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Abstract 

Unraveling molecular regulatory networks underlying disease progression is critically important 

for understanding disease mechanisms and identifying drug targets. The existing methods for 

inferring gene regulatory networks (GRNs) rely mainly on time-course gene expression data. 

However, most available omics data from cross-sectional studies of cancer patients often lack 

sufficient temporal information, leading to a key challenge for GRN inference. Through 

quantifying the latent progression using random walks-based manifold distance, we propose a 

latent-temporal progression-based Bayesian method, PROB, for inferring GRNs from the cross-

sectional transcriptomic data of tumor samples. The robustness of PROB to the measurement 

variabilities in the data is mathematically proved and numerically verified. Performance 

evaluation on real data indicates that PROB outperforms other methods in both pseudotime 

inference and GRN inference. Applications to bladder cancer and breast cancer demonstrate 

that our method is effective to identify key regulators of cancer progression or drug targets. The 

identified ACSS1 is experimentally validated to promote epithelial-to-mesenchymal transition of 

bladder cancer cells, and the predicted FOXM1-targets interactions are verified and are 

predictive of relapse in breast cancer. Our study suggests new effective ways to clinical 

transcriptomic data modeling for characterizing cancer progression and facilitates the 

translation of regulatory network-based approaches into precision medicine. 
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Author summary  

Reconstructing gene regulatory network (GRN) is an essential question in systems biology. The 

lack of temporal information in sample-based transcriptomic data leads to a major challenge for 

inferring GRN and its translation to precision medicine. To address the above challenge, we 

propose to decode the latent temporal information underlying cancer progression via ordering 

patient samples based on transcriptomic similarity, and design a latent-temporal progression-

based Bayesian method to infer GRNs from sample-based transcriptomic data of cancer 

patients. The advantages of our method include its capability to infer causal GRNs (with 

directed and signed edges) and its robustness to the measurement variability in the data. 

Performance evaluation using both simulated data and real data demonstrate that our method 

outperforms other existing methods in both pseudotime inference and GRN inference. Our 

method is then applied to reconstruct EMT regulatory networks in bladder cancer and to identify 

key regulators underlying progression of breast cancer. Importantly, the predicted key 

regulators/interactions are experimentally validated. Our study suggests that inferring dynamic 

progression trajectory from static expression data of tumor samples helps to uncover regulatory 

mechanisms underlying cancer progression and to discovery key regulators which may be used 

as candidate drug targets.  

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.07.329417doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.329417
http://creativecommons.org/licenses/by/4.0/


Introduction 

Inferring gene regulatory networks (GRNs) from molecular profiling of large-scale patient 

samples is of significance to identifying master regulators in disease at systems level [1, 2]. 

Detecting the causal relationships between genes from biomedical big data, such as clinical 

omics data, has recently emerged as an appealing yet unresolved task, particularly for clinical 

purposes (e.g., diagnosis, prognosis and treatment) in the era of precision medicine [3].  

Many methods have been developed for inferring GRNs from gene expression data [4]. The 

GRN inference methods can be grouped into at least four categories: Boolean network methods 

[5], ordinary differential equation (ODE) model-based methods [6], Bayesian network methods 

[7] and tree-based ensemble learning methods [8]. These methods mainly rely on two types of 

gene expression data, i.e., gene perturbation experiments [9, 10] or time-course gene 

expression data [11]. Temporal changes in expressions, resulting from the interactions between 

genes, could potentially imply causal regulations. Meanwhile, a wealth of time-course 

transcriptomic data has been generated from the laboratory experiments. So temporal type of 

expression data is one of the most common assumptions based on which many GRN inference 

methods were designed [12].  

However, the transcriptomic data of tumor samples often lack explicit temporal information [13]. 

In fact, large samples of time-course data are rarely available in clinical situations, at least for 

now, since longitudinal surveys are often challenging to conduct. In contrast, cross-sectional 

studies (i.e., a snapshot of a particular group of people at a given point in time) based on high-

throughput molecular omics data are more prevalent due to their relative feasibility. As such, 

for cross-sectional transcriptomic data at population-scale, most of the current methods, such 

as Pearson correlation coefficient (PCC)-based methods [14], mutual information [15], 

regression methods [16] and machine learning methods [17], can only infer co-expressions or 

associations between genes. Moreover, although some correlation network-based methods 

have been used to identify disease-associated genes [18], it’s hard to tell the causal drivers or 

regulatory roadmap underlying phenotypic abnormality in the absence of regulatory network 

information [19]. Therefore, the lack of temporal information in clinical transcriptomic data leads 

to a key challenge for inferring directed GRN and its translation to systems medicine. 

Decoding temporal information that traces the underlying biological process from the cross-

sectional data is intriguing and enlightening to address the above challenge. The sample 

similarity-based approach has shown great promise in recovering evolutionary dynamics in 

evolution and genetics studies [20], for instance, phylogenetic trees based on microarray data 

[21] and genetic linkage maps based on genetic markers [22]. To this end, we propose that the 

latent temporal order of cancer progression status (i.e., latent-temporal progression) could be 

estimated from the cross-sectional data based on transcriptomic similarity between patient 

samples. Leveraging the latent-temporal ordering, we could represent the GRN as a nonlinear 

dynamical system. What’s more, however, considering the technical variability or measurement 

error in the RNA-sequencing or microarray data (e.g., variations in sample preparation, 

sequencing depth and measurement noise and bias) [23, 24], it’s indispensably important to 

guarantee the robustness of the GRN inference.  
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In this study, we present PROB, a latent-temporal progression-based Bayesian method of GRN 

inference designed for population-scale transcriptomic data. To estimate the temporal order of 

cancer progression from the cross-sectional transcriptomic data, we develop a staging 

information-guided random walk approach to efficiently measure manifold distance between 

patients in a large cohort. In this way, the cross-sectional data could be reordered to be 

analogous to time-course data. This transformation enables us to formulate the GRN inference 

as an inverse problem of progression-dependent dynamic model of gene interactions, which is 

solved using a Bayesian method. The robustness of the estimates of regulatory coefficients is 

justified through mathematical analysis and simulations. Furthermore, applications to real data 

not only demonstrate better performance of PROB than other existing methods but also show 

good capacity of PROB in identifying key regulators of cancer progression or potential drug 

targets. The identified ACSS1 in bladder cancer and predicted FOXM1-targets interactions in 

breast cancer are both validated. In addition, we also discuss potential clinical applications of 

our method.  

 

Materials and Methods 

Latent-temporal progression-based Bayesian (PROB) method to infer GRN  

Overview of PROB. PROB consists of two major components. First, to infer the latent temporal 

information of cancer progression from the cross-sectional data, a graph-based random walk 

approach was developed to quantitatively order patient samples (Figure 1a-b). To this end, we 

defined a manifold distance between patients by analytically summing the transition 

probabilities over all random walk lengths to quantify temporal progression and the root was 

automatically identified with the aid of staging information. The quantitative reordering of the 

samples led to the recovery of the temporal dynamics of gene expression (Figure 1c). Second, 

a progression-dependent dynamic model was proposed to mechanistically describe the gene 

regulation dynamics during the above estimated temporal progression. To ultimately infer the 

GRN, the inverse problem in terms of parameter estimation of the dynamic model was 

transformed to a linear regression model which was solved using a Bayesian Lasso method 

(Figure 1d). Compared to the existing correlational network methods, PROB can infer causal 

GRNs with directed and signed edges from cross-sectional transcriptomic data. 

Temporal progression inference for cancer samples. We employ a similarity graph-based 

random walk approach to order patients along with the progression and to estimate the 

progression score for each patient, given the hypothesis that the similarity between patients 

can be measured by the patients’ gene expression profiles and pathology information. We first 

define a Gaussian similarity function for two patients, x and y, as 

( )2
( , ) expS x y X Y= − − , (1) 

where X and Y are vectors used to represent the transcriptomic profiles of the respective 

patients and ‖𝑋 − 𝑌‖ is the L2 norm of 𝑋 − 𝑌. The parameter 𝛾 is determined as 
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where 𝜔𝑥𝑦  is a weight coefficient given by the available pathology information such as stage, 

which is defined in this study as 𝜔𝑥𝑦 = 1 + |𝐺𝑥 − 𝐺𝑦|, with 𝐺𝑥  and 𝐺𝑦  representing staging 

information (taking values of, for instance, 1, 2, 3, or 4) of the two patients x and y, respectively. 

The parameter ℰ𝑥 is adaptive for each patient x and is set as the patient’s distance to the κ-th 

nearest neighbor. S can be viewed as a stage-weighted and locally scaled Gaussian kernel.  

Based on the above Gaussian kernel and normalization procedure (Text S1), we derive a 

transition probability matrix P, with element 𝑃𝑥𝑦  representing the probability of transitioning 

from patient x to patient y (or from y to x). We then measure the transitions on all length scales 

of random walks between patients. The accumulated transition probability (Qxy) of visiting y 

from x over random walk paths of all lengths is analytically calculated as  

( )
†

1

t

t

Q P I P I


=

= = − − , 
(3) 

where 𝑃̃ = 𝑃 − 𝜓0𝜓0
𝑇, and 𝜓0 is the first eigenvector of P (corresponding to eigenvalue 1). 

Since 𝜓0 is associated with the steady state and contains no dynamic information [25], we 

subtract the stationary component 𝜓0𝜓0
𝑇 from P, resulting in 𝑃̃. In this way, all the eigenvalues 

of 𝑃̃ are smaller than 1; hence, the above sum of infinite series is convergent. ( )
†

I P−  is the 

generalized inverse (or Moore-Penrose inverse) of 𝐼 − 𝑃̃ [26]. 

We use Q(x,∙) to represent the accumulated transition probability of visiting all points from x. 

Thus, Q(x,∙) is a row in Q and can be viewed as a feature representation for patient x. Therefore, 

we define a temporal progression distance (TPD) between two patients as 

2( , ) ( , ) ( , )
L

TPD x y Q x Q y=  −  , 
(4) 

where ‖∙‖ stands for the L2 norm. We remark that TPD is a scale-free manifold distance and is 

computationally efficient due to the closed form expression of Q. 

Given a patient x, the progression score with respect to the root x0 is 𝑠 = 𝐿𝑃𝐷(𝑥0, 𝑥). Therefore, 

it is critical to determine the root sample in a large cohort for ordering the patients. We fulfill this 

task with the aid of the staging information of the tumor samples: among all patients, the root 

should have the largest TPD to a patient with maximal grade (e.g., grade 4). That is, the root 

𝑥0 can be identified according to the following formula: 

0 maxarg max ( , )
x

x TPD x x= , 
(5) 

where 𝑥𝑚𝑎𝑥 is a randomly selected patient from the maximal grade subpopulation.  

We remark that the incorporation of staging information into the Gaussian kernel and root 

identification could significantly improve the accuracy of temporal progression inference (see 

Figure S1 and Discussion section).   

Dynamical systems modeling and parameter estimation. Based on the mass action kinetics 

[27], the temporal regulation of gene expressions can be modeled using the following dynamical 

system, 

2 2

xy

x y




 
=

+
, (2) 
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1

( )
( ) ( ) ( )

n
i

ij i j i i

j

dX s
a X s X s d X s

ds =

=  − ,   (i =1, …, n) 
(6) 

where 𝑋𝑖(s) represents the expression level of gene i (i =1,…,n) in cancer with progression 

status s. 
ija   is the regulatory coefficient from gene j to gene i (j≠i), and 

id   is the self-

degradation rate of gene i. The details of model assumption and derivation are provided in Text 

S1 (“Progression-dependent dynamic modeling of the GRN” subsection).  

Take m+1 points ( )i iS s r=   ( 0,1, ,i m=  ) from the smoothed pseudotemporal progression 

trajectory ( )s r  , where 
ir i m= . We approximate 

( ) 1

1

( ) ( )i i k i k
k

k k

dX X s X s
s

ds s s

+

+

−


−   

and denote 

1

1

( ) ( )i k i k
ik

k k

X s X s
Y

s s

+

+

−
=

−

 , where 1k ks s+ −   is sufficiently small (since m could be chosen large 

enough). Therefore, the above continuous model (i.e., Equation (4)) can be discretized and 

rewritten as 

1

( ) ( ) ( )
n

ik ij i k j k i i k

j

Y a X s X s d X s
=

  − , ( 0,1, , )k m= .  (5) 

The above model is then transformed into a linear regression model and a scalable Bayesian 

Lasso method is adapted to estimate the posterior distributions of parameter values of 
ija  and 

id   for GRN reconstruction. See details in Text S1 (“Parameter estimation using Bayesian 

Lasso method” subsection).   

Mathematical analysis. Considering the technical variability or measurement error in the 

transcriptomic data [23, 24], it is important to examine the robustness of the method with 

respect to the perturbation in latent-temporal progression. To this end, we present the following 

theorem. 

Theorem 1. Assume there are two trajectories of latent-temporal progression ( )s r  and ( )s r  

with the same root, [0,1]r I =  . Define ( )2

1/2
2

L I
s s s s dr− = −  . If ( )( ),  i ijX s a   and 

( )( ),  i ijX s a  both satisfy the equations of progression-dependent dynamic model, i.e., 

1

( )
( ) ( ) ( )

n
i

ij i j i i

j

dX s
a X s X s d X s

ds =

=  − , 1, ,i n= , 
 

1

( )
( ) ( ) ( )

n
i

ij i j i i

j

dX s
a X s X s d X s

ds =

=  − , 1, ,i n= ,  

then we have 

2

0
, 1

lim 0
n

ij ij
s s

i j

a a
− →

=

− = . 
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The proof of the above theorem is provided in Text S2.  

Based on the spectral graph theory [28, 29], the above manifold distance (TPD) is noise-

resistant, so the variation in the progression trajectory (i.e., s s−  ) should be small given 

moderate perturbations (as illustrated below). Consequently, Theorem 1 then implies that the 

corresponding estimates of [𝑎𝑖𝑗]
𝑛×𝑛

  should vary minimally. Therefore, the above theorem 

theoretically guarantees the consistency and robustness of the estimates of the regulatory 

coefficients. In addition, the Bayesian Lasso method adopted by PROB further ensures a robust 

implementation of GRN inference.  

Computational algorithm. The algorithm to infer progression trajectory and GRN is presented 

below. The implementation of PROB is described in Text S3. 

Algorithm 1. pseudo-code of PROB 

1: Input: data = [X, G]. X, gene expression matrix; G, stage vector.  

2: Stage-weighted Gaussian kernel: ( )2

( , ) exp x yS x y X X= − −  and 
2 2

1 -x y

x y

G G


 

+
=

+

 

3: 
Normalization of S: ( , )

( ) ( )
xy

S x y
H

D x D y
=  

4: Transition probability: 
1 1

2 2( ) ( )xy xyP E x H E y
− −

=  

5: Accumulated transition probability: ( )( )
†

0 0P TQ I I = − − −  

6: TPD function: 
2( , ) ( , ) ( , )

L
LPD x y Q x Q y=  −   

7: Identifying root: 
0 refarg max ( , )

x

x LPD x x= ;  :  max( )ref xx x G G =   

8: Progression score: 𝑠 = 𝑃𝑃𝐷(𝑥, 𝑥0) 

9: For i=1 to n do 

 1

1

( ) ( )i k i k
ik

k k

X s X s
Y

s s

+

+

−

−
 

 
( )

1

n
i

i ij i j i i

j

A X a X X d X
=

 −  

   𝐴𝑖 = BayesianLasso(𝑋(𝑖), 𝑌𝑖) 

 End 

10: Output: posterior distributions of 
ija , confidence matrix S 

Benchmarking PROB with alternative methods of GRN inference 

For tumor sample-based gene expression data, several methods have been developed to infer 

gene networks. Pearson correlation (PCOR) is often used to quantify gene coexpression. 

Mutual information (MI) measures non-linear dependency between genes and thus provides a 

natural generalization of the correlation. MI-based methods for GRN inference include ARACNe 
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[30], CLR [31], and MRNET [32]. Another commonly used method for GRN inference based on 

gene expression data is multiple linear regression LASSO method [16], which assumes sparse 

network structure and is feasible for high-dimensional data. Ensemble learning methods, such 

as GENIE3 (a tree-based ensemble learning method [17]), have been developed to infer gene 

regulatory relationships by viewing GRN reconstruction as a classification problem. In addition, 

we also included some GRN inference methods recently developed for scRNA-seq data into 

benchmarking analysis, since scRNA-seq data is also cross-sectional type. Such methods 

include SCODE [33] that uses ordinary differential equations model and LEAP [34] that 

constructs gene co-expression networks by using the time delay involved in the estimated 

pseudotime of the cells. SINCERITIES [35] is designed for time-stamped scRNA-seq data but 

requires at least 5 time points, so it is not applicable for the following benchmarking dataset as 

well as the tumor sample-based transcriptomic data.  

In this study, we compared the accuracy of PROB with that of PCOR, ARACNe, CLR, MRNET, 

Lasso, GENIE3, SCODE and LEAP based on a real scRNA-seq data of dendritic cells (DCs) 

(GSE41265 [36]). The cells were stimulated with LPS and sequenced at 1, 2, 4, and 6h after 

stimulation. Only wild type cells (n=479) without Stat1 and Ifnar1 knockout were chosen for 

analysis. We choose this DC dataset for benchmarking because regulatory potential between 

23 TFs in the DCs has been determined via a high-throughput Chromatin ImmunoPrecipitation 

(HT-ChIP) method [37]. The AUC of ROC was used to assess and compare the prediction 

accuracies of the above methods. 

In addition, we collected a set of known regulators and targets [38] to test whether PROB could 

correctly distinguish outgoing regulations of different genes. To this end, we defined an outgoing 

causality score (OCS) for gene i in cell k as follows: 𝑂𝐶𝑆𝑖
𝑘 = ∑ 𝑚𝑗𝑖𝑋𝑗

𝑘𝑋𝑖
𝑘𝑛

𝑗=1 , where 𝑚𝑗𝑖 is the 

mean of the posterior distributions of 𝑎𝑗𝑖, 𝑋𝑖
𝑘 is the expression level of gene i in cell k. We then 

compared the distributions of OCS values of 6 regulators and that of 28 targets using the above 

DC dataset. The Wilcoxon rank-sum test (one-tailed) p value was calculated to assess 

statistical significance. 

Application to a dataset of bladder cancer 

We applied PROB to a dataset of bladder cancer patients that includes 84 cases of conventional 

UCs and 28 cases of SARCs which were profiled by Illumina HumanHT-12 DASL Expression 

BeadChips (GSE128192 [39]). The temporal progression inference was performed to 

quantitatively order samples based on the whole gene expression profile with UC samples and 

SARC samples labeled by 1 and 2 respectively. To reconstruct epithelial-to-mesenchymal 

transition (EMT) regulatory networks, we collected 44 representative genes of TGFB1 pathway, 

RhoA pathway, p53 pathway, p63 pathway and EMT transcriptional regulators (Table S1) [39]. 

The UC network and SARC network were reconstructed based on the ordered expression data 

of the above 44 genes in UC samples and SARC samples respectively. The UC-specific 

network and SARC-specific network were then constructed by extracting edges that were 

unique to UC network and SARC network respectively. The out-degree values for each node in 

the two networks were calculated to poetize key regulator genes.  

Application to a dataset of breast cancer 
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We applied PROB to a microarray dataset of breast cancer (GSE7390 [40]) to identify key 

regulator genes with prognostic role in cancer progression. We identified the hub gene in the 

GRN based on an eigenvector centrality measure according to singular value decomposition 

method [41]. Denote the mean of the posterior distributions of 
ija

 
as 

ijm , and ( )ij n n
M m


= . 

We subject M to singular value decomposition. We calculated the principal eigenvector of MMT 

and denoted it H=(h1, h2, …, hn). The hub score of node i was defined as hi. The gene with 

greatest hub score was identified as a hub gene for further analysis and validation.  

Validation of the role of ACSS1 in bladder cancer  

Antibodies and reagents. Anti-β-actin Mouse mAb (1:1000, 0101ES10, Yeasen), anti-E-

Cadherin Mouse mAb (1:1000, #14472, CST), anti-ACSS1 Rabbit mAb (1:1000, 17138-1-AP, 

Proteintech), Goat Anti-Rabbit IgG (H+L) (1:10000, 33101ES60, Yeasen), Goat Anti-Mouse IgG 

(H+L) (1:10000, 33201ES60, Yeasen), Anti-Rabbit IgG-HRP kit (SV0002, Boster). 

Over-expression plasmids and siRNA transfection. 5637 cells were placed in 24 wells plate and 

transfected with the lentiviral vectors pTSB-CMV-puro and SiRNA against ACSS1 reaching 

70%-80% confluence using Lipofectamine 2000 (Thermo Scientific) according to the 

manufacturer instructions. The SiRNA sequence used in this study are listed in Supplementary 

Table S2. 

RNA extraction and qPCR. Total RNA was extracted by HiPure Total RNA Mini Kit (R4111-03, 

Magen) and the concentration was detected by ultramicrospectrophotometer (NanoDrop 2000, 

Thermo Fisher Scientific). RT-PCR was performed using PrimeScript RT Master Mix (DRR036A, 

TakaRa) and qPCR was performed by qPCR SYBR Green Master Mix (11198ES03, Yeasen) 

in Real-time quantitative PCR instrument (Q1000+, Long Gene). All the relative mRNA 

expression was normalized to GAPDH. The qRT-PCR primer sequence used in this study are 

listed in Supplementary Table S3. 

Western blotting. Total protein was extracted by RIPA lysis buffer (JC-PL001, Genshare) with 

PMSF (1:100, 20104ES03, Yeasen). Standard western blot protocols were adopted. The band 

intensity of western blots was detected by BLT GelView 6000M. All the relative protein 

expression was normalized to β-actin. 

Immunohistochemistry: All the tumor tissues were received from the operative resection of 

patients. The patients/participants provided their written informed consent to participate in this 

study. The studies involving human participants were reviewed and approved by the Ethics 

Committee of Sun Yat-sen University Cancer Center (approval no. GZR2018-131). The 

immunohistochemical analysis of the two biomarkers including ACSS1 and E-Cadherin was 

performed. All the pathological sections were produced, scan and analyzed by Leica 

Biosystems. 

Validation of the FOXM1 sub-network predictions 

We validated the regulation of FOXM1 (a hub gene, see Results section) on the predicted 

targeted genes using multiple sets of gene expression data and ChIP-seq data that are publicly 

available. 
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To validate the expression changes of the predicted targeted genes following FOXM1 

perturbation, we analyzed microarray gene expression data in MCF-7 cells that were treated 

with DMSO (control) or Thiostrepton (FOXM1 inhibitor) for 6 hours (GSE40762 [42]). The 

differential expression of the above 8 genes between control condition and FOXM1 inhibition 

condition was examined to test whether they were down-regulated after FOXM1 inhibition. The 

statistical significance was assessed using Wilcoxon rank sum test (one-tailed) p values.  

To test whether FOXM1 binds to some of the predicted targeted genes, we used ChIP-seq data 

in both MCF-7 cell line (ER+) and MDA-MB-231 cell line (ER-) (GSE40762 [42]) to analyze 

binding of FOXM1. A standard procedure of the ChIP-seq analysis was performed for peak 

calling (Text S7). 

  

Results 

Testing PROB with a synthetic dataset 

To illustrate the function of PROB, we generated a set of synthetic cross-sectional expression 

data (Text S4). For visualization purpose, we considered 6 genes in 100 cancer patients 

(Figure S2a-b). We first used PROB to infer temporal progression from the randomized 

sample-based data. The inferred latent-temporal progression was compared against the true 

progression (Figure S2c), showing that PROB faithfully recovered the true ordering of the 

samples (Spearman’s rho=0.9991). The gene expression dynamics along with latent-temporal 

progression (Figure S2d) exhibited a very similar profile to the original data (Figure S2a). 

Based on the inferred temporal data, PROB inferred a GRN using the Bayesian Lasso method 

(Figure S2e). The posterior distributions of the regulatory parameters against their true values 

show that the estimation was rather reliable (Figure S3). An edge was determined by examining 

whether the 95% credible interval (CI) of the parameter estimates did not contain zero (Text 

S4). Figure S2f further demonstrates the accuracy of PROB in terms of GRN inference. The 

area under curve (AUC) of receiver operating characteristic (ROC) could be calculated for the 

inferred network compared with the ground-truth network based on the k% CI that contained 

zero or not.  

To verify the robustness of PROB to the measurement variability, we further tested PROB for 

datasets at different levels of variabilities (Figure 2). The gene expressions were randomly 

perturbed by using multiplicative Gaussian noises to simulate different levels of measurement 

variabilities in the data, resulting in a series of coefficient of variations (CVs) (i.e., 0%, 5%, 10% 

and 15% respectively) (Figure 2a). The IDs of the samples were randomized to mimic sample-

based snapshots of gene expression data, but the staging information was retained for each 

patient. PROB was applied to infer the GRN for each dataset. The accuracy of GRN inference 

was evaluated using the AUC of the ROC, showing that PROB could strongly reduce bias in 

gene expression measurements (Figure 2b-c) and robustly reconstructed the GRNs (Figure 

2d). 

Additional evaluation metrics were employed to verify the robustness of PROB against a series 

of variations in the data (with CVs ranging from 0% to 30%). The root mean square error (RMSE) 
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and Spearman correlation coefficients were used to evaluate the accuracy of the temporal 

progression inference (Figure S4a-b). The accuracy, positive predictive value (PPV) and 

Matthews correlation coefficient (MCC) were used to evaluate the robustness of the GRN 

reconstruction (Figure S4c-f). The findings are consistent with the above results (Figure 2).  

Benchmarking PROB with other existing methods 

We used a set of single cell RNA-seq (scRNA-seq) data (GSE48968 [36]) for benchmarking of 

GRN inference methods since our method can be naturally applied to stage-stamped or time-

course scRNA-seq data and the ground-truth of the GRN is available in this case as described 

in the Methods section. The LPS-stimulated dendritic cells (DCs) were sequenced at 1, 2, 4, 

and 6h after stimulation. The capture time in the data was treated as an analogy to ‘staging’ 

information when using PROB. The estimated latent-temporal progression recapitulated the 

physical progression of cells with a high correlation to the capture times (R2 =0.851) (Figure 

3a). We compared PROB with other pseudotime inference methods (Slice, Slicer, PhenoPath, 

Wishbone, PAGA, Monocole2, DPT, Tscan). PROB estimation achieved a highest correlation 

with the original physical capture times among all methods tested, evaluated using both Kendall 

Tau rank correlation coefficient (Figure 3b) and coefficient of determination R2 (Figure S5).  

We next compared the accuracy of PROB with other existing GRN inference methods (e.g., 

PCOR, ARACNe, CLR, MRNET, Lasso, GENIE3, SCODE and LEAP) for cross-sectional data. 

A previous study measured binding region coverage scores for 23 TFs and thus quantified their 

regulatory potential in the DCs using a high-throughput Chromatin ImmunoPrecipitation (HT-

ChIP) method [43]. A TF network was defined where an edge was viewed to be present if the 

coverage score between two TFs was greater than 0.3. We employed this network as a 

benchmark to compare the prediction accuracy of the network topologies inferred by PROB 

(Figure 3c) and other methods based on the above scRNA-seq data of DCs. The AUC values 

(Figure 3d) indicated that PROB outperformed the other existing methods.  

Furthermore, we collected a set of known regulators and targets [38] to test whether PROB 

could correctly reveal the regulatory causality. To this end, we applied PROB to infer a GRN for 

6 regulators and 28 targets based on the above DC scRNA-seq data and defined outgoing 

causality score (OCS) for each gene in the inferred network (see definition of OCS in the 

Methods section). The OCS values of regulators were much higher than that of targets (Figure 

3e), suggesting that PROB faithfully revealed the ordering of the OCS values for the known 

regulators and targets on the analyzed dataset. 

In addition, we summarized and compared the capabilities of the above methods in predicting 

gene regulatory links, directions, signs and expression dynamics (Figure 3f). Only PROB can 

simultaneously fulfill those four tasks in GRN inference. 

Reconstructing EMT regulatory networks during bladder cancer progression 

Sarcomatoid urothelial bladder cancer (SARC) is a highly lethal variant of bladder cancer and 

has been reported to be evolved by the progression of the conventional urothelial carcinoma 

(UC) [39]. It has been demonstrated that the dysregulation of genes involved in the epithelial-

to-mesenchymal transition (EMT) drives the progression of UC to SARC. To elucidate the 

dynamic change of the EMT regulatory network during the progression, here, we applied PROB 
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to an expression dataset of bladder cancer containing 84 UC samples and 28 SARC samples 

(GSE128192). We collected 44 representative genes involved in several typical EMT-regulating 

pathways (Table S1). The expression patterns of these genes were recovered along with the 

inferred temporal progression (Figure 4a).  

We then applied PROB to reconstruct GRNs for UCs and SARCs, respectively, based on the 

ordered expression data of the above 44 genes. Figure 4b and Figure 4c show the UC-specific 

network and the SARC-specific network, respectively, suggesting rewiring of the EMT 

regulatory network during the progression of UC to SARC. The two networks were enriched 

with crosstalks between different pathways, indicating cooperative regulation of EMT by those 

pathways. PTPN12 and ACSS1 were found to have largest out-degree values in UC-specific 

network and SARC-specific network, respectively (Table S1). Temporal dynamics of gene 

expression (Figure 4d) showed that ACSS1 and PTPN12 oscillated synchronously with CDH1 

(coding gene of epithelial marker protein E-cadherin) at the early stage of UC development. 

However, at a later stage before transition to SARC, ACSS1 dramatically increased and 

PTPN12 decreased. Meanwhile, the decrease of CDH1 later on indicated a transition from 

epithelial to mesenchymal phenotype in SRACs, in consistent with changes in EMT score 

values (Figure 4e).  

Validation of the role of ACSS1 in EMT 

The decrease in PTPN12 expression during the progression is consistent with the previous 

finding that the loss of PTPN12 promotes EMT process and cell migration [44]. Furthermore, 

our result suggests that the up-regulation of ACSS1 might play a crucial role in the bladder 

cancer progression by promoting EMT program. We managed to validate the role of ACSS1 in 

EMT during bladder cancer progression, which has not been reported previously. The 

overexpression of ACSS1 in the 5637 cell line resulted in a significant decrease in CDH1 

expression level (Figure 5a), and ACSS1 knockdown by small interfering RNA leaded to 

significant increase in CDH1 expression level (Figure 5b). The consistent changes in CDH1 

protein levels following ACSS1 overexpression and knockdown were also observed (Figure 

5c-d). These results confirmed that ACSS1 promoted EMT in bladder cancer cells. Furthermore, 

the immunohistochemical staining of patient samples (Figure 5e) revealed that conventional 

UC tumors showed focal retention of epithelial marker protein E-cadherin while SARC tumors 

showed focal retention of ACSS1, supporting the above estimated dynamics of ACSS1 and 

CDH1 during bladder cancer progression. 

Identifying key gene regulators underlying breast cancer progression 

To test whether our approach could be used to identify key genes underlying cancer 

progression, we applied PROB to a set of microarray data of breast cancer patients (n=196) 

with clinical information (GSE7390) (see details in Text S5) [40]. Based on the expression data 

reordered by PROB, we investigated which genes were upregulated or downregulated over 

progression by using a trend analysis technique. Such genes are referred to as temporally 

changing genes (TCGs) in this study. The one hundred top TCGs were selected. A heatmap 

with hierarchical clustering (Figure 6a) showed that these 100 genes were clearly clustered 

into two groups: a descending group (purple) and an ascending group (blue). We investigated 

the enriched gene sets for the two groups of genes using GSEA software [45, 46]. The 
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descending genes were enriched in locomotion and movement of cell or subcellular component 

(Figure 6b, upper panel), and the ascending genes were mainly enriched in cell cycle and cell 

division processes (Figure 6b, lower panel). 

We then inferred the regulatory network of the above 100 top genes (Figure 6c). Based on an 

eigenvector centrality measure (Text S5), FOXM1 was identified as a most influential gene in 

the network. We found significant associations between FOXM1 and the distant metastasis-

free survival (DMFS), relapse-free survival (RFS) and overall survival (OS) (Figure 6d-g) and 

therapeutic responses (Figure S6) in breast cancer patients (see details in Text S6). Previously, 

both in vitro and in vivo experiments have verified that FOXM1 plays important roles in 

promoting cell proliferation and cell cycle progression in breast cancer [47, 48]. Moreover, 

FOXM1 has been used as a key drug target in breast cancer [49, 50], and several drugs (e.g., 

daunorubicin, doxorubicin, epirubicin, and tamoxifen [51]) developed to target or inhibit FOXM1 

have been tested in clinical trials (https://clinicaltrials.gov/). These evidences suggest that our 

network inference and analysis approach is effective to identify key genes of cancer 

progression or candidate drug targets.  

Validation of the FOXM1 subnetwork 

A subnetwork was reconstructed for FOXM1, which predicted that FOXM1 could positively 

regulate ASPM, CDCA8, KIF2C, MCM10, MELK, NCAPG, SHCBP1 and STIL (Figure 7a). 

Preliminary investigation indicated that, except for STIL, the other 7 genes were functionally 

associated with FOXM1 according to String (https://string-db.org/), a database of functional 

protein-protein interaction networks (Figure S7). We proceeded to validate the expression 

changes of these predicted target genes using microarray data of MCF-7 cells that were treated 

with DMSO (control) or thiostrepton (a FOXM1 inhibitor) for 6 hours (GSE40766 [42]). We found 

that, except for SCCBP1 and STIL, the other 6 genes were significantly downregulated after 

FOXM1 inhibition (Figure 7b). The statistical significance was assessed using Wilcoxon rank-

sum test (one-tailed) p values. These results suggest that PROB well predicted both the 

directions and signs of the edges in the FOXM1 subnetwork.  

Moreover, we used ChIP-seq data (GSE40762 [42]) to analyze the binding of FOXM1 to the 

predicted targeted genes (Text S7). Both estrogen-dependent ER (+) MCF-7 and estrogen-

independent ER (-) MDA-MB-231 human breast cancer cell lines were used for analysis. The 

analysis showed that FOXM1 binds ASPM, CDCA8 and KIF2C in both cell lines (Figure 7c-h). 

We note that the above three targets of FOXM1 were not previously reported by the widely 

used databases of transcriptional factor targets (e.g., TRANSFAC [52] and TRRUST v2 [53]). 

Interestingly, in another human mammary epithelial cell line (HMEC) (GSE62425 [54]) (Figure 

S8), the binding of FOXM1 to CDCA8 was absent, suggesting the emerging binding of FOXM1 

to certain genes during the formation of breast cancer. In addition, we confirmed that the 

expression levels of the above three genes, ASPM, CDCA8 and KIF2C, were significantly 

reduced following the knockdown or silencing of FOXM1 based on both microarray data in BT-

20 breast cancer cells (GSE2222 [55]) (Figure S9a-c) and RNA-seq data in MCF-7 breast 

cancer cells (GSE58626 [56]) (Figure S9d-f). These findings suggest that FOXM1 not only 

positively regulates the expression of but also directly binds to some of the predicted genes.  
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Discussion 

PROB provides a novel tool for inferring cancer progression and GRNs from cross-sectional 

data. Our approach is based on a dynamical systems representation of gene interactions during 

cancer progression. The inverse problem with respect to GRN reconstruction was solved by 

combining latent progression estimation and Bayesian inference for high-dimensional dynamic 

systems. PROB can be used to generate experimentally testable hypotheses on the molecular 

regulatory mechanisms of gene regulation during cancer progression and to identify network-

based gene biomarkers for predicting cancer prognosis and treatment response. 

Besides cross-sectional bulk transcriptomic data, our method can be naturally applied to time-

course scRNA-seq data (Figure 3). Although scRNA-seq data can be used to infer GRNs 

during cell differentiation or development, it is currently not feasible to use scRNA-seq to 

investigate long term cancer progression due to patient heterogeneity, difficulty in acquisition 

of massive samples and expensive cost. In view of this, clinical transcriptomic data of cancer 

patients provide an alternative way to infer GRNs underlying cancer progression. The novelty 

and superiority of PROB can be first attributed to the successful ordering of tumor samples by 

using both gene expression data and staging information. Our proposed stage-weighted 

Gaussian kernel allows construction of diffusion-like random walks to quantify the temporal 

progression distance (TPD) between two patients (Equation (4)). The diffusion map, as a 

manifold-based nonlinear dimension reduction method, has been recently applied to scRNA-

seq data analysis [25, 57, 58]. One major difficulty in applying diffusion maps for inferring 

pseudo trajectories lies in identifying the rooting point when using scRNA-seq data itself, and it 

often needs additional biological knowledge. An advantage of clinical transcriptomic data is that 

staging or grading information is usually available for samples as well, allowing development of 

an algorithm that automatically identifies the rooting point (Equation 5). We demonstrated that 

incorporating staging information into the temporal progression inference significantly improved 

its accuracy (Figure S1) and that our method significantly outperformed existing pseudotime 

inference methods (Figure 3b and Figure S5). 

Considering technical variabilities in the sample-based transcriptomic data, it is important to 

have good robustness of the interaction coefficients in the GRN model with respect to the 

perturbation of the temporal progression. In addition to proving such property mathematically, 

through simulations we found PROB inference of both the progression trajectory and the gene 

network structure is rather robust to noise in the data (Figure 2, Figure S4). In addition, PROB 

is computationally efficient for GRN inference, which could be completed within 1 minute on the 

three real datasets analyzed in this study (Table S4). 

For clinical applications, our method can be used to identify key genes for early detection of 

cancer progression and design of therapeutic targets. By recovering the temporal dynamics of 

gene expression in terms of the disease progression, PROB provides insights into exploiting 

kinetic features of functionally important genes that may be used as predictive biomarkers or 

drug targets. In the case study of bladder cancer progression, we have demonstrated that 

ACSS1 and PTNT12 played important roles in EMT during bladder cancer progression from 

UC to SARC and their expressions dynamically changed over the progression (Figures 4-5). 
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Therefore, we hypothesized that the temporal dynamics of EMT regulatory genes (e.g., ACSS1 

or PTPN12) could be exploited to predict cancer progression. To this end, a logistic regression 

model was developed to predict EMT states or histological subtypes (UC vs. SARC) of bladder 

cancer based on the expression levels of ACSS1 and PTPN12, which showed good predictive 

accuracy (Figure S10). As such, the early changes in expressions of ACSS1 and PTPN12 

during the progression of UC to SARC may be relevant for the early detection of SARC.   

In another case study of breast cancer, FOXM1, a drugable target, was identified as a key 

regulator underlying breast cancer progression (Figure 6) and, importantly, the predicted 

FOXM1-target regulations were validated (Figure 7). Furthermore, here, we propose a GRN 

kinetic signature (Text S8) based on FOXM1-targeted gene interactions to prognosticate 

relapse in breast cancer. Kaplan-Meier (K-M) survival curves were plotted for the high-risk 

group (blue) and low-risk group (red) of patients with respect to relapse-free survival (RFS) 

(Figure S11a-c). The log-rank test p values for all three datasets were less than 1e-4. Moreover, 

we tested the statistical significance of the FOXM1-targets interactions in predicting relapse in 

breast cancer using a bootstrapping approach (Text S8). We compared the prognostic power 

(Wald test p value) of the FOXM1-predicted targets with that of 10000 sets of 8 randomly 

selected genes. The permutation test p values for all three datasets were less than 0.05 (Figure 

S11d-f), verifying the nonrandomness of the predicted targeted genes of FOXM1. These results 

demonstrated that the predicted FOXM1-target interactions could be used as a biomarker for 

prognosticating relapse in breast cancer. The latent-temporal progression–based casual 

network reconstruction method proposed in this study will likely innovate other network-based 

methodologies, such as those in system genetics [59, 60], network pharmacology [61, 62], and 

network medicine [1, 63]. 

Our method has several limitations that could be improved in future studies. For example, in 

the current method, only gene expression profiles and staging information from patient samples 

have been used for latent-temporal progression modeling. Other covariates, for example, age, 

genetic mutation, and molecular subtypes, might also be useful for progression inference [64]. 

Statistical models that integrate multiple aspects of clinical information will provide better 

inference of disease progression. 

In summary, we have developed a novel latent-temporal progression-based Bayesian Lasso 

method, PROB, to infer directed and signed gene networks from prevalent cross-sectional 

transcriptomic data. PROB provides a dynamic and systems perspective for characterizing and 

understanding cancer progression based on patients’ data. Our study also sheds light on 

facilitating the regulatory network-based approach to identifying key genes or therapeutic 

targets for the prognosis or treatment of cancers. 
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Figures & Figure legends 

Figure 1  

 

 

Figure 1. Illustration of the PROB framework for inferring the causal gene regulatory network 

from cross-sectional transcriptomic data. (a) Illustration of cross-sectional transcriptomic data, 

taking three genes (i.e., A, B, and C) as an example. Each sample was labeled with staging 

information (e.g., S1, S2, S3, and S4). (b) Similarity graph-based random walk approach for 

cancer progression inference. A scale-free temporal progression distance (TPD) is defined by 

analytically summing the transition probability between patients over all random walk lengths. 

Patients are thus ordered according to the TPD with respect to the root identified with the aid 

of staging information. (c) The expression dynamics of each gene according to the latent-

temporal progression are then recovered. (d) A Bayesian Lasso method is developed to infer 

the causal GRN based on the temporal data of gene expression. Besides edge directions, 

PROB can also infer signs of the interactions (activation or inhibition), compared to the existing 

correlational network methods.   
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Figure 2 

 
 

Figure 2. Demonstrating robustness of PROB using synthetic datasets at different levels of 

variabilities. A set of expression data for 6 genes in 100 cancer patients was simulated. Different 

levels of technical variabilities (with coefficient of variations (CVs) = 0%, 5%, 10% and 15% 

respectively) were introduced into the progression-dependent gene expression dynamics. (a) 

Simulated cross-sectional gene expression data. The sample IDs of the synthetic data were 

randomized and the staging information was retained. (b) Comparison of the inferred latent-

temporal progression with the true progression in the synthetic dataset, evaluated using 

Spearman’s rank correlation coefficient (rho). (c) Recovered gene expression dynamics 

according to inferred progression trajectory. (d) Accuracy of the GRN inference evaluated using 

the areas under curve (AUCs) of the ROCs. 
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Figure 3 

 
Figure 3. Comparison of PROB with other existing pseudotime inference methods and GRN 

inference methods using a real dataset. We employed a set of scRNA-seq data of dendritic 

cells (DCs) for benchmarking since the gold standard in this situation is available. The cells 

were sequenced at 1, 2, 4 and 6h after stimulation of LPS. (a) The estimated latent-temporal 

progression of cells recapitulated the real progression with R2 =0.851 to the capture times. (b) 

Benchmarking PROB with other pseudotime inference methods (Slice, Slicer, PhenoPath, 

Wishbone, PAGA, Monocole2, DPT, Tscan) evaluated by Kendall Tau and R2 (Fig S4). (c) a TF 

network inferred by PROB. (d) Benchmarking PROB with eight existing GRN inference 

methods (PCOR, LASSO, GENIE3, ARACNe, CLR, MRNET, SCODE and LEAP) based on an 

experimentally-defined TF network [43] evaluated by AUC of ROC. (e) PROB correctly revealed 

the ordering of the outgoing causality scores (on a log10 scale) for the known regulators and 

targets [38] on the DC scRNA-seq dataset. (f) Comparing properties of different methods in 

their capabilities of predicting network links, regulatory directions and signs as well as gene 

expression dynamics. 
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Figure 4 

 

 
 

Figure 4. Reconstructing EMT regulatory networks during bladder cancer progression. (a) 

Expression patterns of the EMT regulatory genes along with the inferred latent-temporal 

progression of conventional urothelial carcinoma (UC) to aggressive sarcomatoid urothelial 

bladder cancer (SARC). (b) UC-specific network with edges unique to the UC network. (c) 

SARC-specific network with edges unique to the SARC network. Different colors of nodes in 

the network denote genes in different pathways (Table S1). (d) Reconstructed expression 

dynamics of ACSS1, PTPN12 and CDH1. ACSS1 and PTPN12 have largest out-degree values 

in the UC-specific network and SARC-specific network, respectively. CDH1 is a marker gene 

of epithelial state during EMT. (e) A decrease in EMT score indicated a transition from epithelial 

to mesenchymal state during the progression of UC to SARC. The EMT score for each tumor 

sample was calculated as weighted sum of expression levels of 73 EMT-signature genes as 

introduced in [39]. Positive EMT score corresponds to the epithelial phenotype while negative 

score to mesenchymal phenotype. Wilcoxon rank sum test (one-tailed) p value was calculated 

to assess the statistical significance. 
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Figure 5 

 

 

Figure 5. Experimental validation of the predicted role of ACSS1 in EMT of bladder cancer. (a-

b) Expression levels of ACSS1 and CDH1 in 5637 cells when ACSS1 was overexpressed (a) 

and inhibited (b), measured by q-PCR. (c) Protein expression levels of ACSS1 and CDH1 in 

5637 cells when ACSS1 was overexpressed or inhibited, measured by Western-blotting. (d) 

Quantification of the relative protein expressions. (e) Examples of immunohistochemical 

expression of ACSS1 and E-cadherin in conventional UC and SARC. Statistical significance 

was assessed by student’s t test. **P<0.01; ***P<0.001; ****P<0.0001. OE-ACSS1: 

overexpression of ACSS1; si-NC: small interfering RNA negative control; si-ACSS1: small 

interfering RNA targeting ACSS1. 
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Figure 6 

 

Figure 6. FOXM1 was revealed as a key gene underlying breast cancer progression by PROB. 

The gene expression data of 196 patients with clinical information (e.g., grade) were extracted 

from the GEO database (GSE7390 [40]). (a) Heatmap showing the expression profile of 100 

selected genes that were most sustainably ascending (blue group) or descending (purple group) 

during cancer progression. (b) Gene set enrichment analysis for the descending genes (upper 

panel) and ascending genes (lower panel). The descending genes were enriched in local 

movement processes, and the ascending genes were mainly enriched in cell cycle and cell 

division processes. (c) The inferred GRN for the 100 genes. FOXM1 was found to be a hub 

gene in the network. (d-f) Clinical relevance of FOXM1 for breast cancer patients with respect 

to distant metastasis-free survival (DMFS) (d), relapse-free survival (RFS) (e) and overall 

survival (OS) (f). (g) Significance test of the prognostic power of FOXM1 using a bootstrapping 

approach. The p value from the permutation test was 0.0146, verifying the statistical 

significance of the prognostic power of FOXM1. 
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Figure 7 

 

 

Figure 7. Validation of the predicted FOXM1 subnetwork. (a) The subnetwork of FOXM1 with 

predicted target genes. (b) Validation of the expression changes of the predicted target genes 

of FOXM1 with perturbation experiments. MCF-7 cells were treated with DMSO (control) or 

thiostrepton (a FOXM1 inhibitor) for 48 hours. Except for SCCBP1 and STIL, the other 6 genes 

were significantly down-regulated after FOXM1 inhibition. (c-e) ChIP-seq analysis of FOXM1 

in the MCF-7 cell line with four biological replicates, showing that FOXM1 binds ASPM, CDCA8 

and KIF2C. (f-h) ChIP-seq analysis of FOXM1 in the MDA-MB-231 cell line with two biological 

replicates, showing that FOXM1 binds ASPM, CDCA8 and KIF2C. 
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