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A novel algorithm to optimize generalized gamma
distributed multiplicative noise with implications on

speckle removal from OCT images
Divya Varadarajan, Caroline Magnain, Morgan Fogarty, David A. Boas, Bruce Fischl, and Hui Wang

Abstract—Optical coherence tomography (OCT) images are
corrupted by multiplicative generalized gamma distributed
speckle noise that significantly degrades the contrast to noise
ratio (CNR) of microstructural compartments in biological ap-
plications. This work proposes a novel algorithm to optimize
the negative log likelihood of the spatial distribution of speckle.
Specifically, the proposed method formulates a penalized negative
log likelihood (P-NLL) cost function and proposes a majorize-
minimize-based optimization method that removes speckle from
OCT images. The optimization reduces to solving an iterative
gradient descent problem. We demonstrate the usefulness of the
proposed method by removing speckle in OCT images of uniform
phantoms with varying scattering coefficients and human brain
tissue.

Index Terms—Denoising, Generalized Gamma Distribution,
Multiplicative noise, Optical Coherence Tomography, Speckle
noise.

I. INTRODUCTION

Optical coherence tomography (OCT) is an imaging tech-
nique that uses low temporal coherence light to obtain cross
sectional images of an object at 1 - 20 µm resolution. The
high resolution of OCT images and its ability to image
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in 3 dimensions make OCT an attractive imaging modality
to study microstructure in biological tissue. Several recent
studies have shown that optical properties of OCT images
provide distinctive contrasts for anatomical landmarks [1]–
[3] and clinical biomarkers that are valuable for pathological
diagnosis and monitoring of disease progression and treatment
outcome [4], [5].

The contrast in OCT images of biological tissue mainly
reflects scattering events, which arise due to differences in
refractive index, and backscattering events that result from var-
ious microstructural properties of the tissue compartments [6].
Each microstructure compartment attenuates the light prop-
agating in the tissue with a rate defined by the scattering
coefficient. Estimation of optical properties such as scattering
coefficient in OCT images has been shown useful in numerous
applications, including brain imaging, histology correlation,
and pathology detection [1], [7], [8].

A common problem in contrast visibility and optical prop-
erty estimation is the contamination of OCT images by speckle
noise. Speckle is a form of multiplicative noise that occurs due
to the interference of scattering waves from multiple regions of
the microstructure [9], [10]. Destructive interference reduces
the OCT signal, while constructive interference increases the
intensity, giving speckle a high contrast appearance. Speckle
significantly degrades the contrast-to-noise-ratio (CNR) be-
tween tissue structures and masks features that are similar in
size to it, dramatically reducing the accuracy of quantitative
analysis.

Speckle noise is typically eliminated by spatial averaging
over multiple OCT acquisitions with uncorrelated speckle
patterns [11], [12]. Since ex vivo fixed tissue lacks dynamic
processes, the uncorrelated speckle patterns are created with
different incident wavefronts, angular compounding, frequency
compounding or combining polarization modes. In a recent
study, we used the average of 50 percent overlapping tiles
to reduce speckle noise and achieve large volumetric recon-
struction of ex vivo human brain tissues [2], [3]. The resulting
speckle contrast is inversely proportional to the square root of
number of averages. However, this type of speckle reduction
methods suffers from substantially increased acquisition time.
For example, acquiring 50 percent overlapped data takes four
times longer than acquiring non-overlap data.

A second class of techniques to remove speckle noise can
be broadly referred to as post processing tools that apply
denoising algorithms to the acquired OCT data. The high-
contrast appearance of speckle has led to the usage of filtering-
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based methods [13]–[16] to suppress it. While filtering works
well for homogeneous tissue, it distorts tissue boundaries and
blurs structures, reducing the effective resolution of the image.
Several additive noise-based denoising methods that denoise
the logarithm of the OCT signal have been proposed. Most of
these methods assume zero mean noise which does not hold
for the log transformed speckle distribution, leading to a mean
bias in the denoised signal [17]–[19]. Nevertheless, additive
denoising methods based on non-local means (NLM) [20]–
[22], wavelet transformation [23]–[25] and constrained least
square methods [26]–[28] have been used to remove speckle.
In addition, NLM approaches require repeated similar patches
in an image to perform well [29] which can be problematic
because human brain tissue is highly spatially varying between
1 - 20 µm resolution, wavelet methods can suffer from wavelet
domain artifacts [29] and least squares fidelity is sub-optimal
because it inherently and incorrectly assumes the speckle
distribution to be log normal [9].

This brings us to the final class of maximum likelihood
estimation based that directly optimize the spatial distribution
of speckle. Speckle has been shown to be generalized gamma
distributed by many previous studies [8], [30]–[35]. Several
methods that either approximate the speckle distribution to
Gaussian distribution [29], which does not model speckle
accurately [9], or that optimize special cases of generalized
gamma distribution such as Rayleigh [36]–[38], gamma [19],
[39] and negative exponential [6], [40] distribution that might
not generalize to all biological specimens [30], [35] have been
proposed.

In this paper we propose a novel method that directly
optimizes the generalized gamma distribution. The proposed
method minimizes the negative log likelihood of the general-
ized gamma distribution penalized with a spatial regularization
constraint using the majorize-minimize optimization method
[41], [42]. We show that the overall minimization reduces to
solving an iterative gradient descent procedure of convex cost
functions. While we mainly use a quadratic spatial smoothness
regularization function, the proposed framework is also flexi-
ble to accommodate other convex regularization constraints.
We also show that our method theoretically generalizes to
gamma and negative exponential distributions.

We compare the performance of our proposed method with
the commonly used median filtering method and non local
based Block Matching 3D (BM3D) denoising method [22]
with simulations, phantom and human brain tissue experi-
ments. We demonstrate the generalizability of our approach
to remove speckle across multiple tissue types and multiple
imaging resolution scales.

The paper is organized to briefly describe the background
on speckle likelihood, derive the proposed algorithm called
MM-despeckle, demonstrate speckle removal results, discuss
implications of our approach and present conclusions.

II. BACKGROUND

A. Maximum likelihood estimation (MLE) for denoising ap-
plications

MLE is a commonly used procedure to denoise data. The
main assumption for MLE methods is that we can model

the likelihood distribution PY |X(y;x) of the acquired data.
Broadly speaking, MLE methods find an estimate x̂ of the true
signal x from the measured data y by maximizing the likeli-
hood distribution. This is generally achieved by minimizing a
penalized negative log likelihood (P-NLL) cost function,

x̂ = arg min
x
− log

(
PY |X (y;x)

)
+ λR (x) (1)

where R(x) is a regularization or penalty function and λ
is the regularization parameter. The penalty is put in place
to constrain the generally ill-posed nature of the negative
log likelihood minimization. The next step involves finding
an optimization procedure that minimizes the P-NLL cost
function.

B. Majorize-minimize Optimization Framework
In this work we specifically derive a procedure based on the

majorize-minimize (MM) optimization framework [41], [42].
The MM procedure has been used in the past for denoising
additive noise in magnetic resonance imaging [43]. The MM
framework minimizes a complicated cost function indirectly
by sequentially minimizing simpler convex functions that are
tangential to and greater than or equal to the cost function.
The tangential functions are referred to as majorants.

Mathematically, a majorant G(x|xi) of a cost function
C(x), tangential to it at xi satisfies the following two criteria:
• The cost and the majorant meet only at a single point xi:
C(xi) = G(xi|xi)

• The majorant function is greater than the cost function
otherwise: C(x) < G(x|xi), ∀x 6= xi

These conditions theoretically guarantee that the sequen-
tial minimization is monotonically decreasing the cost C(x)
thereby minimizing it and that the majorants are convex func-
tions thereby simplifying the minimization of each iteration.

C. Speckle distribution in OCT images
Speckle in OCT images [6] is a form of multiplicative noise

that is modeled at an arbitrary voxel m as

ym = xm · sm (2)

where ym is the measured OCT intensity, xm is the true OCT
intensity and sm is the speckle noise. The generalized gamma
based spatial distribution (GGD) of speckle (PGGDS (s)) is
represented mathematically as,

PGGDS (s;α, β, ξ) =
ξβξα

Γ (α)
sξα−1 exp

(
− (βs)

ξ
)

(3)

where Γ (·) is the gamma function, α and ξ are the shape
parameters and β is the rate parameter. As an example, figure
1 shows an empirical distribution of speckle in an OCT image
of a uniform scattering phantom with a scattering coefficient
of 0.01/µm. The phantom was imaged by a 1300 nm spectral
domain OCT at 3.5 µm isotropic resolution. The specifications
of the OCT system and the scattering phantom are described in
detail later in section IV. The histogram shows the intensities
of a B-scan, which was normalized with the mean intensity of
the corresponding depth. GGD fit of the histogram generated
α = 1.14, β = 1.20 and ξ = 0.92. We used the source code
from [44] for GGD fitting.
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Fig. 1. GGD fit for a uniform phantom: The figure plots the histogram of
normalized intensity values representing speckle of a uniform phantom OCT
image. The red curve is the generalized gamma fit to the histogram. GGD fits
the OCT speckle well.

III. THEORY

A. Negative log likelihood cost function

The likelihood of the OCT signal at a single voxel is de-
scribed as the conditional probability of the measured intensity
ym given the true signal xm. It can be derived from equations
1 and 2 as,

PY |X(ym;xm, α,β, ξ) = PGGDS (
ym
xm

;α, β, ξ) · ( dS
dY

)

=
ξβξα

Γ (α)
yξα−1
m x−ξαm exp

(
−
(
β
ym
xm

)ξ)
(4)

where we have substituted the derivative dS
dY = 1

xm
, that

followed from the multiplicative relationship of Eq. 1.
Assuming all voxels to be identical and independently

distributed (i.i.d) samples of the likelihood distribution, the
joint likelihood can be derived as,

PY |X (y;x, α, β, ξ) =(
ξβξα

Γ (α)

)M M∏
m=1

[
yξα−1
m x−ξαm exp

(
−
(
β
ym
xm

)ξ)]
(5)

where M is the number of measurements (or voxels), m is
the voxel index, y = [y1, · · · , yM ] ∈ RM is the vectorized
measured OCT image of length M and x = [x1, · · · , xM ] ∈
RM is the vectorized true OCT image of length M.

The P-NLL cost for speckle noise follows as,

x̂ = arg min
x
− log

(
PY |X(y;x, α, β, ξ)

)
+ λR(x),

= arg min
x

M∑
m=1

(
ξα log(xm) +

(
β
ym
xm

)ξ)
+ C + λR(x),

(6)

where C = −M log
(
ξβξα

Γ(α)

)
−
∑M
m=1(ξα − 1) log(ym) are

constants that do not depend on x and can be ignored in the
minimization .

B. Majorant to P-NLL cost function

GGD NLL for an arbitrary voxel is a sum of a logarithm

function ξα log(xm), and the power term
(
β ymxm

)ξ
(see Eq.

Fig. 2. Example majorants of GGD. The figure plots NLL of a GGD with
true intensity = 1 and majorants at three points on the NLL curve.

7 and 8). For a positive valued true signal (xm > 0), the
logarithm term is strictly concave with a negative second
derivative, while the power term is strictly convex with a
positive second derivative.

The tangential majorant M(x;xi) of GGD NLL is the sum
of the convex power term and the tangent to the logarithm
function, given by,

M(x;xi) =
M∑
m=1

ξα

(
xm
xim

+ log(xim)− 1

)
+

(
β
ym
xm

)ξ
(7)

where the tangent at xim to log(xm) is given by T (x;xim) =
x/xim + log(xim)− 1.

Figure 2. plots the GGD NLL cost function in blue and
shows the majorant function (M(x;xi)) at three points (xi)
of the NLL cost function. As the minimum of the majorants
moves from the red to the yellow and purple curve, the
estimation gradually approaches the minimum of the NLL cost
function.

Assuming a convex regularization function, the majorant to
the full P-NLL cost becomes

M ′(x;xi) =
M∑
m=1

ξα

(
xm
xim

+ log(xim)− 1

)
+

(
β
ym
xm

)ξ
+ λR(x)

(8)

The likelihood distribution, P-NLL cost and majorant corre-
sponding to special cases of gamma and negative exponential
distributions have been derived in Supplementary Sec. I.

In this paper we use a spatial quadratic smoothness
(Tikhonov) regularization function,

M ′(x;xi) =
M∑
m=1

ξα

(
xm
xim

+ log(xim)− 1

)
+

(
β
ym
xm

)ξ
+ λ‖Dx‖2,

(9)

where D is the two dimensional finite difference matrix.
The partial derivative at xm for the P-NLL majorant can be
analytically solved as

∂

∂xm
M ′(x;xi) =

ξα

xim
− ξβyξm

xξ+1
m

+ 2λDTDxm (10)

The majorant is minimized iteratively using gradient descent.
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(a) Ground truth (b) Noisy realization

(c) MM-despeckle (d) Regularization selection

Fig. 3. The first three images show the simulation setup - (3a.) ground truth,
(3b.) one noisy image corrupted by speckle and additive noise and (3c.) The
mean of MM-despeckle result calculated across 100 realizations. Figure 3d.
plots mNAE versus mNRMSE plot for multiple method parameters of median
filtering, BM3D and MM-despeckle methods. The point that is filled in has
the lowest mNAE for each method and was used to select optimal parameters.

C. MM algorithm for speckle denoising (MM-despeckle)

The MM based MLE algorithm involves the following steps:
• 1. Initialize x0 = y
• 2. kth iteration Minimize M ′(x;xk)
• 3. xk+1 = arg minxM

′(x;xk)
• 4. If not converged: xk = xk+1, Otherwise exit

We use gradient descent to solve step 2, so the overall problem
reduces to solving an iterative gradient descent approach.
We assume convergence if the change between minima of
consecutive iterations xk+1 and xk is less than 10−10. The
method is implemented in 2D planes, but can be extended to
3D volumetric data as well.

IV. MATERIAL AND METHODS

A. Simulation

GGD speckle (s ∼ PGGDs (s)) and zero mean Gaussian
distributed additive noise with a standard deviation of σ (n ∼
N(0, σ)) were simulated and used to corrupt a ground truth
OCT image of a human visual cortex sample,

y = (
√
x · s+ n)2, (11)

where x is the intensity of an arbitrary voxel in the ground
truth OCT image, y is the measured intensity of the same
voxel. We define the signal to noise ratio (SNR) as the recip-
rocal of σ in the rest of the paper. In addition we multiplied
an exponential decay to simulate the light propagation in the
tissue,

y = (
√
x · exp (−µsz) · s+ n)2, (12)

where µs (µm−1) is the optical scattering coefficient and z is
the double-path of light propagation in µm. Figure 3. shows
(a) the ground truth human visual cortex tissue image that was
used in our simulations, (b) a noisy image that is corrupted
by GGD speckle with α = β = γ = 1 and additive noise with
σ = 0.05, as described in eqn. 12, (c) the mean MM-despeckle
result calculated across 100 realizations of speckle corrupted
data.

MM-despeckle’s performance was compared with 2D me-
dian filtering and BM3D [22] to remove speckle from 100 re-
alizations of simulated noisy data at SNR of 5, 20 and 50. SNR
here refers to the reciprocal of additive noise standard devia-
tion σ. We uniformly sampled regularization parameter from
1 to 14 for MM-despeckle, window sizes from 3×3 to 12×12
for median filter and noise variance parameter from 0.0001 to
0.3 for BM3D. MATLAB 2018b medfilt2 function and BM3D
MATLAB package from http://www.cs.tut.fi/ foi/GCF-BM3D
were used in this simulation.

We calculated normalized root mean squared error
(NRMSE) with the ground truth for each despeckled image
to evaluate performance,

nrmsen =
‖(x− x̂n)‖2
‖x‖2

, (13)

where x is the ground truth image, x̂n is the estimated image,
n is an index for the noisy realization that goes from 1 to 100
and ‖ · ‖2 is the `2 norm operator.

In addition, to choose the regularization parameter we
calculated mean NRMSE (mNRMSE) and mean normalized
absolute error (mNAE)

mNRMSE ==
1

N

N∑
n=1

nrmsen, (14)

mNAE ==
1

NV

N∑
n=1

V∑
v=1

|x(v)− x̂n(v)|
x(v)

, (15)

where v is an arbitrary voxel, V and N are the total number of
voxels and noisy realizations respectively. We chose method
parameter that resulted in the least mean NAE calculated
across all voxels for each of the three methods. NRMSE values
were compared at multiple SNRs and imaging depths.

B. OCT imaging and speckle distribution fitting

We used a spectral domain OCT system at a center wave-
length of 1300 nm to image a scattering phantom and various
tissue structures of postmortem human brain [45]. The axial
resolution was 3.5 µm in tissue. Spectrometer consisted of a
1024 pixel line scan camera operating at an A-line rate of 47
kHz. The total imaging depth was 1.5 mm, with a voxel size
of 2.9 µm. The sensitivity of the system was 105 dB. We used
three sets of objective lenses to test the denoising algorithm
with varying lateral resolution, including a 10× air coupled
objective and a 10× water immersion objective yielding a
resolution of 3.5 µm, a 5x air coupled objective yielding a
resolution of 6.5 µm, and a 20× water immersion objective
yielding a resolution of 1.3 µm.
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(a) SNR 50 (b) SNR 20 (c) SNR 5

Fig. 4. The figures plots NRMSE values across multiple noise realizations for median filtering, BM3D and MM-despeckle at SNRs 50, 20 and 5. MM-despeckle
consistently demonstrates the lowest errors across SNRs.

(a) Phantom with µs = 0.006 (µm−1)

(b) NRMSE

Fig. 5. Figure 5c. compares the accuracy of the scattering coefficient estimate
of MM-despeckle and median filtering with 6µm and 60 µm filter sizes in a
uniform phantom with optical property 0.006 µm−1. 5d. plots the NRMSE
calculated across phantoms

(a) Optimum number of averages (b) Optimum regularization
parameter

Fig. 6. Speckle contrast based selection of (a) number of averages and (b)
regularization parameter.

Cross-sectional OCT images were normalized by dividing
the mean of intensities at each depth. The normalized intensity
was fitted by generalized gamma distribution and the fitting
parameters were used as inputs to the MM-despeckle opti-
mization. In this study, we customized the fitting parameters
for each experiment.

C. Phantom Experiment
The scattering phantom was made by suspensions of

monodisperse polystyrene microspheres with a refractive index
of 1.57 at 1300 nm wavelength and a mean diameter of
1 µm. The solution was diluted with three concentrations,
representing a scattering coefficient of 0.002 µm−1, 0.006
µm−1 and 0.01 µm−1, respectively, which roughly matched
the range of scattering coefficient of gray and white matter
in ex vivo human brain samples. The phantom samples were
measured with a 10× air coupled objective, resulting in a
lateral resolution of 3.5 µm. Each measurement consisted of
a cross-section with 5000 A-lines.

The phantom image was denoised using 1D median fil-
ters with filter widths uniformly spaced from 3 (6 µm) to
21 (60 µm). The phantom image was normalized with the
mean value before removing speckle with MM-despeckle. The
normalization scales the range of regularization parameters.
Uniform spaced regularization parameter in the range of 5000
to 50000 was found suitable for this data. Pixel-wise scattering
coefficients were estimated using the approach described in
[7] from the original image without speckle removal, median
filtering result and the proposed method results. Error metrics
mNRMSE and mNAE were calculated for the estimated scat-
tering coefficients. Optimal regularization parameters for each
of the speckle removal methods were selected as the one with
the least mNAE. NRMSEs of the estimated coefficients of all
three were compared.

D. Tissue experiment and validation
Four blocks of sample including hippocampus, visual cor-

tex, cerebellum, and brainstem were obtained from a post-
mortem human brain at the Massachusetts General Hospital
Autopsy Suite. The samples were fixed with 10% formalin
for two months. The postmortem interval did not exceed 24
hr.

The hippocampal tissue was imaged in a 10x10x2 mm
block using a 10x water immersion objective. The block was
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(a) Speckle corrupted data (b) MM-despeckle (c) Median Filter (3x3)

(d) Median Filter (5x5) (e) BM3D (0.2) (f) BM3D (0.3)

Fig. 7. The figure compares MM-despeckle, BM3D and Median filtering methods qualitatively applied to remove speckle from human hippocampus OCT
data. MM-despeckle preserves small features better than median filtering and reduces speckle better than BM3D due to accurate modeling.

(a) Noisy OCT image - no averaging (dB).
(NRMSE = 1.37)

(b) MM-despeckle applied to 8a. (dB).
(NRMSE = 0.76)

(c) Reference by averaging of 100 noisy OCT
images (dB).

Fig. 8. The figure compares noisy human hippocampus tissue OCT data, the result of MM-despeckle applied to the noisy OCT data and the 100-averaged
reference image. MM-despeckle removes speckle, reduces the NRMSE and requires reduced spatial averaging.

scanned in consecutive tiles with 90% overlap. The tiles were
stitched together to form a whole surface and serial sectioning
was used to cover the entire depth [46]. The optical resolution
was 3.5 µm isotropic. One imaging tile covers a volume of
1.5x1.5x1.5 mm, with an isotropic voxel size of 2.9 µm.
The extensive overlap between adjacent tiles offers spatial
averaging for denoising. With 90% overlap, a single tile can
be averaged up to 100 times with an expectation of 10 fold
reduction in speckle contrast. We have verified on the data
that the speckle patterns are decorrelated between adjacent
tiles. As a result, the stitched image serves as a reference to

evaluate the performance of the MM-despeckle algorithm. In
addition, the human cerebellum, visual cortex, brainstem and
individual neurons in the cortex were imaged with a resolution
of 6.5 µm, 3.5 µm, 3.5 µm, and 1.3 µm, respectively, using a
50% overlap between adjacent tiles. Unlike in our simulations
or phantom experiment, human tissue data was processed
without normalization. Therefore the scaling of regularization
parameters was observed to be vastly different and in the range
of 0.001 to 0.1.
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(a) Cerebellum (dB) (b) MM-despeckle output (dB)

(c) Visual Cortex (dB) (d) MM-despeckle output (dB)

(e) Brainstem (dB) (f) MM-despeckle output (dB)

(g) Neurons (dB) (h) MM-despeckle output (dB)

Fig. 9. The figures demonstrate the generalizability of MM-despeckle across
various human microstructure tissue and varying resolutions. Figures 9a-c
correspond to tissue from visual cortex, cerebellum and brainstem acquired
at 3 µm isotropic resolution. Figure 9d. corresponds to an image of neurons
from the visual cortex imaged at 1.5 µm isotropic resolution.

V. RESULTS

A. Simulation results

Figure 3d. plots the mNAE and mNRMSE of the median
filtering, BM3D and MM-despeckle results at the surface
(depth 0 µm) of the tissue with SNR=50. Each point in
scatter plot in 3d. corresponds to a specific method parameter.
The marker is filled in with color for the case with least
NAE, and the corresponding parameter was chosen as optimal.
While both MM-despeckle and BM3D reduce mean NAE
close to zero, median filtering suffers from higher mean NAE
of 0.25 (25 %). Optimal median filter size of 3x3, BM3D
noise variance of 0.2 and MM-despeckle regularization of 5

resulted in least mNAE and were set for the rest of the error
comparisons.

Figures 4. summarizes the simulation results at three dif-
ferent SNRs (50, 20 and 5). Boxplots show the distribution
of NRMSE across 100 noisy realizations at the tissue surface
(0 µm). Figure. S2 in the supplementary section plots the
NRMSE errors for the same three SNRs but at 200 µm
optical depth, that is typical scale in ex vivo OCT imaging.
MM-despeckle demonstrates the lowest NRMSE among all
the three methods at both depths and at all three SNRs.
Median filtering has the highest NRMSE with a average error
of around 30% at both depths. MM-despeckle and BM3D
have NRMSE average in the range 9%-10% and 13%-14%
respectively. MM-despeckle demonstrates an improvement of
4% in the errors at all SNRs and depths compared to BM3D.
The bias in BM3D estimates can potentially be due to incorrect
likelihood assumption. In contrast MM-despeckle uses a more
accurate likelihood formulation, regularizes with a quadratic
function that matches the additive Gaussian noise likelihood
and penalizes similarity across two adjacent voxels.

Median filtering has the least variance across SNRs com-
pared to the other two methods. We observe that the variance
of BM3D and MM-despeckle increases with reducing SNR.
This suggests that median filtering optimizes the variance
strongly and suffers from large bias error, while the other
two approaches reduce the error in the bias but suffer from
marginally higher variance when SNR drops.

B. Phantom experiment results

Figure 5. compares the ground truth scattering coefficient
(µs) with the scattering coefficient estimated from phantom
data without removing speckle, the median filtering method
(6 µm and 60 µm filter sizes), and the proposed MM-
despeckle method. The approach in [7] was used to estimate
the coefficients. We show the comparisons for a phantom with
ground truth coefficient of 0.006 µm−1 (α = 1.21, β = 1.35,
ξ = 0.85 ) in Fig. 5a. Two more phantom comparisons with
coefficients 0.01 µm−1 (α = 1.14, β = 1.20, ξ = 0.92
) and 0.002 µm−1 (α = 1.24, β = 1.42, ξ = 0.82
) are additionally shown in Fig S2. in the supplementary
section. The GGD parameters reported here were the result of
fitting the distribution to the mean normalized phantom data
using [44]. Median filter with the largest filter size of 21 points
(60 µm) and MM-despeckle regularization parameter of 24000
(3 µm) resulted in the lowest mNAE for each of the methods.
Figures 5a, 5b. and 5c. plots the scattering coefficient estimated
from individual A-lines of different methods for the phantom
data. For the median filtering method we plot the result of
using a filter of size 3 (6 µm) and the optimal filter (21, i.e.
60 µm). Filter size of 6 µm is more typical of what is used
with real data. The scattering coefficient that was estimated
from the mean of 5000 A-lines converged to the theoretical
value with high accuracy for all three phantoms and is marked
as the measured ground truth in the plots. Figure 5b. plots the
NRMSE of the coefficient estimates calculated for the three
phantoms shown in 5a. and S2. and two additional ones with
scattering coefficients 0.004 µm−1 (α = 1.17, β = 1.29,
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ξ = 0.85 ) and 0.008 µm−1 (α = 1.13, β = 1.19, ξ = 0.92
). MM-despeckle demonstrates the lowest NRMSE compared
to noisy and the two median filtered results.

Compared to the original data and the 6 µm median
filter, MM-despeckle consistently demonstrates lower errors
and fewer outliers in the coefficient estimation results of all
three phantoms. MM-despeckle either matches or is better
in accuracy than the 60 µm median filter that uses all 21
points. However, the 60 µm filter size is unsuitable to use
in biological microstructure imaging because it will smooth
boundaries and features that are smaller than 60 µm, which is
commonplace. On the contrary, MM-despeckle smooths within
a 3 µm radius and is therefore more applicable for preserving
microstructures.

C. Hippocampus imaging experiment

In this section we present MM-despeckle results of the hu-
man hippocampus imaged by OCT. We calculated the speckle
contrast (std deviation/mean intensity) for a region of the
hippocampus with several regularization parameters uniformly
spaced from 0 to 0.01. Although speckle contrast keeps
decreasing with regularization, increasing the regularization
also smooths the image thereby blurring the edges. Keeping
this trade-off in mind, we selected the regularization parameter
based on an optimal speckle contrast set by the experimental
result of overlapping tiles.

Figure 6a plots the rate of decrease in speckle contrast with
increasing number of averages from overlapping tiles. With 7
averages, the reduction rate drops to 5%, beyond which we
consider that the speckle contrast does not decrease much
anymore. We choose the speckle contrast corresponding to
7 averages (= 0.25) to be optimal. Next we found that the
corresponding regularization parameter of 0.007 leads to the
optimal speckle contrast in the output. The variation of speckle
contrast with regularization parameter is shown in Figure 6b.
We used the same regularization parameter hereinafter for all
the tissue imaging results. We also set all the three GGD
parameters to 1 for all human tissue experiments based on
the average fit from our phantom data.

We compared the MM-despeckle results with BM3D and
median filtering. For medan filterin g, filter size of 3×3 was
chosen because at 5×5 we start observing blurring in our
results. Similarly, for BM3D, noise variance of 0.2 was chosen
as at 0.3 we start observing blurred microstructure. Figure
7. shows a 1.5 mm × 1.5 mm slice of the hippocampus
tissue. Figure 7a. is the original hippocampus image without
denoising, 7b. is the MM-despeckle result with the regulariza-
tion parameter set to 0.007, 7c. and 7d. are results of median
filtering with filter sizes 3×3 and 5×5 respectively, 7e. and
7f. are the BM3D denoising results with noise variance of 0.2
and 0.3 respectively.

MM-despeckle removes the speckle and recovers the tissue
contrast successfully. Both BM3D results have holes in their
images (marked with green arrows) due to uncorrected speckle
as it does not model speckle accurately. In addition, BM3D
suffers from blurring the anatomy unnaturally because at high
resolution it is unable to match similar regions well. The 5×5

median filter result blurs the anatomy as expected. The 3× 3
median filter removes speckle well but suffers in the regions of
small features with high intensities marked by yellow arrows.
This can be problematic for imaging small tissue structures
such as vessels or amyloid deposits on the tissue that show up
in images as high intensities.

MM-despeckle is demonstrably a better option than both
BM3D and median filtering because it corrects speckle well,
blurs the anatomy less and retains small structures successfully
(see yellow arrows). In addition, for this dataset BM3D
performed worse than median filtering as it was unable to
find similar blocks. On the contrary, in our simulations where
the data contained more similar blocks, BM3D outperformed
median filtering. Therefore the performance of BM3D as
compared to median filtering is data dependent. However,
MM-despeckle consistently outperformed both BM3D and
median filtering for both datasets.

D. MM-despeckle minimizing acquisition time

It is generally challenging to assess the performance in
tissue data where we do not know the ground truth of OCT
intensity or scattering coefficient. For this reason we acquired
data from a human hippocampus with 90% overlapping tiles,
which means that every voxel was acquired 100 times with
independent speckle patterns. The speckle reduction rate with
averaging was presented in figure 6a. Overall speckle reduction
ratio was calculate by taking the ratio of the speckle contrast
with 100 averages to no average. Taking averages of the 100
measurements reduced the speckle by a factor of 10 and
provided us with a good reference image.

Figure 8. qualitatively compares (a) the original speckle cor-
rupted image stitched without averaging, (b) MM-despeckle
applied to the noisy image in 8a. and (c) the 100-averaged
reference image of the hippocampus sample. MM-despeckle
image successfully removes the speckle in the original data.
NRMSE was calculated for a region at the center of the sample
of size 6 mm × 6 mm × 0.25 mm for no-average and MMde-
speckle result with the reference image. NRMSE reduced by
50 percent for MM-despeckle (NRMSE=0.76) compared to the
no-average image (NRMSE=1.37). The reduction in error by
50 percent for a single image means that we will not require
as many averages to obtain a result that is comparable to the
reference image. This result demonstrates the promise of MM-
despeckle to reduce the overall acquisition time by reducing
the amount of spatial averaging necessary for the imaging
experiment.

E. Generalizability of MM-despeckle results across brain
structures and imaging resolutions

Figure 9 demonstrates the generalizability of MM-despeckle
to remove speckle with various structures and across multiple
OCT resolutions. Figures 9a, 9c, and 9e are the original OCT
images of the human cerebellum, visual cortex, and brainstem
respectively. The cerebellum image covers 2.9 mm × 2.9
mm at 6.5 µm voxel resolution while the visual cortex and
the brainstem images cover 1.8 mm × 1.8 mm at 3.5 µm
voxel resolution. Figures 9b, 9d and 9f are result of removing
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speckle using MM-despeckle for the three different tissue data.
MM-despeckle successfully removes speckle across multiple
tissue types and across two resolution scales without blurring
the anatomy. Specifically we observe small features such as
the high intensity deposits in the cerebellum more clearly
visible after the correction. The same regularization parameter
of 0.007 was used for all three cases further demonstrating the
robustness and generalizability of the MM-despeckle method
across the different tissue types and OCT imaging resolutions.

Figure 9g and 9h are the original and MM-despeckle method
result for optical coherence microscopy (OCM) images of
neurons in the cortex with 0.67 mm × 0.67 mm image size
at 1.3 µm voxel resolution. The regularization parameter was
set the same as above tissue types. MM-despeckle removes
speckle successfully without blurring thereby improving the
contrast of the neurons with the background. The result
further demonstrates that the proposed MM-despeckle method
is applicable to OCM images at single cell resolution without
the need to adjust regularization parameters and therefore is
strongly generalizable across multiple imaging resolutions.

VI. DISCUSSION

In this work we proposed a new majorize-minimize-based
optimization method called MM-despeckle to remove general-
ized gamma distributed multiplicative speckle noise from OCT
images. There are three major contributions in this work.

1) We observed a generalized gamma distribution for char-
acterizing the statistics of speckle based on real imaging
data and built a statistical model to remove the speckle
and restore the microstructure images of human brain
samples. Particularly, the parameters of the distribution
function were tuned for each experiment and the model
can be simplified to gamma or negative exponential
distribution depending on OCT system and tissue prop-
erties.

2) An optimization framework was proposed to solve the
non-convexity of the generalized gamma P-NLL prob-
lem. Although applied to OCT in the current study,
this theoretical framework is applicable to other imaging
modalities contaminated by speckle noise.

3) The MM-despeckle significantly reduces the acquisition
time otherwise 10-90 times longer in ex vivo OCT
imaging, due to the requirement of extensive averaging
to achieve satisfactory CNR.

MM-despeckle minimizes a P-NLL based cost function that
is standard for statistical estimation problems. We have used
a quadratic smoothness-based spatial regularization for our
results. However, the framework itself can be seamlessly inte-
grated with other convex regularization functions such as total
variation [19] and/or wavelet transformation based functions
[47] that have been used in other speckle removal applications
and that have analytical or numeric way to calculate gradients.
We also demonstrated the effectiveness of using speckle con-
trast changes to select the regularization parameter for tissue
data where we do not have the ground truth. While this worked
well for our microstructure application, for applications where
speckle contrast is not a suitable criteria other regularization

parameter selection methods such as those in [48] can also
be utilized.

The theoretical novelty of our approach is the proof of
non-convexity of the generalized gamma NLL. As is the case
with all non-convex optimization problems, the proposed MM-
despeckle method might get trapped in a local rather than
global minimum. For all the results shown, we initialized MM-
despeckle with the original image because doing so in our
simulation and phantom experiments resulted in least error
compared to other methods. Moreover, for the simulation
initializing MM-despeckle with the output of median filtering
resulted in a local minimum that suffered from bias similar
to that of median filtering. This observation suggested that
the median filtering output is close to a plausible suboptimal
local minimum solution and hence not suitable for initializing
our proposed method. While our choice of noisy image-based
initialization has proved to be robust for all our experiments
including real tissue data, this by no means guarantees a
theoretical global minimum. Global optimum search strategies
such as using multiple initializations can be incorporated into
our approach to further improve the results.

A common next step after removing speckle for OCT
images is to calculate the scattering coefficients. We demon-
strated the improvement in the accuracy of estimating the
coefficients with MM-despeckle in our phantom experiment.
We have extended MM-despeckle to jointly remove speckle
and estimate the coefficients in one step and presented the
initial results in [40]. This extension avoids a two step process
of first removing the speckle and then estimating the coeffi-
cient, and instead combines the two into a single procedure.
We demonstrated promising results that improved accuracy of
the coefficient estimation even further and will be performing
detailed analysis in future work.

Lastly, while the examples in this paper primarily focus
on OCT imaging , the approach is relevant to several other
applications such as RADAR, SONAR and other optical
imaging modalities where generalized gamma distribution-
based speckle noise has been shown to be problematic. MM-
despeckle can be applied to those settings as well.

VII. CONCLUSION

We proposed a new method called MM-despeckle to re-
move speckle from OCT images. The approach optimizes
regularized generalized gamma distributed NLL cost function
iteratively. We carried out simulation, phantom and tissue
experiments to demonstrate the usefulness, generalizability
and improved performance of the method compared to the
state of the art. Future work focuses on jointly estimating
scattering coefficient along with removing speckle.

REFERENCES

[1] H. Wang, C. Magnain, S. Sakadzic, B. Fischl, and D. A. Boas,
“Characterizing the optical properties of human brain tissue with high
numerical aperture optical coherence tomography.,” Biomedical optics
express, vol. 8, no. 12, pp. 5617–5636, 2017.

[2] C. Magnain, J. C. Augustinack, E. Konukoglu, D. Boas, and B. Fischl,
“Visualization of the cytoarchitecture of ex vivo human brain by optical
coherence tomography,” p. BrT4B.5, 2015.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.07.329227doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.329227


10

[3] C. Magnain, J. C. Augustinack, E. Konukoglu, M. P. Frosch, S. Sakadzic,
A. Varjabedian, N. Garcia, V. J. Wedeen, D. A. Boas, and B. Fischl,
“Optical coherence tomography visualizes neurons in human entorhinal
cortex,” Neurophotonics, vol. 2, no. 1, pp. 1 – 8, 2015.

[4] A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and
S. A. Boppart, “Optical coherence tomography: a review of clinical
development from bench to bedside,” Journal of biomedical optics,
vol. 12, no. 5, pp. 051403–0514021, 2007.

[5] L. van Manen, J. Dijkstra, C. Boccara, E. Benoit, A. L. Vahrmeijer, M. J.
Gora, and J. S. D. Mieog, “The clinical usefulness of optical coherence
tomography during cancer interventions,” Journal of Cancer Research
and Clinical Oncology, vol. 144, no. 10, pp. 1967–1990, 2018.

[6] J. W. Goodman, “Some fundamental properties of speckle∗,” J. Opt.
Soc. Am., vol. 66, pp. 1145–1150, Nov 1976.

[7] K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer,
“Depth-resolved model-based reconstruction of attenuation coefficients
in optical coherence tomography,” Biomed. Opt. Express, vol. 5, pp. 322–
337, Jan 2014.

[8] G. Farhat, G. J. Czarnota, M. C. Kolios, and V. X. D. Yang, “Detecting
cell death with optical coherence tomography and envelope statistics,”
Journal of Biomedical Optics, vol. 16, no. 2, pp. 1 – 7, 2011.

[9] J. W. Goodman, Statistical Properties of Laser Speckle Patterns. 1975.
[10] J. W. Goodman and H. R. L., Statistical Optics.
[11] M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in

optical coherence tomography,” Opt. Lett., vol. 25, no. 8, pp. 545–547,
2000.

[12] A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. R. Motaghiannezam,
G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence
tomography with sequential angular selectivity for speckle reduction,”
Opt. Express, vol. 15, no. 10, pp. 6200–6209, 2007.

[13] J.-S. Lee, “Digital image enhancement and noise filtering by use of
local statistics,” IEEE transactions on pattern analysis and machine
intelligence, vol. PAMI-2, no. 2, pp. 165–168, 1980.

[14] R. Bernstein, “Adaptive nonlinear filters for simultaneous removal of
different kinds of noise in images,” IEEE Transactions on Circuits and
Systems, vol. 34, no. 11, pp. 1275–1291, 1987.

[15] B. Fischl and E. L. Schwartz, “Adaptive nonlocal filtering: a fast alterna-
tive to anisotropic diffusion for image enhancement,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 21, no. 1, pp. 42–48,
1999.

[16] H. Salinas and D. Fernandez, “Comparison of pde-based nonlinear
diffusion approaches for image enhancement and denoising in optical
coherence tomography,” IEEE transactions on medical imaging, vol. 26,
no. 6, pp. 761–771, 2007.

[17] H. H. Arsenault and G. April, “Properties of speckle integrated with
a finite aperture and logarithmically transformed,” J. Opt. Soc. Am.,
vol. 66, pp. 1160–1163, Nov 1976.

[18] H. Xie, L. Pierce, and F. Ulaby, “Statistical properties of logarithmically
transformed speckle,” IEEE transactions on geoscience and remote
sensing, vol. 40, no. 3, pp. 721–727, 2002.

[19] G. Gong, H. Zhang, and M. Yao, “Speckle noise reduction algorithm
with total variation regularization in optical coherence tomography,” Opt.
Express, vol. 23, pp. 24699–24712, Sep 2015.

[20] A. Buades, B. Coll, and J. M. Morel, “Image denoising methods. a new
nonlocal principle,” SIAM Rev., vol. 52, pp. 113–147, 2010.

[21] J. Aum, J.-h. Kim, and J. Jeong, “Effective speckle noise suppression in
optical coherence tomography images using nonlocal means denoising
filter with double gaussian anisotropic kernels,” Applied optics. Optical
technology and biomedical optics, vol. 54, no. 13, p. D43, 2015.

[22] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising
by sparse 3-D transform-domain collaborative filtering,” IEEE Trans.
Image Process., vol. 16, pp. 2080–2095, 2007.

[23] M. A. Mayer, A. Borsdorf, M. Wagner, J. Hornegger, C. Y. Mardin,
and R. P. Tornow, “Wavelet denoising of multiframe optical coherence
tomography data,” vol. 3, no. 3, pp. 572–589, 2012.

[24] B. Chong and Y.-K. Zhu, “Speckle reduction in optical coherence
tomography images of human finger skin by wavelet modified bm3d
filter,” Optics Communications, vol. 291, pp. 461–469, 2013.

[25] F. Zaki, Y. Wang, H. Su, X. Yuan, and X. Liu, “Noise adaptive
wavelet thresholding for speckle noise removal in optical coherence
tomography,” Biomedical optics express, vol. 8, no. 5, pp. 2720–2731,
2017.

[26] L. Fang, S. Li, Q. Nie, J. A. Izatt, C. A. Toth, and S. Farsiu, “Spar-
sity based denoising of spectral domain optical coherence tomography
images,” Biomed. Opt. Express, vol. 3, no. 5, pp. 927–942, 2012.

[27] S. Wang, T.-Z. Huang, X.-L. Zhao, J.-J. Mei, and J. Huang, “Speckle
noise removal in ultrasound images by first- and second-order total
variation,” Numerical Algorithms, vol. 78, no. 2, pp. 513–533, 2018.

[28] E. C. Wong, “Efficient randomly encoded data acquisition for com-
pressed sensing,” in Proc. Int. Soc. Magn. Reson. Med., p. 4893, 2010.

[29] M. Li, R. Idoughi, B. Choudhury, and W. Heidrich, “Statistical model for
oct image denoising,” Biomedical optics express, vol. 8, no. 9, pp. 3903–
3917, 2017.

[30] B. Raju and M. Srinivasan, “Statistics of envelope of high-frequency
ultrasonic backscatter from human skin in vivo,” IEEE Transactions
on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 49, no. 7,
pp. 871–882, 2002.

[31] N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang,
G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence
tomography data from human retina,” IEEE Transactions on Medical
Imaging, vol. 29, no. 6, pp. 1224–1237, 2010.

[32] G. Farhat, G. J. Czarnota, M. C. Kolios, and V. X. D. Yang, “Detecting
cell death with optical coherence tomography and envelope statistics,”
Journal of Biomedical Optics, vol. 16, no. 2, pp. 026017–026017, 2011.

[33] E. Franceschini, R. K. Saha, and G. Cloutier, “Comparison of three scat-
tering models for ultrasound blood characterization,” IEEE Transactions
on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 60, no. 11,
pp. 2321–2334, 2013.

[34] D. A. Jesus and D. R. Iskander, “Assessment of corneal properties based
on statistical modeling of oct speckle,” Biomedical optics express, vol. 8,
no. 1, pp. 162–176, 2017.

[35] M. Y. Kirillin, G. Farhat, E. A. Sergeeva, M. C. Kolios, and A. Vitkin,
“Speckle statistics in oct images: Monte carlo simulations and experi-
mental studies,” Opt. Lett., vol. 39, pp. 3472–3475, Jun 2014.

[36] B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics
in optical coherence tomography,” J. Opt. Soc. Am. A, vol. 22, pp. 593–
596, Apr 2005.
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