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Abstract

This paper provides a scheme of discovering a brain effective connectivity through EEG signals using a
Granger causality (GC) concept characterized on state-space models. We propose a state-space model for
explaining coupled dynamics of the source and EEG signals where EEG is a linear combination of sources
according to the characteristics of volume conduction. Our formulation has a sparsity prior on the source
output matrix that can further classify active and inactive sources. The scheme is comprised of two main
steps: model estimation and model inference to estimate brain connectivity. The model estimation consists of
performing a subspace identification and the active source selection based on a group-norm regularized least-
squares. The model inference relies on the concept of state-space GC that requires solving a discrete-time
Riccati equation for the covariance of estimation error. We verify the performance on simulated data sets that
represent realistic human brain activities under several conditions including percentages of active sources, a
number of EEG electrodes and the location of active sources. The performance of estimating brain networks is
compared with a two-stage approach using source reconstruction algorithms and VAR-based Granger analysis.
Our method achieved better performances than the two-stage approach under the assumptions that the true
source dynamics are sparse and generated from state-space models. The method is applied to a real EEG
SSVEP data set and we found that the temporal lobe played a role of a mediator of connections between
temporal and occipital areas, which agreed with findings in previous studies.
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1 Introduction
This paper aims to explore effective connectivity of underlying neural network from EEG signals. It is of great
importance in neuroscience to study the direction of network connections among regions of interest (ROI) or
neural nodes. Common methods of exploring directional connectivity include dynamic causal modeling (DCM),
Granger causality analysis (GC), directed transfer function (DTF), partial directed coherence (PDC) that can be
applied to several brain modalities such as EEG, MEG, fMRI; see a recent review in [HAVS+19] and detailed
mathematical description of connectivity in [PS16]. In our scope, we limit ourselves to EEG analysis due to the
equipment economy compared to other brain acquisitions. If only brain signals on a scalp level are available
(that certainly lack of spatial resolution), we explore what more we can improve in effective connectivity analysis.
This section describes literature on Granger-based brain connectivity studies examined on EEG signals. It can be
categorized into two themes: one that infers brain connectivity of scalp signals and the other that concludes a
connectivity in the source space. A conclusion from this survey provides us a guideline to build up our proposed
model.

1.1 Connectivity on EEG Signals
This analysis is performed on the scalp EEG signal using a measure of dependence of interest. One typical approach
is to fit a VAR model to EEG time series and use a measure such as direct transfer function (DTF) as a dependence
measure in [GPO12, §4]. The sensor signals are fitted to a VAR model by least-squares estimation and then Granger
causality can be obtained by performing significant tests on VAR coefficients. For example, [ACM+07] learned
brain connectivity from VAR coefficients using DTF (directed transfer function), PDC (partial directed coherence)
and direct DTF (dDTF) from high-resolution EEG data set. Moreover, a state-space framework can be applied to
learn connectivity on sensor space, which is introduced in [STOS17]. The state-space model based on switching
vector AR (SVAR) model was introduced for non-stationary time series, a characteristic that has been typical for
biological signals. The SVAR model was represented in a state-space representation and the switching parameters
were selected by a hidden Markov chain. As a result, the connectivity was learned from PDC that computed from
the estimated VAR coefficients. However, it can be shown that this approach could result in spurious causality
as mentioned in [HNMN13] where no interactions in the source level may lead to substantial interactions in the
scalp level.

1.2 Connectivity on reconstructed sources
EEG signals cannot explain the true dynamic of neurons inside the brain because of volume conduction effects.
An approach of estimating source time series from EEG signals has been developed and is referred to as source
reconstruction or source imaging. The main idea is to estimate x(t) from the lead-field equation:

y(t) = Lx(t) + v(t), (1)

where y(t) ∈ Rr is the EEG data, x(t) ∈ Rm is the source signal, L ∈ Rr×m is the lead field matrix (given)
and v(t) ∈ Rr is a measurement noise. The lead-field equation (1) can be used to generate artificial EEG signals
when x(t) is simulated (known as forward problem). On the other hand, constructing the transmitted signal
from the measurements in the above linear equation is often called an inverse problem. In order to solve the
inverse problem in practice, we note that the lead field matrix varies upon several factors such as locations of EEG
sensors, size or geometry of the head, regions of interest (ROIs) and the electrical conductivity of brain tissues,
skull, scalp, etc. [SC13]. Examples of existing methods in source reconstruction are Low resolution tomography
(LORETA), the weighted minimum-norm estimate (WMN), the minimum-current estimate, linearly constrained
minimum-variance (LCMV) beamforming, sparse basis field expansions (S-FLEX) and the focal underdetermined
system solution (FOCUSS) [Hau12, §2], [SC13, HNMN13, LWVS15].

In general, the number of EEG channels is lower than the number of sources. Hence, L is generally a fat
matrix. As a result, the source imaging problem becomes an underdetermined problem. [MMARPH14] proposed
that the source time series matrix is factorized into coding matrix C and a latent source time series z(t), then
x(t) = Cz(t) where C is assumed to be sparse. The relationship between sources and sensors is then explained
by

y(t) = LCz(t) + v(t). (2)
The problem of reconstructing x is now to estimate z and C instead. [MMARPH14] applied an ℓ2,1 regularization
method by penalizing the rows of the matrix with the 2-norm to induce a sparsity pattern in source time series.
Then the regularized EEG inverse problem with ℓ2,1-norm penalty term was proposed as

minimize
C,Z

(1/2)∥LCZ − Y ∥2F + λ∥CT
i ∥2,1 + (1/2)∥Z∥2F . (3)
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The problem is non-convex in C and Z (the matrix of latent time series.) An alternating minimization algorithm
can be used for solving a bilinear problem by using initial latents z(0) and approximating rank of C from SVD.
Another related approach is [WTO16] that applied sLORETA method to estimate source signals x. PCA was
used to reduce dimension of the source signals then the principal source signals x̃ were explained x̃(t) = Cz(t),
resulting in a factor model (2) and the dynamics of z(t) was explained by the VAR model. The dynamics of x
can then be explained by the VAR model and VAR coefficients are functions of C.

We note that brain connectivity learned from a source reconstruction approach mainly depends on the per-
formance of the source imaging technique. If the source reconstruction does not perform well, learning brain
networks from reconstructed sources could lead to a misinterpretation.

1.3 Connectivity inferred from source and EEG coupled dynamics
This approach considers the dynamics of both source and sensor signals concurrently where the estimation of
model parameters can infer brain connectivity directly. The work including [Hau12, HTN+10, GHAEC08, CWM12]
considered the same dynamical model that the source signals (x) are explained by a VAR process and EEG signal
(y) is a linear combination of the sources as

x(t) =

p∑
k=1

Akx(t− k) + w(t), y(t) = Lx(t).

The technique to estimate unknown sources and lead field matrix (L) from only available mixture EEG data is
called blind source separation. Independent component analysis (ICA) is one of blind source separation techniques
that was used in [Hau12, HTN+10, GHAEC08]. In detail, the ICA technique relies on an assumption that the
innovation term of process w(t) must be generalized as a non-Gaussian distribution. [GHAEC08] assumed that the
innovation term has both sub and super-Gaussian distribution. Initially, PCA was used to reduce the dimension
of EEG data with the assumption that the number of EEG channels was greater than the number of sources.
Consequently, the principal EEG signals were fitted to a VAR model directly and ICA was performed on the VAR
innovation term for demixing source VAR coefficients. As a result, DTF was computed from the transfer function
of the source in the VAR model. However, [GHAEC08] estimated VAR parameters from the sensor signals directly,
so the brain connectivity was not sparse due to the volume conduction effect. [Hau12] performed convolutive ICA
(CICA) on the innovation term which was assumed to be super-Gaussian hyperbolic secant distributed for ensuring
a stable solution. To obtain the sparse source connectivity, model parameters, which are L and Ak’s, are estimated
using the sum of ℓ2-regularized maximum-likelihood method. In addition, [Hau12, HTN+10, GHAEC08] assumed
that the noise distribution was non-Gaussian, so the decomposition of source signals from ICA had a unique
solution. [CWM12] proposed an idea to perform connectivity analysis via state-space models. The state equation
was described by generalized AR model where the innovation process has a generalized Gaussian distribution. All
state-space model parameters were obtained from maximum likelihood estimation. As a result, the relationship
between sources was explained by PDC computed from estimated VAR coefficients. [CRTVV10] proposed a
state-space framework for finding brain connectivity; however, the sources were assumed to be described by a
VAR model. Moreover, [CRTVV10] put some prior information on the lead-field matrix where the cortical regions
of interest were known. The dynamical equations are given by

x(t) =

p∑
k=1

Akx(t− k), y(t) = CΛx(t) + v(t)

where C is a known matrix from a prior information on the lead field matrix and Λ is the dipole moment. When
formulating the above equation into a state-space form, model parameters including A1, . . . , Ap,Λ and noise
covariance were estimated by expected-maximization (EM) algorithm and then Granger causality can be concluded
from the estimated noise covariance. Moreover, a state-space form used in [CRTVV10, CWM12] contains source
dynamics described by a VAR model and the observation equation represents a relationship between sources and
sensors. The state-space parameters were estimated from maximum likelihood estimation using EM. [YYR16]
proposed a one-step state-space model estimation framework which aims to find the connectivity in ROI level.
The state-space model used in [YYR16] was described by

z(t+ 1) = A(t)z(t) + w(t), x(t) = Pz(t) + η(t), (4)
y(t) = Lx(t) + v(t), (5)

where z(t) is a time series for each ROI, A(t) is a VAR coefficient at time t, x(t) is a source time series, P is a
binary matrix that determines sources corresponding to its ROIs and y(t) is MEG signal. Hence, the state-space
model in [YYR16] is essentially a first-order VAR model. The model parameters and source signals were estimated
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using EM algorithm and the ROIs connectivity pattern was explained from the zero pattern in VAR coefficients.
[CRTVV10] claimed that the state-space framework was less sensitive to noise than two-stage approaches.

In addition to the above literature, [HBCN+17] did not assume any dynamical models of source and EEG
signals but rather estimated the whole source signal directly with a sparse prior on some components of sources.
The formulation was a fused lasso with a composite ℓ2,1 norm regularization and was solved numerically using
the ADMM algorithm.

To conclude this section, learning brain connectivity from EEG data can be divided into two main approaches.
The first approach explored a causality from EEG data directly (sensor space). However, a connectivity between
EEG sensors is not an intrinsic connectivity explaining relationships of neuronal activities in the human brain.
The second approach, consisting of two-stage approach and coupled models, was to learn brain connectivity from
source signals (source space). The two-stage approach reconstructed source signals first and often explained
source dynamics via VAR models. However, the performance of the two-stage approach highly depended on the
performance of source reconstruction. Coupled models are then proposed for explaining dynamics of sources and
EEG signals concurrently where brain connectivity was discovered from the estimated model parameters. Almost
all previous studies assumed that source dynamics are described by a VAR process. As mentioned in [GB19] that
neurophysiological data have moving-average components and should be explained by VARMA rather than pure
VAR models. This paper presents a generalization of source equation to VARMA and proposes an estimation
formulation based on subspace identification with a sparsity prior on the source output matrix. Contributions of
this work include the following points.

• Unlike most studies that assumed a VAR process as underlying source dynamics, we consider state-space
(or equivalently VARMA process) to explain source equations. Methods of analyzing Granger causality from
state-space models are thus needed.

• We adopt the notion of state-space Granger causality from [BS15] and describe theoretical properties that
relate to application of views. This includes invariant properties of GC under model coordinate transforma-
tion and signal scaling.

• We estimate effective connectivity on a high-dimensional source space, as compared to the literature [GHAEC08,
GH10, HTN+10, CWM12, HE16a] that only a few of dipoles (≤ 10) were considered.

• The number of sources in the ground-truth system and in the estimated models are often the same in
literature. This might not be true in practice. We provide a clear evaluation metric in a fair setting.

2 Background
This section describes state-space equations and the Granger characterization of this model class.

2.1 State-space models
Most literature exploring Granger causality of multivariate time series has relied on the use of VAR models because
of its simple causality characterization in model parameters. In this paper, we consider a wider class of linear
stochastic processes in the form of state-space models to explain EEG time series dynamics. We assume that
source signals (x ∈ Rm) is an output of state-space model whose state variable is z ∈ Rn (or what we call a
latent), and the EEG signal (y ∈ Rr) is a linear combination of the source signals, as described in the following
equations.

z(t+ 1) = Az(t) + w(t), (6a)
x(t) = Cz(t) + η(t), (6b)
y(t) = Lx(t) + v(t). (6c)

We call A ∈ Rn×n the dynamic matrix, C ∈ Rm×n an output matrix mapping the latent to source signal, and
L ∈ Rr×m is the lead-field matrix determined from a head model. The state noise, w, the output noises η, v are
zero-mean and assumed to be mutually uncorrelated.

In EEG applications, the volume conduction explains how the source signal propagates through brain tissues to
the EEG signals (here from x to y) and it becomes known that Granger causality learned from y may not be the
same pattern as one inferred from x, i.e., spurious effect of Granger causality [dSFK+16]. If model parameters
(A,C,L) and noise covariances can be estimated from measurements y then we can consider (6a)-(6b) and
conclude a Granger causality in the source signal (x). In what follows, we focus on state equations of the source
signal only (6a)-(6b) and discuss how to learn GC of x once all model parameters are estimated.
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2.2 Granger causality on state-space models
If one assumes a dynamical equation of a time series as an autoregressive (AR) process, it becomes well-known
that Granger causality (GC) is encoded as a common zero pattern of all-lagged AR coefficient matrices. The
generalization of this characterization to a state-space equation was provided by [BS15] and is summarized here.
As our goal here is to learn a GC of the source time series, only state-space equations (6a)-(6b) are considered.
The noise covariance matrices in this system are W = E[w(t)w(t)T ] (state noise covariance), N = E[η(t)η(t)T ]
(measurement noise covariance) and S = E[w(t)η(t)T ] (correlation of state and measurement noise).

Granger causality concept is to determine relationships between time series from the covariance of prediction
errors. If we denote x̂(t|t−1) the optimal estimator of x(t) in MSE sense, it is a classical result that such optimal
predictor of x(t) generated from a state-space model, based on information up to time t − 1 can be obtained
from the Kalman filter. The Kalman filter finds the conditional mean of state variable z(t) based on all available
information ẑ(t|t− 1) = E[z(t)|x(t− 1), . . . , x(0)] and the corresponding covariance of state estimation error is
P (t|t− 1) = cov(z(t)− ẑ(t|t− 1)). When the filter is applied in asymptotic sense, P converges to a steady state
and satisfies discrete-time algebraic Riccati equation (DARE):

P = APAT − (APCT + S)(CPCT +N)−1(CPAT + ST ) +W. (7)

Asymptotically, the covariance of output estimation error is

Σ = cov(x(t)− x̂(t|t− 1)) = CPCT +N.

We note that if x ∈ Rm then Σ ∈ Rm×m and it is the output estimation error covariance when predicting x
using all lagged components in x (full model). To determine an effect of xj(t) to xi(t) in Granger sense, we then
consider the reduced model introduced by eliminating xj(t) from the full model, and is defined as

z(t+ 1) = Az(t) + w(t), xR(t) = CRz(t) + η(t),

where the superscript R denotes the variable x(t) with jth component eliminated and CR is obtained by removing
the jth row of C. The optimal prediction of x(t) using all information of x except xj is then also obtained by
applying the Kalman filter to the reduced model. We can solve DARE using (A,CR,W,NR) and obtain PR,
denoted as the state estimation error covariance and the output estimation error covariance of the reduced model
is given by

ΣR = CRPR(CR)T +NR

where NR is obtained from N by removing the jth row and column of N . We also note that ΣR has size
(m− 1)× (m− 1). Doing this way, we can test if xj is a Granger cause to xi for all i ̸= j by using the Granger
measure:

Fij ≡ Fxj→xi|all other x = log

(
detΣR

ii

detΣii

)
, (8)

where Σii and ΣR
ii are the variance of prediction error of xi(t) obtained from using the full model and the reduced

model, respectively. We can repeat the above step for j = 1, 2, . . . ,m, i.e., learn Granger causality from data by
computing Fij for all (i, j) and construct it as a matrix whose diagonals are not in consideration. Subsequently,
a significance testing is performed on the off-diagonal entries of this matrix to discard insignificant entries as
zeros. We also note that the notation of xi can be either a single variable or a group of variables and Σii has the
corresponding dimension of xi. When xi is a single variable, then detΣii reduces to the diagonal (i, i) entry of
Σ. The resulting matrix will be called the Granger causality matrix in this paper.

3 Properties of GC causality
Fundamental properties of GC causality under various transformations are stated in this section. The proofs will
be provided in the Appendix B.

Theorem 1. For VAR process with AR coefficients, A1, A2, . . . , Ap, we have

Fij = 0 ⇔ (Ak)ij = 0, k = 1, 2, . . . , p.

Proof. An example of proof can be found in [Lüt05].

It was shown in [BS15] that a Granger matrix F in (8) can be characterized in the state-space system matrices
as well.

Fij = 0 ⇔ CT
i (A−KC)kKj = 0, (9)
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for k = 0, 1, . . . , n where CT
i is the ith row of C, and Kj is the jth column of the Kalman gain given by

K = (APCT + S)(CPCT +N)−1. (10)

We have seen that the Granger causality condition for the VAR model is linear in AR coefficient matrices. Unlike
VAR models, GC condition for state-space models is highly nonlinear in system matrices.

Theorem 2. The following properties of Granger causality hold.

1. A GC matrix is invariant under a similarity transform of the system.

2. If CT
i = 0, S = 0 and N is diagonal then Fij = 0 and Fji = 0. As a result, the zeros of F is unchanged

when N is changed under a scaling transformation.

3. If we permute rows of x to x̃ = C̃z + η̃, then C is row permuted, i.e., C̃ = ΠC and η̃ = Πη. Let Σ̃ be the
covariance of x̃. We have Σ̃ = ΠΣΠT . Moreover, the GC matrix of x̃ under such permutation, is related
to F by F̃ = ΠFΠT .

4. If N = 0 and S = 0, then the zero pattern of F is invariant under a scaling transformation of C.

To interpret the meanings of Theorem 2 we consider the dynamical equations (6a)-(6b) where the aim is to
learn GC in variable x. The result in statement 1 is very natural. If one changes a coordinate system of z, this
should not affect the causality pattern of x, which is the output of the linear system. For statement 2, if CT

i = 0,
it would mean xi is a pure noise ηi. Then if w and η has no correlation, i.e., S = 0, and if η is uncorrelated, i.e.,
N is diagonal, then the effect of xi cannot be transmitted to other xj ’s by any means. Therefore, no Granger
cause from xi to xj . Similarly, xi does not receive any information from other xj ’s, so xi is not Granger caused
by xj . The invariant property of zero pattern in F under a scaling of N has a benefit when one estimates N in
the form of αnI (homogeneous noise) and that is supposed to be a correct structure. Even when an estimated
value of αn can differ from the true value, the estimated zero pattern of F can still be correctly recovered. The
statement 3 has an intuitive result. If arranging a list of brain sources in one way corresponds to a certain pattern
of Granger causality then shuffling the order of brain sources (e.g., changing the brain coordinate system) leads
to permuting the estimated causality pattern. Lastly, statement 4 suggests that an output signal normalization
(a typical pre-processing step) can be cast as a scaling transformation of C under noiseless assumption. Such
transformation does not change the location of null Granger causality.

4 Proposed method
This section describes the methodology of learning Granger causality patterns from EEG time series data. The
method consists of three main processes. From the proposed state-space model in (6), the only available mea-

State-space estimation 
of EEG time series 

with sparse rows in C

Method: subspace identification 

+ Group sparse estimation

Estimation of GC pattern for SS model

head model, 
gender, age

Estimation of
Lead field matrix Given

Estimate

EEG Dynamical Model

Estimation of noise covariance 
in source dynamic

Problem

Estimated GC matrix

Significant Granger 
Causality Structure

minimize   distance(    ,                     )

Model produced form of is

subject to
average noise power
is preserved

multi-channel
EEG time series

Figure 1: Estimation scheme for learning Granger causality from EEG data based on the proposed model.

surement is EEG signal (y). If we substitute the dynamics of source (x) in the EEG forward equation, we have

z(t+ 1) = Az(t) + w(t), y(t) = LCz(t) + e(t) (11)

where e = Lη + v. The matrices Σw and Σe are noise covariances of w and e, respectively. We can view e as a
combination of noises corrupted in the latents and source signals, as perceived at the output equation.
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Figure 2: EEG signals are linear combinations of source activities that are assumed to consist of active (red circles)
and inactive (white circles) states.

4.1 State-space estimation with sparse rows in output matrix
Given the measurement data of {y(t)}Nt=0, we can estimate state-space parameters A and H in (11) using the
subspace identification method [OM12] which is available in the system identification toolbox n4sid on MATLAB.
An estimated state-space model without deterministic input in this toolbox is of the form:

z(t+ 1) = Az(t) +Ke(t), y(t) = Hz(t) + e(t), (12)

where K is the Kalman gain matrix and H in (12) takes the form H = LC according to our model (11). This
section explains how to estimate A,K,C using a subspace identification technique with a prior structure of C.

Recall from (6b) that the ith source can be interpreted as inactive (x(t) = 0) if the ith row of C is entirely
zero (in noiseless condition). To incorporate this assumption in the estimation problem, we extend the idea from
our prior work [PiS18] based on a regularization technique. We put some prior in C by assuming that only some
sources are active in a period of time. Consequently, C is assumed to have some zero rows corresponding to
inactive sources as shown in Figure 2. We therefore propose a subspace identification framework that estimates
(A,C) and promotes C to contain some zero rows.

From the subspace (stochastic) identification framework in Theorem 8 of [OM12], the main equation is[
Ẑi+1

Yi|i

]
=

[
A
H

]
Ẑi +

[
ρw
ρe

]
≜

[
V1

V2

]
=

[
A
LC

]
W + ϵ, (13)

where Ẑi is the forward Kalman estimate of
[
z(i) z(i+ 1) · · · z(i+ j − 1)

]
, and (ρw, ρv) are Kalman filter

residuals in the innovation form (12). The key success of stochastic subspace identification is to obtain the
estimated state sequence directly from the output data via an orthogonal projection. Once Ẑi and Ẑi+1 are
computed, we propose to modify the existing algorithm 3 in [OM12] to estimate C in a regularized least-squares
sense.

The algorithm of [OM12] involves the extended observability matrix

Oi =


C
CA

...
CAi−1

 ∈ Rim×n,

and the projection of the row space of Yf (future output) on the row space of Yp (past output), denoted by
ξi = Yf/Yp; see complete notation details of Yf , Yp, Y

−
f , Y +

p in the Appendix A. It was proved in Theorem 8
of [OM12] that the Kalman state sequences are related to the projection and the extended observability matrix
via

ξi = OiẐi, ξi−1 = Y −
f /Y +

p = Oi−1Ẑi+1.

Moreover, by its definition, Oi−1 can be obtained by stripping all block rows of Oi except the last r rows. From
this main result, the stochastic algorithm 3 [OM12] is described as follows.

1. Calculate the projections: ξi = Yf/Yp and ξi−1 = Y −
f /Y +

p .

2. Calculate the SVD of the weighted projection: W1ξiW2 = UΣV T ≈ U1Σ1V
T
1 where Σ1 contains signifi-

cantly nonzero singular values. The number of nonzero singular values determine the system order.
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3. Compute Oi = W−1
1 U1Σ

1/2
1 and Oi−1 is obtained by extracting all rows of Oi except the last m rows.

4. Determine the estimated state sequences from

Ẑi = O†
i ξ, Ẑi+1 = O†

i−1ξi−1.

Until this step, (A,C) are parameters to be estimated, while other terms in (13) are known, so we propose to
estimate A and row-sparse C from the following regularized least-squares problem:

minimize 1
2∥V1 −AW∥2F + 1

2∥V2 − LCW∥2F + γh(C) (14)

with variable A ∈ Rn×n and C ∈ Rm×n whose rows are denoted by CT
i for i = 1, 2, . . . ,m. The problem

parameters are V1, V2 and L ∈ Rr×m, the lead-field matrix computed from a head model. The estimation
problem (14) is separable in A and C, so A is simply the least-squares solution given by A = (V1W

T )(WWT )−1.
We propose a group-norm regularization h of the form

h(C) =
m∑
i=1

∥CT
i ∥

q
2, (15)

which can be regarded as a composite of ℓ2 and ℓq norms used for promoting group sparsity in the row of C.
The penalty parameter γ, controls the degree of such sparsity, i.e., when γ is large, C tends to have more sparse
rows. Choosing q = 1 for h refers to the group lasso problem [HTW15, §3.8]. In this paper, we propose to use
q = 1/2 which makes h non-convex but this choice has been shown to obtain more desirable properties about the
sparsity recovery rate [HLM+17] than using a convex penalty, e.g., when q = 1. Solving numerical solutions of
the non-convex problem can be challenging. We apply a non-monotone accelerated proximal gradient (nmAPG)
method [LL15] and the implementation details are explained in the Appendix C. Choosing a suitable value of γ in
an optimal sense is a common issue in any sparse learning approach and we opt to apply model selection criterions
such as BIC or AIC [HTF09]. This would require solving (14) with (15) for several values of γ, extracting a
sparsity of rows in C for each γ, solving a constrained least-squares subject to such sparsity pattern, and selecting
γ that yields the minimum BIC score.

We also consider the well-known ℓ2-regularization:

h(C) = (1/2)∥C∥2F (16)

as a baseline method to compare with other estimation approaches. The ℓ2-regularized least-squares solution of
C must satisfy the zero-gradient condition: LTLCWWT + γC = LTVWT . If WWT is invertible (typically
satisfied if we have enough data samples), the optimal condition can be formulated as a Sylvester equation in C:

LTLC + γC(WWT )−1 = LTVWT (WWT )−1, (17)

which is linear in C and can be solved by Bartels and Stewart algorithm (implemented in MATLAB and many linear
algebra packages). The Sylvester equation has a unique solution if LTL and −γ(WWT )−1 have no common
eigenvalues. Such condition holds since LTL has nonnegative eigenvalues but −γ(WWT )−1 always has negative
eigenvalues [HJ13, §2]. In conclusion, the ℓ2 regularized solution of C is unique provided that WWT is invertible
and it can be solved faster than solving (14) with the group-norm regularization. However, it is known that ℓ2-
regularized solutions are not sparse. The solution C tends to zero only when γ → ∞; see proof in the Appendix C.
The ℓ2-regularized problem can be a remedy for a constrained least-squares of estimating C with a fixed sparsity
pattern in rows of C. It is often that even C is constrained with some zero rows, the remaining nonzero rows still
contain too many parameters, resulting in an under-determined system of solving V2 = LCW .

When A and C are estimated, we form the residuals ρw, ρe in (13) and compute their sample covariances,
denoted by Σw and Σe respectively.

Connection with related work. Our assumption on regarding inactive source from sparse rows in C is in
agreement with the use of penalty (15) by [MMARPH14]. However, [MMARPH14] did not model a dynamic
of z but rather estimated z(t) as a whole time series segment whereas our subspace approach estimates system
parameters but not all related signals directly. The state-space model (4)-(5) by [YYR16] was close to our
model (6a)-(6c) but the description of state variable (a time series in ROI level) and the system parameter P (a
binary matrix) were different from ours. Moreover, [YYR16] applied EM algorithm in the estimation process due
to the presence of latent variables, while we handled this issue by introducing a regularized subspace identification.
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4.2 Estimation of noise covariance in the source dynamic
The GC estimation from state-space model parameters explained in Section 2.2 requires information of noise
covariances (both state and measurement noises). Consider our methodology in the diagram 1 and the model
equations (6a) and (6b). At this step, we have estimated A,Σw, C from subspace identification. Then it is left
to estimate Ση (the measurement noise covariance at the source equation) in order to solve a GC matrix via the
Riccati equation.

The measurement noise observed at the output equation (11) has the covariance related to the covariances
of η, v by

Σe = LΣηL
T +Σv. (18)

In other words, the RHS of (18) is the model-produced structure form of Σe where its value is obtained empirically
from the subspace identification described in Section 4.1. The lead field matrix can be obtained from a head
model (as part of our assumptions). Therefore, it remains to estimate the unknown Ση and Σv. Consider the
dimensions of all these matrices, where they are symmetric and positive definite, i.e., Σe ∈ Sr and Ση ∈ Sm

and Σv ∈ Sr. Linear equation (18) may have many solutions, so we propose to estimate Ση,Σv with a certain
structure in an optimal sense using the KL divergence distance with a Gaussian assumption.

minimize (1/2) tr(Σ−1
e (LΣηL

T +Σv)) + log det(Σe)− log det(LΣηL
T +Σv)

subject to Ση ⪰ 0,Σv ⪰ 0,
Ση = αηI, Σv = αvI,
tr(Σe) = tr(LΣηL

T +Σv)

(19)

with variables Ση ∈ Sm and Σv ∈ Sr. We choose to restrict down to a diagonal structure on the variables,
corresponding to the assumption that each of the noise vectors η and v is mutually uncorrelated and has a
uniform variance (αη, αv). In addition, the trace constraint in (19) explains the conservation of the noise average
power, i.e., the empirical average power and that of the model-produced form must be equal.

The problem (19) can be further simplified since the variables are merely scalars of αη and αv. The trace
constraint in (19) gives the linear relation:

αv = −(tr(LTL)/r)αη + (1/r) tr(Σe) ≜ −aαη + b, (20)

which makes the cost objective in (19) reduced to a function of αη only. Moreover, the relation between αη and
αv and the positive constraint on αv results in the inequality: 0 ≤ αη ≤ b/a. As a result, we can reformulate (19)
into a scalar optimization problem as

minimize f(αη) := cαη − log det(αηA+ bI)
subject to 0 ≤ αη ≤ b/a

(21)

with variable αη ∈ R and the problem parameters are a = tr(LTL)/r, b = tr(Σe)/r, c = (1/2)[tr(LTΣ−1
e L) −

a tr(Σ−1
e )], and A = LLT −aI. The cost objective of (21) are convex in the variables. In fact, we describe in the

Appendix D that solutions of (21) can be obtained almost in a closed-form expression depending on three-case
conditions of the problem parameters and the three-case solutions are i) Ση = 0, ii) Ση has the same average
power as Σe and iii) the noise power of e is decomposed to Ση and Σv in an optimal trade-off according to the
optimal KL divergence.

If Σe ⪰ 0 (degenerated case), then KL divergence is not valid. We estimate Ση and Σv in a least-squares
sense instead. That is, we minimize ∥Σe − (αηLL

T + αvI)∥2F over (αη, αv) and the covariance estimates are
Ση = αηI,Σv = αvI.

4.3 Learning significant Granger causality
From the scheme proposed in Figure 1, after we have estimated a Granger causality matrix, F̂ , one needs to decide
which (i, j) entries of F are significantly (or statistically) nonzero. Statistical tests on GC measures characterized
from VAR models are available as the log-likelihood ratio test for a nested VAR model or GC inference tests on
autocovariance sequence and cross-power spectral density are provided in a MATLAB toolbox by [BS14]. For
Granger causality characterized on state-space models, [BS15] concluded that the inference measure in (8) does
not have a theoretical asymptotic distribution, while it was observed in their experiments that the test statistics
can be well-approximated by a Γ distribution.

As an alternative, a significance testing can be performed using permutation tests or bootstrapping methods.
To perform such tests under the null hypothesis that xj does not Granger cause xi, it often requires shuffling
temporal segments of xj to examine whether such randomization does not change the effect of xj to xi. We
note that the permutation is impractical to apply in our context since our proposed scheme does not estimate the
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source signal x directly. Alternatively, Kappa selection approach [SWF13] is a scheme used in variable selection
problem to tune problem parameters (here in our context, a threshold to regard Fij as zero) by a score criterion
called Kappa score. This method also requires segmenting EEG time series; each of which is used to estimate
GC matrix. The work in [PiS19] considered the vectorized version of estimated GC matrices that contain both
null and causal entries, and then applied Gaussian mixture models to cluster Fij ’s where the group having the
least mean was regarded as null GC. The approach in [PiS19] relies on the central limit theorem to conclude
that an averaged GC matrix estimated from multi-trial data converges to a Gaussian distribution. A limitation
of approaches in this direction is a requirement of repetition of estimation processes on segmented or multi-trial
data and hence, a computation power becomes a trade-off.

To the best of our knowledge, a statistical significance test of state-space Granger causality is still an open
question where a challenge is on deriving the asymptotic null sampling distribution of the estimator [GB19]. We
are aware of the importance of significance testing; however, this paper is not aimed to pursue this topic as it is
beyond the paper scope. We will use a heuristic thresholding on discarding small entries of Fij ’s. Let Fmax and
Fmin be maximum and nonzero minimum entries of estimated F . A threshold is varied in (Fmax −Fmin)(0, 1) in
log scale where the selected threshold is 10−6(Fmax − Fmin).

4.4 Generating EEG data
Generating dynamical models is an important step to perform experiments on Granger causality estimation so
that we can evaluate the accuracy of estimated GC patterns with ground-truth models. This step is simple in
generating VAR processes as a Granger causality is linearly encoded in VAR parameters. In this section, we explain
an approach of generating VARMA processes as state-space models where we can control the true GC pattern.

The studies in [BS15, BS11] have shown an important result that GC causality of a filtered VAR process is
unchanged if the filter is diagonal, stable and minimum-phase. Let x̃(t) be a p-lagged VAR process where the z
transform relation is given by x̃ = A(z)−1w with VAR polynomial:

A(z) = I − (A1z
−1 +A2z

−2 + · · ·+Apz
−p).

We consider G(z) an MIMO (multi-input multi-output) transfer function of the form:

G(z) = diag

(
p1(z)

q1(z)
,
p2(z)

q2(z)
, . . . ,

pn(z)

qn(z)

)
, (22)

where each of diagonal entries of G is a rational proper transfer function of a given relative degree. The minimum-
phase and stability properties of G suggest that the roots of pi(z) and qi(z) must lie inside the unit circle,
respectively. As a result, we define x = Gx̃ = G(z)A(z)−1w and x is a VARMA process. The result from [BS11]
shows that x also has the same GC pattern as x̃, which is easily explained from a zero pattern in VAR coefficients.
The system transfer function from w to x can be equivalently represented in a state-space form. Therefore, we
proposed a procedure to generate a state-space equation with sparse GC pattern as follows.

1. Generate sparse A1, A2, . . . , Ap matrices randomly with a common zero pattern and the polynomial A(z)
must be stable. This is to guarantee that the generated VAR process is stationary. We can do this
by randomizing stable roots inside the unit circle and compose the polynomial in the diagonal of A(z).
Consequently, off-diagonal entries of Ak’s are generated randomly in a common (i, j) location. If the
resulting A(z) is not stable, we randomize off-diagonal entries again. In practice, when n is large (in order
of several tens or hundred), it is getting more difficult to obtain stable VAR unless the VAR coefficients
should be very sparse.

2. Generate a random diagonal transfer function G(z) with required properties. We can generate stable zeros
and poles of G(z) when the orders of two polynomials are given.

3. The transfer function from w to x, the desired source signal, is then given by H(z) = G(z)A(z)−1. Convert
H into a discrete-time state-space form using tf2ss command in MATLAB. We obtain (A,B,C,D) of the
state-equation: z(t + 1) = Az(t) + Bw(t), x(t) = Cz(t) +Dw(t). Since H is a proper transfer function,
we have D = 0.

State-space equations and VARMA models can be interchangeably transformed [CGHJ12], so we can refer to the
generated model as state-space or VARMA model with sparse GC pattern.

Special case of G(z). As suggested in [BS15] is when G(z) in (22) has the form of a minimum-phase MA poly-
nomial: G(z) = (1+ cz−1)qI = C(z)I with |c| < 1, the model reduces to x = G(z)A(z)−1w = C(z)A(z)−1w =
A(z)−1C(z)w since C(z) is just a scalar. We can then readily consider x as a VARMA(p, q) process. The AR

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.07.329276doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.329276


and MA coefficients in A(z) and C(z) can be used to convert into a state-space form, for example, the Hamilton
form.

As described above, we have generated parameters of ground-truth models of source signals according to (6a)
and (6b). It remains to generate a lead field matrix, L, which is computed based on the New York head model
described in [HPH16] and select model parameters corresponding to realistic assumptions on EEG signals. We
follow implementation details in [HE16a] and add some extensions: i) more number of sources can be considered
m > 2, ii) source dynamics are VARMA (not VAR) and iii) source time series have an underlying Granger causality,
which is generated randomly.

5 Performance evaluation
We aim to evaluate the performance of our method on simulated EEG data sets first. In the data generating
process, we can set up model dimensions (n,m, r) and a ground-truth sparsity pattern on the GC matrix associated
with such models. In an estimation process, one needs to assume the model dimension; here let (m̃, ñ) be the
number of sources and latents in the estimation which could be larger or smaller than (m,n), while r (the
number of EEG channels) is certainly known. Then it leads to a condition in an evaluation procedure since the
estimated matrix F of size m̃ × m̃ could have a different dimension from the ground-truth matrix F . Recall
that a ground-truth model used to generate data is explained in (6a)-(6c). We describe how to calculate the
classification measures in a fair setting. In this study, we assume that m̃ > m since we can overestimate the
number of sources and we expect the source selection procedure to remove inactive sources at the end. By this
assumption, F̂ ∈ Rm̃×m̃ has a bigger dimension than the true Granger causality matrix F ∈ Rm×m.

Active source

Inactive source

Estimated source

True source region
Active source region

Estimated source region

Figure 3: Granger causality evaluation including active source regions, true source region and estimated source
region.

Figure 3 shows all three square regions involved in the evaluation process. We start with the true source
region (T) that contains all the sources in a ground-truth model, and since not all sources are active, a subset
called active source region (A) consists of all the true active sources where we can reorder the source coordinates
so that active sources contain in this region. We define the estimated source region (E) as the set of all sources
considered in an estimated model. By the assumption that m̃ > m, then the true source region must lie inside
the estimated source region. By these notations, the set T − A contains all inactive sources in the ground-truth
model (highlighted in the blue color), and E−T (green area) represents possible Granger causality that occurred
in estimated sources that do not exist in the ground-truth model. The circles ◦ denotes the predicted nonzero
GC (nonzeros in F̂ ), and the black circles are true positive (TP) and while the red circles are false positive (FP).
The cross signs denote the predicted zero GC (zeros in F̂ ), and the red crosses are false negative (FN) while the
black crosses are true negative (TN). Hence, when we evaluate an estimated GC matrix F̂ ∈ Rm̃×m̃, the following
properties hold on the regions shown in Figure 3.

• TP and FN only exist inside the active regions because nonzeros of F in a ground-truth model can only
exist in this region.

• True positive rate (TPR) is equal in all regions because the numbers of TP are equal in all regions.

• If all active sources are correctly classified then there is no FP in the true source region and the estimated
source region.
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• Predicted nonzeros in the green region are regarded as FP since there are no true sources there.

• A fair comparison should be tested on the true source region.

• Accuracy (ACC) and True negative rate (TNR) between regions cannot be compared because the numbers
of negatives are different in those regions.

• FP and FN on the estimated source region can only be evaluated when a method is tested on a simulated
data sets as the ground-truth models and hence the true source region are known.

From above reasons, the performance on the active true source region reflects how well the method can achieve
in TPR. An overall performance of a method can be worse when evaluated on the true source region since if the
method predicts any nonzero in the inactive source region, it must be FP. A good method should yield a high
TNR on the blue area. Lastly, the performance evaluated on the estimated source region can only drop if the
method introduces unnecessary predicted nonzeros in the green area. This arises from two possibilities: error from
the source selection algorithm or error from learning significant GC entries.

6 Simulation results
The number of state variables (or latents), sources, and EEG channels in the ground-truth models are denoted
by n,m, r, respectively. In the model estimation process, m and n must be set and we use a notation of (ñ, m̃)
(which are not necessarily equal to (n,m). Therefore, L̃ also denotes the lead-field matrix calculated from the
parameter m̃. Three main factors to the performance of active source selection and estimating GC causality are
as follows.

1. The percentages of active sources in the ground-truth model are set to 20% and 40% with m = 50.

2. The number of EEG electrodes varies as r = 108, 61, 31, 19.

3. The percentages of deep sources in the ground-truth model varies as 0%, 50%, 75%.

According to [HE16b], we define eight regions of interest (ROI) that cover left-right, anterior-posterior, and
superior-inferior hemispheres, and are labeled as RAI, RAS, RPI, RPS, LAI, LAS, LPI and LPS. Ground-truth
models are assumed to contain 8 ROIs and all sources (including both active and inactive) are drawn from 4
ROIs randomly. The first two factors are considered to examine how the performance depends on the sparsity of
the ground-truth system and the number of measurements. The third factor is known to affect a performance of
localizing active sources. The forth factor, we aim to investigate the robustness of the method when we could
wrongly choose the model order in the estimation (m̃ > m), which is a common aspect in practice. As we vary
the above three factors, we obtain 2×4×3 = 24 cases to show performances of our source selection and Granger
causality learning approach.

For each fixed (n,m, r) and each controlled factor, we randomly generated 100 ground-truth models with
different underlying GC causalities and corresponding 100 realizations of EEG time series with SNR of 0.95. All
classification performance indices: true positive rate, false positive rate, accuracy, F1 score (TPR, FPR, ACC,F1)
are averaged over 100 runs. The ground-truth VARMA models are generated with the sparse VAR part of
dimension: 10, 20, lag of order 2, and the diagonal filter (moving average part) of order 6.

There are many source reconstruction algorithms that can be compared with our source selection scheme (14).
Moreover, Granger causality can be estimated from the reconstructed sources from these inverse algorithms us-
ing VAR-based approach, as implemented in MVGC toolbox [BS14], and then compared with our estimated
state-space Granger causality. For this purpose, we also implemented source reconstruction algorithms in-
cluding the weighted minimum norm estimator (WMNE), the linear constraint minimum variance beamformer
(LCMV), and the standardized low-resolution brain electromagnetic tomography (sLORETA); all implemented
in Brainstorm [TBM+11], freely available for online download under the GNU general public license (http:
//neuroimage.usc.edu/brainstorm). In WMNE implementation, the depth weighting is set to 0.5; the regu-
larization parameter of the noise method is set to 0.1 and SNR is fixed as 3. As for LCMV, the noise covariance
regularization uses the median value of the eigenvalues. In sLORETA, no depth weighting is applied and SNR is
fixed as 3. In the comparative experiments with Brainstorm, we set (m, r) = (50, 61) with 20% active sources
and 50% deep sources in ground-truth processes. In our estimation process, we set m̃ = 100 and the assumed
potential sources are scattered over 8 ROIs of the brain.

All simulation data sets and codes used in this paper are available at https://github.com/parinthorn/
eeg-bc.
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6.1 Selecting active sources
In this experiment we show the performance of classifying active sources. Figure 4 shows a typical example of
estimated C when the number of all sources in estimation could be falsely larger than the actual number (m̃ > m).
The estimated source index i when i > m is regarded as spurious active source if it is incorrectly detected as an
active one by inferring from nonzero rows of Ĉ. Our method returned a very small percentage spurious sources in
Figure 4 showing a capability of the ℓ2,1/2 regularized estimation to select sparse rows in C with a good accuracy.
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Figure 4: Examples of zero patterns of estimated C as m̃ varies. The color scale is proportional to magnitudes of
Cij ’s in log scale. The regularized solution of Ĉ corresponds to the use of λ chosen from BIC. The percentage of
deep source is 50% and the number of electrode is 61.
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Figure 5: Receiver operation characteristic (ROC) of active and inactive source classification as the number of
EEG sensors varies.

Classification performance of the method which depends on λ in the formulation (14) is shown in Figure 5. Each
point on ROC curves refers to a classification result from a value of λ, where true positives (negatives) correspond
to correctly identified nonzero (zero) rows in Ĉ. The ROC plots show that the performance of classification
varies upon the number of EEG channels. As we have more electrode measurements (more data samples), the
ROC curve is shifted toward the top left corner (improved accuracy). The results confirm with [SYW+16] that
at least more than 64 electrodes are needed for source reconstructions with good quality. Figures 5 (a) show
superior performances if the number of active sources is relatively small because a sparsity-inducing formulation
(14) generally works well when ground-truth models are sufficiently sparse [HTW15]. Our result in Figure 6 also
shows the main factor to source selection performance, which is the location of active sources. As the ratio of
deep sources to shallow sources is higher, the smaller area under the ROC curve is obtained.

ROC curves only explain how classification performances vary under the parameter λ. In this experiment, we
evaluated the source selection performance when λ was chosen by BIC and displayed it by box plots of TPR,
FPR, and ACC in Figure 7 as the distribution of these 100-run metrics may be skewed. TPRs of higher than 80%
were mostly obtained when using 61 or 108 electrodes and given that the number of active source is small. Our
approach has a great advantage in achieving almost zero FPR when the percentage of active sources is small as
seen in Figure 7 (left) that the median of FPR almost goes to zero. When the ground-truth sources are more
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Figure 6: Left. An example of ground-truth source locations. Right. Receiver operating characteristic (ROC)
of active and inactive source classification as varying the percentage of deep sources. The percentage of active
sources is 20% and the number of electrodes is 61.
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Figure 7: Box plots of source selection performance metrics (TPR, FPR, Accuracy) as the number of electrodes
varies and under two conditions of the number of true active sources.

Figure 8: Comparisons with source reconstruction methods: WMNE, LCMV, sLORETA. Our averaged perfor-
mance indices over 100 runs (of recovering 50 sources) are (TPR,FPR,ACC) = (0.8130, 0.0172, 0.9658).

active, more portions of higher FPRs and TPRs decrease to under 80%. The overall accuracy in the case of 20%
active sources is not sensitive much to the number of electrodes, as compared to the case of 40% active sources.
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Figure 8 compares source selection results with WMNE, LCMV, and sLORETA. An example from the 25th
run out of all 100 samples available in https://bit.ly/3jAJEeS, shows that the true active sources can be
typically recovered by our method. For source reconstruction algorithms, the ground-truth deep sources in the left
hemisphere can be mostly detected by LCMV but not by WMNE and sLORETA. This agrees with a comparison of
inverse algorithms given by [APS+19]. It was concluded that when source locations are deep, the overall accuracy
of LCMV is higher than eLORETA (which is an improved version of sLORETA) in a high SNR setting (which is
the case in this experiment). Results from

6.2 Estimation of Granger causality
The results of discarding inactive sources in section 6.1 showed that if a ground-truth system contains only a
few active sources, our method can select the active ones with a good accuracy. In this experiment, we explore
Granger causality pattern among the selected active sources. Hence, we show the performance of estimating
GC as a binary classification problem (regard Fij as null or causal entry) from simulated EEG signals that were
described in section 6. The performance indices, TPR, FPR, ACC and F1 score are reported as three factors
(sparsity of ground-truth, percentage of deep sources, and the number of EEG channels) vary.

Our performance of estimating GC was compared to a two-stage approach where a VAR-based GC was
learned from reconstructed sources estimated by the inverse algorithms (WMNE, LCMV, sLORETA). We showed
this result in a setting that i) the total 50 sources contained 20% active ones, ii) 50% sources were located in
deep ROIs and iii) the number of electrodes was 61. In Brainstorm implementation, reconstructed sources in the
resolution of 2000K were averaged within each area of 8 ROIs. For GC estimation, the MVGC toolbox [BS14]
was implemented using autocovariance method (LWR); VAR lag orders were selected from BIC; significance level
of testing VAR-based GC is set to α = 0.01. For our method, we set m̃ = 100 and sampled these 100 potential
sources over 8 ROIs. The method can return an estimated GC matrix in node-based resolution (m̃ × m̃) or
ROI-based resolution (8× 8) depending on how we cluster a group of variables (xi, xj) in (8).

Figure 9 shows that our method generally performs well when the ground-truth source dynamics contain fewer
active sources, according to all metrics. TPR is degraded when the number of electrodes is reduced since we have
less data samples. As our formulation and the scheme of selecting the regularization parameter based on BIC favor
sparse models, we see that FPR and ACC have small variations as the number of electrodes changes. In overall,
the accuracy of sparse ground-truth case is above 95% and not sensitive much to the number of electrodes. In
the case of denser ground-truth models (40% active sources), we observed a different trend on FPRs, contrary to
the case of 20% active sources. As we use fewer EEG channels, data samples used in estimation were less and
BIC tended to select fewer active sources. As stated in (9), the selected zero rows in C always infer zero rows
and columns in the GC matrix, i.e., inactive sources have no GC relation with any other sources. This resulted in
a trend of decreasing FPRs as the number of electrodes is less. The overall accuracy then had slightly increasing
variations in this case. If we focus on the performance of correctly classifying causal entries of a GC matrix, out
of all predicted nonzeros, then F1 scores are obtained in the range of 10 − 35%, and they are decreasing as the
number of electrodes is less. Overall, we obtain accuracy above 90% due to a sparsity-promoted framework in
the source selection that allowed us to predict the null entries of GC correctly.

We showed a typical example of estimated GC from the 25th run which is mapped in ROI-based resolution
in Figure 10 and the averaged performance over 100 runs in Table 1. The ability to rule out inactive sources in
our method helps improve detecting zero entries in the GC matrix. This leads to a significant reduction of false
positives as compared to WMNE, LCMV, and sLORETA. Whereas LCMV can relatively recover more deep sources
than other inverse algorithms, the inherent moving average dynamics of the ground-truth sources had made it
difficult for the VAR-based GC estimation method to accurately recover GC from the reconstructed sources. As we
observe from Figure 10, there were biases in strong GC connections inferred from VAR estimates via the two-stage
approach. The unexplained moving average dynamic in the residual of estimated source signals can introduce
errors in VAR estimates and hence in false GC connections. This is supported by the simulation that while we
have set the lag order of the VAR part to 2 in the ground-truth system, the VAR estimation typically picked higher
order around 6. In contrast to the two-stage approach, our framework provided a means for estimating VARMA
parameters directly in a state-space form. In combination with a prior on sparse rows of C, our method favors
sparse GC networks, which further significantly improves overall accuracy, provided that the ground-truth network
is also sparse.

Table 1: Averaged performance (and standard deviation) of classifying Granger causality (null versus causal).

Indices Proposed method LCMV WMNE sLORETA
TPR 0.965 (0.12) 0.885 (0.15) 0.992 (0.05) 0.997 (0.02)
FPR 0.185 (0.14) 0.838 (0.07) 0.979 (0.04) 0.994 (0.01)
ACC 0.829 (0.13) 0.231 (0.07) 0.114 (0.03) 0.101 (0.02)
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Figure 9: Performance indices of classifying GC causality. The color bar is the averaged performance over 100
runs. The dot is the median and the vertical bar represents the interquartile.

7 Application to real EEG data
In this section, we performed an experiment on real EEG data sets and compare the findings with the previous
studies that also explored brain connectivity on this data set with other methods, since the true connectivity is
unknown.

Data description. We considered a task-EEG data set containing a steady state visual evoked potential (SSVEP)
EEG signals. The data were recorded from a healthy volunteer with flickering visual stimulation at 4 Hz using
extended 10-20 system with 30 EEG channels. The data contained three blocks of stimulation and each of the
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Figure 10: An example of estimated Granger causality. The three numbers in the parenthesis are (TPR,FPR,ACC)
of the 25th instance.

stimulation blocks lasted 44.7 seconds. As a result, we obtained 3 trials of task-EEG segments; each of which
has 11, 126 time points. The data were collected by Istanbul University, Hulusi Behcet Life Sciences Research
Laboratory, Neuroimaging Unit with the approval of the local ethics committee of Istanbul University and the
support of the Turkish Scientific and Technological Research Council (TUBITAK) project #108S101.

Experiment setting. The selection of brain sources followed the details in [PLGMBB+18] which included the
most actively ranked generators of Occipital lobe, Temporal lobe and Frontal lobe. We sample 18 sources from
the six ROIs including

• left Occipital lobe (OL-L), right Occipital lobe (OL-R),

• left Temporal lobe (TL-L), right Temporal lobe (TL-R),

• left Frontal lobe (FL-L), right Frontal lobe (FL-R),

State-space models and source selection process were performed in node-based resolution (m̃ = 18). Granger
causality was estimated in node-based resolution directly from model parameters. For ROI-based GC, we clustered
18 sources into 3 sources per ROI and redefined xi in (8) as ROI to compute the estimated GC matrix.
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Figure 11: Active source selection results from SSVEP EEG data.

Figure 11 shows active regions as the regularization parameter varies. Strongly active sources appeared in TL-R
and FL-R persistently. In Figure 13, we found the second highest connection that flows from FL-L to OL-L and TL-
R, and from OL-L to FL-L, OL-R, and TL-R. The linkages of exchanging information from visual cortex in occipital
area to frontal lobe is known in SSVEP processing [LTZ+15] where they analyzed the EEG recordings using the
proposed double model, compared with the partial directed coherence analysis (PDC), and also concluded this
findings with previous studies using fMRI, or MEG. The three-trial estimated GC in Figure 12 shows consistently
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Figure 12: Estimated GC from three trials of SSVEP EEG data. (Top row) Node-based GC. (Bottom row)
ROI-based GC.
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Figure 13: Average of estimated GC over three trials.

that the dominant pathways are from TL-R to regions including OL-L, TL-L, FL-L and OL-R. This is supported by
the spatio-temporal analysis in [PLVHRL+17, PLGMBB+18] that the activations in frontal lobe can be preceded
by stronger activations in temporal lobe but this was not found in [LTZ+15]. The methods in [PLGMBB+18]
was the Hidden Gaussian Graphical State-Model (HIGGS) that relied on a frequency-domain linear state-space
model with a sparse connectivity prior. The additional finding that TL played a mediator role in communication
between OL and FL, reported in [PLGMBB+18] also agreed with previous studies in the references therein. Our
framework can provide a model-based approach to confirm these active regions of exchanging information in visual
processing with previous studies.

8 Conclusion
This paper considered an estimation of linear dynamical models for EEG time series and used the model parameters
to infer a causality among source signals. The model equations explain coupled dynamics of source signals and
scalp EEG signals where only EEG can be measured. The definition of relationships among variables followed the
idea of Granger causality (GC) that has been well-established and previously often applied on vector autoregressive
(VAR) models. This work extended the VAR models to a more general class, a state-space equation, which led to
a highly nonlinear characterization of GC but can be evaluated numerically via solving a discrete Riccati algebraic
equation. We have provided analytical results of GC invariant properties under variations system parameters.

In order to estimate such GC matrices, we have proposed a statistical learning scheme consisting of i) subspace
identification that promotes a sparse output matrix of source signal, ii) estimation of noise covariances, and iii)
the estimation of GC pattern for the obtained state-space model. The subspace identification was extended by
using a non-convex regularization to promote sparse rows of C, which can be further used to classify between
active and inactive sources. The non-convex penalty was presented as a group norm of ℓ2 and ℓ1/2 to obtain a
better performance than using a convex penalty in detecting zero rows of C. Given that the models contained
equal percentages of deep and shallow sources, the overall best performance was obtained when the ground-truth
model had a small portion of active sources. The median of accuracy (based on 100 runs) of classifying active
sources ranged in 90− 98%, which owes to the sparse formulation and the penalty parameter selection using BIC.
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When combining all the procedures and evaluating performances of estimating GC, the main factor to overall
accuracy is the portion of active sources in the ground-truth models. If the true GC was sparse, the averaged
accuracy was around 97% and not sensitive much to the number of electrodes and the location of sources. On
the contrary, if the true GC was dense, the overall accuracy slightly degraded to 90− 94% but had an improving
trend when using less electrodes or the ground-truth system contained more deep sources. This contradicts our
intuition but can be explained from the characteristic of our sparse learning framework that favors sparse models
when the data samples were less available (less electrodes). The resulting sparse C led to sparse GC matrices
which helped rule out more FPs, and hence resulted in higher accuracy.

The performance of our method was also evaluated on real SSVEP EEG data whose setting was to stimulate the
human brain in the visual cortex area. Results were consistent with previous studies in the sense that a connection
is found between occipital and frontal areas which are known to be related to a task of visual processing. Moreover,
the temporal lobe was found to be a mediator in the connection between occipital and frontal lobes.

Many practical concerns and limitations of the proposed method can be concluded. Firstly, it requires an
approximation of the lead-field matrix (L) which needs information about sensor position, source position, and
a head model. In our opinion, the latter appears to be the most uncertain parameter as different subjects
would correspond to different head models but this information is unlikely to be exactly known. Secondly,
the computational complexity of our method is high in comparison to other non-parametric approaches as the
problem (14) is solved with several values of γ before using BIC to select the best model. Lastly, the reported
performances were based on thresholding small entries of estimated GC matrices in a heuristic way. We believe
that this step can be improved in future work when a statistical test on significant GC is well established, or by
considering a framework in machine learning.
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A Notations in subspace identification
We follow the notations used in [OM12]. First, given output measurements {y(t)}N−1

t=0 , we can arrange the
sequences in the following matrix.

Y0|2i−1 =



y(0) y(1) · · · y(j − 1)
y(1) y(2) · · · y(j)

...
...

...
...

y(i− 1) y(i) · · · y(i+ j + 2)
y(i) y(i+ 1) · · · y(i+ j − 1)

...
...

...
...

y(2i− 1) y(2i) · · · y(2i+ j − 2)


≜

[
Yp

Yf

]
The notation Y0|2i−1 represents how we stack output sequences in row and columns so that it can be partitioned
at the row i into two blocks of the past (Yp) and the future (Yf ) output sequences. If Y0|2i−1 is row-partitioned
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at row i+1 then it is denoted by
[
Y +
p

Y −
f

]
. From this notation, Yi|i is simply the output sequences starting at time

i: Yi|i =
[
y(i) y(i+ 1) · · · y(i+ j − 1)

]
. The index j is typically chosen as j = N − 2i + 1 which means

that all given data samples are used. In subspace identification, we often encounter the projection of row space
of A onto the row space of B, denoted and given by A/B = ABT (BBT )†B.

B Proof of GC causality properties
This section provides a proof of Theorem 2.

1. A Granger causality matrix is invariant under a similarity transform. Proof. A system realization of
dynamical equations (6a)-(6b) is parameterized by (A,C) and the noise covariance matrices (W,N). Under
a similarity transform to a new coordinate: z̃ = T−1z, the dynamic of x is explained by

z̃(t+ 1) = T−1AT z̃(t) + T−1w(t), x(t) = CT z̃(t) + η(t).

Hence, in the new coordinate of state variable, the system has another realization (Ã, C̃) with a relation
Ã = T−1AT and C̃ = CT . Moreover, if we define w̃ = T−1w, then noise covariances are

cov
([

w̃
η

])
=

[
T−1WT−T T−1S

ST−T N

]
.

Let P̃ be the covariance of state estimation error in the new coordinate. It is a straightforward calculation
to show that P̃ = T−1PT−T is the solution to DARE (7) and Σ is unchanged under such transforma-
tion. Hence, the Granger measure given in (8) is unchanged when it is computed using system matrices
corresponding to a new coordinate system.

2. If CT
i = 0, S = 0 and N is diagonal, then Fij = 0 and Fji = 0. As a result, the zeros of F is unchanged

when N is changed under a scaling transformation. Proof. We will show from the characterization of Fij

in (9) where the Kalman gain is given by K = (APCT )(CPCT +N)−1 when S = 0. Let i be the index
such that CT

i = 0. It is then obvious that the ith column of APCT is entirely zero, e.g., (APCT )si = 0
for s = 1, 2, . . . , n. Since N is diagonal, the ith row and the ith column of CPCT +N is zero, except the
(i, i) entry, e.g., (CPCT +N)ki = 0 for k ̸= i and (CPCT +N)ik = 0 for k ̸= i. To see zero pattern of
CPCT +N explicitly, we have

CPCT +N =



0
...
0

0 · · · 0 × 0 · · · 0
0
...
0


. (23)

For any invertible X, the (k, i) entry of X−1 is related to the Mik (Minor) of X (up to a scaling from
detX and (−1)i+k). From the structure given in (23), if we remove either the ith row or the ith column,
we see that Mij and Mji of CPCT + N are all zero. These further imply that (CPCT + N)−1

ki = 0 for
k ̸= i and (CPCT + N)−1

ik = 0 for k ̸= i, e.g., the ith row and the ith column of (CPCT + N)−1 are
entirely zero except the (i, i) entry. From the expression of K, we can conclude about its ith column as

Ksi =
m∑

k=1

(APCT )sk(CPCT +N)−1
ki

= (APCT )si(CPCT +N)−1
ii

+
∑
k ̸=i

(APCT )sk(CPCT +N)−1
ki

= 0 + 0, s = 1, 2, . . . , n.

As a result, from an equivalent condition of zero GC in (9), we conclude that Fij = 0 since CT
i = 0 and

Fji = 0 because Ki = 0.
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3. If we permute rows of x to x̃ = C̃z + η̃, then C is row permuted, i.e., C̃ = ΠC and η̃ = Πη. Let Σ̃ be the
covariance of x̃. We have Σ̃ = ΠΣΠT . Moreover, the GC matrix of x̃ under such permutation, is related
to F by F̃ = ΠFΠT . Proof. If we permute x then the noise covariances become

cov
([

w
η̃

])
=

[
W SΠT

ΠS ΠNΠT

]
.

When solving DARE (7) with C̃ and the new covariances: SΠT and ΠNΠT , we can see that the solution
P to DARE is unchanged. As a result, Σ̃ = C̃P C̃T + Ñ = ΠCPCTΠT + ΠNΠT = ΠΣΠT . Let πT

i

be the ith row of Π. Without loss of generality, let us assume that we permute xi and xj to be x̃1 and
x̃2 respectively. When examining a Granger cause from x̃2 to x̃1, we see that Σ̃11 = πT

1 Σπ1 = Σii and
Σ̃R is obtained by solving DARE with the second row of C̃ removed (equivalently, with the jth row of C
removed.) Moreover, Σ̃R

11 = πT
1 Σ

Rπ1 = ΣR
ii . Hence, F̃12 = Fij . In other words, we can just permute rows

and columns of F to obtain F̃ .

4. If N = 0 and S = 0, then the zero pattern of F is invariant under a scaling transformation of C. Proof.
It is a straightforward result when solving DARE with C̃ = βC that the solution P is unchanged if N = 0
and S = 0. Moreover, Σ̃ii and Σ̃R

ii contain the same factor β2 if N = 0. This makes no change in the
calculation of Fij in (8).

C Group-sparsity estimation of C

The problem of estimating C and A in (14) has some details of algorithm implementation. Firstly, the least-
squares solution of A is obtained by A = (V1W

T )(WWT )−1 and implemented by QR factorization. Secondly,
when solving for C, we perform QR factorizations on problem parameters as V2 = RvQ

T and W = RwQ
T and

(14) is equivalent to
minimize

C
(1/2)∥Rv − LCRw∥2F + γ

∑
i

∥CT
i ∥

q
2 (24)

where β = (β1, β2, . . . , βm), βk ∈ Rn. The minimization in C, when rearrange into a vector form, falls into a
regularized least-square formulation with a group norm penalty shown as

minimize
β

(1/2)∥y −Xβ∥22 + γ
m∑
i=1

∥βi∥q2. (25)

The nmAPG algorithm proposed in [LL15] is applied to solve (25) which requires the proximal operator of
q-norm and the Lipschitz constant of the gradient of the quadratic loss function, (1/2)∥Rv−LCRw∥2F . It is then
obtained from the following inequality:

∥LTL(C1 − C2)RwR
T
w∥2F ≤ ∥LTL∥22∥RwR

T
w∥22∥C1 − C2∥2F ,

where we denote ∥·∥2 as the spectral norm and ∥·∥F as the Frobenius norm of a matrix. We also have used the fact
that ∥AB∥2F = ∥A∥22∥B∥2F . As a result, the Lipschitz of the gradient is given by ∥LTL∥2∥RwR

T
w∥2 = ∥L∥22∥RT

w∥22,
and used in a step size selection when solving (24) in the vector format.

When solving (14) with a series of γ, an explicit bound of γ can be derived so that if γ ≥ γc then the optimal
solution C is entirely zero. To this end, we derive the zero-subgradient condition for (14) when q = 1

0 ∈ −LT (V2 − LCW )WT + γ


gT1
gT2
...
gTm

 (26)

where gTi is a subgradient of ∥CT
i ∥2 with a known property that ∥gTi ∥2 if C = 0. If C = 0 at optimum, then (26)

reduces to
(LTV2W

T )i = γgTi , i = 1, 2, . . . ,m

where (LTV2W
T )i is the ith row of LTV2W

T . Since ∥gTi ∥2 ≤ 1 when C = 0, it follows that

γ ≥ max
i=1,2,...,m

∥(LTV2W
T )i∥2.

The critical value γc for (14) is therefore

γc = max
i=1,2,...,m

∥(LTV2W
T )i∥2 (27)
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which depends only the problem parameters L, V2,W and can be computed beforehand. When solving (14) with
q = 1/2, we use a property that the non-convex penalty (when q < 1) often gives sparser solutions than the
convex penalty (when q = 1) given the same γ [HTW15]. Hence, we use the same γc given in (27) when solving
the problem with q = 1/2.

In contrast to sparseness property of the solutions when using ℓp,q penalty (15), the estimation with the
ℓ2-regularization (16) is known to gives a typically dense solution. We will show explicitly that as γ → ∞,
more weight is penalized on the norm of C and hence, C → 0. As shown in Section 4.1 that the optimality
condition of (14) with (16) is the Sylvester equation in C (17) of the form: AC +CB(γ) = F where A = LTL,
B(γ) = γ(WWT )−1, and F = LTVWT (WWT )−1. This equation can be vectorized to a form of M(γ)z = b
where z = vec(C) and has a unique solution: z = M−1(γ)b, since A and −B(γ) have no common eigenvalues.
We will show that z → 0 as γ → ∞. It can be shown that M can be represented as

M(γ) = M1 + γM2 = γM2(I − (−M−1
2 M1)/γ) (28)

where M1 = In ⊗ A and M2 = BT ⊗ Im. If we define G(γ) = −M−1
2 M1/γ and if γ > 1/∥M−1

2 M1∥ then
∥G(γ)∥2 < 1 and (I − G(γ))−1 can be expanded by the geometric series: [I − G(γ)]−1 =

∑∞
k=0 G(γ)k. As a

result, by properties of norm,

∥(I −G(γ))−1∥2 ≤
∞∑
k=0

∥G(γ)∥k2 =
1

1− ∥G(γ)∥2
. (29)

From (28) and (29), it follows that

∥M−1(γ)∥2 ≤ ∥(I −G(γ))−1∥2
∥M−1

2 ∥2
γ

≤
(

1

γ − ∥M−1
2 M1∥2

)
∥M−1

2 ∥2.

Hence, if γ → ∞ then ∥M−1(γ)∥2 → 0 and that ∥z∥ ≤ ∥M−1(γ)∥2∥b∥ ≤ 0. The solution z = vecC converges
to zero as the penalty parameter γ approaches infinity.

D Noise covariance estimation
Consider (21) where the zero-gradient condition of the objective function is

h(αη) := f ′(αη) = c− tr((nA+ bI)−1A).

If the critical point of f , denoted as α⋆
η in Figure 14, is already in the interval (0, b/a) then the solution of (21) is

just obtained by solving f ′(αη) = 0 (by any numerical methods such as a bisection). If α⋆
η < 0, then minimizing

f over the interval [0, b/a] returns 0 as the optimal solution. In the last case, if α⋆
η > b/a then f has the minimum

value on the interval [0, b/a] at b/a. Therefore, we conclude that the solution of the problem (21) can be obtained
from one of the following three cases.

1. If f ′(0) < 0 and f ′(b/a) > 0 then find the zero of h(αη) using a bisection.

2. If f ′(0) > 0 and f ′(b/a) > 0 then αη = 0 and αv = tr(Σe)/r.

3. If f ′(0) < 0 and f ′(b/a) < 0 then αη = b/a = tr(Σe)/ tr(LLT ) and αv = 0.

0

Figure 14: The problem of estimating αη in (21) has three cases.
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