MiSiC is appropriate             
for the automated detection of cellular processes (detected at subcellular resolution) at community             
scales. 
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Figure 3. MiSiC can be applied to the study of cellular processes at the mesoscale 
a) The Myxococcus xanthus predation cycle on a Petri dish over the course of 96 hours. When plated next                   
to an Escherichia coli colony, Myxococcus xanthus uses collective movement to invade, consume and develop               
over the former prey colony. At 48H, spore-filled fruiting bodies are observed forming in the nutrient depleted                 
area but not in the former prey area where the Myxococcus cells are actively growing. Scale bar = 0.5 mm. 
(b-d) MiSiC can segment dense bacterial swarms. 
b) An M. xanthus swarm expressing SgmX-GFP, observed at colony edges and captured under phase contrast,                
fluorescence and corresponding magnified images. 
c) MiSiC prediction mask obtained on the phase contrast image shown in b 
d) Demograph representation of the segmented cells and corresponding localization of the SgmX-GFP             
fluorescent clusters. In this representation the cells are aligned by order of length (grey area and the position of                   
the clusters is positioned with respect to the position of the cell middle set to 0. The color of clusters reflects the                      
histogram of the cell length distribution (bins = 0.05 µm, maximum = 20 cells for [3.9 - 3.95] µm). 
(e-i) Mapping of M. xanthus cell division in the M. xanthus - E. coli  community. 
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(e-f) Bacto-Hubble image of a predatory field containing FtsZ-NG labeled Myxococcus xanthus cells and              
unlabeled Escherichia coli prey cells. The composite image results from the assembly of 15x15 Tile images. The                 
dotted circle marks the limits of the original prey colony. The white line (mean profile) indicates the axis used for                    
the analysis shown in (i). (f), a single image tile showing a representative density of fluorescent cells. 
(g) Detection of dividing cells. FtsZ-NG fluorescent clusters are detected at midcell. The FtsZ clusters can be                 
detected as fluorescence intensity maxima. Shown is a projection of the position of fluorescence intensity on a                 
mean cell contour for a subset of n = cells (representing 1/7 of the total detected cells with a cluster), revealing                     
that as expected, the clusters form at mid-cell. The blue square marks the cell shown as an example in (h). 
(h) Counting dividing cells. The example shows segmentation of the field shown in (h). The position of Z-ring foci                   
detected as fluorescent maxima was linked to all fluorescent cells segmented in the MiSiC mask. 
(i) Myxococcus cells divide in the prey colony. The spatial density of dividing cells and the total fluorescent cells                   
(Methods) and the proportion of dividing cells (density of dividing cells/density of total cells, methods) were                
determined all across the prey area shown in (e) (dotted circle). The mean ratio and standard deviation are                  
plotted along a spatial axis (distance along profile) corresponding to areas outside and inside (dotted rectangle)                
of the prey area (mean profile, white segment in (e)).  

Third, we explored the ability of MiSiC to segment and classify multiple bacterial species intermingling               
and interacting in space (semantic segmentation); here Myxococcus cell groups invading the            
tightly-knitted E. coli prey colony. To segment each bacterial species directly from unlabeled phase              
contrast-images, new training datasets were produced and used to retrain the U-NET. These labeled              
datasets were obtained by imaging GFP-labeled Myxococcus and mCherry-labeled E. coli (see             
Methods). Images were captured for each channel (GFP, mCherry) and segmented separately with             
MiSiC to obtain masks for each species (Figure 4a). These masks were used to retrain the U-NET,                 
which was tested by acquiring a single phase-contrast Bacto-hubble image and analysing it to classify               
Myxococcus and E. coli cells directly in absence of any fluorescence labeling (Figure 4a-4b) We could                
thus discriminate cells belonging to each species in the predation area (Figure 4b) for a total detection                 
of ~402 000 Myxococcus and ~630 000 E. coli cells in the entire image. To test the accuracy of the                    
classification procedure, we tested whether the distribution of shape descriptors, such as the extent              
(E=area/bounding box area), solidity (S=area/convex area) and minor axis length, matched the            
distribution of these descriptors obtained from images of each single bacterial species (Figure 4c).              
The observed distributions were indeed consistent with an efficient separation of species in the mixed               
community.  
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Figure 4. Semantic segmentation of M. xanthus  and E. coli from single phase contrast images. 
a) Semantic classification network. A U-Net was trained to discriminate M. xanthus cells from E. coli cells. The                  
training dataset consisted of GFP + M. xanthus cells mixed with mCherry+ E. coli cells, which were imaged in                  
distinct fluorescent channels (GFP and mCherry) and segmented using MiSiC to produce ground truth data for                
each species. The network uses unlabeled phase contrast images as input (X) and produces one output for each                  
labeled species (Y). The prediction workflow in the right shows semantic segmentation of a Bacto-Hubble image                
of M. xanthus cells invading an E. coli colony after 24 hours. The composite image corresponds to 20x42 image                   
tiles captured by phase contrast and segmented tile-by-tile to produce the resulting classification. 
b-c)  Direct semantic segmentation of M. xanthus  interacting with E. coli.  
b) Left panel: zoom of the areas where M. xanthus cells actively penetrate the E. coli colony. Left panel: Phase                    
Contrast. Right panel: predicted mask for each species : M. xanthus in orange and E. coli in blue. The high                    
magnification detail reveals the ability of the semantic model to label objects with low contrast in the grayscale                  
source image. 
c) Morphological analyses of the classified cell population and comparison with the ground truth data.               
Morphological parameters (Extent, Solidity and minor axis length) were determined for the cells predicted in the                
M. xanthus (Mx mixed) and E. coli masks ( E. coli mixed) in the context of a mixed colony and compared to the                      
same parameters obtained from MiSiC segmented from images of pure cultures (Mx/E.coli pure). 
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Discussion 

 
In this article we have presented MiSiC, a deep-learning based bacteria segmentation tool capable of               
segmenting bacteria in dense colonies imaged through different imaging modalities. The main novelty             
of our method is the use of a shape index map (SIM) as a preprocessing step before network training                   
and segmentation. The SIM depends on the Hessian of the image, thus preserving the shape of                
bacterial masks rather than the raw intensity values, which vary as a function of microscopy               
modalities. Since bacteria have simple shapes the SIM and corresponding annotations can be             
synthetically produced, greatly facilitating the generation of a training dataset. This strategy only             
requires two adjustment parameters (scaling and noise addition) and it makes segmentation agnostic             
to imaging modality, and adapted to different bacterial species with different morphologies, provided             
that they do not deviate too largely from rod shapes. For cocci, oval or rugby-ball bacteria, it should                  
not be too challenging to further adapt MiSiC for their segmentation because their shape will also be                 
captured in the SIM and specific synthetic training data sets could be designed. In general, the use of                  
SIMs rather than image intensity is a promising lead for any deep learning approach to cell                
segmentation that relies on shape, which could also solve modality issues for eukaryotic cell and               
cellular organelle segmentation. 
 
MiSiC is appropriate for the automated analysis of complex images, such as fluorescence             
(Bacto-Hubble) images tiles. In our hands, FtsZ-NG-expressing cells could not be properly segmented             
across tiles with intensity-based methods. In fact, variations in fluorescence intensities associated with             
multiple image captures required parameter adjustment for each tile, making the task overly complex.              
These problems are solved in MiSiC because it only uses a small number of parameters and it is                  
relatively robust to noise. Importantly, tile-by-tile segmentation in MiSiC also allows extraction of             
high-resolution information from large size data sets with reasonable calculation power. Last, MiSiC             
can be combined with existing microbial cell analysis packages such as Oufti and Microbe J, which                
contain sophisticated tracking and analytical procedures for in-depth exploration of cellular processes            
at subdiffraction resolution 1,2 .  
 
Finally, we show that MiSiC can be further implemented for the semantic classification of bacterial cell                
types directly from phase contrast images. While the network developed herein works specifically for              
M. xanthus and E. coli discrimination, the approach can be easily extended to segment and classify                
any number of bacterial species provided that a ground truth dataset (ie fluorescence labeling) is               
available to train a U-Net with ground truth generated inMiSiC. At a time where tremendous efforts are                 
injected to reconstruct micro communities in synthetic contexts for mechanistic studies13 , we foresee             
that deep learning based approaches such as MiSiC will profoundly impact microbiome research of              
health and environmental significance. 
 
 
Methods 
 

Bacterial strains and predation assays 

The complete list of the strains used for the study is compiled in Table S1. For predation assays, cells                   
of Myxococcus xanthus (DZ2, Table S1) were grown overnight in 100 mL flasks in 10 to 20 mL of                   
CYE14 media without antibiotics at 32°C with shaking. In parallel a colony of Escherichia coli               
(MG1655, Table S1) was grown in 5 mL LB medium in a glass tube at 37°C with shaking. The next                    
day, OD 600 nm were measured and cultures of both strains were washed twice at 5.000 rpm in CF14                  
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minimal media to discard CYE and LB traces. After the washes, the density of the cultures was                 
brought to 5 OD units in CF media. Pads of CF agar 0.5% were poured in precast frames (in situ                    
GeneFrame, 65 µL, ABGene , AB-0577) that were mounted on glass slides and briefly dried. 1 µL of                  
both Myxococcus xanthus and prey cell suspensions were spotted as close as possible to one other                
on the pad making sure that they would not merge. Glass slides were kept in a sealed humid dish for                    
6, 24, 48 or 72 hours at 32 degrees. 30 minutes before observation, the agar pad around the colonies                   
was cut out and discarded and the pad was sealed with a cover slip and observed by microscopy. 

Bacillus subtilis strains were grown in LB medium at 37°C until they reached an OD 600 nm of 0.6 , were                    
transferred into wells and covered in a low melting LB-based agarose suspension (2%) before              
observation. Pseudomonas aeruginosa was grown in LB medium and cells were observed at an OD 600               

nm of 0.5. Caulobacter crescentus was cultured in PYE on the benchtop without shaking for 3-4 days.                 
Cells were imaged from disrupted fragments of a pellicle biofilm and were transferred from the               
air-liquid interface to glass slides for imaging 15. Anabaena nostoc was grown in BG11 medium at               
30°C with illumination (40 µE m-2s-1). Finally, Desulfovibrio vulgaris cells were grown until             
mid-exponential phase (OD 600 nm of approximately 0.4 to 0.5) in LS4D medium supplemented with 1               
g/L of yeast extract (LS4D-YE) at 33°C in an anaerobic chamber (COY Laboratory Products) filled               
with a 10% H 2 -90% N 2 mixed-gas atmosphere. Cultures (200 µL) were centrifuged, and the pellet was                
resuspended in 100 µl of 10 mM Tris-HCl (pH 7.6), 8 mM MgSO4 and 1 mM KH 2 PO4 buffer (TPM                   
buffer). The cells were placed between a coverslip and an agar pad containing 2% of agarose.  

Molecular Biology and strain construction 

To follow cell cycle progression in single cells of Myxococcus xanthus, a merodiploid strain of DZ2                
expressing both native FtsZ and the fusion protein FtsZ-neonGreen (FtsZ-NG) was built (DM14, Table              
S1). To do so, the coding sequence of DZ2 ftsZ gene (MXAN_5597) along with its predicted promoter                 
sequence was amplified by PCR with primers oDM1 and oDM2 (Table S2) and cloned in the                
non-replicative plasmid pKA32 12 allowing for its site-specific integration at the DZ2 attmx8 phage             
attachment site on the M. xanthus chromosome. The coding sequence of the neonGreen protein was               
amplified from a plasmid 16 using primers oDM16 and oDM17 (Table S2) allowing the in frame addition                
of neonGreen at the C-terminus of the FtsZ protein. When grown in CYE rich medium, DM14 did not                  
present any significant defect in growth rate or cell shape. DM14 cell size is not significantly different                 
from that of the isogenic wild type DZ2 strain. DM14 cells were spotted on thin CF agar pads to follow                    
FtsZ localization in axenic cultures and allowed us to confirm that cell cycle progression was               
accompanied with the relocalization of Ftsz-nG from being diffuse in the cytoplasm to forming a               
discrete fluorescent focus at mid-cell before cell septation as previously described 12 .  

To generate Dataset 2 (see below), strains of E. coli (EC500, Table S1) and M. xanthus (DM31, Table                  
S1) expressing soluble versions of mCherry and sfGFP fluorophores respectively were used. To             
generate DM31, a plasmid allowing for the constitutive expression of sfGFP was built (pDM14). To               
obtain a high and constitutive expression of sfGFP in M. xanthus, we sought for the closest homolog                 
of the constitutively expressed E. coli EF-TU (Translation elongation factor) in M. xanthus genome              
which is MXAN_3068. The 1000-bp region upstream of MXAN_3068 (p3068 ) was amplified by PCR              
using oDM53 and oDM54 and cloned upstream the coding sequence of sfGFP (amplified using              
primers oDM61 and oDM62) in a pSWU19 plasmid. The transcriptional fusion was then integrated on               
DZ2 chromosome at the attmx8 site through transformation. DM31 cells display a constitutive bright              
diffuse fluorescent signal in our growth conditions.  
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Microscopy and Image acquisition 

All microscopy images were acquired with an inverted optical microscope (Nikon TiE) and a 100x               
NA=1.45 Phase Contrast objective. Camera used was Orca-EM CCD 1000x1000 camera mostly set             
with binning 2x2. Acquisition software was Nikon NIS-Elements with specific module JOBS.            
Fluorescence acquisition used a diode based excitation device (Spectra-X Lumencore).  
 
The Bacto-Hubble image is a composite image of rasters of the entire area and requires that the                 
scanning speed must be sufficiently fast to avoid image shifts due to ongoing cell dynamics. To                
minimize the shift in focus from tile to tile we used Nikon perfect focus system (PFS) equipped with                  
servo-control of the focus with an infrared LED. This is especially challenging because continuous              
focus alignment of the microscope slows down the acquisition times dramatically. To obtain a              
satisfactory compromise allowing both fast scanning and correct focusing we: 
i) reduced the number of dynamic elements on the microscope set up: we replaced shutters by Light                 
Emitting Diodes (LEDs, Spectra-X for fluorescence source and a white diode for transmitted light)              
which could be switched with a high frequency rate (100 kHz). In addition, a double band dichroic                 
mirror for the fluorescent cube was used to avoid switching the filters’ turret for each snapshot. 
ii) used an EM-CCD camera set to a 2x2 binning mode to reduce the size of images (500x500 pixels                   
at 0.16 µm/px) and acquisition time, and iii) sped up the vertical movements by means of a                 
piezoelectric stage. In its largest scanning mode, Bacto-Hubble thus captures 80x40 raster images             
covering a total surface of 20 mm2 (containing up to 0.8 billion pixels, an acquisition-time up to 4                  
hours), enabling a continuous magnification display from eye visible structures to single-cells.            
Individual tiles for Bacto-Hubble images were acquired with the scan large field capabilities of              
NIS-Elements software. A key point for Bacto-Hubble large images was the quality of the sample slide                
mounting. The samples were placed on a glass slide with a thin double-sided sticky frame (in situ                 
GeneFrame, 65 µL, ABGene , AB-0577). An agar pad was poured inside the frame and a microliter of                  
cells was placed on it. The chamber was closed with a glass cover slide. This assembly allows very                  
good flatness and rigidity. 
 
U-NET as Base architecture 

We implement a U-net inspired in encoder-decoder architecture with skip-connections and use it as a               
base network for segmentation tasks. This architecture is now widely used for segmentation tasks and               
has many advantages that are discussed in previous articles 5,17. The original U-net architecture 5 was               
modified to include relu activation for all layers except for the output layer where sigmoid activation                
was used. The general U-net was implemented in Python programming language using tensorflow             
(https://www.tensorflow.org/tutorials/images/segmentation), where the number of input channels       
(say, n) and output classes (say, m ) could be varied as required by different models. The number of                   
encoder layers were fixed to 4 with filter lengths [32,64,128,256] for the encoder side. The loss                
function was also modified from the original implementation. A combination binary cross entropy and              
the Jaccard index18 was used as the loss function with Adams optimizer (learning rate = 0.001) for                 
the minimization.  

For brevity, we denote the network as a mapping between input X and output y as, , where X is a set                      
of images with n channels and y is the output with m classes. Thus given a training data set of Xtrain                     
with sizes (N × S × S × n) and multiclass images ytrain (of size N × S × S × m) , the generalized                         
implementation of U-NET learns to predict the segmented image from unknown images X.  
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Dataset 1 

This training dataset consists of three parts: (a) 263 cases of Bright-field images of Escherichia coli                
and Myxococcus xanthus with segmented masks, (b) 600 cases of synthetic data (c) 200 cases of                
synthetically generated null cases with random gaussian noise and circular objects and (c) 200 null               
cases, that contain background images without bacteria taken from bright-field, fluorescence and            
phase contrast data. The synthetic data is generated with a simple model for rod-shaped bacteria with                
a width ranging from 8-10 pixels. An overlap threshold of 2% was used to obtain dense cell                 
population. The binary mask created is then smoothed with a Gaussian and Gaussian noise is added                
to emulate noise in real images. The ground truth in this training dataset (denoted as [X′ ,y ]) has two                    
classes: one with the mask of bacteria and the other with the contour of the detected cell. The test set                    
consists of 87 cases of labelled bright field images unseen by the trained network. The accuracy of                 
the network is calculated over this test set. (total 1513)  

Dataset 2 

This dataset is used in training of the semantic segmentation network for segmentation and              
classification of Myxococcus xanthus and Escherichia coli from phase contrast images. To separate             
M. xanthus and E. coli we designed experiments with a mixed colony of M. xanthus and E. coli , where                   
M. xanthus is tagged with green fluorescence (GFP, DM31, Table S1) and Escherichia coli with red                
fluorescence (mCherry, EC500 -Shaner et al. 2004- Table S1). This dataset is used later for semantic                
segmentation tasks to separate M. xanthus and E. coli  from phase contrast images (see below). 

 

MiSiC, Shape-index map based segmentation 

The shape index (SI) map of an image, x, calculated over a scale , is defined as             σ     
, where k1 , k2 (with k1 > k2 ) are the eigenvalues of the Hessian of the image, ,I(x, ) tan ( )S σ = π

2 −1
k −k2 1

k +k2 1                  x   

calculated over a scale 7 . SIM remains within the range [−1, 1] and preserves the MiSiC shape    σ              
information while being independent of the intensity values of the original image. Using the Dataset 1,                
we pre-process the input images X′ to generate a train set : Xtrain of size 1500 × 256 × 256 × 3. Each                       
channel in Xtrain is the shape-index map calculated at scales [1,1.5,2]. An instance of the U-net is                 
trained over this data set to produce a network able to map data represented by Xtrain → ytrain . The                   
network learns to reject the noise in the shape-index map and produces masks and boundaries of the                 
cell like structures in the shape-index map. The trained network was tested over 176 cases of labelled                 
bright-field images, that were previously unseen by the network leading to a segmentation accuracy of               
0.76 computed with Jaccard coefficient 18 .  

Preprocessing.  

Preprocessing the input image to enhance the edge contrast and homogenising intensities helps in              
obtaining a good segmentation via MiSiC. Some of the preprocessing that gave good results are               
gamma correction for homogenising, unsharp masking for sharpening the image and sometimes a             
gaussian of laplace of the image that removes intensity variations in the entire image and keeps                
edge-like features. 
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Parameters: Scale and noise variance.  

The dataset 1 used to train the MiSiC contains cells with a width in the range of 8-10 pixels.Thus, to                    
obtain a satisfactory segmentation, the input image must be scaled so that the average bacteria width                
is around 10 pixels. However, the scaling often modifies the original image leading to a smoother                
shape index map. Since, MiSiC has basically learned to distinguish between smooth curvatures with              
well-defined boundaries from noisy background. A smooth image without inherent noise leads to a lot               
of false positive segmentations. Therefore, counterintuitively, synthetic noise must be added to the             
scaled or original image for a proper segmentation. It must be kept in mind that the noise variance                  
should not reduce the contrast of the edges in the original image while it should be enough to discard                   
spurious detections. Gaussian noise of a constant variance may be added to the entire image or                
alternatively, the variance could be a function of the edges in the input image.  

Semantic segmentation: Myxococcus xanthus and Escherichia coli 

The fluorescence images from Dataset 2 are processed with a gamma adjustment and segmented              
using MiSiC to produce clean masks and contours of two classes, namely, Myxococcus xanthus and               
Escherichia coli . Thus, y in dataset 2 contains two channels corresponding to a mask of each class.                 
Another U-NET is then trained on this data to segment a single channel phase-contrast image into an                 
image containing semantic classification of each species. The probability map for each label is color               
coded (blue = E. coli , orange = M. xanthus) such that each pixel has a probability value top be part of                     
a given class. In rare instances, bi-color objects are obtained because in these cases the prediction is                 
not homogeneous inside the predicted objects. These objects were filtered for the morphometric             
analysis showed in Figure 4c. 

Image analysis and statistics 

Comparison between MiSiC and semi-manual counts. In Figure S1, a 4x4 mosaic of Escherichia coli               
phase contrast image at 100x objective with an approximate surface of 80.10 3 µm2 was used for                
comparison. In order to semi-manually count the number of cells, the phase contrast image was               
analysed with FIJI 19  with the following commands: 

1. FFT Band-pass filter (0 - 40 pixels) 
2. Autothreshold 
3. Morphomath opening 
4. Median filter 
5. Watershed (BioVoxxel plugin) [http://www.biovoxxel.de/development/] 
6. Size filter (> 40 pixels) 
7. Ultimate erosion points. 

The points obtained are superimposed to the phase contrast image and manually checked and              
corrected (Figure S1 A). 
The MiSiC spatial density and threshold mask density were derived directly from the binary masks               
produced for each method and transformed by ultimate erosion of the points. 
Spatial density was calculated with the density plugin for FIJI write by Thomas Bourdier              
[https://imagejdocu.tudor.lu/plugin/analysis/density_2d_3d/start]) from 3D suite 20  , for each pixel x,y : 
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where N = Number of closest neighbours (objects) to compute from each pixel (we used N=20), d i =                  
distance to the closest point, r = the radius of expansion from the spot centre (we used 50 pixels).                   
Units of density are the mean number of objects within a circle with r radius. 

The spatial correlation maps (Figure S1) and the correlation graph (Figure 2C) were calculated with               
Image CorrelationJ (http://www.gcsca.net/IJ/ImageCorrelationJ.html ). 
 
Analysis of MiSiC performance in the presence of noise and comparison with Supersegger.  

To illustrate MiSiC performances in the presence of noise and in comparison with SuperSegger3 ,              
datasets consisting of 141 E. coli microcolony images were retrieved from the SuperSegger website.              
These images were analysed with the provided parameters with SuperSegger and with the following              
parameters with MiSiC : Cell width = 9, Scaling factor = Auto, Noise =0.001, Unsharp=0.6 and                
Gamma=0.1. To assess the segmentation robustness to noise for each program, datasets were             
normalized by the maximum intensity value recorded in the first frame of the dataset and Gaussian                
noise was added with varying variance. The resulting datasets were then analysed with the initial               
parameters used to compute reference segmented images except for MiSiC where the noise             
parameter was set to 0. The relative performance of each program was then evaluated by computing                
Dice indices8 . 

 

Morphological analyses. 

Classic morphological features : Area, Perimeter, Bounding Box (Width, Height), Circularity, Feret            
diameter, minimum Feret diameter, MajorAxis (ellipse), MinorAxis (ellipse), (n) number of objects. 

Special calculated morphological features : Solidity = Area / Convex Area ; AR = MajorAxis /                
MinorAxis ; Extend = Area / (Width*Height) 

Morphology index for Figure 2c was calculated by : 

 

with A = predicted mask, B = manual ground truth. Features = [Area, Perimeter, Circularity, Major,                
Minor, Feret, minFeret, AR, Solidity, Extend, n objects] 

Demograph construction.  

To construct the plot shown in Figure 3, the cells bodies were obtained with MiSiC segmentation and                 
the binary mask was analyzed with the MicrobeJ software 1 , with a cell model set to parameters (area                 
> 0.5 µm2 , Circularity < 0.8, “poles” = 2) to filter all remaining segmented objects that do not                  
correspond to cells. The localization of the centroid (cell middle) and length of longitudinal axis was                
then determined for each cell under MicrobeJ. The fluorescent clusters were detected with a local               
maxima filter and their position relative to the middle of the cell was plotted along the axis with a                   
positive sign. Negative sign clusters are therefore the manifestation of rare cells with bi-polar foci. The                
fluorescent clusters are plotted as dots with a color scale based on spatial density. 

Cell division detection.  
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In Figure 3e, clusters of fluorescent protein FtsZ-NG were used as cell division markers. The clusters                
were detected by local maxima detection (scikits-image.peak_local_max(image = fluorescence image,          
label = MiSiC mask, num_peaks=1)) 

Calculation of cell division ratios  

The cell division ratio in Figure 3i was calculated using the spatial 2D density derived from (i) the                  
mask of the total fluorescent cell population across the entire image and (ii), the mask of the total                  
number of fluorescent maxima (reflecting dividing cells) across the entire image. Spatial densities             
were calculated with sklearn.neighbors.KernelDensity(), with a bandwidth of 1% of the image width.             
The proportion of dividing cells was obtained by dividing the spatial density maps: density of               
fluorescent maxima/density of total cells.  

 

Supplementary information 

Supplementary Figure S1. MiSiC can segment E. coli micro-colonies and is robust to noise 
Supplementary Figure S2. MiSiC segmentation of multiple bacterial species. 
Supplementary Figure S3: BactoHubble 
Supplementary Table T1: Bacterial strains in this study 
Supplementary Table T2: Primers 
Supplementary Table T3: Plasmids 
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