RAL GTPases mediate EGFR/MAPK signalling-driven intestinal stem cell proliferation and tumourigenesis upstream of RAS activation.

Mate Naszai1,3,4, Yachuan Yu1,2,3, Alvaro R Fernandez2,3, Emma Sandilands2,3, Joel Johansson2, Jim C Norman2,3, Owen J Sansom2,3, David Bryant2,3, Julia B Cordero1,3*

1 Wolfson Wohl Cancer Research Centre, Glasgow G61 1QH, United Kingdom

2 Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom

3 Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom

4 Present address: St Peter's College, University of Oxford, Oxford OX1 2DL, United Kingdom

*Correspondence: Julia.Cordero@glasgow.ac.uk
Summary

RAS-like (RAL) GTPases function in Wnt signalling-dependent intestinal stem cell proliferation and regeneration. Whether RAL proteins work as canonical RAS effectors in the intestine, and the mechanisms of how they contribute to tumorigenesis remain unclear. Here, we show that RAL GTPases are necessary and sufficient to activate EGFR/MAPK signalling in the intestine. We identify non-canonical roles of RAL GTPases, not as RAS effectors, but rather by acting upstream of RAS activation via induction of EGFR internalization. Knocking down Drosophila RalA from intestinal stem and progenitor cells leads to increased levels of plasma membrane-associated EGFR and decreased MAPK pathway activation. Importantly, in addition to impacting stem cell proliferation and damage-induced intestinal regeneration, this function of RAL GTPases drives EGFR-dependent tumorigenic growth in the intestine and in human mammary epithelium. Altogether, our results reveal previously unrecognised cellular and molecular contexts where RAL GTPases become essential mediators of EGFR-driven tissue homeostasis and malignant growth.

Key words: RAL GTPase; EGFR/MAPK signalling; Intestinal Stem Cells; Regeneration; Cancer
Introduction

The precise spatial and temporal regulation of signalling pathway activity is essential for organ development and adult tissue homeostasis. The latter is particularly important in stem cell maintained self-renewing epithelia, such as that of the gastrointestinal tract (Richardson et al., 2014), where cell loss needs to be counteracted by stem cell proliferation and differentiation while limiting the potential for unwanted overgrowth (Radtke and Clevers, 2005). Progressive loss of control over proliferative pathways either through loss of tumour suppressor genes or oncogene activation are associated with tumour development and progression (Hanahan and Weinberg, 2011).

Regulation of intestinal homeostasis involves the coordinated action of multiple evolutionarily conserved signalling pathways, which relay environmental and niche-derived signals to stem cells to ultimately determine their activity (Gehart and Clevers, 2019; Nászai et al., 2015; Scoville et al., 2008). Increasing understanding of how these pathways are regulated not only provides insight into basic stem cell biology, but also sheds light onto pathological conditions often associated with uncontrolled stem cell proliferation, such as cancer (Biteau et al., 2011; Sell, 2010).

Epidermal growth factor receptor (EGFR, also known as ErbB1 or HER1) is a member of the ErbB family of growth factor receptors, which play essential roles in regulating cell proliferation, differentiation and survival (Citri and Yarden, 2006; Wee and Wang, 2017). In the mammalian intestinal epithelium, EGFR is highly expressed in intestinal stem cells (ISC) and transit amplifying cells (Yang et al., 2017). The EGFR ligand, EGF, is released by Paneth cells and the mesenchyme and is required for the maintenance and proliferation of ISCs (Farin et al., 2012; Sato et al., 2009, 2011). Ectopic activation of EGFR signalling in the intestine through exogenous
sources or genetic overexpression of pathway ligands (Bongers et al., 2012; Kitchen et al., 2005; Marchbank et al., 1995), or deletion of the negative regulator leucine-rich repeats and immunoglobulin-like domains protein 1 (Lrig1) (Powell et al., 2012; Wong et al., 2012), leads to elevated ISC proliferation. On the other hand, loss of EGFR signalling induces quiescence of Lgr5+ ISCs in vitro (Basak et al., 2017).

Gene amplification and activating point mutations of EGFR are highly prevalent in cancer (Santarius et al., 2010; Yarden and Pines, 2012). Ectopic EGFR/Ras/MAPK signalling is thought to be an early step in colorectal cancer development (Calcagno et al., 2008). Hyperactivation of the pathway accelerates intestinal tumourigenesis driven by Adenomatous polyposis coli loss (Apc^{min/+} mice) (Luo et al., 2009), while a genetic background of partial loss-of-function of EGFR (Roberts et al., 2002) or small molecule inhibitor treatment reduce cancer incidence (Roberts et al., 2002; Torrance et al., 2000).

The <i>Drosophila</i> intestinal epithelium shares remarkable homology with its mammalian counterpart. The tissue is maintained by intestinal stem cells (ISCs) that replenish the epithelium through progenitor cells called enteroblasts (EB), which differentiate into either the secretory enteroendocrine (EE) cells or the absorptive enterocytes (EC) (Micchelli and Perrimon, 2006; Ohlstein and Spradling, 2006). Importantly, signalling pathways governing intestinal proliferation and differentiation are highly conserved between fruit flies and mammals (Nászai et al., 2015; Miguel Aliaga et al., 2018). Activation of EGFR/Ras/MAPK within ISCs by niche-derived EGF-like ligands is essential to sustain homeostatic and regenerative proliferation of the adult fly midgut, while constitutive pathway activation in ISCs is sufficient to drive intestinal hyperplasia (Biteau and Jasper, 2011; Buchon et al., 2010; Jiang et al., 2011; Xu et al., 2011).
Regulation of EGFR signalling activity is highly dependent on various modes of receptor trafficking throughout the endocytic pathway. Indeed, abnormal trafficking of receptor tyrosine kinases is linked to cancer (Lanzetti and Di Fiore, 2017; Mosesson et al., 2008). Following internalization through Clathrin-mediated (CME) or Clathrin-independent endocytosis (CIE) (Sorkin and Goh, 2009), EGF ligand/receptor complexes can either be targeted for recycling into the plasma membrane (PM), or ubiquitinated and targeted to late endosomes for lysosomal degradation (Sigismund et al., 2008, 2013). Most recently, autophagy has emerged as an important mechanism implicated in the termination of EGFR/MAPK signalling in the intestine (Zhang et al., 2019). While endocytosis is classically considered as a process to terminate pathway activity (Tomas et al., 2014), significant evidence suggests that receptors retain their ability to relay their signal even after internalisation, hence signalling is not limited to the PM (Sadowski et al., 2009). The relative contribution of PM versus intracellular EGFR to downstream signalling in vivo remains unclear (Sousa et al., 2012; Teis et al., 2006).

RAL small GTPases are best recognised for their role as effectors of Ras signalling, which has attracted basic and translational research into their potential in cancer development and progression (Moghadam et al., 2017). We recently identified a novel role of RAL GTPases in the regulation of Wnt signalling activity in ISCs through the regulation of Wnt receptor trafficking into intracellular compartments (Johansson et al., 2019). The relevance of RAL GTPases in intestinal tumorigenesis remained unaddressed as their function in the intestine became redundant upon loss of Adenomatous polyposis coli, a key driver of colorectal cancer (Johansson et al., 2019). Furthermore, whether RAL proteins (RALs) can impact intestinal biology
beyond Wnt signalling and whether this occurs through their classical role as Ras effectors is unclear.

Here, using the *Drosophila* intestine and human cell lines we uncover an unexpected, non-canonical role of RAL GTPases in activating EGFR/MAPK signalling, upstream of RAS and through induction of EGFR internalization. Our findings support a positive role of receptor tyrosine kinase internalization in signalling activation *in vivo*. We also identify physiological and pathological settings highly sensitive to the presence of RAL proteins, which may provide ideal platforms for the development of therapeutic approaches geared towards the modulation of RAL function.
Results

RAL GTPases are necessary for EGFR/MAPK signalling activation following damage to the intestinal epithelium

We have previously demonstrated that RalA, the single Ral gene in *Drosophila*, is required for Wnt signalling activation in the *Drosophila* larval wing disc and adult midgut (Johansson et al., 2019). However, we observed that, adult animals derived from larvae with RNAi driven knockdown of RalA (*RalA-RNAi*) in the posterior wing disc compartment, using the *engrailed-gal4* driver (*en* >), showed a significantly more severe wing phenotype than that caused by *wingless* knockdown (*wg-RNAi*) (Figure 1A). This led us to hypothesise that RalA may regulate pathways other than Wnt signalling.

EGFR signalling is also a key determinant of wing tissue patterning (Wang, 2000; Zecca and Struhl, 2002) and ISC proliferation in the adult *Drosophila* midgut (Biteau and Jasper, 2011; Buchon et al., 2010; Jiang et al., 2011; Xu et al., 2011). We found that while RNAi-dependent *EGFR* knockdown gave a similarly modest wing phenotype to that observed upon *wg* knockdown, combined *engrailed-gal4*-driven RNAi knockdown of both *wg* and *EGFR* recapitulated the adult wing phenotype of *en>* *RalA-RNAi* animals (Figure 1A).

We recently reported that *Drosophila* RalA is required within ISCs to induce midgut regeneration following damage by oral infection with *Erwinia carotovora carotovora 15* (*Ecc15*) (Johansson et al., 2019). To achieve a global view of intestinal pathways affected by RalA, we performed a transcriptomic analysis by RNAseq of whole midguts from vehicle treated (Mock) or damaged (*Ecc15* fed) control animals or following *RalA* knockdown in intestinal stem and progenitor cells using the *escargot*-
gal4 driver (ISC/EB>) (Micchelli and Perrimon, 2006). Consistent with its effect on ISC proliferation (Johansson et al., 2019), RalA knockdown significantly impaired damage-induced upregulation of cell cycle genes (Figure 1B) in the midgut. Additionally, levels of multiple transcriptional targets of the EGFR/MAPK pathway (Golembo et al., 1996; Hsu et al., 2001; Jin et al., 2015; Meng and Biteau, 2015), such as argos (aos), rhomboid (rho), Sox21a and string (stg) were increased following Ecc15 infection in control midguts. The upregulation of these target genes was significantly impaired upon RalA knockdown (Figure 1B). RT-qPCR confirmed RNAseq results (Figure 1C). Furthermore, immunofluorescence staining for the EGFR/MAPK-dependent transcription factor Sox21a (Meng and Biteau, 2015) and the activated form of the MAPK, phosphorylated ERK (pERK), in control animals and following RalA knockdown from ISCs/EBs confirmed the need for RalA for upregulation of MAPK signalling and downstream targets following damage to the midgut (Figure 1D-G and Figure1—figure supplement 1A-D). Together, these results suggest that RalA is necessary for damage-induced EGFR/MAPK activation in the Drosophila adult midgut.

Previously, we showed that the role of RAL proteins in Wnt signalling activation and intestinal regeneration is conserved between Drosophila and mice (Johansson et al., 2019). The mouse intestine has a robust capacity to regenerate following damage by gamma irradiation, as demonstrated by an increase in the number of regenerating crypts 72 h following irradiation (Cordero et al., 2014; Johansson et al., 2019). We next assessed whether MAPK activation in the regenerating mouse intestine required RAL GTPases. Single conditional knockout of either Rala (Rala^{fl/fl}) or Ralb (Ralb^{fl/fl}) in the murine intestinal epithelium using the Villin-CreER driver significantly impaired pERK activation in regenerating intestines when compared to control
(VillinCreER) (Figure 1H). Therefore, RAL GTPases' requirement for EGFR/MAPK pathway activation in the intestinal epithelia is evolutionarily conserved between fruit flies and mammals.

RAL GTPases are sufficient for EGFR/MAPK signalling activation in the *Drosophila* midgut

Ectopic expression of wild-type RalA in ISC/EB is sufficient to induce Wnt pathway activation and intestinal proliferation in the *Drosophila* midgut (Johansson et al., 2019). To determine whether RalA is also sufficient to induce EGFR/MAPK signalling, we assessed Sox21a (Figure 1I, J) and pERK (Figure 1K, L) levels by immunostaining following RalA overexpression in the midgut. We observed increased levels of both proteins within the ISC/EB compartment compared to the control condition. These results suggest that RAL GTPases are indeed sufficient for EGFR/MAPK pathway activation in the intestinal epithelium.

RALA activation is necessary for ISC proliferation in *Drosophila*

Small GTPases cycle between two alternative conformations: inactive (GDP-bound) and active (GTP-bound). The balance between these states is determined by the activity of guanine nucleotide exchange factors (GEF) and GTPase activating proteins (GAP), which activate and inactivate GTPases, respectively (Neel et al., 2011). There are seven Ral GEFs in the human genome, RALGDS, RALGPS1-2 and RGL1-4, which are often found misregulated in cancer (González-García et al., 2005; Koyama and Kikuchi, 2001; Rodriguez-Viciana and McCormick, 2005) and are considered emerging therapeutic targets (Neel et al., 2011; Vigil et al., 2010). However, the *in vivo* role of RAL GEFs in the intestine remains unknown. Several Ral GEFs are conserved in *Drosophila* (Gentry et al., 2014): Rgl, GEFmeso and CG5522
(Ral/GPS). Rgl is a close orthologue of mammalian RGL (Mirey et al., 2003), GEFmeso was identified in a yeast two hybrid screen using active RalA as bait (Blanke and Jäckle, 2006), while CG5522 was identified based on its close homology to mammalian RalGPS1 (Hu et al., 2011).

We next tested the functional role of each of these RAL GEFs in the fly midgut though RNAi-driven targeted knockdown and assessment of their impact on intestinal regeneration following oral infection with Ecc15 (Basset et al., 2000). The regenerative capacity of the adult posterior midgut (R4-R5) was quantified as per the number of proliferating ISCs, identified by staining with phosphorylated histone H3 antibody (pH3). As expected, Ecc15 infection induced significant increase in ISC proliferation relative to mock-treated control animals (Figure 2A-D). Knocking down either of the three RalGEFs of interest significantly impaired regenerative ISC proliferation in the midgut (Figure 2A-D) to levels comparable to those observed upon RalA knockdown (Johansson et al., 2019). Furthermore, RalGEF knockdown led to significant reduction in MAPK activation in the midgut following damage (Figure 2E, F). These results provide evidence highlighting the importance maintaining the active status of RALA for robust stem cell proliferation and MAPK activation in the intestine.

RALs regulates EGFR signalling in the intestine upstream of Ras activation

We next assessed how EGFR/MAPK signalling is regulated by RalA in the Drosophila midgut. EGFR is overexpressed in ~20% of breast and ~80% of colorectal cancers (Rimawi et al., 2010; Spano et al., 2005), and activating mutations of Ras are one of the most common cancer-associated genetic alterations (Prior et al., 2012). Consistent with previous reports (Jiang et al., 2011; Zhang et al., 2019), activation of the MAPK pathway in the adult Drosophila midgut by ISC/EB-specific
overexpression of wild-type EGFR (EGFRWT) or constitutively active Ras (RasV12) was sufficient to induce intestinal hyperproliferation (Figure 3A, B). Concomitant downregulation of RalA suppressed EGFRWT- but not RasV12-driven ISC hyperproliferation (Figure 3A, B and Figure 3—figure supplement 1A, B). Consistently, RalA knockdown impaired activation of ERK following EGFRwt but not RasV12 overexpression (Figure 3C, D).

RALA potentiates EGFR signalling activity downstream of ligand binding

Increasing the pool of receptors available for ligand binding, such as through recycling of intracellular receptor towards the plasma membrane or inhibition of receptor degradation, favours activation of receptor tyrosine kinase signalling, including EGFR (von Zastrow and Sorkin, 2007; Zhang et al., 2019). Therefore, one possible mechanism by which RAL proteins may potentiate EGFR signalling in the intestine is by facilitating ligand/receptor interactions. In that case, ligand-independent, constitutively active forms of EGFR, which are linked to cancer (Endres et al., 2014), should be insensitive to RAL deficiency. To test this prediction, we co-expressed RalA-RNAi with two active mutant forms of EGFR — EGFRλ\texttop and EGFRA887T — in Drosophila intestinal stem and progenitor cells (Figure 3E, F). EGFRλ\texttop includes an extracellular dimerization domain that causes receptor activation even in the absence of ligand (Queenan et al., 1997), and EGFRA887T contains an activating point mutation in the receptor kinase domain (Lesokhin et al., 1999). Overexpression of EGFRλ\texttop or EGFRA887T led to ISC hyperproliferation levels comparable to those observed following RasV12 overexpression (Figure 3E, F compare with Figure 3A, B and Figure 3—figure supplement 1A, B). However, unlike in the case of RasV12, knocking down RalA significantly impaired EGFRλ\texttop- or EGFRA887T-driven ISC proliferation (Figure 3E, F). Consistently, EGFRλ\texttop- or
EGFR^{A887T}-dependent ERK activation was also suppressed by *RalA-RNAi* (Figure 3G, H). These results suggest that *RalA* influences EGFR signalling activity downstream of ligand/receptor binding.

RAL GTPases are required for EGFR internalisation

We next tested whether RAL GTPases may induce EGFR/MAPK signalling through regulation of EGFR cellular localization, similarly to their role on the Wnt receptor Frizzled (Johansson et al., 2019). Firstly, we used immunostaining to visualise EGFR in control adult *Drosophila* midguts or following genetic manipulation of *RalA* expression. We found that knocking down *RalA* in stem and progenitor cells led to significantly increased levels of PM-associated EGFR (Figure 4A-D). This effect of RalA applied to wild type (Figure 4A, B) and A887T mutant EGFR (Figure 4C, D). Conversely, overexpression of wild-type RalA decreased membrane localisation of EGFR (Figure 4E, F). We were unable to assess the RalA impact on *EGFR^{top}* localization as our antibody, designed to bind the extracellular domain of EGFR, failed to recognise this mutant version of the receptor. These results strongly suggest that RalA induction of EGFR/MAPK signalling in the intestine involves an increase in the intracellular pool of EGFR.

Next, we used surface biotinylation-based assay to quantify the rate of EGFR internalization in H1299, a human non-small cell lung cancer (NSCLC) cell line with intact EGFR signalling (Amann et al., 2005). To obtain a measure of endocytosis that was not influenced by the rate at which the receptor returns, or ‘recycles’, to the cell surface from endosomes, we performed the surface biotinylation-based assay in the presence of the receptor recycling inhibitor, primaquine. This clearly indicated that EGF-driven (but not EGF-independent) endocytosis of EGFR was significantly reduced by combined knockdown of *Rala* and *Ralb* (Figure 4G and Figure 4—figure...
supplement 1A, B). By contrast, internalization of integrin α5β1 and transferrin receptor (hTfnR) were not affected by Rala/b knockdown (Figure 4—figure supplement 1C, D). These results suggest that the effect of RAL GTPases on EGFR cellular localization is conserved between Drosophila and mammals, and that RAL proteins function in a context-dependent manner, as opposed to being generally required for transmembrane receptor trafficking dynamics.

RAL proteins are necessary for EGFR dependent tumorigenesis

Intestinal hyperplasia caused by hyperactivation of β-Catenin or RAS is independent of RAL proteins (Johansson et al., 2019) (Figure 3A, B). Therefore, the importance of RAL GTPases in intestinal malignancy remains unaddressed. The effect of Ral knockdown on intestinal hyperproliferation caused by overexpression of wild type or constitutively active mutants of EGFR in the intestine (Figure 3A-F) suggests that other pathological settings driven by exacerbated EGFR activity might also be sensitive to RAL protein function.

c-Src is a conserved non-receptor tyrosine kinase whose expression is necessary and sufficient to drive regeneration and tumourigenesis of both the Drosophila and mouse intestine through EGFR/MAPK activation (Cordero et al., 2014; Kohlmaier et al., 2015) (Figure 5A, B). Consistently, Src overexpression in ISCs/EBs (esgts>Src64wt) induced expression of the MAPK pathway transcriptional target Sox21a (Figure 5C, D) and pERK levels (Figure 5E, F) (Cordero et al., 2014; Kohlmaier et al., 2015). Importantly, knocking down RalA (ISC/EB>Src64wt; RalA-RNAi) significantly suppressed Src-driven ISC hyperproliferation and MAPK signalling activation in the Drosophila midgut (Figure 5A-F). Interestingly, this effect of RalA correlated with an increase in membrane versus intracellular levels of EGFR
in ISC/EB>Src64^{wt}; RalA-RNAi midguts when compared to ISC/EB>Src64^{wt} (Figure 5G, H).

As a proof of principle in an orthogonal mammalian system dependent on EGFR for morphogenesis, we employed the human breast tumour cell line HMT3522 T4-2 (henceforth referred to as ‘T4-2’) as a paradigm to test the role of mammalian RAL GTPases in malignant growth. T4-2 is a subline obtained after spontaneous malignant transformation of the benign breast tumour cell line HMT3522 S1 (henceforth ‘S1’). Compared to the S1 predecessor, T4-2 cells grow as disorganised aggregates of cells when cultured in 3Dimensional (3D) Extracellular Matrix gels such as Matrigel. This growth and morphogenesis in 3D in T4-2 cells is EGFR-dependent: T4-2 show robustly upregulated EGFR levels and activation, their growth is independent of exogenous EGF, and they are acutely sensitive to EGFR inhibitors (Madsen et al., 1992; Wang et al., 1998). Thus, we hypothesized that T4-2 growth would be dependent on RAL function.

Consistent with previous reports (Madsen et al., 1992; Wang et al., 1998), treating T4-2 cells with two structurally independent EGFR inhibitors, Tyrphostin (AG1478) and erlotinib, resulted in defective growth as determined by a reduction in 3D acinus size (Figure 5I, J). Importantly, stable depletion of RalA or RalB in T4-2 by shRNA (Figure 5—figure supplement 1A, B) phenocopied EGFR inhibition, as determined by a significant reduction in 3D acinus size (Figure 5K, L). Therefore, RalA/B function is similarly required for a mammalian morphogenetic function that is dependent on EGFR. Altogether, our results uncover a conserved role of RAL GTPases mediating EGFR/MAPK-dependent tissue homeostasis and transformation upstream of Ras activation.
Discussion

Spatial and temporal regulation of signal transduction by the endocytic pathway plays a key role in health and pathophysiology (Casaletto and McClatchey, 2012; von Zastrow and Sorkin, 2007). The impact of this process in adult stem cells and tissue homeostasis is only recently becoming evident through reports on the effect of endocytosis and autophagy on intestinal stem cell (ISC) proliferation through modulation of Wnt/β-Catenin and EGFR/MAPK activity, respectively (Johansson et al., 2019; Zhang et al., 2019).

In this study, we identify a role for the Ras-related protein RAL in the activation of EGFR/MAPK signalling activity upstream of its known activator RAS through regulation of EGFR internalization. Preventing RAL function in Drosophila intestinal stem/progenitor cells reduces the intracellular pool of EGFR, leading to decreased MAPK activation and downstream signalling. This role of RAL proteins impacts stem cell proliferation and regeneration of the intestinal epithelium and has implications in pathological settings that depend on active EGFR signalling, including intestinal hyperplasia and breast cancer cell growth.

RAL GTPases as regulators of signal transduction

While internalization is recognised as the initial means to attenuate signal transduction through reduction of plasma membrane receptors available for activation by extracellular ligands (Goh et al., 2010; Sousa et al., 2012; Vieira et al., 1996; von Zastrow, 2003), the subsequent outcome of endocytosis on signalling is dependent on the trafficking pathway followed by internalised receptors. Internalisation of membrane EGFR through Clathrin-mediated endocytosis (CME) results in prolonged EGFR signalling by favouring receptor recycling back to the plasma membrane, while Clathrin-independent endocytosis (CIE) leads to EGFR
degradation and signalling attenuation (Sigismund et al., 2008). The differential effect of endocytic trafficking on EGFR has therapeutic implications as Clathrin inhibition can divert a tyrosine kinase inhibitor-resistant form of EGFR from CME and recycling to pinocytosis and degradation in non-small cell lung carcinoma (Ménard et al., 2018).

Here, we provide robust evidence of physiological and pathological contexts in the intestine where the internalisation of EGFR mediated by RAL GTPases directly correlates with potentiation of downstream MAPK signalling. We recently reported a similar effect of RAL proteins on seven transmembrane class of receptors Frizzled, leading to high threshold of Wnt signalling activity (Johansson et al., 2019). In both cases, the ultimate outcome of RAL action is an efficient acute proliferative response of intestinal stem cells and tissue regeneration following damage. Therefore, RAL GTPases are effectors of two pivotal signal transduction pathways within the intestinal epithelium (Biteau and Jasper, 2011; Buchon et al., 2010; Jardé et al., 2020; Jiang et al., 2011; Perochon et al., 2018; Sato et al., 2009; Xu et al., 2011). The effect of knocking down RalA in the Drosophila midgut is, however, milder than that observed upon individual or combined impairment of Wnt/β-Catenin and EGFR/MAPK signalling reception in ISCs (Xu et al., 2011). This suggests that RalA is only partly responsible for the activation of these signalling pathways and its effect is only evident in the regenerative response to damage, which requires high thresholds of signalling activity to allow acute stem cell proliferation for tissue regeneration. The scenario is different in the mammalian intestine, where combined knockout of Rala and Ralb leads to complete disruption of intestinal epithelial homeostasis (Johansson et al., 2019). This may relate to inherent differences in the signalling activity levels needed to maintain homeostatic ISC proliferation in the fly.
midgut versus the mouse intestine. Compared to its murine counterpart, basal proliferation in the adult fly midgut is relatively low and there is no transit amplifying proliferative zone (Micchelli and Perrimon, 2006; Ohlstein and Spradling, 2006).

RAL GTPases have been linked to CME via interaction of their effector protein, RAL binding protein (RALBP1), with the Clathrin adaptor AP2 (Jullien-Flores et al., 2000). More recently, RAL proteins have also been shown to engage in Caveolin-mediated endocytosis (Jiang et al., 2016). While the potentiating effect of RALs on EGFR signalling activity would favour a role of the small GTPases in CME in the system, this needs to be directly assessed. Experiments to functionally connect RalA with specific endocytic trafficking pathways using Drosophila genetics have been unsuccessful as, consistent with recently published work (Zhang et al., 2019), global perturbation of the trafficking machinery within ISCs leads to very severe disruption of intestinal homeostasis (data not shown), precluding the establishment of meaningful genetic interactions.

Future research will need to be done to better elucidate the place of action of RAL GTPases within the endocytic trafficking pathway and its connection with EGF and Wnt receptors in the intestine. The use of fluorescently tagged endocytic proteins (Dunst et al., 2015) combined with recently developed live imaging approaches in the adult Drosophila intestine (Koyama et al., 2020; Martin et al., 2018) offers a clear opportunity to visualise spatial and temporal receptor/endosome interactions in vivo.

RAL GTPases as potential therapeutic targets in cancer

EGFR function is frequently altered in cancer (Santarius et al., 2010; Yarden and Pines, 2012). Excessive protein levels due to gene amplification or increased-transcription are the most common EGFR perturbations found in gastrointestinal and
lung adenocarcinoma as well as in cholangiocarcinoma (Birkman et al., 2016; Jung et al., 2017; Li et al., 2008). On the other hand, EGFR kinase domain activating point mutations are associated with non-small cell lung carcinoma and glioblastoma, but are rarely seen in other types of cancer (Li et al., 2008; Siegelin and Borczuk, 2014; Zhang et al., 2016). Extracellular domain truncating mutations yielding to constitutively active receptor through ligand-independent dimerization have also been observed in glioblastomas (Furnari et al., 2015; Guo et al., 2015; Huang et al., 1997). We have utilised *Drosophila* genetic constructs that mimic all three main classes of EGFR common to human cancers and which lead to intestinal hyperplasia when overexpressed in intestinal stem/progenitor cells (Figure 3). Genetic inhibition of RAL GTPase activity consistently prevented hyperproliferation in these models, suggesting that targeting RAL function could be a potentially effective therapeutic approach in the treatment of multiple highly aggressive cancer types.

Current EGFR-targeted therapies include small molecule tyrosine kinase inhibitors (TKI) and monoclonal antibodies (mAb) against the extracellular domain of the receptor (Xu et al., 2017). A number of resistance mechanisms arise secondary to treatment. Specific kinase domain mutations desensitize cells against TKI (Sequist et al., 2011; Yu et al., 2015), while alterations of the antibody binding site are observed in colorectal cancer (Arena et al., 2015). There is also a tendency for downstream mutations (Raf, Ras, MAPK, MET) to uncouple pathway activity from the receptor (Camidge et al., 2014; Mancini and Yarden, 2016). The most common form of resistance to EGFR-targeted therapies is believed to be innate rather than adaptive (Parseghian et al., 2019). Indeed, about 80% of colorectal cancers are refractive to EGFR therapy (Bardelli and Siena, 2010). Several reports highlight how cancer cells co-opt the endocytic pathway for growth and survival benefits (Mosesson et al.,...
In fact, these have been proposed as a potential venue for drug development (Mellman and Yarden, 2013). However, based on the current evidence, we propose that targeting RAL function versus a broader component of the endocytic machinery may prove a more refined approach leading to lower toxic effects (Zhang et al., 2019).

Unexpectedly, our results clearly show that, at least in the intestine, oncogenic mutations in RAS are refractory to RAL GTPase inhibition. Therefore, taking into consideration the genetic composition of the tumour is of outmost importance when considering the use of RAL inhibition as a therapeutic approach.
Materials and Methods

Key resources table

<table>
<thead>
<tr>
<th>Reagent type (species) or resource</th>
<th>Designation</th>
<th>Source or reference</th>
<th>Identifiers</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>strain, strain background (Mus musculus)</td>
<td>VillinCreER</td>
<td>(el Marjou et al., 2004) 10.1002/gene.2004-2</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>strain, strain background (Mus musculus)</td>
<td>Ralaf/fl</td>
<td>(Peschard et al., 2012) 10.1016/j.cub.2012.09.013</td>
<td>RRID:MGI:505291</td>
<td></td>
</tr>
<tr>
<td>strain, strain background (Erwinia carotovora carotovora 15)</td>
<td>Ecc15</td>
<td>B. Lemaitre; (Basset et al., 2000) 10.1073/pnas.97.7.3376</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>genetic reagent (Drosophila melanogaster)</td>
<td>en></td>
<td>BDSC</td>
<td>RRID:BDSC_30564</td>
<td>y¹ w⁺; P{w-mW.hs=en2.4-GAL4}e16E</td>
</tr>
<tr>
<td>genetic reagent (Drosophila melanogaster)</td>
<td>ISC/EB></td>
<td>S. Hayashi; (Goto and Hayashi, 1999) PMID: 10393119</td>
<td>NA</td>
<td>yw;esg-Gal4NP5130,UAS-GFP,UAS-GFPnLacZ/Cyo;tub-Gal80ts/Tm6B</td>
</tr>
<tr>
<td>genetic reagent (Drosophila melanogaster)</td>
<td>Control</td>
<td>R. Cagan</td>
<td>NA</td>
<td>w[1118]</td>
</tr>
<tr>
<td>genetic reagent (Drosophila melanogaster)</td>
<td>RalA-RNAi(1)</td>
<td>VDRC</td>
<td>RRID:FlyBase_FBst0477124</td>
<td>P{KK108989}VIE-260B</td>
</tr>
<tr>
<td>genetic reagent (Drosophila melanogaster)</td>
<td>RalA-RNAi(2)</td>
<td>BDSC</td>
<td>RRID:BDSC_29580</td>
<td>y¹ v¹; P{y+t7.7 v+t1.8=TRiP.JF03259}attP2</td>
</tr>
<tr>
<td>genetic reagent (Drosophila melanogaster)</td>
<td>Wg-RNAi</td>
<td>VDRC</td>
<td>RRID:FlyBase_FBst0476437</td>
<td>P{KK108857}VIE-260B</td>
</tr>
<tr>
<td>genetic reagent (Drosophila melanogaster)</td>
<td>EGFR-RNAi</td>
<td>VDRC</td>
<td>RRID:FlyBase_FBst0478953</td>
<td>P{KK100051}VIE-260B</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>------</td>
<td>--------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>genetic reagent (Drosophila melanogaster)</td>
<td>RaLAwt</td>
<td>G. Hasan; (Richhariya et al., 2017) 10.1038/srep42586</td>
<td>NA</td>
<td>P{UAS-RalA}3</td>
</tr>
<tr>
<td>genetic reagent (Drosophila melanogaster)</td>
<td>GEFmeso-RNAi</td>
<td>BDSC</td>
<td>RRID:BDSC_42545</td>
<td>w[1118]; P{GD11683}v40596/TM3</td>
</tr>
<tr>
<td>genetic reagent (Drosophila melanogaster)</td>
<td>EGFRwt</td>
<td>BDSC</td>
<td>RRID:BDSC_5368</td>
<td>w[*]; P{w[mC]=Egr.2.A887T.UAS}32-26-1</td>
</tr>
<tr>
<td>genetic reagent (Drosophila melanogaster)</td>
<td>EGFRA887T</td>
<td>BDSC</td>
<td>RRID:BDSC_9533</td>
<td>w[*]; P{w[mC]=Egr.2.A887T.UAS}8-2</td>
</tr>
<tr>
<td>genetic reagent (Drosophila melanogaster)</td>
<td>EGFR\lambda top</td>
<td>BDSC</td>
<td>RRID:BDSC_59843</td>
<td>w[*]; P{w[mC]=Egr.2.A887T.UAS}3/TM6C, Sb[1]</td>
</tr>
<tr>
<td>genetic reagent (Drosophila melanogaster)</td>
<td>RasV12(1)</td>
<td>BDSC</td>
<td>RRID:BDSC_64195</td>
<td>w[*]; P{w[mC]=UAS-Ras85D.V12}TL1</td>
</tr>
<tr>
<td>genetic reagent (Drosophila melanogaster)</td>
<td>RasV12(2)</td>
<td>BDSC</td>
<td>RRID:BDSC_64196</td>
<td>w[*]; P{w[mC]=UAS-Ras85D.V12}2</td>
</tr>
<tr>
<td>genetic reagent (Drosophila melanogaster)</td>
<td>Src64wt</td>
<td>BDSC</td>
<td>RRID:BDSC_8477</td>
<td>w[*]; P{w[mC]=UAS-Src64B.C}2</td>
</tr>
<tr>
<td>cell line (Homo sapiens)</td>
<td>H1299</td>
<td>ATCC</td>
<td>RRID:CVCL_0060</td>
<td>ATCC CRL-5803</td>
</tr>
</tbody>
</table>
| cell line (Homo sapiens) | HMT3522 T4-2 | V. Weaver, UCSF | RRID:CVCL_2501 | }
<table>
<thead>
<tr>
<th>cell line ((Homo sapiens))</th>
<th>HEK293-FT</th>
<th>Thermo Fisher Scientific</th>
<th>RRID:CVCL_6911</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>antibody</td>
<td>GFP</td>
<td>AbCam</td>
<td>RRID:AB_300798</td>
<td>chicken polyclonal anti GFP; 1:2000</td>
</tr>
<tr>
<td>Sox21a</td>
<td>B. Biteau; (Meng and Biteau, 2015) 10.1016/j.cell.2015.09.061</td>
<td>NA</td>
<td>rabbit polyclonal anti Sox21a; 1:2000</td>
<td></td>
</tr>
<tr>
<td>pERK</td>
<td>Cell Signaling Technology</td>
<td>RRID:AB_331646</td>
<td>rabbit polyclonal anti pERK; 1:100</td>
<td></td>
</tr>
<tr>
<td>pH3</td>
<td>Cell Signaling Technology</td>
<td>RRID:AB_331535</td>
<td>rabbit polyclonal anti Phospho-Histone H3 (Ser10); 1:100</td>
<td></td>
</tr>
<tr>
<td>EGFR ((Drosophila IHC))</td>
<td>Sigma Aldrich</td>
<td>RRID:AB_609900</td>
<td>mouse monoclonal anti Drosophila EGFR extracellular domain; 1:50</td>
<td></td>
</tr>
<tr>
<td>EGFR1 ((capture-ELISA))</td>
<td>BDPharmingen</td>
<td>RRID:AB_2096589</td>
<td>mouse anti-EGF Receptor monoclonal</td>
<td></td>
</tr>
<tr>
<td>alpha5 beta1 integrin</td>
<td>BDPharmingen</td>
<td>RRID:AB_396007</td>
<td>Mouse Anti-CD49e Monoclonal Antibody, Unconjugated, Clone VC5</td>
<td></td>
</tr>
<tr>
<td>Transferrin receptor</td>
<td>BDPharmingen</td>
<td>RRID:AB_395918</td>
<td>CD71 human monoclonal antibody</td>
<td></td>
</tr>
<tr>
<td>anti-chicken-IgY-488</td>
<td>Invitrogen</td>
<td>RRID:AB_142924</td>
<td>goat anti-chicken-IgY(H+L)-Alexa Fluor 488</td>
<td></td>
</tr>
<tr>
<td>anti-rabbit-IgG-594</td>
<td>Thermo Fisher Scientific</td>
<td>RRID:AB_2534095</td>
<td>goat anti-rabbit-IgG(H+L)-Alexa Fluor 594</td>
<td></td>
</tr>
<tr>
<td>anti-mouse-IgG-594</td>
<td>Molecular Probes</td>
<td>RRID:AB_141672</td>
<td>goat anti-mouse-IgG(H+L)-Alexa Fluor 594</td>
<td></td>
</tr>
<tr>
<td>pERK (ISH)</td>
<td>Cell Signaling Technology</td>
<td>RRID:AB_331646</td>
<td>rabbit anti-p-ERK1/2 1:400</td>
<td></td>
</tr>
<tr>
<td>Total ERK (ISH)</td>
<td>Cell Signaling Technology</td>
<td>RRID:AB_330744</td>
<td>rabbit anti total-Erk1/2 1:400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VSVG</td>
<td>Trono lab, unpublished, donated to Addgene</td>
<td>RRID:Addgene_12259</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPAX2</td>
<td>Trono lab, unpublished,</td>
<td>RRID:Addgene_12260</td>
<td></td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>donated to Addgene</td>
<td>This paper</td>
<td>NA</td>
<td>TTGTCACTTTTGTCTCCTCCGA</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------</td>
<td>------------</td>
<td>-----</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rho_Fwd</td>
<td>NA</td>
<td>GTCAGGTTGGCAATGTACGA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rho_Rev</td>
<td>NA</td>
<td>CAGTAATAAACACAGCAGTTCCGAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stg_Fwd</td>
<td>NA</td>
<td>GTAGAAGCGACAGGTCTCCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stg_Rev</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sox21a_Fwd</td>
<td>NA</td>
<td>AGACAAATATACAGCAGTCCAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sox21a_Rev</td>
<td>NA</td>
<td>GAGATGCTCGTCATGATGCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rpl32_Fwd</td>
<td>NA</td>
<td>AGGCCCAGAGCTGGAAAGA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rpl32_Rev</td>
<td>NA</td>
<td>TGTGCACCGAGGAACCTTTGAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rala_Fwd</td>
<td>PrimerBank ID#32407295c2</td>
<td>GCAGACAGCTATCCTGAAAGA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rala_Rev</td>
<td>PrimerBank ID#32407295c2</td>
<td>TCTCTAATTGCAGGCTAGCTCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ralb_Fwd</td>
<td>PrimerBank ID#4876297c1</td>
<td>AGCCTGAGCGCTTCTAGTTC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ralb_Rev</td>
<td>PrimerBank ID#4876297c1</td>
<td>AGCGGTGTCCAGAAATCTATCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ActB_Fwd</td>
<td>(Liu et al., 2015) 10.1371/journal.pone.0117058</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ActB_Rev</td>
<td>(Liu et al., 2015) 10.1371/journal.pone.0117058</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>shScr</td>
<td>This paper</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>shRala</td>
<td>This paper</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>shRalb</td>
<td>This paper</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siRNA RalA (human)</td>
<td>Dharmacon ONTARGET plus - Cat# L-009235-00-0005</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>siRNA RalB (human)</td>
<td>Dharmacon ONTARGET plus - Ca# L-008403-00-0005</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peptide, recombinant protein</td>
<td>EGF Sigma Cat# 11376454001</td>
<td></td>
</tr>
<tr>
<td>commercial assay or kit</td>
<td>High Capacity cDNA Reverse Transcription Kit</td>
<td>Applied Biosystems</td>
<td>Cat# 4368813</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>PerfeCTa SYBR Green FastMix (Low ROX)</td>
<td>Quanta Bio</td>
<td>Cat# 95074-012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VECTASHIELD LD Mounting Medium with DAPI</td>
<td>Vector Laboratories, Inc</td>
<td>RRID:AB_2336790</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAeasy Mini Kit (50)</td>
<td>Qiagen</td>
<td>Cat# 74104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth Factor Reduced Matrigel</td>
<td>BD Biosciences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipofectamine 2000</td>
<td>Thermo Fisher Scientific</td>
<td>Cat# 11668027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenti-X Concentrator</td>
<td>Clonetech</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>Chemical compound, drug</td>
<td>Chemical compound, drug</td>
<td>Chemical compound, drug</td>
<td></td>
</tr>
<tr>
<td>Glutamine</td>
<td>Thermo Fisher Scientific</td>
<td>Cat# 25030081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin</td>
<td>Sigma Aldrich</td>
<td>I0516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transferrin</td>
<td>Sigma Aldrich</td>
<td>T2252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium selenite</td>
<td>Sigma Aldrich</td>
<td>S5261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>beta-estradiol</td>
<td>Sigma Aldrich</td>
<td>E2758</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hydrocortisone</td>
<td>Sigma Aldrich</td>
<td>H0888</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prolactin</td>
<td>Miltenyi Biotech</td>
<td>130-093-985</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyrphostin-AG1478</td>
<td>Sigma Aldrich</td>
<td>T4182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erlotinib, HCL</td>
<td>Sigma Aldrich</td>
<td>SML2156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>puromycin</td>
<td>Thermo Fisher Scientific</td>
<td>A1113803</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phalloidin</td>
<td>Invitrogen</td>
<td>A12380,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software, algorithm</td>
<td>Vendor</td>
<td>RRID</td>
<td>Website</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Hoechst software, algorithm</td>
<td>Fiji</td>
<td>NIH</td>
<td>1.51n; https://fiji.sc/</td>
<td></td>
</tr>
<tr>
<td>GraphPad Prism 6</td>
<td>GraphPad</td>
<td>RRID:SCR_002798</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEN 2 lite</td>
<td>ZEISS</td>
<td>RRID:SCR_013672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7500 Real-Time PCR Software</td>
<td>Applied Biosystems</td>
<td>RRID:SCR_014596</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmony</td>
<td>PerkinElmer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGFR_quant</td>
<td>This paper</td>
<td>NA</td>
<td>https://github.com/emltwc/EGFRProject</td>
<td></td>
</tr>
</tbody>
</table>

Experimental models and organisms

Species used: *Drosophila melanogaster, Mus musculus*

Cell lines used: HMT-3522 T4-2 (human breast cancer derived), NCI-H1299 (human lung cancer derived)

Only mated females were used for *Drosophila* experiments.
Drosophila breeding and maintenance

Flies were maintained in humidity and temperature-controlled incubators with a 12-12-hour light-dark cycle. Crosses were kept at 18°C. F1s of the desired genotype were collected 2-3 days of adult eclosion and aged at 29°C for the time needed to allow for transgene activation. Standard rearing medium used: 10g agar, 15g sucrose, 30g glucose, 15g maize meal, 10g wheat germ, 30g treacle and 10g soya flour per litre of distilled water.

Mouse work

Mouse experiments were performed as described in (Johansson et al., 2019), according to the UK Home Office regulations and designed in accordance with the ARRIVE guidelines. Standard diet and water were given ad libitum, and under non-barrier conditions. The Mice strains used are indicated in the resource table. Tamoxifen (Sigma) IP was used to induce VilCreER mice at 80 mg/kg. For regeneration experiments, mice were exposed to \(\gamma\)-irradiation from caesium-137 sources. This delivered \(\gamma\)-irradiation at 0.423 Gy min\(^{-1}\). Mice were sampled 3 days following irradiation damage. The smallest sample size was used that would still give a significant difference in accordance with the 3Rs. No distinction between males and females has been made in the mice experiments. All mice were above 20g of weight before eligible participate in any experiment. Experiments were performed on a C57BL/6 (N=3 or more).

IHC of mouse tissue

IHC staining was performed on 4 \(\mu\)m sections of formalin-fixed paraffin embedded (FFPE) tissues were cut, mounted onto adhesive slides and oven-incubated at 60°C
for 2 hours. Sections were dewaxed for 5 minutes in xylene before rehydrating through decreasing concentrations of alcohol followed by washing with H₂O for 5 minutes. FFPE sections underwent heat–induced epitope retrieval in a pre-treatment module. Sections were heated for 20 minutes at 97°C in Sodium Citrate pH6 retrieval buffer (Thermo, TA-250-PM1X) before cooling to 65°C. Slides were removed and washed in Tris Buffered Saline with Tween (TBT) (Thermo, TA-999-TT). Sections were loaded onto the Dako autostainer link48 platform, washed with TBT then peroxidase blocking solution (Agilent, S2023) applied for 5 minutes. Sections were washed with TBT then appropriate antibody was applied to specific slides. Phospho-p44/42 MAPK (Erk1/2) (Cell Signaling, 9101) was applied at 1/400 dilution and p44/42 MAPK (Erk1/2) (Cell Signaling 9102) was applied at 1/40 dilution for 30 minutes. Sections were then washed again with TBT before application of Rabbit Envision (Agilent, K4003) for 30 minutes before washing with TBT. 3,3' diaminobenzidine (Agilent, K3468) was then applied for 10 minutes before washing in H₂O to terminate the reaction. Finally, slides were counterstained with haematoxylin and dehydrated in increasing concentrations of alcohol, then taken through 3 changes of xylene prior to sealing with glass coverslips using DPX mounting media for microscopy.

Brightfield microscopy

Drosophila wings were mounted onto glass slides (VWR) with 13mm x 0.12mm spacers (Electron Microscopy Science). Images were obtained on the Zeiss Axio Observer system. Images were focus stacked using the ZEN 2 software (Zeiss).
Immunofluorescence of Drosophila tissues

Immunofluorescent staining was performed as described in (Johansson et al., 2019). Briefly, tissues were dissected and fixed in 4% paraformaldehyde (PFA, Polysciences Inc) at room temperature for a minimum of 30 min. After fixation, tissues were washed 3 times in PBS + 0.2% Triton X-100 (PBST) for 20 min, followed by overnight incubation at 4°C with primary antibodies in PBST + 0.5% Bovine Serum Albumin (BSA) (PBT). Samples were then washed in PBST 3 times 20 minutes and incubated with secondary antibodies in PBT for 3h at room temperature, followed by washing and mounting.

Midguts stained for pERK included a methanol fixation step between PFA fixation and PBST washing steps of the standard protocol. Following PFA fixation methanol was added dropwise to the solution, with the tissues in it until the volume of the liquid is at least double. Tissues were transferred into 100% methanol for minimum 1 minute. PBS was added to the methanol dropwise after which the samples were subjected to the standard staining protocol.

All samples were mounted onto glass slides (VWR) with 13mm x 0.12mm spacers (Electron Microscopy Science) and Vectashield mounting media containing DAPI (Vector Laboratories, Inc). Confocal images were obtained on a Zeiss LSM 780 and processed in the Zeiss ZEN software.

Antibody concentrations used: anti-GFP (1:2000), anti-pERK (1:100), anti-EGFR (1:50), anti-Sox21a (1:2000), anti-pH3S10 (1:100). Secondary antibodies were used as follows: anti-chicken-IgY-488 (1:200), anti-rabbit-IgG-594 (1:100), anti-mouse-IgG-594 (1:100).

Drosophila midgut regeneration assay
Regeneration assays was performed according to (Neyen et al., 2014). Oral infection was induced using *Erwinia carotovora subsp. carotovora* 15 (*Ecc15*) (Basset et al., 2000). Bacteria were grown overnight in LB medium in orbital shaker incubator at 29°C, 200 rpm. The bacterial culture was pelleted (Beckman Coulter JS-4.2 rotor, 10 min @3000rpm ≈ 22547 k-factor) and adjusted to OD600 = 200 followed by mixing with a 5% sucrose solution 1:1. Flies used for regeneration experiments were starved for 2 hours prior to infection to synchronize feeding. Animals were moved into vials containing filter paper (Whatman) soaked into 5% sucrose solution (Mock) or the prepared bacterial solution. Flies were dissected 12-16 hours after infection.

Staining quantification

pERK intensity was quantified in 16-bit z-stack confocal images as the average staining intensity within the GFP positive compartment. Sox21a staining was quantified as the average staining intensity within the DAPI positive compartment using BatchQuantify (Johansson et al., 2019).

EGFR membrane/cytoplasmic staining was quantified using a custom ImageJ macro EGFR_quant (https://github.com/emltwc/EGFRProject).

Drosophila RNA extraction, RNA-sequencing and RT-qPCR

Total RNA from a minimum of 25 midguts was extracted using QIAGEN RNAeasy kit, following manufacturer's instructions, including the on-column DNase digestion step. For RNA-seq RNA integrity score was determined (Agilent technologies, D1000 Screen Tape). Sequencing was performed on the HiSeq 2000 platform (Illumina). For RT-qPCR, RNA was quantified using a NanoDrop 2000c Spectrophotometer. cDNA was synthesized using the High-Capacity cDNA reverse transcription kit (Applied Biosystems), according to the manufacturer's recommendations using a
maximum of 2 µg RNA per 20 µL final volume. Quanta SYBR green Master Mix (Low ROX, Fermentas) was used following manufacturer's instructions. Data were obtained and analyzed using the Applied Biosystems 7500 software. Results represent biological quadruplicates ± SEM. Expression of target genes was measured and normalized to \(rpl32 \) using standard curves.

Cell culture

HMT-3522 T4-2 (V. Weaver, UCSF) cells were cultured in precoated collagen plates using DMEM / Ham's F12 (1:1) media supplemented with 2mM Glutamine (Life Technologies), 250ng/ml insulin solution from bovine pancreas (Sigma-Aldrich), 10 µg/ml transferrin (Sigma-Aldrich), 2.6 ng/mL Sodium selenite (Sigma-Aldrich), \(10^{-10} \)M 17 beta-estradiol (Sigma-Aldrich), \(1.4 \times 10^{-8} \)M hydrocortisone (Sigma-Aldrich), and 10 ng/ml human prolactin (Miltenyi Biotec).

Culture of cell lines as 3D acini was adapted from David Bryant's protocols. Briefly, single cell suspensions (1.5 x 10^4 cells per ml) were plated in the appropriate medium supplemented with 2% Growth Factor Reduced Matrigel (GFRM; BD Biosciences). 100µl of this mix were added per well in a 96 well ImageLock plate (Essen Biosciences) precoated with 10µl of pure GFRM for 15 minutes at 37 °C. Cells were incubated at 37 °C for 5 days, changing the media every two days, before IF.

For inhibitor studies, cells were treated from the time of plating with Tyrphostin-AG1478 (80 nM in ethanol, Sigma-Aldrich), Erlotinib (100 nM in DMSO), and Ethanol or DMSO as appropriate controls, respectively.
HEK293-FT (Thermo Fisher Scientific) were cultured in DMEM supplemented with 10% FBS, 6mM L-glutamine and 0.1mM Non-Essential Amino Acids (NEAA) (all reagents from Life Technologies).

Generation of stable cell lines

Stable cell lines were performed by co-transfecting pLKO.1-puromycin shRNA plasmid with VSVG and SPAX2 lentiviral packaging vectors using Lipofectamine 2000 into HEK293-FT packaging cells according to manufacturer's instructions (Invitrogen). Viral supernatants were collected; filtered using PES 0.45μm syringe filters (Starlab), and concentrated using Lenti-X Concentrator (Clontech) as per the manufacturer's instructions. Cells were then transduced with the lentivirus for 3 days before selection with 1μg/ml puromycin (Thermo Fisher Scientific). shRNA target sequences: shScr (5'CCGCAGGTATGCACGCGT3'), shRalA (5'GGAGGAAGTCCAGATCGATAT3'), and shRalB (5'CAAGGTGTTTCTTTGACCTAAT3'). To knockdown RAL protein expression in H1229 cells, cells were transfected with Dharmacon ON-TARGETplus siRNAs using the Amaxa Nucleofector system (Lonza).

RNA extraction and RT-qPCR

RT-qPCR on human samples was performed following the same protocol used for *Drosophila* samples, except using human β-actin or GAPDH to normalize transcript levels using the delta-delta-C_T method.

Cyst growth assay

Acini labelling was adapted from previously described protocols. Briefly, cultures were fixed in 4% paraformaldehyde (PFA, Affimetrix) for 10 min at room temperature (RT), washed twice in PBS, blocked for 1 h in PFS buffer (PBS, 0.7% w/v fish skin
gelatin (Sigma-Aldrich), 0.5% saponin (Sigma-Aldrich), and incubated with primary antibodies diluted in PFS at 4 °C overnight with gentle rocking. Then, cyst cultures were washed three times with PFS and incubated with secondary antibodies diluted in PFS for 1h at RT, followed by washing twice in PFS and twice in PBS. Labelling was performed using Phalloidin (1:200) (Invitrogen) and Hoescht to label nuclei (10 μg ml⁻¹).

Acquisition of confocal images was performed using Opera Phenix Z9501 high-content imaging system (PerkinElmer), imaging at least 10 optical sections every 2 μM, imaging 25 fields at 20x. Images were analysed using Harmony imaging analysis software (PerkinElmer).

Internalisation assay

Internalisation assays were performed as described in (Roberts et al., 2001). Briefly, cells were surface labelled at 4°C with 0.13 mg/ml NHS-SS-biotin (Pierce) in PBS for 30 min. Following surface labelling, cells were transferred to complete medium at 37°C to allow internalization in the presence of 0.6mM primaquine for the indicated times. Biotin was then removed from the cell surface by treatment with the cell-impermeable reducing agent MesNa. Cells were then lysed and the quantity of biotinylated receptors determined using a capture-ELISA. The following antibodies were used for capture-ELISA; clone VC5 (BDPharmingen, Cat 555651) for α5β1, anti-CD71 (BDPharmingen, Cat 555534) for the TfnR and anti-EGFR1 (BDPharmingen, Cat 555996).
Statistical analysis

GraphPad Prism 6 software was used for statistical analyses. Information on sample size, and statistical tests used for each experiment are indicated in the figure legends.

Data availability

All data underlying the findings of this paper will be available at the time of publication through local repositories accessible via a DOI. Custom scripts used for quantification are available at (https://github.com/emltwc). Requests for further information, reagents and resources should be directed to and will be fulfilled by Julia B. Cordero (julia.cordero@glasgow.ac.uk).

Author contributions

M.N. performed and analysed most experiments; Y.Y. provided technical assistance throughout the study; A.R.F and E.S. performed the 3D mammary tumour cell growth assays; J.J., performed the mouse intestinal regeneration experiment; J.C.N. designed, performed and analysed the EGFR internalization experiments; D.B. designed and supervised 3D mammary tumour cell growth assays; O.J.S. design and supervised the mouse intestinal experiments; JBC conceptualized the study, designed the experiments with M.N., supervised the work and analyse the data. M.N. and J.B.C. wrote the manuscript with contributions from J.C.N., O.J.S. and D.B.

Acknowledgements

We would like to thank Björn Kruspig, Sergi Martha Maria Zarou, Gaiti Hasan, Valerie Weaver and Benoit Biteau for reagents. We thank the Vienna Drosophila RNAi Center, the Bloomington Drosophila Stock Center, and the Developmental
Studies Hybridoma Bank for providing *Drosophila* lines and reagents. M.N. was supported by a Leadership Fellowship from the University of Glasgow to (J.B.C.). Y.Y. is supported by CRUK core funding (A17196). The work from the Norman laboratory was funded by Cancer Research UK (CRUK), and J.C.N acknowledges the CRUK Glasgow Centre (C596/A18076). O.J.S is funded by CRUK Core A21139. B.D. and A.R.F are supported by a University of Glasgow and CRUK core funding (CRUK C596/A17196). J.B.C. is a Sir Henry Dale Fellow jointly funded by the Wellcome Trust and the Royal Society (Grant number 104103/Z/14/Z).

Conflicts of interest

O.J.S. has received funding from Novartis to examine RAL and RAL GEFS in malignancy.

Figure legends

Figure 1. Ral GTPases are necessary and sufficient to induce EGFR/MAPK signalling in intestinal stem cells.

A. Adult *Drosophila* wings with posterior compartment knockdown of *wg* (*wg-RNAi*), *Egfr* (*Egfr-RNAi*) or *RalA* (*RalA-RNAi(1)) or combined *wg* and *Egfr* knockdown (*wg-RNAi +Egfr-RNAi*). Scale bar = 500 µm

B. Heat map from transcriptomic analysis of adult whole midguts from mock treated and *Ecc15* infected control animals (+) or following knockdown of *RalA* (*RalA-RNAi(1)) using the *escargot-gal4, UAS-gfp* driver (ISC/EB>).

C. RT-qPCR confirmation of transcriptional targets of EGFR/MAPK signalling in whole midguts from genotypes and conditions as in B. n=4, Two-way ANOVA followed by Sidak’s multiple comparisons test.
D. Representative confocal images of Sox21a immunofluorescence staining (red/grey) of adult posterior midguts from Mock treated or Ecc15 infected control animals or following knockdown of RalA (RalA-RNAi(1)) in stem/progenitor cells using escargot-gal4, UAS-gfp (ISC/EB>; green).

E. Quantification of average Sox21a staining intensity, within the nuclear compartment (DAPI positive) in midguts as in D. Two-way ANOVA followed by Sidak’s multiple comparisons test; each dot represents a z-stack confocal image from independent posterior midguts.

F. Representative confocal images of pERK immunofluorescence staining (red/grey) of adult posterior midguts from Mock treated or Ecc15 infected control animals or following knockdown of RalA (RalA-RNAi(1)) within stem/progenitor cells (ISC/EB>; green).

G. Quantification of average pERK staining intensity within the ISC/EB compartment (GFP positive) of midguts as in F. Two-way ANOVA followed by Sidak’s multiple comparisons test; each dot represents a z-stack confocal image from independent posterior midguts.

H. Representative immunohistochemistry images of total (bottom panels) and pERK (top panels) in small intestinal regenerating crypts 3 days after whole body irradiation of control mice (left panels) or mice following conditional intestinal epithelial knockout of Rala or Ralb.

I. Representative confocal images of Sox21a immunofluorescence staining (red/grey) of adult posterior midguts from control animals or animals overexpressing wild-type Rala within stem/progenitor cells (ISC/EB>; green).
J. Quantification of average Sox21a staining intensity, within the nuclear compartment (DAPI positive) of midguts as in J. Student’s t-test; each dot represents a z-stack confocal image from independent posterior midguts.

K. Representative confocal images of pERK immunofluorescence staining (red/grey) in control animals or animals overexpressing wild-type Rala within stem/progenitor cells (ISC/EB>; green).

L. Quantification of average pERK staining intensity, within the ISC/EB compartment (GFP positive) of midguts as in L. Student’s t-test; each dot represents a z-stack confocal image from independent posterior midguts.

Where indicated: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Figure 1—figure supplement 1. Ral GTPases are necessary and sufficient to induce EGFR/MAPK signalling in intestinal stem cells.

A. Representative confocal images of Sox21a immunofluorescence staining (red/grey) of adult posterior midguts from Mock treated or Ecc15 infected control animals or following knockdown of RalA (RalA-RNAi(2)) in stem/progenitor cells using escargot-gal4, UAS-gfp (ISC/EB>; green).

B. Quantification of average Sox21a staining intensity, within the nuclear compartment (DAPI positive) in midguts as in A. Two-way ANOVA followed by Sidak’s multiple comparisons test; each dot represents a z-stack confocal image from independent posterior midguts.

C. Representative confocal images of pERK immunofluorescence staining (red/grey) of adult posterior midguts from Mock treated or Ecc15 infected control animals or following knockdown of RalA (RalA-RNAi(2)) in stem/progenitor cells (ISC/EB>; green).
D. Quantification of average pERK staining intensity within the ISC/EB compartment (GFP positive) of midguts as in C. Two-way ANOVA followed by Sidak’s multiple comparisons test; each dot represents a z-stack confocal image from independent posterior midguts.

Where indicated: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Figure 2. Ral GTPase activation is necessary for EGFR/MAPK signalling in regenerating ISCs/EBs.

A. Representative confocal images of pH3 staining (red) within the ISC/EB compartment (green) in mock-treated or regenerating posterior midguts.

B. Quantification of pH3 positive nuclei in Control or GEFmeso-RNAi posterior midguts as in A. Two-way ANOVA followed by Sidak’s multiple comparisons test.

C. Quantification of pH3 positive nuclei in Control or RalGPS-RNAi posterior midguts as in A. Two-way ANOVA followed by Sidak’s multiple comparisons test.

D. Quantification of pH3 positive nuclei in Control or Rgl-RNAi posterior midguts as in A. Two-way ANOVA followed by Sidak’s multiple comparisons test.

E. Representative confocal images of pERK staining (red/grey) in mock-treated or regenerating Control animals or animals with knockdown of GEFmeso, RalGPS or Rgl within the ISC/EB compartment (green).

F. Quantification of average pERK staining intensity within the ISC/EB compartment (GFP positive) as in E. Two-way ANOVA followed by Sidak’s multiple comparisons test; each dot represents a z-stack confocal image from independent posterior midguts.
Where indicated: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Figure 3. Ral GTPases are required for EGFR/MAPK signalling upstream of Ras.

A. Representative confocal images of pH3 staining (red) within the ISC/EB compartment (green) in Control and wild-type *Egfr* (*EGFRWT*) or constitutive *Ras* (*RasV12(2)*) overexpressing posterior midguts with or without *RalA* knock-down.

B. Quantification of pH3 positive nuclei in posterior midguts, as in A. Two-way ANOVA followed by Sidak’s multiple comparisons test.

C. Representative confocal images of pERK staining (red/grey) within the ISC/EB compartment (green) in Control and wild-type *Egfr* (*EGFRWT*) or constitutive *Ras* (*RasV12(2)*) overexpressing posterior midguts with or without *Rala* knock-down.

D. Quantification of average pERK staining intensity, as seen in (C), within the ISC/EB compartment (GFP positive). Two-way ANOVA followed by Sidak’s multiple comparisons test; each dot represents a z-stack confocal image from independent posterior midguts.

E. Representative confocal images of pH3 staining (red) within the ISC/EB compartment (green) in Control and two constitutively active *Egfr* constructs (*EGFR^{top*} or *EGFR^{A887T}*) overexpressing posterior midguts with or without *RalA* knock-down.

F. Quantification of pH3 positive nuclei in posterior midguts, as in E. Two-way ANOVA followed by Sidak’s multiple comparisons test.

G. Representative confocal images of pERK staining (red/grey) within the ISC/EB compartment (green) in Control and two constitutively active *Egfr*
constructs (EGFR^{top} or EGFR^{A887T}) overexpressing posterior midguts with or without RalA knock-down.

H. Quantification of average pERK staining intensity, as in G, within the ISC/EB compartment (GFP positive). Two-way ANOVA followed by Sidak’s multiple comparisons test; each dot represents a z-stack confocal image from independent posterior midguts.

Where indicated: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Figure 3—figure supplement 1. Ral GTPases are required for EGFR/MAPK signalling upstream of Ras.

A. Representative confocal images of pH3 staining (red) within the ISC/EB compartment (green) in Control and constitutive Ras (Ras^{V12(1)}) overexpressing posterior midguts with or without RalA knock-down (RalA-RNAi(2)).

B. Quantification of pH3 positive nuclei in posterior midguts, as in A. Student’s t-test.

Figure 4. Ral GTPases are required for EGFR internalisation.

A. Representative images of wild-type EGFR staining in Drosophila intestinal epithelium with or without RalA knock-down (RalA-RNAi). Scale bar = 5 µm

B. Quantification of EGFR plasma membrane staining localisation as in A, relative to the cytoplasm. Student’s t-test

C. Representative images of EGFR^{A887T} staining in Drosophila intestinal epithelium with or without RalA knock-down (RalA-RNAi). Scale bar = 5 µm

D. Quantification of EGFR^{A887T} plasma membrane staining localisation as in C, relative to the cytoplasm. Student’s t-test
E. Representative images of EGFR staining in Drosophila intestinal epithelium with or without wild-type RalA over-expression (RalAwt). Scale bar = 5 µm

F. Quantification of EGFR plasma membrane staining localisation as in E relative to the cytoplasm. Student’s t-test

G. Internalisation of EGFR over time as determined by a surface biotinylation ELISA based assay with or without EGF ligand in wild-type (Control) and concomitant Rala and Ralb knock-down (siRalA+B) H1299 human non-small cell lung cancer cells.

Where indicated: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Figure 4—figure supplement 1. Ral GTPases are required for EGFR internalisation.

A. Confirmation of knock-down of Rala in wild-type (Control) and concomitant Rala and Ralb knock-down (siRalA+B) H1299 human non-small cell lung cancer cells.

B. Confirmation of knock-down of Ralb in wild-type (Control) and concomitant Rala and Ralb knock-down (siRalA+B) H1299 human non-small cell lung cancer cells.

C. Internalisation of α5β1 integrin over time as determined by a surface biotinylation ELISA based assay with or without EGF ligand in wild-type (Control) and concomitant Rala and Ralb knock-down (siRalA+B) H1299 human non-small cell lung cancer cells.

D. Internalisation of human transferrin receptor (hTfnR) over time as determined by a surface biotinylation ELISA based assay with or without EGF ligand in wild-type (Control) and concomitant Rala and Ralb knock-down (siRalA+B) H1299 human non-small cell lung cancer cells.
Where indicated: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Figure 5. Ral GTPases mediate malignant transformation of the intestinal and mammary epithelium.

A. Representative confocal images of pH3 staining (red/grey) within the ISC/EB compartment (green) in Src-kinase (Src64wt) overexpressing posterior midguts with or without Rala knock-down. White arrows indicate pH3 positive nuclei.

B. Quantification of pH3 positive nuclei in posterior midguts as in A. Student’s t-test.

C. Representative confocal images of Sox21a staining (red/grey) within the ISC/EB compartment (green) in Src-kinase (Src64wt) overexpressing posterior midguts with or without Rala knock-down.

D. Quantification of average Sox21a staining intensity within the nuclear compartment (DAPI positive) as in C. Two-way ANOVA followed by Sidak’s multiple comparisons test; each dot represents a z-stack confocal image from independent posterior midguts.

E. Representative confocal images of pERK staining (red/grey) within the ISC/EB compartment (green) in Src-kinase (Src64wt) overexpressing posterior midguts with or without Rala knock-down.

F. Quantification of average pERK staining intensity within the ISC/EB compartment (GFP positive) as in E. Two-way ANOVA followed by Sidak’s multiple comparisons test; each dot represents a z-stack confocal image from independent posterior midguts.
G. Representative images of EGFR staining in Src64 over-expressing Drosophila intestinal epithelium with or without Rala knock-down (RalA-RNAi). Scale bar = 5 µm

H. Quantification of EGFR plasma membrane staining localisation relative to the cytoplasm as in G. Student’s t-test

I. Confocal fluorescence microscopy images of HMT3522 T4-2 3D cultures, treated with EGFR inhibitors (tyrphostin AG1478 and erlotinib) or corresponding controls (ethanol and DMSO, respectively) followed by fixation after 5 days and stained for F-actin (yellow) and nuclei (blue, Hoechst).

J. Quantification of area of 5-days T4-2 cysts treated as in J. n≥1214 cysts assessed from four wells/condition/experiment, two independent experiments. One-way ANOVA, Tukey’s multiple comparisons test.

K. Confocal fluorescence microscopy images of HMT3522 T4-2 cysts of 5-days expressing either scramble, RalA or RalB shRNA. Cysts were fixed and stained for F-actin (yellow) and nuclei (blue, Hoechst).

L. Quantification of 5-days T4-2 cysts treated with the above described conditions. n≥468 cysts assessed from four wells/condition/experiment, three independent experiments. One-way ANOVA, Tukey’s multiple comparisons test.

Where indicated: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Figure 5—figure supplement 1. Ral knockdown in human mammary cell lines.

A. Confirmation of knock-down of Rala in HMT3522 T4-2 3D cultures in the parental, shScr, shRalA and shRalB conditions.

B. Confirmation of knock-down of Ralb in HMT3522 T4-2 3D cultures in the parental, shScr, shRalA and shRalB conditions.
Where indicated: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

References

Basset, a, Khush, R.S., Braun, a, Gardan, L., Boccard, F., Hoffmann, J. a, and Lemaître, B. (2000). The phytopathogenic bacteria Erwinia carotovora infects

Hu, Y., Flockhart, I., Vinayagam, A., Bergwitz, C., Berger, B., Perrimon, N., and

Fig 1
Fig 1-Supplement 1
Fig2

Panel A: Images showing control and treatment conditions with DAPI and pH3 staining.

Panel B: Bar graph showing pH3+ cells per posterior midgut for different conditions.

Panel C: Bar graph showing pH3+ cells per posterior midgut for different conditions.

Panel D: Bar graph showing pH3+ cells per posterior midgut for different conditions.

Panel E: Images showing control and treatment conditions with pERK staining.

Panel F: Bar graph showing pERK intensity (relative to control) for different conditions.

Legend:
- **Mock**: Control condition
- **Ecc15**: Treatment condition
- **ISC/EB>**: Transgenic expression
- **pERK**: Phosphorylated ERK
- **H3**: Histone 3
- **n**: Sample size
Fig 3
Fig 3-Supplement 1
Fig 4

ISC/EB>EGFR

A

Control

RalA-RNAi

DAPI ISC/EB EGFR

B

ISC/EB>EGFR

EGFR localisation

(membrane/cytoplasm)

Control

RalA-RNAi(1)

n = 34 28

C

ISC/EB>EGFR

A887T

Control

RalA-RNAi

DAPI ISC/EB EGFR

D

ISC/EB>EGFR

A887T

EGFR localisation

(membrane/cytoplasm)

Control

RalA-RNAi(1)

n = 25 14

E

Control

ISC/EB>

RalAwt

DAPI ISC/EB EGFR

F

ISC/EB>

EGFR localisation

(membrane/cytoplasm)

Control

RalAwt(1)

n = 14 20

G

EGFR internalisation (%)

0 10 20 30 40 50 60

Time (min)

0 5 10 15 20 25

+EGF

-EGF

Control

siRalA+B

siNT

siRalA+B

+EGF

-EGF
Fig 4-Supplement 1
Fig5
Fig 5-Supplement 1