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Abstract 

The stock market is a bellwether of socio-economic changes that may directly affect individual 

well-being. Using large-scale UK-biobank data generated over 14 years, we applied specification 

curve analysis to rigorously identify significant associations between the local stock market index 

(FTSE100) and 479,791 UK residents’ mood, as well as their alcohol intake and blood pressure 

adjusting the results for a large number of potential confounders, including age, sex, linear and non-

linear effects of time, research site, other stock market indexes. Furthermore, we found similar as-

sociations between FTSE100 and volumetric measures of affective brain regions in a subsample 

(n=39,755; measurements performed over 5.5 years), which were particularly strong around phase 

transitions characterized by maximum volatility in the market. The main findings did not depend on 

applied effect-size estimation criteria (linear methods or mutual information criterion) and were 

replicated in two independent US-based studies (Parkinson’s Progression Markers Initiative; n=424; 

performed over 2,5 years and MyConnectome; n=1; 81 measurements over 1,5 years). Our results 

suggest that phase transitions in the society, indexed by stock market, exhibit close relationships 

with human mood, health and the affective brain from an individual to population level. 
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Introduction 

Stock markets mirror the underlying socio-economic status of a population 1,2 and may therefore be 

used as an index or bellwether of the well-being of a society.  In line with this idea, previous re-

search has suggested that changes in capital market evolution exhibit a strong impact on traders' 

emotional states 3, and are associated with the welfare of individuals who have no direct involve-

ment in the stock market 4. Moreover, it has been suggested that stock market turbulence is linked 

to increased anxiety 5, self-harm and suicide rates 6–8, elevated levels of binge drinking 9 and fatal 

car accidents 9,10. These effects may be particularly pronounced in long-lasting financial crises, such 

as the 2008 stock market crash or the economy slowing in the COVID19 pandemic. 

 To date, there are no studies that have investigated the association of market behaviour with 

brain function and structure. In a broader perspective, previous research has suggested that the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2021. ; https://doi.org/10.1101/2020.10.07.329201doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.329201
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
2 

events that happen in the society have a clear impact on the brain. For example, one study has pre-

viously demonstrated how a single extreme aversive global event may impact fear circuits by link-

ing individuals’ geographical proximity to the site of 9/11 terrorist attacks to the reactivation of the 

amygdala during memory recollection 11. Similarly, an upcoming study also suggests that intense 

experience of the COVID19 outbreak is associated with a volumetric increase of the amygdala 12.   

 The present study aims to understand whether more subtle but frequently occurring global 

events may leave a trace in the human brain on a population level. Here, we investigated how fluc-

tuations in the stock market are associated with brain structure. Since such fluctuations also mirror 

global socioeconomic changes in the society 1, the investigated associations imply a broader per-

spective than the specific effects of the market per se. 

 To do this, we accessed structural MRI data of 39,755 UK citizens from the UK Biobank 

acquired over approximately 5.5 years (between 2014-05-02 and 2019-10-31), and matched the 

scan date with the corresponding Financial Times Stock Exchange 100 Index (FTSE100) character-

izing stock price of the top 100 UK companies with the largest revenue as our main independent 

variable (See Supplement Fig. S1 and Table S1 for description of the whole dataset, which also 

included mood data collected over a period of approximately 14 years). The FTSE100 was chosen 

because the study subjects resided in the UK, and local changes in the economy were expected to 

impact brain structure on a population level most strongly. In order to index effects on the brain, 

daily time-series of the market capital index was matched with neuroimaging data focusing on a set 

of preregistered (https://osf.io/h52gk) brain regions known to play key roles in the processing of 

rewards and losses, as well as threat and fear 13–16: amygdala, nucleus accumbens, insula, anterior, 

subcallosal and dorsal cingulate and lateral orbitofrontal cortical areas.  Abnormal functioning of 

these circuits has also been documented to play a key role in the pathophysiology of anxiety and 

depression 17–20.  

 Previous research suggests that brain morphometry is capable of capturing plastic changes 

that happen after weeks 21 or days 22 of engagement of the relevant brain networks. Moreover, even 

acute activation of brain networks is associated with noticeable alterations in morphometric meas-

ures  23. Even though these changes may represent widely different underlying mechanisms depend-

ing on observational time-scales, the literature supports the idea that grey matter changes in major 

brain networks parallel their functional reorganization 24.  

 Prior to the main analysis, we attempted to replicate previous behavioural findings suggest-

ing a relation of market fluctuations with mood and well-being 4,7,25,26 on a large sample from the 

UK Biobank data (n = 479,791) collected over a period of approximately 14 years. Analysing the 

relations between FTSE100 and self-reported measures of emotional well-being we confirmed that 

market ups (higher FTSE100 scores) were associated with higher scores of “happiness” and lower 
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scores in self-reported “negative emotional facets”: irritability, hurt and nervous feelings, anxiety 

(Fig. 1; Table 1).  The identified association also held true for the 5.5-years of the MRI subsample 

(Supplement Table S2). We further explored non-imaging variables that are associated with mood 

changes, i.e. alcohol intake (overall intake frequency and a composite score reflecting weekly intake 

of all alcoholic beverages) and diastolic blood pressure (automatic readings in mmHg measured at 

rest), and showed that they were also highly correlated with the FTSE100 (Fig. 1A) in that both 

measures increased when the stock market decreased in value. Several of these effects (relation be-

tween stock market and negative emotions, blood pressure or alcohol-intake) were reproduced in 

the My Connectome data-set consisting of one single subject whose measurements were taken at 81 

timepoints during a period or 1,5 years (Fig. 1B).  

 
 

Linear Mixed-Effects Effect-sizes*, Pearson r (95% C.I.) 
βstd T(df) pfdr Raw DayAVG MonthAVG 

NegEm (total) -0.03 
-

24.33(37671) <0.001 
-0.034(-0.037,-

0.031) -0.396(-0.428,-0.362) -0.591(-0.692,-0.467) 
Irritability -0.01 -5.86(37671) <0.001 - -0.117(-0.155,-0.078) -0.266(-0.418,-0.099) 

Sensitivity/hurt  -0.04 
-

24.75(37671) <0.001 - -0.379(-0.412,-0.345) -0.516(-0.632,-0.378) 
Nervous  -0.01 -8.51(37671) <0.001 - -0.264(-0.300,-0.228) -0.508(-0.625,-0.368) 

Worrier/anxious  -0.02 -10.9(37671) <0.001 - -0.287(-0.322,-0.25) -0.444(-0.572,-0.294) 
Happiness 0.04 19.81(15633) <0.001 0.052(0.047,0.056) 0.247(0.204,0.288) 0.556(0.406,0.677) 

 
Table 1. Subjective well-being and FTSE100 scores: 14 years period. βstd  - standardized β coeffi-
cients, pfdr – p-values corrected for multiple testing with false discovery rate. Subcomponents of 
negative emotions are binary variables (-), Day/MonthAVG – data averaged by days and months. 
The analyses leveraged random linear mixed effects framework with subject as a random effect, as 
a subset (n=1427) of the study subjects was assessed twice. * – corresponding effect-sizes estimated 
with mutual information criterion are reported in the supplement (Supplement Table S11). 
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Fig.1 Non-MRI variables and stock market moves. The figure illustrates the identified associa-
tions between stock market moves and non-MRI indicators of well-being in the UK Biobank sample 
(top panel A) and My Connectome data, a single-subject study (bottom panel B); 
*p<0.05, **p<0.01, ***p<0.001. Corresponding effect-sizes estimated with mutual information 
criterion are reported in the supplement (Supplement Table S11) 
 
 We then tested and confirmed our main hypothesis by showing that FTSE100 oscillations 

exhibited significant associations with the morphometry of the affective brain circuits. The most 

notable result was that bilateral amygdala, involved in threat detection and anxiety processing 16–20, 

showed a negative relation with the UK economic performance (Fig. 2A, and Table 2, whole-brain 

analysis revealing that the effects are not limited only by the preregistered regions is reported in 

Supplement Fig. S2). Importantly, this effect was replicated in an independent set of 424 individu-

als from the PPMI database, an independent clinical study targeting the US population (www.ppmi-

info.org), and conceptually also in “My Connectome” single-subject longitudinal study 27. In “My 

Connectome”, structural data was not publicly available, however, using BOLD-signal variability 28 

in the amygdala as a proxy biological measure demonstrated that our results also generalise to func-

tional characteristics of the fear network. ( Fig. 2B). It is worth noting, however, that unlike the 

main results, detrending the Dow Jones index in these two (PPMI and MyConnectome) datasets 

reduced effect-sizes without reversing the direction of the associations (Supplement Fig. S13).  
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 Splitting the study timeline into 6 equal periods (11 months each) we showed that the corre-

lations are strongest during and following phase transition events, i.e. when the change and variabil-

ity of stock market dynamics is most pronounced (Supplement Fig S8). 

 

 
 
Fig.2 Studied brain-market associations. The figure illustrates the study rationale and reports the 
investigated effects for the main sample (A), as well as their replication (B) in a medium-sized 
(PPMI) and single-subject (My Connectome) fMRI study; *p<0.05, ***p<0.001.  
 
 

 Linear Mixed-Effects Effect-sizes*, Pearson r (95% C.I.) 

Region βstd T883 pfdr Raw, n=30,775 DayAVG, n=1299 MonthAVG, n=66 

L Amygdala -0.054 -9.51 <0.001 -0.055(-0.066,-0.043) -0.253(-0.304,-0.202) -0.615(-0.746,-0.439

R Amygdala -0.062 -10.91 <0.001 -0.063(-0.074,-0.052) -0.282(-0.332,-0.231) -0.644(-0.767,-0.477

L Accumbens -0.054 -9.54 <0.001 -0.055(-0.066,-0.044) -0.232(-0.283,-0.18) -0.623(-0.752,-0.449

R Accumbens -0.062 -10.89 <0.001 -0.064(-0.075,-0.052) -0.259(-0.309,-0.207) -0.662(-0.779,-0.5)

L LOFC -0.026 -4.68 <0.001 -0.031(-0.042,-0.02) -0.141(-0.193,-0.087) -0.443(-0.619,-0.225

R LOFC -0.019 -3.49 0.001 -0.023(-0.034,-0.012) -0.082(-0.136,-0.028) -0.292(-0.499,-0.054

L Insula 0.037 6.62 <0.001 0.042(0.031,0.053) 0.21(0.157,0.261) 0.494(0.286,0.657)

R Insula 0.032 5.86 <0.001 0.037(0.026,0.048) 0.187(0.134,0.239) 0.413(0.19,0.595) 

 

39) 

77) 

49) 

5) 

25) 

54) 

7) 
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L Subcallosal 0.018 3.18 0.002 0.02(0.009,0.032) 0.134(0.08,0.187) 0.322(0.087,0.524)

R Subcallosal 0.015 2.74 0.008 0.019(0.007,0.03) 0.129(0.075,0.182) 0.305(0.068,0.509)

L Anterior Cingulate 0.025 4.67 <0.001 0.035(0.024,0.046) 0.178(0.124,0.23) 0.408(0.184,0.591)

R Anterior Cingulate 0.024 4.44 <0.001 0.033(0.022,0.044) 0.169(0.116,0.222) 0.428(0.207,0.607)

L Paracingulate 0.004 0.8 0.426 0.001(-0.01,0.013) 0.044(-0.01,0.098) 0.106(-0.14,0.339)

R Paracingulate 0.005 0.83 0.426 0.003(-0.008,0.014) 0.052(-0.003,0.106) 0.122(-0.124,0.353)

Intracranial Volume 0.004 0.87 0.426 -0.009(-0.02,0.002) -0.016(-0.07,0.038) -0.098(-0.332,0.147) 

 
Table 2. Associations between FTSE100 and structural characteristics of the fear network: corti-
cal and subcortical volumes. Day/MonthAVG – data averaged over days and months. Intracranial 
volume (ICV) was selected as a reference measure, which was not expected to exhibit significant 
associations with global stock market behaviour. βstd  - standardized β coefficients, pfdr – p-values 
corrected for multiple testing with false discovery rate. The analyses leveraged random linear 
mixed effects framework with subject as a random effect, as a subset (n=1427) of the study subjects 
was scanned twice. * – corresponding effect sizes estimated with the mutual information criterion 
are reported in the supplement (Supplement Table S11) 

 
 

  
Fig. 3. Regional profile of brain-market associations. A) Three-dimensional view of the significant 
findings (pFDR<0.05). FTSE100 exhibited negative. B) associations with amygdala, nucleus accum-
bens and orbitofrontal cortex, whereas insular and cingulate regions were positively. C) associated 
with the index scores. The analyses leveraged random linear mixed effects framework with subject 
as a random effect, as a subset (n=1427) of the study subjects was scanned twice. 
 
 Similar findings were observed for nucleus accumbens and lateral orbitofrontal cortex 

(lOFC) that also increased in volume when market decreased (Fig. 3, A and B). While nucleus ac-

cumbens is mostly known for being involved in reward anticipation, it is equally important for 

processing losses 13,14.  lOFC has been suggested to be involved in processing expectations within 

the emotional domain 29–31, including losses and rewards 32,33. Further supporting this, a significant 

interaction (β = -0.01, t776 = -2.87, p=0.004, pfdr = 0.05) between FTSE100 and income index was 

found on the right lOFC volume (Supplement Table S5). Post-hoc analyses revealed the highest 

effects in individuals with the lowest and highest income, suggesting that right lOFC of those sub-

jects is particularly sensitive to the capital market swings. Insula and anterior cingulate showed the 

opposite effect, i.e. the size correlated positively with the market (Fig. 3, A and C).  

4) 

9) 

1) 

7) 

 

3) 

 

nt 

d 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2021. ; https://doi.org/10.1101/2020.10.07.329201doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.329201
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
7 

 All regions mentioned above, except for lOFC, are involved in both positive and negative 

emotional processes 13–15. Out of those regions, subcortical nuclei (amygdala and nucleus accum-

bens) correlated negatively with the stock market. In contrast, the cortical regions (insula and ante-

rior cingulate) seem exhibit a positive relation with the stock market moves. The magnitude of the 

identified effects varied depending on time scale with median Pearson correlation |r| = 0.033 

(0.001-0.064) for the raw data, |r| = 0.169 (0.017-0.282) for the day-averaged measures, and |r| = 

0.492 (0.09-0.73) when brain and market data were averaged over months (Table 2). Importantly, 

all of the reported associations changed very little after detrending the FTSE100 time-series. De-

convolving FTSE100 time-series into low- and high-frequency domains using fast Fourier trans-

form, showed that low-frequency oscillations mostly drive the effect, although, a similar pattern of 

associations was observed for the high frequency band (Supplement Fig. S3, Table S6).  

 We amended the preregistered protocol by adding additional possible confounding variables 

to confirm that the main results are robust and withstand correction for age, sex, presence of psychi-

atric diagnoses, seasonal effects (months) and intracranial volume (Supplement Table S3). More-

over, robustness of our findings was also confirmed in the specification curve analysis 34 that 

showed stability of the effects with respect to different model specification strategies (Supplement 

Figure S10, S11). 

 When considering the indexes of the UK’s fifteen top trading partners 35, a similar pattern of 

associations as the one for FTSE100 was observed for the equivalent local European indexes (e.g. 

German GDAXI, Dutch АЕХ, French FCHI) but was of smaller magnitude (Fig. 4). The associa-

tions further declined or had different directions for markets that were more distant in a socio-

economical dimension (as also reflected in a weaker correlation with FTSE100), including the ref-

erence Shanghai Composite Index (SSEC).  Importantly, the results also withstood correction for 

these indexes (Supplement Table S4), which implies that the local economic performance captured 

by the FTSE100 exhibits a specific association with the characteristics of the scanned UK popula-

tion. 
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Fig. 4. Pattern of brain-market associations for different capital market indexes. Strongest asso-
ciations were found for the UK market index (FTSE100). Japanese and Singapore and Hong Kong 
indexes also exhibited a similar pattern of associations possibly reflecting socioeconomic and geo-
graphic similarity with the UK, whereas Dow Jones Industrial Average (DJA) likely reflects major 
contribution of the United States to the world economy. Chinese index (preregistered as a refer-
ence) had one of the weakest associations with the studied volumetric measures.  FTSE100-IND 
correlations: Pearson correlation of FTSE100 with other investigated indexes. The analyses lever-
aged random linear mixed effects framework with subject as a random effect, as a subset (n=1427) 
of the study subjects was scanned twice. 
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 Regarding causality, the most widely accepted hypothesis states that population mood and 

well-being are impacted by market via effects on the socioeconomic environment 4,6,26. These ef-

fects, heavily reinforced by media, represent an index for variables like fluctuations in house prices 
36 and unemployment 37. They can also be considered as threat signals that subsequently impact 

brains and emotional states of the population 10. Another related hypothesis from socionomics is 

currently growing in popularity. It puts forward the idea of “social mood” as a herding-driven 

emergent state that originates from population dynamics and subsequently drives global processes, 

including economic crises, wars, art and fashion 1,2. According to this hypothesis, social mood is an 

inherently hidden state of the society. It is related (but not identical) to the mood of individuals that 

such a group consists of. This hypothesis is conceptually supported by the data acquired in small-

scale experimental studies demonstrating involvement of reward and fear circuits in future financial 

decisions 38–40. Of importance for the present discussion, this hypothesis considers stock market 

dynamics as a valuable “metric stick” of the social mood and global societal dynamics 1. 

To begin to further investigate these relationships, we evaluated associations with time-lagged 

Pearson correlation. We identified that brain volumes correlate higher with earlier market prices. 

The correlation remains significant for approximately one year and then gradually decays (Fig. 5). 

While an autocorrelation, as expected, is present in the stock market time-series 41 (Supplement 

Table S7), the fact that earlier economic data peaks with the brain volume implies that the market 

events may be antecedent to the brain volume fluctuations, offering initial evidence that the market 

“impacts” the brain, mood, and well-being. The same analyses were carried out on the monthly 

scale yielding similar results (Supplement Fig. S4) and also for the mood data with the FTSE100, 

although no clear antecedent relationship could be drawn for the latter (Supplement Fig. S5).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2021. ; https://doi.org/10.1101/2020.10.07.329201doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.329201
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Fig. 5. Pearson correlations for the brain and FTSE100-lagged data averaged over days. Trans-
parent lines represent individual regions whereas thick lines represent medians of the correlations. 
Dotted boundaries represent critical r-values for α=0.001. The plot represents magnitudes of asso-
ciations between brain data at the date of scanning and the FTSE100 index shifter forward (right) 
and backward (left) in time. Note a reversed peak for earlier dates reflective of autocorrelations. 

 
 Despite the fact that Toda-Yamamoto implementation of Granger Causality tests specifically 

designed for serially correlated data 42 provided somewhat stronger support in favour of a causal 

link “Market impacts Population Brain/Mood” (Supplement Tables S8 and S9), a caution is still 

advised when interpreting these analyses due to scale-free properties of the investigated time-series 

(Fig 6). To illustrate this point, we first show the absence of any significant effects after shuffling 

the dates (Supplement Table S10, column 1), but appearance of residual associations for the time-

shifted data (Supplement Table S10, column 2, also seen on Fig 5). Importantly, simulating stock 

market data with 1/f noise is capable of producing effect-sizes of similar magnitude (Supplement 

Table S10, column 3), pooled effect of which, however, converges to zero due to inconsistency of 

directions in the estimated associations (Supplement Fig. S12), and, unlike the main results, also 

lly 
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disappear after adjusting for other stock market indexes (Supplement Table S10, column 4), con-

firming that the main effect is not driven by a randomly-seeded 1/f noise. Moreover, we demon-

strated that the magnitude of the brain-market links (measured as median squared root correlations) 

is related to economic and sociocultural ties of the UK to other countries 35,43 (Supplement Fig S6 

and S7) and that no other global candidate metrics with 1/f properties (UK seismic activity and 

mortality rates) exhibit an equivalent level of specificity with respect to the investigated variables 

(Supplement Fig S9). 

 Due to self-similarity properties identified in the data (Fig 6, right panel), we decided to 

conduct a follow-up series of noise simulation experiments. Simulating brain data with uniform and 

gaussian noise failed to induce the afore-mentioned correlations with FTSE100, but, as expected, 

they were more likely to be discovered for the brain data simulated with 1/f noise (Fig 6, left panel).

   

 
 
Fig 6. Noise simulation experiments and autocorrelation function density plots. LEFT: Uniform 
and gaussian noise simulations failed to produce the effect sizes of equivalent (rootsquared) magni-
tude to the one found in the present study (top). However, 1/f noise was capable of inducing such 
associations (bottom). Note that we intentionally used root-squared estimates to illustrate these 
effects. Without this step, all of the estimates from multiple noise simulations converge to zero 
(Supplement Fig. S12), unlike the reported results showing consistent directionality in different 
time-bins and three independent samples.  
RIGHT: Autocorrelation function (ACF) density plots demonstrating scale-free properties of the 
stock market data most similar to the ones of 1/f noise (pink and red). 
 
 Therefore, it appears so that scale-free properties are observed at different levels of popula-

tion dynamics, which is reflected in fluctuations of stock markets, mood and brains. To confirm that 

the effects still hold after accounting for scale-free noise, we repeated the simulations of brain data 

d 

l). 

at 
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with 1/f noise and matched it with the stock markets of the UK’s 15 top trading partners. We then 

subtracted the yielded Pearson correlations from the real ones (prior to calculating the medians) 

and, as expected, the effect sizes only became larger (Supplement Fig S7 B). Moreover, a negative 

association was also identified for a number of sociocultural distances of the UK from 17 countries 

using data from Liu et al, 2018 43 (Supplement Fig S7). All of the above supported Casti’s hy-

pothesis of stock markets as a useful metric stick for global societal dynamics 1. 

 There is a number of important considerations that must be taken into account when inter-

preting our results. First, violation of random sampling assumptions can potentially occur in large-

scale datasets collected over long time-periods, including the UK Biobank data 44. It is worth not-

ing, however, that our results survived all of the undertaken adjustments for potential analytical 

biases and potential confounds, including research site, age, sex, linear and non-linear effects of 

time, patient status, other stock market indexes, intracranial volume, as well as all possible combi-

nations of the selected confounds in the specification curve analyses 34. However, if these assump-

tions are, indeed, consistently violated across different time-bins and dataset scales, resulting in the 

same effects in different samples, including longitudinal single-subject studies, this is already an 

important finding implying that the investigated effects are big enough to impact complex behav-

ioural patterns, including enrolment likelihood of individuals with certain psychological and bio-

logical traits, or at the very least represent an important confound that must be taken into account 

when designing any studies (cross-sectional or longitudinal) that use data collected over long peri-

ods 27. The same caution applies to potential presence of scanner drifts. And whilst it is theoretically 

possible for them to exhibit similar dynamics to the one of stock markets, we address this limitation 

by showing similar associations with the non-MRI (behavioural) data. 

 Another important point of discussion is the topic of randomness and the origin of scale-free 

noise in complex systems. Modern studies suggest that the stock market behaviour should not be 

modelled as a ‘random walk’ (i.e. having Gaussian distribution), but rather as a non-Gaussian proc-

ess with random ‘jumps’ resulting in fat-tailed distributions 45. In such cases, leveraging linear 

methods to estimate associations between two variables may not represent the best solution. Recog-

nizing importance of this point we conducted a set of analyses for varying time-windows and also 

replicated our results using mutual information criterion, which, as some may argue, may be a more 

potent strategy for detecting these non-linearities.  

 Finally, we would like to highlight again that the investigated market variable (FTSE100 

index) does not represent the stock market per se, but rather reflects a current socioeconomic state 

of the society.  

 Our study presented evidences for self-organized criticality present in stock market behav-

iour supporting the socionomic hypothesis of “social mood” as a driving factor in global societal 
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processes. Here we show that these dynamics may originate in scale-free temporal dynamics present 

in many complex systems in nature 41.  

 Despite being small on an individual level, these effects may have a large influence on a 

population level, as the previous studies have suggested 4–8,10. This is underscored by our objective 

measure of diastolic blood pressure that in average differed five units between the samples meas-

ured during the lowest market outcomes compared with the ones measured during the highest mar-

ket outcomes. This effect may have clinical relevance on a population level. Moreover, our results 

suggest that some sub-populations are particularly vulnerable to economic turbulences, such as in-

dividuals with low and very high income. Understanding these complex but nevertheless important 

processes is of crucial relevance for sustainable and well-being-oriented economic development 
46,47. 
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Supplementary Materials 
 

Materials and Methods 

Preregistration 

The study was conducted in accordance with the Declaration of Helsinki on Ethical Principles for 

Medical Research Involving Human Subjects 48 and after approval of the submitted research pro-

posal by the UK Biobank (Application ID #62895) was preregistered at the Open Science Founda-

tion Framework database (https://osf.io/h52gk) prior to data transfer. The primary submitted hy-

pothesis was that “global market fluctuations exhibit significant associations with structure and 

function of brain regions of the fear circuit”. The present set of analyses was fully focused on the 

structural data. 

 

Subjects 

The current project targeted a population of British citizens from the UK Biobank. The main sample 

consisted of 41,182 data-points from a total of 39,755 UK citizens who completed MRI sessions at 

least once and was assessed over a period of approximately 4.5 years (between 2014-05-02 and 

2019-10-31). The larger sample consisted of 547,005 data-points (479,791 individuals) and was 

used in the analyses of mood-market relationships (See Table S1 for descriptive statistics of the two 

samples). 

 

MRI data 

Brain scans were collected on a 3 Tesla scanner Siemens Magnetom Skyra Syngo MR D13. Struc-

tural T1 3D scans were collected adhering to a standardized protocol as described in the UK Bio-

bank materials (see https://www.fmrib.ox.ac.uk/ukbiobank/protocol/index.html): TA: 4:54, voxel 

size:1.0×1.0×1.0 mm. 

Structural scans were preprocessed employing automated steps as implemented in FSL, yielding 

region-specific measures of cortical and subcortical volumes parcellated according to the Harvard-

Oxford atlas (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). 

 The main analysis was focused on 14 regions-of-interest that were selected in advance as the 

ones playing major roles in affective processing: amygdala, nucleus accumbens, insula, anterior, 

subcallosal and dorsal cingulate and lateral orbitofrontal cortical areas.  

 

Market Data 
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Historical daily time-series data of FTSE100 stock market index was extracted from yahoo finance 

website (https://finance.yahoo.com/) and matched with fluctuations of structural brain measures of 

the studied population on each of the scanning days.  

 The preregistered market outcome was The Financial Times Stock Exchange 100 Index 

(FTSE100), a widely accepted metric of UK economic performance characterizing stock price of 

the top 100 UK companies with biggest revenue. 

 For the analyses we used the daily adjusted close value that represents the closing price after 

adjustments for all applicable splits and dividend distributions adhering to Center for Research in 

Security Prices (CRSP) calculation standards. No additional transformations were applied on the 

extracted time-series in the results reported in the main text. However, the stability of the investi-

gated associations was later confirmed on the de-trended time-series. As a part of the exploratory 

analyses, we also looked into low- and high-frequency bands of the market time-series deconvolved 

with fast Fourier transform. 

 

Analysis 

Initially, we planned to employ classical regression methods to estimate linear relationships be-

tween brain and stock market data, followed by a correction for potential confounders. However, 

after discovering that we will receive access to subjects that were scanned twice (n=1427) we de-

cided to take advantage of this by employing methods of linear mixed-effects modelling introducing 

“subject” as a random effect variable. All of the main analytical steps, however, were further re-

peated with classical regression methods confirming the presented results. 

 Causality tests were applied on the primary outcomes to investigate two alternative causal 

paths of the studied processes: H1: “brain impacts market” and H2: “market impacts brain”. 

The workflow adhered to the Toda-Yamamoto implementation of Granger Causality for non-

stationary data 42 and consisted of: 1) testing for integration and determining max order of integra-

tion, 2) setting up a VAR-model in levels for the non-differenced data, 3) determining the lag 

length, 4) Portmanteau test for residual serial correlation, 5) adding the maximum order of integra-

tion to the number of lags, generating the augmented VAR-model, 6) application of the Wald χ² test 

of the two alternative augmented models: “market impacts brain” and “brain impacts market”.  

 All statistical analyses were performed using R programming language. Linear mixed-

effects models and Toda-Yamamoto Granger causality analyses were implemented using ‘nlme’ 

and ‘vars’ packages, respectively. 
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Figures 
 

 
 
Fig. S1. Illustration of the investigated period. Mood data was available for a larger period of 
approximately 14 years and was missing for a number of time points (interpolated on the figure, but 
not in the main analyses). The plot illustrates dynamics of the UK stock market (FTSE100), unem-
ployment levels (UE, source: http://www.ons.gov.uk and self-reported negative emotions (NE) for 
this period. MRI data was available for a period of approximately 5.5 years. 
  

ut 
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Fig. S2. Associations between FTSE100 and grey matter volumes: whole-brain analysis. 
The associations were estimated employing mass-univariate strategy following correction for 
multiple testing with false discovery rate. Whilst the effects were not specific to the selected regions 
that are proven components of the fear/reward network, it can be noted that the largest effects are, 
indeed, seen in the areas playing key roles in affective and motor processing. 
 
 
 

 

 

 

 

 

 

 

 

 

Fig. S3. Frequency band analysis. FTSE100 time-series deconvolved with Fast Fourier Transform 
(FFT) into low- and high-frequency bands, which were further analyzed in relation to the brain and 
mood data employing methods of linear modeling. 

 

s 
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Figure S4. Pearson correlations for the brain and FTSE100-lagged data averaged over months. 
Transparent lines represent individual regions whereas thick lines represent medians of the corre-
lations. Dotted boundaries represent critical r-values for α=0.001. 
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Figure S5. Correlations over days and months. Pearson correlations for the mood and FTSE100-
lagged data averaged over days (left) and months (right). Dotted boundaries represent critical r-
values for α=0.001. 
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Figure S6. Association between Brain-Market link and economic ties with 15 UK’s top trading 
partners. The brain-market link measured as median Pearson correlation (r) for all of the 12 re-
gions that exhibited significant associations in the main analysis was matched with markets of 15 
UK’s top trading partners. The strength of economic ties was measured as a relative percent of all 
exports accessed from www.worldstopexports.com.  Here we report the associations for the raw 
brain-market links. A), as well as the results following correction for 1/f noise. B), which entailed 
1) simulation of the brain data with pink noise and 2) subtraction of the yielded correlations from 
the real data prior to calculating the medians. As expected, this procedure slightly increased the 
effect-sizes by increasing signal-to-noise ratio. Country labels: BE – Belgium, CN – China, FR – 
France, DE – Germany, HK – Hong Kong, IE – Ireland, IT – Italy, JP – Japan, NL – Netherlands, 
PL – Poland, SG – Singapore, ES – Spain, AE – United Arab Emirates, US – United States. 
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Figure S7. Association between Brain-Market link and sociocultural distances of the UK from 17 
countries using data from Liu et al, 2018 43. The brain-market link was measured as median Pear-
son correlation (r) for all of the 12 regions that exhibited significant associations in the main 
analysis.  The sociocultural distance was calculated by Liu et al based on music (MusicPrefDist), 
artist (ArtistPrefDist) and genre preferences (MusicPrefDist). A negative relationship was found 
for the Brain-Market link and the afore-mentioned distances, i.e. the stronger the link the shorter 
the distance. The original study was focused on the following 20 countries: the United States (US), 
Russia (RU), Germany (DE), the United Kingdom (UK), Poland (PL), Brazil (BR), Finland (FI), 
Netherlands (NL), Spain (ES), Sweden (SE), Ukraine (market data not available), Canada (CA), 
France (FR), Australia (AU), Italy (IT), Japan (JP), Norway (NO), Mexico (MX), Czech Republic 
(market data not available), and Belarus (market data not available). The genre labels are artist-
based and correspond to those in Allmusic, a major online music repository. 
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Figure S8. Correlation between amygdala volume and FTSE100 in different study periods. The 
timeline was split into 6 equal bins (11 months each) and correlations were calculated for each bin 
separately. The figure shows that the correlations are strongest during and following phase transi-
tion events, i.e. when the change and variability of stock market dynamics is most pronounced. 
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Figure S9. FTSE100 and alternative global candidate metrics with 1/f properties. The correlation 
plots show that compared to other global metrics FTSE100 exhibited strongest association with the 
investigated variables. All time-series were converted to a weekly scale for consistency (original 
scale of the public UK mortality data from www.mortality.org). Public UK seismic activity data 
measured on Richter magnitude scale (EQ Mtd) was accessed via earthquakes.bgs.ac.uk. 

 

n 
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Figure S10. Specification curve analysis of the most and least significant brain regions from the 
main results. The analysis adhered to the Simonsohn’s protocol  34 focusing on the brain regions 
that had the strongest (amygdala) and weakest (paracingulate cortex) association with the 
FTSE100 index. The protocol entailed: 1) specification all reasonable models (to introduce all of 
the investigated nuisance covariates and their combinations), 2) plotting specification curves show-
ing estimates/model fits as a function of analytic decisions, 3) testing how consistent the curve re-
sults are against a null hypothesis. The plot shows robustness of the investigated effects with re-
spect to a wide variety of model specification strategies (i.e. most of the covariate combinations 
resulted in statistically significant estimates). All of the tested models fitted the data substantially 
better than a null model according to the AIC-criterion except for the one specifying non-adjusted 
effects of the FTSE100 on the paracingulate region, which, in line with the reported results, was 
equivalent to the null model (intercept only). All possible nested models were generated using the 
dredge() function from the MuMIn package. 
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Figure S11. Specification curve analysis of the associations between FTSE100 and all of the in-
vestigated non-MRI variables: 14 years. For the present analysis FTSE100 was specified as a de-
pendent variable in order to investigate independent variance contribution of all of the investigated 
non-MRI variables-of-interest (happiness, negative emotions, alcohol intake and diastolic blood 
pressure) and a number of confounders (non-UK stock markets, age, sex, psychiatric diagnosis, 
assessment center, seasonal effects) for the extended (14-year) period of the study. The plot shows 
stability of the investigated effects. All of the tested models fitted the data substantially better than a 
null model according to the AIC-criterion. A random 50% sample of all possible nested models 
were generated using the dredge() function from the MuMIn package. 
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Figure S12. Raw noise simulation experiments.  
The plot shows convergence of the estimated effect-sizes to zero when no rootsquared-
transformation is applied. 
 

Figure S13. Detrended results in the MyConnectome and PPMI datasets. 
The plots demonstrate substantial reduction of effect-sizes with sustained directionality of the asso-
ciations. 

Tables 

 
 
  Mood Brain (main) 

Period, years (span) 2006-03-13 - 2020-03-13 2014-05-02 - 2019-10-31 

Unique subjects / N, total  479,791/ 547,005 39,755/41,182 

Age, years 57.39(±8.35) 63.67(±7.54) 

Sex, Males/Females, %Males 251635/295370 | 46% M 19434/21748 | 47.19% M 

Education, years 16.43(±3.31) 16.97(±2.63) 

Intelligence score* 6.17(±2.14) 6.63(±2.06) 
* Unweighted sum of the number of correct answers given to the 13 fluid intelligence questions. 

Table S1. Study samples: descriptive statistics 

 
 

βstd T(df) pfdr Raw DayAVG MonthAVG 
Negative Emotions 
(total) 

-
0.09 

-
27.85(7905) <0.001 -0.106(-0.113,-0.099) -0.23(-0.275,-0.185) -0.598(-0.717,-0.445) 

Irritability 
-

0.03 -7.58(7905) <0.001 - -0.068(-0.116,-0.021) -0.202(-0.394,0.006) 
Sensitivity/hurt feel-

ings 
-

0.09 
-

25.51(7905) <0.001 - -0.233(-0.277,-0.187) -0.467(-0.616,-0.287) 
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Nervous feelings 
-

0.06 
-

16.69(7905) <0.001 - -0.13(-0.177,-0.083) -0.406(-0.567,-0.216) 
Worrier/anxious 

feelings 
-

0.06 
-

18.83(7905) <0.001 - -0.171(-0.217,-0.124) -0.325(-0.5,-0.126) 

Happiness 0.06 16.9(7891) <0.001 0.063(0.056,0.07) 0.156(0.109,0.202) 0.348(0.151,0.519) 

 
Table S2. Subjective well-being and FTSE100 scores: 5.5-year period. The table shows stability of 
the market-mood relationships for the 5.5-year period (the same as the one investigated in the main 
analysis of brain-market relationships);  βstd  - standardized β coefficients, pfdr – p-values corrected 
for multiple testing with false discovery rate. Subcomponents of negative emotions are binary vari-
ables (-), Day/MonthAVG – data averaged by days and months.  
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Region βstd T776 pfdr 

L Amygdala -0.049 -6.24 <0.001 

R Amygdala -0.046 -5.76 <0.001 

L Accumbens -0.021 -2.92 0.008 

R Accumbens -0.025 -3.44 0.002 

L LOFC -0.022 -3.89 0.001 

R LOFC -0.009 -1.53 ns 

L Insula 0.016 2.9 0.008 

R Insula 0.02 3.47 0.002 

L Subcallosal 0.013 2.29 0.042 

R Subcallosal 0.011 1.82 ns 

L Anterior Cingulate -0.002 -0.26 ns 

R Anterior Cingulate 0.005 0.78 ns 

L Paracingulate 0.01 1.63 ns 

R Paracingulate 0.011 1.78 ns 

 
Table S3. Main results adjusted for intracranial volume, demographics, psychiatric diagnosis 
and seasonal effects. The table shows stability of the identified relationships when controlling for 
age, sex, psychiatric diagnosis, seasonal effects (months) and intracranial volume (cerebrospinal 
fluid, white and grey matter); ns – non-significant.  
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 Linear Mixed-Effects Effect-sizes, Pearson r (95% C.I.) 

Region βstd T(df) pfdr Raw, n=30,775 DayAVG, n=1299 MonthAVG, n=66 

L Amygdala -0.056 -4.2(878) <0.001 -0.01(-0.021.0.002) -0.052(-0.106.0.002) -0.131(-0.362.0.114) 

R Amygdala -0.061 -4.96(878) <0.001 -0.012(-0.023.-0.001) -0.066(-0.12.-0.012) -0.206(-0.427.0.038) 

L Accumbens -0.014 -1.1(878) 0.311 -0.001(-0.013.0.01) -0.002(-0.057.0.052) -0.029(-0.269.0.214) 

R Accumbens -0.01 -0.75(878) 0.488 -0.002(-0.013.0.009) -0.004(-0.058.0.051) -0.052(-0.29.0.192) 

L LOFC 0.004 0.37(878) 0.713 <0.001(-0.011.0.011) 0.005(-0.049.0.059) 0.01(-0.233.0.251) 

R LOFC 0.022 1.81(878) 0.088 0.003(-0.008.0.014) 0.037(-0.018.0.091) 0.101(-0.144.0.335) 

L Insula 0.069 5.64(878) <0.001 0.01(-0.001.0.021) 0.078(0.024.0.132) 0.197(-0.047.0.419) 

R Insula 0.077 6.28(878) <0.001 0.013(0.001.0.024) 0.089(0.034.0.142) 0.195(-0.049.0.417) 

L Subcallosal 0.056 4.52(878) <0.001 0.01(-0.001.0.021) 0.084(0.03.0.138) 0.203(-0.041.0.424) 

R Subcallosal 0.048 3.88(878) <0.001 0.009(-0.002.0.02) 0.083(0.029.0.137) 0.191(-0.053.0.414) 

L Anterior Cingulate 0.044 3.79(878) <0.001 0.009(-0.002.0.02) 0.071(0.017.0.125) 0.133(-0.112.0.364) 

R Anterior Cingulate 0.047 3.93(878) <0.001 0.009(-0.002.0.02) 0.066(0.012.0.12) 0.153(-0.092.0.381) 

L Paracingulate 0.047 3.92(878) <0.001 0.009(-0.002.0.021) 0.076(0.021.0.13) 0.211(-0.033.0.431) 

R Paracingulate 0.041 3.4(878) 0.001 0.008(-0.003.0.019) 0.067(0.013.0.121) 0.176(-0.069.0.401) 

 
Table S4. Main effects PCA-adjusted for the rest of the studied stock markets (first 5 principal 
components). The table shows stability of the identified relationships when controlling for stock 
markets of the UK’s 15 top trading partners 35, measured as first 5 principal components extracted 
from the merged time-series. 
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Interaction (linear term) Main Effect 

β T(df) pfdr β T(df) pfdr 

L Amygdala 0.01 1.24(776) 0.516 0.03 4.39(776) <0.001 

R Amygdala <0.001 0.65(776) 0.887 0.01 1.9(776) 0.06 

L Accumbens <0.001 -0.81(776) 0.832 0.08 14.32(776) <0.001 

R Accumbens <0.001 -0.16(776) 0.951 0.09 15.9(776) <0.001 

L LOFC -0.01 -1.61(776) 0.429 0.06 12.35(776) <0.001 

R LOFC* -0.01 -2.87(776) 0.05 0.06 11.92(776) <0.001 

L Insula <0.001 -0.25(776) 0.951 0.02 4.32(776) <0.001 

R Insula <0.001 0.4(776) 0.951 0.02 3.73(776) <0.001 

L Subcallosal -0.01 -2.11(776) 0.211 0.02 4.39(776) <0.001 

R Subcallosal -0.01 -1.28(776) 0.516 <0.001 -0.91(776) 0.363 

L Anterior Cingulate <0.001 0.33(776) 0.951 -0.03 -5.88(776) <0.001 

R Anterior Cingulate <0.001 -0.06(776) 0.951 -0.03 -5.55(776) <0.001 

ICV -0.01 -1.1(777) 0.273 0.15 28.52(777) <0.001 

*Post-hoc correlation tests revealed the largest effect-sizes in lowest and highest-income citizens 
 

Income (n) Pearson r (95% C.I.) P-value 

Less than 18,000£ (4,557) 
-0.045(-0.078,-0.012) 0.008 

18,000-39,999£ (10,061) -0.018(-0.04,0.005) 0.124 

39,000-51,999£ (11,219) -0.033(-0.055,-0.012) 0.002 

52,000-100,000£ (8,570) -0.027(-0.052,-0.002) 0.037 

Greater than 100,000£ (2,699) -0.067(-0.11,-0.024) 0.003 

   

Table S5. Market-by-income interaction effect on the investigated volumetric brain measures, as 
well as the main of income. 
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 Low Frequency High Frequency 

  T881 Puncor T881 Puncor 

L Amygdala -9.59 <0.001 -0.63 ns 

R Amygdala -11.71 <0.001 0.91 ns 

L Accumbens -9.78 <0.001 -0.44 ns 

R Accumbens -11.25 <0.001 0.33 ns 

L LOFC -5.06 <0.001 -2.02 0.043 

R LOFC -3.06 0.002 -2.12 0.034 

L Insula 11.96 <0.001 -1.46 ns 

R Insula 10.62 <0.001 -1.86 0.06 

L Subcallosal 7.01 <0.001 -2.25 0.02 

R Subcallosal 6.16 <0.001 -1.89 0.059 

L Anterior Cingulate 6.27 <0.001 -0.19 ns 

R Anterior Cingulate 6.23 <0.001 -0.44 ns 

L Paracingulate 1.91 0.056 -0.93 ns 

R Paracingulate 2.64 0.008 -2.17 0.034 

 

Table S6. Brain-market associations: FTSE100 time-series deconvolved with Fast Fourier 
Transform (FFT) into low- and high-frequency bands. Effects of low and high FTSE100 
frequencies were estimated in one linear mixed-effects model assessing their independent 
contributions. The table shows that the main results are primarily driven by low-frequency 
oscillations, but high-frequency bands also exhibit some independent contribution. 
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 LM: Brain~Market LM: Market~Brain 

Lag AC D-W p AC D-W p 

1 0.05 1.898 0.004 0.851 0.295 <0.001 

2 0.002 1.994 0.82 0.842 0.313 <0.001 

3 0.014 1.966 0.344 0.841 0.312 <0.001 

4 0.017 1.958 0.296 0.84 0.314 <0.001 

5 0.022 1.948 0.162 0.837 0.318 <0.001 

6 0.029 1.932 0.062 0.837 0.318 <0.001 

7 0.054 1.882 0.002 0.839 0.313 <0.001 

8 0.095 1.8 <0.001 0.844 0.303 <0.001 

9 0.004 1.981 0.636 0.829 0.334 <0.001 

10 <0.001 1.989 0.908 0.827 0.337 <0.001 

 
Table S7. Autocorrelations in the investigated time-series The Durbin-Watson (D-W) test revealed 
significant autocorrelations (ACs) present in the day-averaged population brain and market data. 
The ACs were detected in both time-series but were particularly strong in the stock market data 
(Hurst component for the FTSE100 data was estimated at 0.87, suggesting presence of long-term 
positive autocorrelation).  
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H1: 
“Population Brain impacts 

Market” 

H2: 
“Market impacts Population Brain” 

Portmanteau 
Stability Test 

L Amygdala 
χ²(df)=21.72(5), p=0.001 χ²(df)=26.28(5), p<0.001 L=5, χ²(df)=50.44(44), p=0.234 

R Amygdala 
χ²(df)=26.5(13), p=0.015 χ²(df)=35.76(13), p=0.001 L=13, χ²(df)=13.98(12), p=0.302 

L Accumbens 
χ²(df)=0.43(1), p=0.512 χ²(df)=2.49(1), p=0.115 L=1, χ²(df)=63.65(60), p=0.349 

R 
Accumbens 

χ²(df)=0.13(1), p=0.718 χ²(df)=5.75(1), p=0.016 L=1, χ²(df)=72.39(60), p=0.131 

L LOFC 
χ²(df)=0.5(1), p=0.481 χ²(df)=2.92(1), p=0.087 L=1, χ²(df)=60.35(60), p=0.463 

R LOFC 
χ²(df)=0(1), p=0.996 χ²(df)=0.04(1), p=0.841 L=1, χ²(df)=65.54(60), p=0.291 

L Insula 
χ²(df)=13.57(11), p=0.258 χ²(df)=16.52(11), p=0.123 L=11, χ²(df)=20.86(20), p=0.406 

R Insula 
χ²(df)=13.65(11), p=0.253 χ²(df)=15.38(11), p=0.166 L=11, χ²(df)=25.92(20), p=0.168 

L Subcallosal 
χ²(df)=18.82(8), p=0.016 χ²(df)=16.31(8), p=0.038 L=8, χ²(df)=36.65(32), p=0.262 

R Subcallosal 
χ²(df)=16.54(8), p=0.035 χ²(df)=19.44(8), p=0.013 L=8, χ²(df)=37.55(32), p=0.23 

L Anterior 
Cingulate 

χ²(df)=7.19(5), p=0.207 χ²(df)=20.44(5), p=0.001 L=5, χ²(df)=61.26(44), p=0.043 

R Anterior 
Cingulate 

χ²(df)=0.05(1), p=0.829 χ²(df)=21.41(1), p<0.001 L=1, χ²(df)=116.67(60), p<0.001 

 
Table S8. Causal relationships between the studied brain variables and market oscillations (daily 
scale). For all the regions that passed the Portmanteau stability test for residual serial correlation 
(highlighted in bold), hypothesis 2 (H2: “Market impacts Polulation Brain”) received slightly more 
support compared to hypothesis 1 (H2: “Population Brain impacts Market”) with the optimal lag 
length (L) determined according to AIC criterion. However, the H2 could not be ruled out, as it was 
also equivalently supported for amygdala and subcallosal cortex. 
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H1:  
“Population Mood im-
pacts Market” 

H2:  
“Market impacts Popula-
tion Mood” 

Portmanteau 
Stability Test 

NegEm χ²(df)=2.38(2), p=0.304 χ²(df)=7.1(2), p=0.029 L=2, χ²(df)=61.64(56), p=0.281 

Irritability χ²(df)=3.21(3), p=0.36 χ²(df)=9.59(3), p=0.022 L=3, χ²(df)=63.43(52), p=0.133 

Sensitivity/hurt feelings χ²(df)=1.36(1), p=0.243 χ²(df)=10.73(1), p=0.001 L=1, χ²(df)=69.56(60), p=0.187 

Nervous feelings χ²(df)=4.03(2), p=0.133 χ²(df)=0.16(2), p=0.925 L=2, χ²(df)=79.12(56), p=0.023 

Worrier/anxious feelings χ²(df)=0.06(1), p=0.803 χ²(df)=10.4(1), p=0.001 L=1, χ²(df)=86.02(60), p=0.015 

Happiness χ²(df)=4.22(2), p=0.121 χ²(df)=15.31(2), p<0.001 L=2, χ²(df)=69.92(56), p=0.1 

 
 
Table S9. Causal relationships between the studied mood variables and market oscillations (daily 
scale, 14 years).For all the regions that passed the Portmanteau stability test for residual serial 
correlation (highlighted in bold), hypothesis 2 (H2: “Market impacts Polulation Mood”) received 
consistently more support compared to hypothesis 1 (H2: “Population Mood impacts Market”) 
with the optimal lag length (L) determined according to AIC criterion. Measures that passed the 
Portmanteau stability test for residual serial correlation are highlighted in bold. L - optimal lag 
length determined according to AIC criterion. 
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Shuffled Shifted 1/f Noise* 1/f Noise* (PCA-corrected*) 

βstd T Pfdr βstd T Pfdr βstd T Pfdr βstd T Pfdr 

L Amygdala 0.002 0.38(810) 0.928 -0.015 -2.81(758) 0.006 -0.005 -0.93(758) 0.35 0.009 1.34(563) 0.261 

R Amygdala -0.004 -0.71(810) 0.919 -0.012 -2.28(758) 0.026 -0.007 -1.2(758) 0.266 0.003 0.45(563) 0.7 

L Accumbens -0.005 -0.89(810) 0.919 -0.052 -10.49(758) <0.001 -0.021 -3.88(758) <0.001 -0.004 -0.56(563) 0.666 

R Accumbens <0.001 0.09(810) 0.928 -0.053 -10.67(758) <0.001 -0.026 -4.75(758) <0.001 -0.009 -1.42(563) 0.261 

L LOFC -0.002 -0.51(810) 0.919 -0.028 -8.37(758) <0.001 -0.018 -3.82(758) <0.001 -0.007 -1.31(563) 0.261 

R LOFC <0.001 -0.1(810) 0.928 -0.036 -10.74(758) <0.001 -0.023 -4.84(758) <0.001 -0.008 -1.51(563) 0.249 

L Insula -0.002 -0.53(810) 0.919 -0.002 -0.49(758) 0.623 -0.008 -1.78(758) 0.113 -0.017 -2.9(563) 0.046 

R Insula -0.001 -0.15(810) 0.928 -0.006 -1.63(758) 0.111 -0.008 -1.68(758) 0.118 -0.014 -2.51(563) 0.046 

L Subcallosal -0.003 -0.54(810) 0.919 -0.022 -6.04(758) <0.001 -0.016 -3.35(758) 0.002 -0.015 -2.61(563) 0.046 

R Subcallosal -0.003 -0.53(810) 0.919 -0.012 -3.3(758) 0.002 -0.01 -2.04(758) 0.069 -0.014 -2.39(563) 0.051 

L Anterior Cingulate 0.003 0.74(810) 0.919 0.01 3.23(758) 0.002 0.004 1.05(758) 0.317 -0.004 -0.7(563) 0.602 

R Anterior Cingulate 0.005 1.07(810) 0.919 0.009 2.81(758) 0.006 0.007 1.68(758) 0.118 -0.001 -0.25(563) 0.805 

L Paracingulate -0.001 -0.24(810) 0.928 -0.031 -9.81(758) <0.001 -0.018 -4.13(758) <0.001 -0.009 -1.7(563) 0.225 

R Paracingulate -0.002 -0.51(810) 0.919 -0.031 -9.61(758) <0.001 -0.021 -4.72(758) <0.001 -0.015 -2.75(563) 0.046 

Intracranial Volume -0.004 -1.16(810) 0.919 -0.033 -17.86(758) <0.001 -0.024 -7.51(758) <0.001 -0.006 -1.5(563) 0.249 

 
Table S10. Effects of autocorrelations on the studied associations. The table demonstrates effects 
of autocorrelations present in stock market time-series. The effects are not present in the shuffled 
data, but appear for the 1.5-years-shifted market time-series. The same effect (including directional 
relationships) can be induced with 1/f noise, but it disappears after adjusting the results for the rest 
of the studied non-UK markets (first 5 Principal Components).  
*Note that when reporting effect-sizes of 1/f noise, we focused on a single simulation. Estimates 
from multiple simulations ultimately converge to zero (Supplement Fig. S12) due to inconsistent 
directionality of the associations. 

 

 

Raw DayAVG MonthAVG 
Negative Emotions (total) 0.003/0.004 0.254/0.049 0.461/0.136 

Irritability - 0.172/0.059 0.23/0.178 

Sensitivity/hurt feelings - 0.262/0.081 0.522/0.255 

Nervous feelings - 0.216/0.078 0.415/0.066 

Worrier/anxious feelings - 0.224/0.047 0.459/0.197 

Happiness 0.001/0.002 0.145/0.078 0.243/0.061 

Diastolic blood pressure 0.007/0.014 0.23/0.049 0.363/0.134 

Alcohol (intake frequency) 0.002/0.003 0.132/0.056 0.236/0.093 

Alcohol (composite score intake) 0.008/0.015 0.167/0.064 0.36/0.058 

L Amygdala 0.018 0.111 0.317 

R Amygdala 0.018 0.119 0.314 

L Accumbens 0.018 0.096 0.432 

R Accumbens 0.019 0.106 0.556 

L LOFC 0.017 0.085 0.191 

R LOFC 0.016 0.067 0.173 

L Insula 0.016 0.091 0.294 
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R Insula 0.016 0.078 0.209 

L Subcallosal 0.015 0.083 0.138 

R Subcallosal 0.014 0.072 0.138 

L Anterior Cingulate 0.016 0.1 0.267 

R Anterior Cingulate 0.016 0.091 0.256 

L Paracingulate 0.016 0.066 0.051 

R Paracingulate 0.017 0.066 0.143 

 
Table S11. Associations between FTSE100 and the main investigated variables tested with mu-
tual information criterion. Two values per test are provided for the non-brain variables: 14 years 
(full dataset) / 5.5 years (MRI subsample). Subcomponents of negative emotions are binary vari-
ables (-), Day/MonthAVG – data averaged by days and months. 
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