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Abstract 

Single cell/nucleus technologies are powerful tools to study cell type-specific expression 

in the human brain, but most large-scale efforts have focused on characterizing cortical brain 

regions and their constituent cell types. However, additional brain regions - particularly those 

embedded in basal ganglia and limbic circuits - play important roles in neuropsychiatric 

disorders and addiction, suggesting a critical need to better understand their molecular 

characteristics. We therefore created a single-nucleus RNA-sequencing (snRNA-seq) resource 

across five human brain regions (hippocampus, HPC; dorsolateral prefrontal cortex, DLPFC; 

subgenual anterior cingulate cortex, sACC; nucleus accumbens, NAc; and amygdala, AMY), 

with emphasis on the NAc and AMY, given their involvement in reward signaling and emotional 

processing. We identified distinct and potentially novel neuronal subpopulations, which we 

validated by smFISH for various subclasses of NAc interneurons and medium spiny neurons 

(MSNs). We additionally benchmarked these datasets against published datasets for 

corresponding regions in rodent models to define cross-species convergence and divergence 

across analogous cell subclasses. We characterized the transcriptomic architecture of 

regionally-defined neuronal subpopulations, which revealed strong patterns of similarities in 

specific neuronal subclasses across the five profiled regions. Finally, we measured genetic 

associations between risk for psychiatric disease and substance use behaviors with each of the 

regionally-defined cell types. This analysis further supported NAc and AMY involvement in risk 

for psychiatric illness by implicating specific neuronal subpopulations, and highlighted potential 

involvement of an MSN population associated with stress signaling in genetic risk for substance 

use. 
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Introduction 

Recent advances in single-cell and single-nucleus RNA-sequencing (scRNA-

seq/snRNA-seq) technologies have facilitated the molecular characterization of diverse cell 

types in the postmortem human brain during development (Darmanis et al., 2015; Li et al., 

2018a; Zhong et al., 2018, 2020), and have been used to assess cell type-specific gene 

expression differences in the context of several brain disorders, including Alzheimer’s disease, 

autism spectrum disorder, multiple sclerosis, and major depressive disorder (Mathys et al., 

2019; Nagy et al., 2020; Schirmer et al., 2019; Velmeshev et al., 2019). Identification of cell 

type-specific gene expression signatures has contributed to the understanding of the 

relationship between molecular identity and cell function as it relates to brain health, 

neurological disease, and genetic risk for neuropsychiatric disorders, such as schizophrenia 

(Skene et al., 2018).  

While substantial advancements have been made in understanding cell type 

heterogeneity within regions and across the human brain, the majority of snRNA-seq reports are 

limited to a small number of brain areas. These primarily include the hippocampus (HPC)  

(Franjic et al., 2020; Habib et al., 2017) and several heavily studied sub-regions of the cortex 

(Lake et al., 2016), including the dorsolateral prefrontal cortex (DLPFC) (Li et al., 2018a; Nagy 

et al., 2020), medial temporal cortex (Darmanis et al., 2015; Hodge et al., 2019), entorhinal 

cortex (Grubman et al., 2019), and anterior cingulate cortex (Velmeshev et al., 2019). Molecular 

profiling of less studied cortical subregions including the subgenual anterior cingulate cortex 

(sACC), as well as striatal and limbic brain regions, including the nucleus accumbens (NAc) and 

the amygdala (AMY), is lacking in the human brain. The sACC, NAc, and AMY are 

interconnected within well-established circuit loops that mediate important behavioral and 

neurobiological functions, including signaling for reward and motivation as well as processing 

emotional valence, particularly for fearful and threatening stimuli (Haber and Knutson, 2010; 

Janak and Tye, 2015; Russo and Nestler, 2013). Importantly, the cellular composition of 
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individual neuronal subtypes in these regions substantially differs from previously well-profiled 

cortical and hippocampal regions (Saunders et al., 2018; Zeisel et al., 2018).  

For example, the NAc contains dopaminoceptive populations of GABAergic medium 

spiny neurons (MSNs) - the principal projecting cell type comprising up to 95% of neurons in 

rodent - that harbor unique physiological and cellular properties (Gerfen et al., 1990; 

Kawaguchi, 1997; Kronman et al., 2019; Russo and Nestler, 2013). Early functional 

characterization of MSNs revealed two distinct classes of MSNs based on expression of D1 

versus the D2 dopamine receptors (D1-MSNs and D2-MSNs, respectively) (Lobo, 2009; Lobo et 

al., 2006). However, recent sc/sn-RNAseq studies in the rodent striatum, and in the NAc 

specifically, revealed more complex transcriptional diversity within broader D1 and D2-MSN 

subclasses than was previously appreciated (Gokce et al., 2016; Saunders et al., 2018; Stanley 

et al., 2020; Zeisel et al., 2018). Moreover, subpopulations of MSNs are differentially recruited in 

response to cocaine exposure, and mediate divergent functional effects on behavioral 

responses to drugs of abuse (Savell et al., 2020). Similarly, single-cell profiling studies in the 

rodent AMY identified specialized populations of Cck-expressing neurons that are preferentially 

activated by behavioral experience, including exposure to acute stress (Wu et al., 2017). 

However, whether and to what extent this transcriptional diversity is conserved in these areas of 

the human NAc and amygdala has not yet been fully explored. Given evidence for the functional 

importance of unique cell types in these areas of the rodent brain, profiling these regions in 

human by snRNA-seq may identify analogous cell populations, which can then be analyzed in 

the context of neurobiological dysfunction in human brain disorders.  

Further, while unique transcriptomic profiles have been identified for specialized cell 

types that are localized to specific brain regions (e.g. granule cells of the dentate gyrus; MSNs 

of the striatum), it remains unclear to what extent broad populations of “common” cell types, 

such as glutamatergic excitatory neurons, are transcriptionally similar both within and across 

different brain regions. Given that many snRNA-seq studies have used different nuclei isolation 
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protocols (sucrose vs iodixanol gradients), cell enrichment techniques (NeuN or DAPI sorting), 

library/sequencing technologies (10x Genomics Chromium, SMARTseq, Fluidigm, DroNc-seq), 

and data analysis workflows (dimensionality reduction techniques, handling batch effects, 

cluster annotation), comparing cell type-specific signatures across studies and between brain 

regions has been computationally and methodologically challenging. While efforts to generate a 

human cell type atlas at the single-cell level are underway (Han et al., 2020), the landscape of 

specialized molecular cell types across the human brain remains largely unexplored. 

Here we defined the molecular taxonomy of distinct cell types in subcortical regions 

(NAc and AMY), which act as key nodes within circuits that mediate critical brain and behavioral 

functions including reward signaling and emotional processing. We also validated molecular 

profiles for previously identified cell types in the HPC and DLPFC, and identify similar cell types 

in the sACC, an additional cortical region central to limbic system function that has been 

implicated in affective disorders. Furthermore, we evaluate cross-species conservation of NAc 

and AMY cell types between human and rodent, specifically focusing on comparisons of MSN 

sub-populations identified as playing key roles in reward-processing and addiction. Finally, by 

integrating genetic studies for substance use and neuropsychiatric disorders, we show 

differential cell type expression of genes associated with schizophrenia, autism spectrum 

disorder, major depressive disorder, bipolar disorder, posttraumatic stress disorder, and 

features of addiction, highlighting the clinical relevance of understanding cell type- and region-

specific expression in the human brain.  

 

Results 

 We profiled 5 brain regions (DLPFC, HPC, sACC, NAc, and AMY) across up to 5 

neurotypical, adult male subjects of European Ancestry using 10x Genomics Chromium 

technology. To minimize potential batch effects, regions/donors were split across Chromium 

runs, for a total of 14 samples (sample/demographic information found in Table S1). Nuclear 
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preparations were generated and purified by flow cytometry using DAPI staining (and NeuN 

selection for a subset of samples) to obtain nuclei from all cell types in a brain region. After 

sequencing, data processing and QC (Methods; Table S2), we analyzed a total of 42,308 high-

quality nuclei across these 14 samples, which were then analyzed in respective region-specific, 

in addition to pan-brain, analyses. 

 

Identification of refined medium spiny neuron subpopulations in human NAc 

To evaluate the transcriptional landscape of MSNs and other cell populations in the 

human NAc, we analyzed 13,148 total nuclei from 5 donors, including 4,465 DAPI-sorted nuclei 

and 8,683 NeuN-sorted nuclei, which allowed for enrichment of MSNs. We performed data-

driven clustering to generate 14 cell subclusters across six broad cell types, including 

GABAergic inhibitory interneurons, MSNs, oligodendrocytes, oligodendrocyte precursor cells, 

microglia, and astrocytes (Figure 1A). Of the 6 distinct neuronal clusters expressing established 

D1- and D2-MSNs markers (Figure 1B), including PPP1R1B (encoding DARPP-32), four of 

these MSN subclusters were enriched for DRD1 (D1.1, D1.2, D1.3, D1.4) and two were 

enriched for DRD2 (D2.1 and D2.2). These MSN subclusters collectively made up 94% and 

95% of neuronal nuclei from the two neuron-enriched samples (Table S3), lending human 

evidence that the vast majority of nuclei in this region of the striatum are composed of MSNs, as 

in rodent (Kawaguchi, 1997). Clusters D1.4 and D2.2 represented the largest D1-MSN (77%) 

and D2-MSN (92%) subclasses, respectively. As expected, MSN subclusters showed 

differential enrichment of several neuropeptides, including proenkephalin (PENK), tachykinin 1 

(TAC1), and prodynorphin (PDYN) (Figure S1; top markers listed in Table S4) (Lobo, 2009; 

Lobo et al., 2006; Savell et al., 2020). Surprisingly, the classical D1-MSN marker, TAC1, was 

enriched in D2.1 MSNs, but largely absent in D1.1 and D1.2 MSNs (Figure 1B). Similarly, the 

classical D2-MSN marker PENK was enriched in the large population of D2.2 MSNs, but 

depleted in the smaller population of D2.1 MSNs (Figure S1). Expression of these 
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neuropeptides in D1 and D2 MSN subclasses was confirmed using single molecule fluorescent 

in situ hybridization (smFISH) with 4-plex RNAscope technology (Maynard et al., 2020b), and 

showed that the majority of D2-expressing cells in the NAc belonged to the D2.2 class (86.8%, 

Figure S1). 

Using differential expression analyses, we identified the most preferentially expressed 

genes in each MSN subcluster and found tens to hundreds of unique markers for D1 and D2-

MSN subclasses (at false discovery rate, or FDR, < 1e-6; Table S4). Among D1-MSNs, TAC1-

negative D1.1 MSNs and TAC1-positive D1.3 MSNs were both enriched for the GABAA receptor 

subunit, GABRQ, and the relaxin family peptide receptor 1, RXFP1 (Figure 1C; Figure S2). 

However, only D1.3 MSNs expressed substantial levels of CRHR2, encoding corticotropin 

releasing hormone receptor 2, a protein implicated in mediating the response to stress in the 

brain (Figure 1D). Likewise, TAC1-negative D1.2 MSNs could be distinguished from D1.1 and 

D1.3 MSNs by elevated expression of relaxin family peptide receptor 2, RXFP2, and depletion 

of both RXFP1 and GABRQ (Figure S2). Consistent with the identification of a discrete D2-

MSN subpopulation expressing Htr7 in the mouse striatum (Gokce et al., 2016; Stanley et al., 

2020), we identified enrichment of HTR7 in D2.1 (TAC1-positive; PENK-negative) MSNs, but 

not D2.2 (TAC1-negative; PENK-positive) MSNs (Figure S3). Similar to D1.3 MSNs, the HTR7-

positive D2.2 cluster was the only D2-MSN subpopulation expressing CRHR2. The existence of 

these novel D1 and D2 MSN subpopulations was validated by smFISH on NAc brain sections 

derived from independent postmortem human brain donors (Figure 1D-E; Figures S1-3). 

Several other genes including CASZ1, GPR6, and EBF1 were differentially expressed in unique 

D1 and/or D2-MSN subpopulations (Figure S4). CASZ1 was highly enriched in the D1.3 and 

D2.1 subpopulations, GPR6 in both D2.1 and D2.2 subpopulations, and EBF1 in the D1.2 

subpopulation.  

In addition to describing transcriptional diversity in D1 and D2 MSNs, we also identified 4 

subclusters of inhibitory interneurons expressing GABAergic marker genes (GAD1 and GAD2), 
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but depleted for MSN marker genes (Figure 1B; Figure S5). These clusters contained different 

transcriptionally-defined classes, including interneurons expressing somatostatin (STT; Inhib.1), 

neuropeptide Y (NPY; Inhib 1), prepronociceptin (PNOC; Inhib.1), vasoactive intestinal peptide 

(VIP; Inhib.2, albeit a rare subset of these nuclei), and tachykinin 3 (TAC3; Inhib.4; Figure S5 

and Table S4). While we did not observe robust expression of parvalbumin (PVALB) in any 

cluster, Inhib.3 showed high expression of KIT, encoding the protein c-Kit, which is frequently 

co-expressed in mouse Pvalb/PV-positive GABAergic interneurons (Enterría-Morales et al., 

2020). smFISH for PVALB and other top marker genes for Inhib.3 (PTHLH, KIT, GAD1) 

confirmed that this GABAergic cluster likely represents PV-expressing interneurons (Figure S5). 

We next evaluated the conservation of NAc cell types across species by comparing our 

transcriptional profiles with those generated in a previous study of acute exposure to cocaine, 

which analyzed a total of 15,631 rat NAc nuclei (Savell et al., 2020). Correlation analyses 

between our NAc subpopulations with those derived from rat NAc revealed that glial 

populations, including astrocytes, microglia, oligodendrocytes, and oligodendrocyte progenitor 

cells, were highly conserved (Figure 1F). Inhibitory interneuron populations were also well-

correlated across species as rat Sst-expressing and likely-Pvalb-expressing clusters overlapped 

with human Inhib.1 and Inhib.3 clusters, respectively. We also observed substantial correlation 

between rat and human D1 and D2-MSNs, especially between rat Drd1-expressing MSNs and 

human D1.4 MSNs. Further, beyond the expected overlap of rat Drd2-expressing MSNs in the 

human D2.2 MSN subcluster, we additionally saw positive correlations across D1 and D2 MSN 

subtypes, such that rat Drd2-expressing MSNs also showed enrichment in our human D1.4 

MSN subcluster. This result is not likely fully explained by co-expression of DRD1 and DRD2 in 

the same nucleus because, while we did find that ~9% of all MSNs expressed some degree of 

both DRD1 and DRD2, these dual-expressing nuclei were mainly restricted to the D1.3 

subcluster, as opposed to D1.4 (Figure 1B). Additionally, many of the top markers for either the 

D1.4 or D2.2 subcluster were highly expressed in both MSN clusters (Figure S4), suggesting 
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that the majority of canonically dichotomous D1 or D2 MSNs may be more molecularly similar 

than previously believed. We did not observe strong enrichment for rat Drd3- and Grm8-

expressing MSNs in any of our human MSN subclusters. Likewise, D1.1 and D1.2 human MSNs 

did not appear to be well represented in rat MSN subtypes (see Discussion). Taken together, 

while these data suggest strong overall conservation between rat and human NAc cell types, 

there appear to be transcriptional features that are unique among specialized subpopulations of 

rodent and human MSNs. 

 

Atlas of molecularly-defined cell types in amygdala 

The amygdala, a medial structure of the temporal lobe is noted for its role in processing 

emotional valence, particularly for both fear and reward (Janak and Tye, 2015; Wassum and 

Izquierdo, 2015). Dysfunction in amygdalar signaling is implicated in major depressive disorder, 

bipolar disorder and posttraumatic stress disorder (PTSD) (Fenster et al., 2018; Garrett and 

Chang, 2008; Murray et al., 2011). The human amygdala can be subdivided into a number of 

distinct regions based on histology, immunohistochemical classifications, connectivity, and 

neural activation patterns as revealed by functional magnetic resonance imaging (fMRI) of the 

brain (Barger et al., 2012; Schumann and Amaral, 2005; Sorvari et al., 1995; Tyszka and Pauli, 

2016; Zhang et al., 2018). Studies in the rodent and non-human primate amygdala have 

identified different cell compositions across the amygdala, which likely correspond to differential 

patterns of synaptic connections between cell types across amygdalar subregions, and with 

extra-amygdalar brain regions (Chareyron et al., 2011). Hence, it is likely that various cell types 

with unique molecular signatures also exist within the human amygdala, which can be surveyed 

by snRNA-seq. We therefore analyzed 6,582 nuclei from the greater amygdala of two adult 

neurotypical donors to create a molecular taxonomy of cell types in this brain region. We 

identified 12 clusters that corresponded to four broad glial cell types and eight neuronal 

subclusters (Figure 2A; Figure S6). Glial cell populations were present at similar proportions 
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between the donors (52% and 53% Oligo; 15% and 11% Astro; 13% and 10% Micro; 10% and 

9% OPC), but we observed a varied distribution of neuronal subclusters between donors (see 

Discussion; Table S3). Despite this, after correcting for donor batch effects, we identified 

hundreds of genes enriched in each broad glial and neuronal subcluster at FDR < 1e-6 (top 

markers shown in Table S4). 

Within the eight neuronal subclusters expressing the pan neuronal marker gene 

SNAP25, three clusters were enriched for excitatory neuronal markers (SLC17A7, SLC17A6) 

and five clusters were enriched for inhibitory GABAergic markers (GAD1, GAD2; Figure S6). 

The three excitatory subclusters comprised different functional classes of neurons (referred to 

as Excit.1 to 3), with top markers including NRN1, NPTX1 and SLC30A3 (encoding neuritin, 

neuronal pentraxin 1, and zinc transporter 3, respectively) for Excit.1, and SLC17A6 and VCAN 

(Versican) for Excit.2 (Figure 2B). NRN1, NPTX1, SLC30A3, and VCAN have all been 

implicated in modulation of synaptic plasticity and memory (Figueiro-Silva et al., 2015; Horii-

Hayashi et al., 2008; Sindreu and Storm, 2011; Yao et al., 2018). The top marker for Excit.3 was 

MCHR2 (melanin-concentrating hormone receptor 2), and it was the subpopulation most 

enriched for RBFOX3 (NeuN). Compared to excitatory neuron subclusters, we identified a 

greater diversity of inhibitory GABAergic subpopulations, including CCK-containing regular-

spiking interneurons (Inhib.1, Inhib.2, Inhib.4) evident by high expression of CCK 

(cholecystokinin; Figure 2B). Of these three CCK-expressing GABAergic clusters, Inhib.1 and 

Inhib.4 were also enriched in CALB2 (calretinin), whereas Inhib.2 showed enrichment for KIT. 

The GABAergic subcluster Inhib.3 was specific for expression of CALB1 (calbindin), on the 

other hand, and both Inhib.3 and Inhib.4 were enriched for CRH (corticotropin release 

hormone/factor). CRH is a key regulator of the hypothalamic-pituitary-adrenal (HPA) axis, which 

is critical for both the acute stress response and adaptation to chronic stress. Finally, NPFFR2 

and TLL1, additional genes associated with HPA axis regulation, were selectively expressed in 

Inhib.5 (Lin et al., 2016; Tamura et al., 2005). 
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We then compared our subcluster-level transcriptomic profiles to those of a previously 

published single-cell dataset derived from the mouse medial amygdala (MeA) (Chen et al., 

2019) to evaluate conservation of amygdalar cell types between humans and rodents 

(Figure 2C). Across all shared homologous genes, we observed substantial correlation between 

several mouse and human amygdala cell types. For example, our human glutamatergic 

subcluster Excit.1 (SLC17A6+, SLC17A7+) most closely correlated with the mouse MeA 

glutamatergic subcluster ‘N.11’ (Pearson correlation: r = 0.455). Indeed the marker genes that 

were most highly conserved between these subclusters included SLC30A3, NPTX1, and NRN1. 

Another notable pair of clusters conserved between species was human inhibitory neuronal 

subcluster, Inhib.5, and mouse inhibitory subcluster MeA ‘N.8’ (r = 0.465). The top shared 

genes between these clusters included NPFFR2, GRM8, and FOXP2. Though we observed 

selective co-expression of NPFFR2 and TLL1 in human Inhib.5, we note absence of 

orthologous Tll1 expression in all mouse MeA neuronal subclusters (Figure S6), including the 

corresponding cluster ‘N.8’, suggesting species differences in the molecular characteristics of 

neuronal subpopulations. Importantly, several neuronal subpopulations in the mouse and 

human datasets lacked strong correlation with each other (e.g. human Excit.2, mouse ‘N.3’ and 

N.7’), either suggesting possible divergence between species, or unique differences between 

the cell-type makeup of amygdalar subregions, such that all subpopulations may not be fully 

represented in our human amygdala sample compared to mouse MeA samples. Our cross-

species analysis demonstrates the conservation of neuronal subtypes between human 

amygdala and mouse MeA, but highlights potential differences in the cellular distribution and 

transcriptomic profiles across neuronal subtypes. 

 

Convergent cell classes with unique molecular signatures across brain regions 

  We lastly analyzed our 12 homogenate samples (a total of 34,005 nuclei) together at 

the pan-brain level to identify broad patterns of transcriptional dynamics across the human 
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brain, assessing intra- and inter-regional similarities. We applied the same clustering, 

annotation, and marker-defining strategies as in region-specific analyses, allowing us to 

compare the higher-resolution cell type/subpopulation annotation, within each region, to 

clustering and annotations performed across brain regions. This analysis yielded 17 robust cell 

type clusters broadly classified into excitatory (Excit) and inhibitory (Inhib) neurons, 

oligodendrocytes (Oligo), oligodendrocyte precursor cells (OPC), astrocytes (Astro), and 

microglia (Micro; Figure S7). These pan-brain clusters showed some apparent regional 

specificity (Figure 3A; Table S5). For example, excitatory neuronal subclusters Excit.1, Excit.2, 

Excit.5, and Excit.7 were nearly entirely comprised of nuclei from both cortical regions (DLPFC 

and sACC), likely reflecting the similar laminar distribution of neuronal subpopulations in the 

cerebral cortex. Alternatively, Excit.6 was driven by HPC nuclei, whereas Excit.8 had nuclei 

from both HPC and AMY. Ultimately, these 17 clusters defined across our five regions, analyzed 

together, provide only a broad overview of similarities between nuclei in a region-agnostic 

approach, as opposed to better-resolved regionally-defined populations (see Discussion). 

To complement the subcluster populations described in the previous sections for the 

NAc and AMY, we additionally defined the catalog of cell type clusters and cluster-specific 

genes within all other brain regions (sACC, DLPFC, and HPC), separately (Figure S7), applying 

methods using spatial transcriptomics data (Maynard et al., 2020a) to provide layer-specific 

annotations to our many excitatory neuronal subpopulations for the DLPFC (see Methods). We 

further benchmarked our transcriptomic profiles against other published datasets that profiled 

similar regions in the postmortem human brain. Overall, our HPC subpopulations correlated well 

with the broad cell classes as reported in (Habib et al., 2017); Figure S8). We additionally 

observed strong overlap between our DLPFC to the reported PFC profiles from (Velmeshev et 

al., 2019); Figure S9), or similarly, sACC to the ACC set (Figure S10). Interestingly, our sACC 

subpopulations did not correlate more strongly with the ACC subpopulation profiles than their 

corresponding PFC profiles from (Velmeshev et al., 2019), and our DLPFC subclusters 
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generally correlated only slightly more strongly to PFC than ACC subpopulations. This suggests 

that these cortical regions share a high degree of overlap in their nuclear transcriptomic profiles. 

The strength of correlation to these benchmark datasets demonstrates the robustness and utility 

of our pipeline, and the presented data significantly expand the existing repository of 

postmortem brain snRNA-seq datasets. 

We next compared all regionally-defined subcluster expression patterns to generate a 

global view of the transcriptomic architecture across the five brain regions. Each glial cell 

subpopulation (Oligos, Astros, OPCs, and Micros) had highly consistent gene expression 

patterns across all five brain regions, suggesting a lack of overall regional specificity 

(Figure S11), in line with previous analyses of broad non-neuronal cell populations using DNA 

methylation data (Rizzardi et al., 2019). Within the neuronal set of region-specific annotations, 

totaling 47 neuronal subpopulations, most inhibitory or excitatory populations preferentially 

expressed genes that clustered these classes together across brain regions (Figure 3B). 

Notably, all neuronal subtypes in the NAc (interneuron or MSNs) correlated poorly or less-

strongly with either excitatory or inhibitory subtypes from all other regions, reflecting divergent 

nuclear RNA expression profiles and the unique functional specializations of the neuronal 

populations in this brain region. These comparisons also suggested a potential excitatory 

function in the NAc-specific MSN.D1.4 subcluster, as this profile correlated more strongly with 

excitatory subclusters across other brain regions than inhibitory subclusters. This particular D1 

MSN subcluster most highly correlated with one D2 MSN subcluster (MSN.D2.2; Pearson 

correlation: r = 0.50), reflecting their sharing of top marker genes (Figure S4), and strikingly 

these two NAc subpopulations negatively correlate with all other MSN or inhibitory interneuron 

populations within the NAc, further highlighting the specializations across NAc neuronal 

subpopulations. We also observed strong similarities between unique pairs of neuronal 

subpopulations across regions, such as between AMY and DLPFC (‘In.3_amy’ and ‘In.3_dlpfc’; 

r = 0.74). Indeed, this AMY inhibitory subpopulation shares many top markers with its DLPFC 
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counterpart (Table S4), such as GABRD and MME, the latter encoding for the neuropeptide-

cleaving protein, Neprilysin. Further, we observed analogous pairings between each of layer-

specific excitatory DLPFC and spatially-undefined sACC subpopulations (e.g. ‘Ex.L5_dlpfc’ and 

‘Ex.4_sacc’; r = 0.86). This suggests that spatially-registered snRNA-seq information, as 

generated in the DLPFC (Maynard et al., 2020a), can be projected into regions where cell type 

architecture is expected to be similar. Such an approach is useful since spatial transcriptomic 

data generation has not yet reached the pace of sc/sn-RNAseq technologies, and remains 

unavailable for most brain regions.  

 

Enrichment of region-specific cell subtypes in psychiatric disease and substance use 

Genome-wide association studies (GWAS) have identified a plethora of genetic risk 

variants or loci (segregating variants in linkage disequilibrium, or LD) for common psychiatric 

disorders, including schizophrenia (SCZ: (Pardiñas et al., 2018; Schizophrenia Working Group 

of the Psychiatric Genomics Consortium, 2014)), autism spectrum disorder (ASD: (Grove et al., 

2019)), bipolar disorder (BIP: (Stahl et al., 2019)), major depressive disorder (MDD: (Howard et 

al., 2019; Wray et al., 2018)), and posttraumatic stress disorder (PTSD: (Nievergelt et al., 

2019)). Additionally, a large GWAS was recently performed with 1.2 million individuals to identify 

the genetic risk and correlations for alcohol and tobacco use (Liu et al., 2019). Approaches have 

been developed to identify the biological context or relevance of the hundreds of risk loci that 

are often identified for a given disorder or phenotype, such as LD score regression (Finucane et 

al., 2015), which assesses the heritability of complex phenotypes across input 

categories/genomic regions and their measured LD with single nucleotide polymorphism (SNP)-

level variants. Multi-marker Analysis of GenoMic Annotation (MAGMA) (de Leeuw et al., 2015) 

is an alternative approach that defines gene-level localization of GWAS risk, then integrates this 

with gene set observations, affording flexibility to assess a variety of marker lists, such as for 

our brain region-specific snRNA-seq subcluster profiles, in two separable analyses. 
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We used MAGMA to identify which cell subtypes in this study harbored aggregated 

genetic risk for psychiatric disorders, and found robust signals across many nuclear profiles in 

each of the five profiled brain regions. As expected, many DLPFC and HPC neuronal subtypes 

exhibited significant effect sizes for both SCZ and BIP GWAS, spanning both excitatory and 

inhibitory subpopulations (Figure S12), extending and strengthening previous findings in (Bryois 

et al., 2020; Skene et al., 2018). However significant association signals with BIP genetic risk 

only remain in the excitatory, layer-specific DLPFC subpopulations, after controlling with the 

strict Bonferroni multiple test correction across all MAGMA gene set tests (threshold p-value < 

6.8e-5). Conversely, subpopulations of both excitatory and inhibitory classes associated with 

BIP risk at this threshold in HPC. This was additionally the case for sACC subclusters, which 

suggests potential regional differences in inhibitory subpopulations between the two cortical 

brain regions, in their manifestation of genetic risk for bipolar disorder. None of the subcluster 

profiles in these cortical or hippocampal regions retained significant signal for aggregated risk 

for GWAS in ASD, MDD, or PTSD, after Bonferroni correction, though there were some region 

subpopulations with less-stringent FDR-significant signals (controlling for false discovery rate < 

0.05) across all tests for these disorders (Table S6). 

Previously, it has been shown that broad mouse striatal neuronal populations 

(interneurons, Drd1, and Drd2-expressing medium spiny neurons, or MSNs) additionally 

associated with SCZ (Skene et al., 2018) and BIP (Bryois et al., 2020) genetic risk. We 

demonstrate that some of our refined subpopulations in the human NAc, including MSN.D1.4, 

and MSN.D2.1, and D2.2 exhibit strong associations to schizophrenia with variable effect sizes, 

after Bonferroni correction (Figure 4A). MSN.D1.3 and MSN.D2.1 both additionally associated 

with BIP at this threshold, and interestingly, D1.3 was the strongest-associating subpopulation 

to BIP, whereas D2.1 had the strongest association to SCZ. Within the amygdala, we observed 

significant associations in each of our neuronal subpopulations to SCZ (Figure 4B). Notably, 

the strongest signal and effect sizes were observed across each of Inhib.1 through Inhib.5, in 
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comparison to AMY excitatory subpopulations, and Inhib.4 exhibited the strongest effect size 

across all regionally-defined subpopulations tested in any GWAS phenotype (𝞫 = 0.21). Thus, 

our analysis here with the NAc show not only complementary findings of Drd1 and Drd2-

expressing striatal MSN associations with schizophrenia and bipolar disorder, but we dissect 

these mouse association signals with more relevant human interneuron and MSN 

subpopulations, and further extend this analysis to human AMY snRNA-seq-defined 

subpopulations. 

We further tested for alcohol and tobacco use GWAS (Liu et al., 2019) genetic risk 

associations across subcluster profiles from each of our brain regions, focusing on the 

subcortical regions centered in reward circuitry, the NAc and AMY, and their subcluster profiles 

described above. This highlighted various MSN and inhibitory subpopulations in the NAc 

associating with genetic risk for regular smoking behavior (‘SmkInit’) at FDR < 0.05 (Figure 4A), 

along with associations to multiple AMY excitatory and inhibitory neuronal subpopulations 

(Figure 4B). Additionally, both Oligo and OPC clusters from both regions exhibited aggregated 

risk for regular smoking behavior. However after applying the above Bonferroni threshold across 

all regions and phenotypes tested, only the AMY ‘OPC’ population retained significant 

association with this behavior, whereas no NAc subpopulations met this significance threshold. 

Conversely, only the NAc contained a subpopulation harboring Bonferroni-significant risk for any 

of the other phenotypes in the addiction GWAS. This was the GABRQ and TAC1-expressing 

subcluster MSN.D1.3, which associated with heaviness of drinking (‘DrinkWk’). Collectively, 

these results provide complementary human findings for genetic risk associations to those 

previously described for psychiatric disease, further identifying subpopulations in the NAc and 

AMY harboring aggregated risk for substance use behaviors. 

 

Discussion 
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In this study, we used snRNA-seq to profile five human brain regions across the ventral 

striatum (NAc), limbic system (AMY and HPC), and two cortical subregions (sACC, DLPFC). 

While single-nucleus transcriptomic profiling in the postmortem human brain has rapidly 

accelerated, most efforts to date (Mathys et al., 2019; Nagy et al., 2020; Velmeshev et al., 2019) 

have focused on cortical regions and the hippocampus. This is the first study, to our knowledge, 

to systematically profile and compare across additional human brain areas selected for their 

function associated with risk for neuropsychiatric disorders and addiction. Specifically, we 

focused on the NAc and the AMY given their roles in emotional processing and reward 

signaling. While this study was performed only among neurotypical donors, the strong cell type-

specific associations to genetic risk for these disorders provide important information about 

disease etiology. This link to genetic risk is important, given that differential gene expression 

identified in case-control studies of postmortem tissue are difficult to interpret and may 

represent consequences (and not causes) of these disorders (Collado-Torres et al., 2019; Jaffe 

et al., 2020). More generally, understanding the transcriptomic architecture and cell type 

composition across the normal human brain is crucial to understanding the etiology of disease, 

the molecular pathology observed in postmortem tissues, and novel potential disease targets. 

Our study is a significant contribution as it demonstrates differential enrichment of disease risk 

in snRNA-seq-defined cell populations across multiple brain regions, including the NAc and 

AMY, which have not yet been profiled at the single-nucleus level in the human brain. 

 The NAc is a central hub for reward signaling, and altered function in circuits 

encompassing the NAc is implicated in a number of psychiatric disorders as well as drug 

addiction. Hence, we sought to define molecular profiles for NAc cell types, with a specific focus 

on functionally dichotomous subtypes of DRD1- and DRD2-expressing MSNs. Consistent with 

studies that used single-cell sequencing to profile the mouse striatum, including ~1000 striatal 

cells in each study (Gokce et al., 2016; Stanley et al., 2020), we identified several discrete 

subpopulations of D1 and D2-expressing MSNs in human NAc. Similar to Gokce et al., we also 
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identified 2 discrete subpopulations of D2 MSNS, including a subtype expressing the serotonin 

receptor gene HTR7. However, distinct from Gokce et al. and Stanley et al., we identified 4 

discrete subpopulations of D1-MSNs, which we validated by smFISH. Several reasons may 

explain why we identified different discrete D1 cell types, including differences in species 

(human vs. mouse), region (NAc-specific vs. striatum-wide), sample preparation (whole cells vs. 

nuclei), number of MSNs profiled (about 8x greater in our dataset) and single cell technology 

employed (10x Genomics Chromium vs. SMART-Seq v2). However, in agreement with these 

studies, we also observed co-expression of DRD1 and DRD2 in a small subset of MSNs. While 

these dual-expressing neurons did not emerge as their own cluster, they were largely found in 

the D1.3 subpopulation (Figure 1B). Interestingly, this cluster showed the strongest enrichment 

of genes associated with psychiatric disease and addiction, indicating that this particular 

subpopulation might be especially vulnerable to dysfunction in these disorders. Indeed, among 

D1 subtypes, D1.3 MSNs show selective expression of CRHR2, a gene encoding corticotropin 

releasing hormone receptor 2, suggesting that they may be particularly susceptible to the effects 

of corticotropin-releasing hormone (CRH), which is released and mediates the physiological and 

behavioral response to stress, modulating several neurotransmitter systems, including 

dopamine release (Bonfiglio et al., 2011; Payer et al., 2017). Given that dysfunction of the CRH 

system has been associated with many psychiatric disorders, including depression, anxiety, and 

PTSD (Claes, 2004), understanding which cell types express CRH receptors may aid in more 

specific targeting of the stress axis for therapeutic developments.  

Similar to Gokce et al., we also observed promiscuous expression of “typical” D1 and D2 

neuropeptide marker genes (TAC1 and PENK, respectively) in both D1 and D2 MSN 

subpopulations, providing further evidence that these classic markers may not be as selectively 

expressed as previously understood. Future studies using spatial transcriptomic approaches will 

be important to clarify whether TAC1-expressing D1 and D2 MSN subpopulations show 

topographical organization in the NAc core vs. shell. Anatomical location may explain 
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differences in TAC1 and PENK expression in specific MSN subpopulations, as it is well 

established that specific neuropeptides are expressed in a spatial gradient across the core and 

shell (Prensa et al., 2003; Salgado and Kaplitt, 2015; Stanley et al., 2020; Voorn et al., 1989). 

To better interpret clinical implications of studies that focus on circuitry encompassing the NAc 

in animal models, further understanding of similarities and differences across species for cell 

types that contribute to NAc function are important. While many cell populations were conserved 

between rat and human NAc (Savell et al., 2020), we did observe differences in specific MSN 

subpopulations, which may indicate unique molecular features between analogous MSN 

subpopulations and/or the existence of divergent MSN subclasses, as exemplified by the lack of 

a corresponding human MSN subpopulations with the rat ‘Grm8-MSN’ subpopulation 

(Figure 1E). However, given the small positive correlations measured with human D1.1 (r = 

0.19) and D1.3 (r = 0.26) subtypes, it is possible that this Grm8-expressing population 

encompasses the species-equivalent of these less abundant D1 subtypes, since D1.1 

expresses abundant GRM8, while D1.3 expresses little (Figure S4), even though the latter 

correlates more strongly with the rat ‘Grm8-MSN’. We also were unable to identify a population 

of cholinergic interneurons. While cholinergic interneurons are thought to be more abundant in 

the human neostriatum compared to the rodent, where they only account for ~0.3% of neurons 

(Graveland et al., 1985; Rymar et al., 2004; Tepper and Bolam, 2004), we think it is likely that 

the low rate of sampling and this population’s relative rarity accounts for this lack of observation. 

In addition to profiling NAc cell types, we also generated a molecular taxonomy of 

human amygdala cell types. We identified eight distinct neuronal subpopulations as well as 

accompanying gene marker annotations, including NRN1 (neuritin) and NPTX1 (neuronal 

pentraxin 1) for the AMY Excit.1 subcluster. Neuritin is a neurotrophic factor which modulates 

neurite outgrowth and plasticity (Yao et al., 2018), whereas neuronal pentraxin 1 regulates 

neuron excitability via synapse density (Figueiro-Silva et al., 2015). Additionally, the highest 

SLC17A6 (VGLUT2)-expressing subcluster, Excit.2, specifically expressed high levels of VCAN 
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(Versican) amongst other neuronal subpopulations, which has multiple isoforms exhibiting 

different mechanisms for synaptic regulation (Horii-Hayashi et al., 2008). Among the diverse set 

of inhibitory subpopulations in the AMY, the stress modulator CRH was specifically enriched in 

Inhib.3 and Inhib.4. Top markers in the AMY Inhib.5 subcluster included NPFFR2 (Neuropeptide 

FF Receptor 2) and TLL1 (Tolloid-Like 1), which are both associated with glucocorticoid 

signaling and the response to stress (Lin et al., 2016, 2017; Tamura et al., 2005). Interestingly, 

TLL1 harbors top intronic genetic variant associations for PTSD in multiple European American 

cohorts (Xie et al., 2013), suggesting that dysfunction of neurons in Inhib.5 subcluster might 

mediate genetic risk for PTSD. Using MAGMA, we assessed whether the top nuclear marker 

genes for AMY subclusters associated with PTSD genetic risk (Nievergelt et al., 2019), and 

found that Inhib.5 was indeed one of two AMY neuronal subclusters that reached significance 

(FDR < 0.05) across all gene set tests (Figure 4B). This result did not maintain significance 

using a stricter Bonferroni threshold; however this GWAS is underpowered, and it is anticipated 

that with increased sample size in future iterations, stronger association signals for PTSD 

genetic risk may be revealed. Comparing human AMY subcluster profiles to data from the 

mouse medial amygdala (MeA; (Chen et al., 2019)), we found that Inhib.5 and its corresponding 

population in mouse (MeA ‘N.8’ subcluster, Figure 2C) were the most strongly correlated 

neuronal subpopulations. While Tll1 expression was notably absent in mouse MeA, Npffr2 and 

other top MeA ‘N.8’ marker genes were shared with Inhib.5 (Figure S6). These insights 

highlight the importance of deriving reference snRNA-seq datasets across the human brain, as 

molecular gene markers may not be shared across species between analogous neuronal 

subpopulations. 

We next used the snRNA-seq data from the five profiled regions to ask whether 

identified cell subpopulations harbored aggregate genetic risk for various neuropsychiatric 

disorders and/or features of substance use. We confirmed previous findings by identifying 

strong associations for neuronal subpopulations in the DLPFC and HPC with both schizophrenia 
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(SCZ) and bipolar disorder (BIP) (Bryois et al., 2020; Skene et al., 2018), and significantly 

extended these findings by providing associations with specific sACC excitatory and inhibitory 

populations (Figure S12). Additionally, we not only confirmed previously observed associations 

to broad striatal populations defined in the mouse, but used our human NAc subcluster profiles 

to further refine these findings by demonstrating that SCZ most strongly associated with 

subpopulation MSN.D2.1, whereas D1.3 had the strongest association for BIP (Figure 4A). This 

suggests, for the first time, that individual populations of dopaminoceptive (DRD1/2) neurons in 

the human NAc may be differentially associated with SCZ and BIP. We also found that specific 

subpopulations of inhibitory interneurons in the human AMY were preferentially associated with 

SCZ, with AMY Inhib.4 exhibiting the strongest effect across the five profiled brain regions. 

These observations highlight a potential role for these subcortical brain regions in mediating 

genetic risk for SCZ and BIP. 

As both the NAc and AMY play critical roles in reward signaling, we also evaluated 

enrichment of genetic risk for addiction or substance use behaviors (Liu et al., 2019). 

Intriguingly, the genetic risk for adopting regular smoking associated more broadly across most 

neuronal populations, whereas other phenotypes assessed in this addiction GWAS showed 

more preferential associations to certain subpopulations. This suggests that the risk for adopting 

addictive-like behaviors might affect these brain regions more broadly than specific features of 

addiction (Figure 4A/B). With regard to the other features, the MSN.D1.3 subpopulation 

significantly associated with genetic risk for heaviness of drinking (‘DrnkWk’) and smoking 

(‘CigDay’), after Bonferroni and FDR correction, respectively. As a top marker for this 

subpopulation was CRHR2, this might be a key population in understanding these features of 

addiction. Indeed, many rodent studies have implicated CRH receptors in alcohol consumption 

and alcohol dependence (Heilig and Koob, 2007; Yong et al., 2014). Finally, though no neuronal 

AMY subpopulations met our strict Bonferroni threshold for association, the potentially HPA 

axis-involved ‘Inhib.5’ population exhibited more FDR-significant associations to addiction 
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phenotypes in this GWAS than any other neuronal subpopulation, suggesting that this 

NPFFR2/TLL1-expressing AMY subpopulation might be of interest in understanding the reward 

circuitry underlying substance use. From these analyses, we surveyed our diversity of neuronal 

subpopulations profiled in the NAc and AMY for their clinical relevance in psychiatric disease 

and addiction behaviors. Additionally, we have extended such analyses for these regions, which 

have formerly only been performed on cell-type profiles defined in murine models (Bryois et al., 

2020; Skene et al., 2018) to their relevant human context, and with increased resolution of 

molecularly-defined subpopulations. Finally, we narrowed down on those subpopulations 

manifesting the greatest genetic risk, potentially highlighting some neuronal subclasses 

mediating certain substance use behaviors. 

Future studies conducted in multiple brain regions warrant important considerations in 

study and analysis design for interpretability. Here, we performed: (1) a ‘pan-brain’ analysis with 

all of our 12 homogenate (non-NeuN-selected) samples, combined in a region-agnostic manner 

(Figure 3A); and contrasted this against (2) performing the above cell type clustering and 

analysis within each of the regions, separately. There were few benefits of the pan-brain 

approach, as identified clusters showed little regional variation (e.g. glial and broad neuronal 

populations) or near-complete segregation by brain region (Table S5). We therefore 

recommend prioritizing region-specific analyses even when data from multiple brain regions are 

collected, and then integrating information from these analyses across brain regions, over 

performing combined-region analyses. Of course, the optimal approach may depend on the 

research question being asked. 

 While we identified and characterized a diversity of robust neuronal subpopulations with 

our analytical pipelines for this study, we recognize that our sample sizes will not capture all cell 

types or subpopulations--even for our most-sampled brain region, the NAc, such as cholinergic 

interneurons mentioned above. The most direct evidence for this is that there remains some 

bias in donor makeup of certain subpopulations (Table S3). However, despite steps to mitigate 
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the impact of the small input for our sample processing protocol (see Methods), we expect some 

degree of sampling bias since cell type makeup is not expected to be homogeneous within a 

single region. For example, the NAc core or shell have different functional properties, and differ 

in regards to their afferent and efferent connections, and thus differences in cell composition 

across these two subregions is expected (Heimer et al., 1991; Li et al., 2018b; Zahm and 

Heimer, 1993). Integration of spatial transcriptomic technologies with snRNA-seq data in these 

regions (Maynard et al., 2020a) will help resolve expected heterogeneity across these adjacent 

subregions. To similar effect, we acknowledge that we may have missed some expected non-

neuronal, or potentially even neuronal, subpopulations in our approaches to define these 

subcluster profiles (see Methods). For example, we expected some number of endothelial cells 

and pericytes in each of our regions, making up the vasculature of the brain; however, these 

likely clustered with the more abundant microglia, due to a shared cell lineage (Bailey et al., 

2006). Ultimately, our goal was to better characterize neuronal subpopulations across these five 

brain regions, and with these sample sizes being still limited, we did not pursue any nested or 

further cluster refinement of the presented populations. With all of this in mind, we were able to 

validate the presence and relative ratios of subpopulations defined by our snRNA-seq analytical 

pipeline via smFISH. 

Another caveat to these snRNA-seq data is the lack of gene expression information from 

the cytosolic compartment, such as the neuropil. This is an important caveat given that synaptic 

signaling is implicated in neuropsychiatric disorders, and gene products localized to the synapse 

are enriched for SCZ genetic risk (Skene et al., 2018). In addition, mRNA from some expected 

marker genes, e.g. PVALB, may be preferentially localized to the cytosol, as demonstrated with 

smFISH for the GAD1+ interneuron ‘Inhib.3’ population in the NAc (Figure S5). However, this 

seems to be cell population-specific, as PVALB was highly expressed in some DLPFC 

subpopulations (data not shown; see Data and Software Availability). These and observations 

by others thus emphasize that snRNA-seq will not capture the full transcriptomic profile of cell 
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populations, including activation-induced or disease-associated molecular changes restricted to 

the cytosol (Thrupp et al., 2020). However, as we have previously demonstrated (Maynard et 

al., 2020a), snRNA-seq-defined cell populations can be registered to spatial transcriptomic data, 

which does retain such information, for further characterization of transcriptomic profiles.  

 In summary, we used snRNA-seq to profile five human brain regions. We defined  

transcriptomic profiles for 68 regionally-defined cell type subpopulations and characterized the 

architecture of molecular relationships across brain regions. We finally identified associations 

with genetic risk for neuropsychiatric disorders and addiction in unique neuronal subpopulations 

in the NAc and AMY. This study takes a large step towards mapping the single-nucleus 

transcriptomic atlas of the human brain, further demonstrating such a utility in understanding the 

diversity of cell populations and their roles in biology and disease. 

 

 

 

Methods 

 

Post-mortem human tissue 

Post-mortem human brain tissue from five neurotypical donors of European ancestry 

from age 40 to 62 (Table S1) was obtained by autopsy from the Office of the Chief Medical 

Examiner for the State of Maryland under State of Maryland Department of Health and Mental 

Hygiene Protocol 12-24. Clinical characterization, diagnoses, and macro- and micro-scopic 

neuropathological examinations were performed on all samples using a standardized paradigm, 

and subjects with evidence of macro- or micro-scopic neuropathology were excluded. Details of 

tissue acquisition, handling, processing, dissection, clinical characterization, diagnoses, 

neuropathological examinations, RNA extraction and quality control measures have been 

described previously (Lipska et al., 2006). Dorsolateral prefrontal cortex (DLPFC) and 
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hippocampus (HPC) tissue was microdissected using a hand-held dental drill as previously 

described (Collado-Torres et al., 2019). The subgenual Anterior Cingulate Cortex (sACC) was 

dissected under visual guidance from the medial aspect of the forebrain at the level of the 

rostrum of the corpus callosum. Dissections were performed ventral to the corpus callosum, and 

dorsal to the orbital frontal cortex (BA11). Medially it was bounded by the interhemispheric 

fissure, while laterally it was bounded by the corona radiata/centrum semiovale. For the 

amygdala, a block containing the structure was dissected under visual guidance at the level of 

its maximal size, taken from a 1 cm thick slab of one hemisphere, and sectioned in the coronal 

plane. The amygdala block was chosen by visual inspection at a level that contained the 

maximal number of subnuclei. Landmarks for selection of the amygdala block included 

presence of the internal and external segments of the globus pallidus, the anterior commissure, 

and optic tract. The block containing the nucleus accumbens was taken from a 1 cm thick slab 

of one hemisphere, and sectioned in the coronal plane. The NAc block was chosen at a level 

where the putamen and caudate are joined by the accumbens at the ventral aspect of the 

striatum, with clear striations separating the putamen from the caudate. Additional landmarks 

include the presence of the anterior aspect of the temporal lobe and the claustrum. 

 

snRNAseq data generation 

We performed single-nucleus RNA-seq (snRNA-seq) on 14 samples from five individual 

donors (n=2 DLPFC, n=3 HPC, n=2 AMY, n=2 sACC, n=5 NAc) using 10x Genomics Chromium 

Single Cell Gene Expression V3 technology (Zheng et al., 2017). Nuclei were isolated using a 

“Frankenstein” nuclei isolation protocol developed by Martelotto et al. for frozen tissues (Habib 

et al., 2016, 2017; Hu et al., 2017; Lacar et al., 2016; Lake et al., 2016). Briefly, ~40mg of 

frozen, ground tissue was homogenized in chilled Nuclei EZ Lysis Buffer (MilliporeSigma 

#NUC101) using a glass dounce with ~15 strokes per pestle. Homogenate was filtered using a 

70μm-strainer mesh and centrifuged at 500 x g for 5 minutes at 4°C in a benchtop centrifuge. 
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Nuclei were resuspended in the EZ lysis buffer, centrifuged again, and equilibrated to nuclei 

wash/resuspension buffer (1x PBS, 1% BSA, 0.2U/μL RNase Inhibitor). Nuclei were washed 

and centrifuged in this nuclei wash/resuspension buffer three times, before labeling with DAPI 

(10μg/mL). For 2 NAc samples from individual donors, nuclei were additionally labeled with Alex 

Fluor 488-conjugated anti-NeuN (MilliporeSigma cat. #MAB377X), at 1:1000 in the same 

wash/resuspension buffer to facilitate enrichment of neurons during fluorescent activated cell 

sorting (FACS). Samples were then filtered through a 35μm-cell strainer and sorted on a BD 

FACS Aria II Flow Cytometer (Becton Dickinson) at the Johns Hopkins University Sidney 

Kimmel Comprehensive Cancer Center (SKCCC) Flow Cytometry Core into 10X Genomics 

reverse transcription reagents. Gating criteria hierarchically selected for whole, singlet nuclei (by 

forward/side scatter), G0/G1 nuclei (by DAPI fluorescence), and NeuN-positive cells for the 

respective NeuN-enriched samples. A “null” sort of nuclei into the wash buffer was additionally 

performed from the same preparation, for quantification of nuclei concentration and to ensure 

that sorted nuclei were intact and free of debris. For each sample, approximately 8,500 single 

nuclei were sorted directly into 25.1μL of reverse transcription reagents from the 10x Genomics 

Single Cell 3’ Reagents kit (without enzyme). Libraries were prepared according to 

manufacturer’s instructions (10x Genomics) and sequenced on the Next-seq (Illumina) at the 

Johns Hopkins University Transcriptomics and Deep Sequencing Core. 

 

snRNAseq raw data processing 

We processed the sequencing data with the 10x Genomics’ Cell Ranger pipeline, 

aligning to the human reference genome GRCh38, with a reconfigured GTF such that intronic 

alignments were additionally counted given the nuclear context, to generate UMI/feature-

barcode matrices (https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/advanced/references). Per the output metrics of Cell 

Ranger, each sample was sequenced to a median depth of 253.0M reads (IQR: 148.7M-
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274.9M). We started with raw feature-barcode matrices from this output for analysis with the 

Bioconductor suite of R packages for single-cell RNA-seq analysis (Amezquita et al., 2020) 

using Bioconductor (Huber et al., 2015) versions 3.10 and 3.11. For quality control (QC) and 

nuclei calling, we first used a Monte Carlo simulation-based approach to assess and exclude 

empty droplets or those with random ambient transcriptional noise, such as from debris (Griffiths 

et al., 2018; Lun et al., 2019). This was then followed by mitochondrial rate adaptive 

thresholding, which, though expected to be near-zero in this nuclear context, we applied a 3x 

median absolute deviation (MAD) threshold, to allow for flexibility in output/purity of nuclear 

enrichment by FACS using scater’s isOutlier (Lun et al., 2016). This QC pipeline yielded 

5,399 high-quality nuclei from the DLPFC, 10,444 nuclei from HPC, 6,632 nuclei from AMY, 

7,047 nuclei from sACC, and 13,241 nuclei from NAc. Collectively, these exhibited a median 

unique molecular identifier (UMI) count of 8,747 (interquartile range, IQR: 5,280-19,895 UMIs) 

per nucleus, and a median detected gene count of 3,047 (IQR: 2,224-5,359) genes captured per 

nucleus. These feature-barcode gene counts were then rescaled across all nuclear libraries, 

using scater’s librarySizeFactors (Lun et al., 2016). Finally, these rescaled counts were 

log2-transformed for identification of highly-variable genes (HVGs) with scran’s modelGeneVar 

(Lun et al., 2016), taking all genes with a greater variance than the fitted trend. 

 

Dimensionality reduction and clustering 

Principal components analysis (PCA) was then performed on the HVGs to reduce the 

high dimensionality of nuclear transcriptomic data, both in region-specific analyses and pan-

brain analyses. The optimal principal component (PC) space was defined with iterative graph-

based clustering to determine the d PCs where resulting n clusters stabilize, with the constraint 

that n clusters </= (d + 1) PCs (Lun et al., 2016), resulting in a chosen d between 45-96 PCs, in 

the region-specific analyses, or 204 PCs for the pan-brain analysis (all homogenate, DAPI-
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sorted samples). In this PCA-reduced space, graph-based clustering was performed to identify 

what we classified as preliminary clusters; specifically, k-nearest neighbors with k=20 neighbors 

and the Walktrap method from R package igraph (Csardi and Nepusz, 2006) for community 

detection. We used an increased k neighbors (from the default k=10) as a means to increase 

the connectivity in the kNN graph, as an alternate approach for handling potentially donor-driven 

preliminary clusters, instead of manually identifying batch-correlated PCs and removing these. 

We then took all feature counts for these assignments and pseudo-bulked counts (Crowell et al., 

2019; Kang et al., 2018; Lun and Marioni, 2017) across these preliminary nuclear clusters, 

rescaling for combined library size and log-transformed normalized counts, as above. With the 

pseudo-bulked count profiles, we then performed hierarchical clustering to identify preliminary 

cluster relationships, and finally merged with the cutreeDynamic function of R package 

dynamicTreeCut (Langfelder et al., 2016), or keeping split clusters at the preliminary resolution, 

if generally well-represented across donors, as this suggested biologically valid subpopulations 

(for example, neuronal subtypes) as opposed to more likely batch-driven preliminary clusters. 

However, in some cases, cluster marker identification (see below) suggested sample bias in 

true, biological subpopulations (see Discussion). The final clusters merged at the appropriate 

tree height were then annotated for broad cell type identity with well-established cell type 

markers (Mathys et al., 2019), and with a numeric suffix where multiple broad cell class 

populations were defined (‘Excit.1’, ‘Excit.2’, etc.). We also used Bioconductor package scater’s 

(McCarthy et al., 2017) implementation of non-linear dimensionality reduction techniques, t-SNE 

(van der Maaten and Hinton, 2008) and UMAP (McInnes et al., 2018), with default parameters 

and within the aforementioned optimal PC space (or a reduced dimensional space in the case of 

the NAc and AMY, for t-SNE coordinates which would better reflect the final subcluster 

distribution), simply for visualization of the high-dimensional structure in the data, which 

complemented the clustering results. Additionally, in each of our five within-region analyses, a 

small cluster driven by low transcript capture would remain even after hierarchical cluster-
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merging of preliminary clusters, but these were removed prior to downstream analyses and from 

the t-SNE display, resulting in a final n nuclei analyzed per region of: 5,231 from the DLPFC, 

10,343 nuclei from HPC, 6,582 nuclei from AMY, 7,004 nuclei from sACC, and 13,148 nuclei 

from NAc (an average of 98.8% nuclei kept post-QC, above). These final numbers of nuclei 

analyzed per regionally-defined subcluster and by donor can be found in Table S3. 

 

Cluster marker identification 

For marker identification with our final clusters defined in each brain region or at the pan-

brain-level analysis, we utilized scran’s findMarkers (Lun et al., 2016) function for two 

sets of statistics: 

1) Pairwise t-tests, to identify differences between each cluster, or 

2) Implementing the function findMarkers to perform a cluster-vs-all-other-nuclei t-test 

iteration 

In both cases, we included a donor/processing date covariate to model (in the design= 

parameter) on these expected and unwanted batch effects. The latter approach, 2), we consider 

a less-stringent marker test for enriched genes in a given cluster, but which would not 

necessarily differentiate between said cluster and all others. We used the results from both tests 

to interpret cell type identity beyond the broad classes (excitatory vs. inhibitory neuron), and to 

identify markers to probe via smFISH (below). The top 40 markers from each test result are 

provided for each regionally-defined subpopulation in Table S4 (regions separated by 

worksheet), where the ‘_pw’ suffix corresponds to the pairwise tests (set 1), and ‘_1vAll’ to the 

enriched expression test (set 2). 

Importantly, 2) can be used to return a statistic, Cohen’s D, or the standardized log-fold 

change, which we used to back-compute a single t-statistic for each cluster per gene, using: 

  t = std.logFC * sqrt(n), where n = the total n nuclei (per region/dataset) 
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* Back-computing a single t-statistic cannot be generated with the result of 1) due to 

pairwise testing. 

These t-statistics can finally be used to compare such ‘transcriptomic profiles’ to those we 

computed for publicly-available datasets, using the provided cell type annotations (or across our 

5 regions), and compute the Pearson correlation coefficient, as was done in the spatial 

registration approaches in spatialLIBD (Maynard et al., 2020a). To perform cross-species 

conservation analyses, we generated these t-statistics per gene per reported cell annotation, 

subsetting on shared homologous genes between our human data and rat or mouse, using the 

‘HomoloGene.ID’ identifier provided by 

(http://www.informatics.jax.org/downloads/reports/HOM_AllOrganism.rpt), before computing the 

pairwise correlations. In the case of “many-to-many” scenarios, we took the highest-expressing 

paralog as the surrogate for each homologous pair, though these were small sets of genes in 

both rat and mouse cases. 

 

GWAS association analyses with MAGMA 

The latest version (v1.08) of Multi-marker Analysis of GenoMic Annotation (MAGMA; (de 

Leeuw et al., 2015) was used to test for genetic risk association of our 68 regionally-defined 

subpopulations with schizophrenia (SCZ: (Pardiñas et al., 2018; Schizophrenia Working Group 

of the Psychiatric Genomics Consortium, 2014)), autism spectrum disorder (ASD: (Grove et al., 

2019)), bipolar disorder (BIP: (Stahl et al., 2019)), major depressive disorder (MDD: (Wray et al., 

2018)), posttraumatic stress disorder (PTSD: (Nievergelt et al., 2019)); and for alcohol and 

tobacco use (Liu et al., 2019). For the marker gene sets, we used any genes defined as 

enriched per subpopulation (using marker test set 2, from above), at the Benjamini & Hochberg 

false discovery rate (FDR) < 1e-12 (Benjamini and Hochberg, 1995). SNPs were first annotated 

to genes, using window sizes from -10kb to +35kb of each gene, with the 1000 Genomes EUR 

reference panel, and gene-level analyses were performed, using provided summary statistics 
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from each of the above listed GWAS (via https://www.med.unc.edu/pgc/download-results/) and 

the snp-wise=mean model, to test whether there was enrichment of genetic risk for 

disease/phenotype in each gene. Following this, we performed the default competitive gene 

set analysis with the 68 regionally-defined marker sets, testing for association of gene-level risk 

and whether genes were enriched/specific to each subpopulation. From the empirical p-value of 

the gene set analysis, we performed multiple test correction with both false-discovery rate 

(FDR) and the stricter Bonferroni procedure (threshold p < 6.8e-5) across all 680 (68 regionally-

defined subpopulations and 10 GWAS phenotypes tested) tests. All genetic association test 

results are provided in Table S6. 

 

RNAscope single molecule fluorescent in situ hybridization (smFISH) 

Fresh frozen NAc from two independent donors was sectioned at 10μm and stored at -

80°C. In situ hybridization assays were performed with RNAscope technology utilizing the 

RNAscope Fluorescent Multiplex Kit V2 and 4-plex Ancillary Kit (Cat # 323100, 323120 ACD, 

Hayward, California) according to the manufacturer's instructions. Briefly, tissue sections were 

fixed with a 10% neutral buffered formalin solution (Cat # HT501128 Sigma-Aldrich, St. Louis, 

Missouri) for 30 minutes at room temperature (RT), series dehydrated in ethanol, pretreated 

with hydrogen peroxide for 10 minutes at RT, and treated with protease IV for 30 minutes. 

Sections were incubated with 5 different probe combinations to assess MSN and inhibitory 

neuron subtypes: 1) "Square": DRD1, TAC1, RXFP2, GABRQ (Cat 524991-C4, 310711-C3, 

452201, 483171-C2, ACD, Hayward, California); 2) "Circle": DRD1, TAC1, CRHR2, RXFP1 (Cat 

524991-C4, 310711-C3, 469621, 422821-C2); 3) "Triangle": DRD1, DRD2, TAC1, PENK (Cat 

524991-C4, 553991, 310711-C2, 548301-C3); 4) "Star": DRD1, DRD2, CRHR2, HTR7 (Cat 

524991-C4, 553991-C3, 469621, 413041-C2). 5) "Swirl": PVALB, GAD1, PTHLH, KIT (Cat 

422181-C4, 404031-C3, PTHLH, 606401-C2). Following probe labeling, sections were stored 

overnight in 4x SSC (saline-sodium citrate) buffer. After amplification steps (AMP1-3), probes 
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were fluorescently labeled with Opal Dyes (Perkin Elmer, Waltham, MA; 1:500) and stained with 

DAPI (4′,6-diamidino-2-phenylindole) to label the nucleus. Lambda stacks were acquired in z-

series using a Zeiss LSM780 confocal microscope equipped with a 63x x 1.4NA objective, a 

GaAsP spectral detector, and 405, 488, 555, and 647 lasers as previously described (Maynard 

et al., 2020b). All lambda stacks were acquired with the same imaging settings and laser power 

intensities. For each subject, high magnification 63x images were randomly acquired in the NAc 

(n= 2 subjects, n=2 sections per subject, n=12 images per section). Following image acquisition, 

lambda stacks in z-series were linearly unmixed in Zen software (weighted; no autoscale) using 

reference emission spectral profiles previously created in Zen (Maynard et al., 2020b) and 

saved as Carl Zeiss Image “.czi” files. Images were segmented and quantitatively analyzed in 

MATLAB using dotdotdot software (Maynard et al., 2020b) and statistical analyses were 

performed in R v3.6.3.  

For each of the five experiments, we combined ROI-level data from all respective 

images, and used data-driven cutoffs based on distributional overlap to determine binary 

expression levels (i.e. expressed or unexpressed) for each gene/channel. For each experiment, 

we calculated the Euclidean distance of the vector of expressed targeted genes in each ROI to 

the cell type-specific targeted designs, where distance = 0 meant that ROI matched a predicted 

snRNA-seq cell type cluster (shown as larger points in Figures E and S1, S2, S3, & S5).  

- Circle: 1033 ROIs were quantified across 48 images taken from 4 tissue sections across 

from 2 donors (two sections/donor). 251 ROIs were classified as DRD1+ with >3 dots 

post lipofuscin masking, and among these ROIs, RXFP1 and CRHR2 expression was 

classified as >3 dots and TAC1 expression was classified as >6 dots.  

- Square: 1126 ROIs were quantified across 48 images taken from 4 tissue sections 

across from 2 donors (two sections/donor). 341 ROIs were classified as DRD1+ with >3 

dots post lipofuscin masking, and among these ROIs, RXFP2, GABRQ, and TAC1 

expression was classified as >6 dots.  
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- Triangle: 1039 ROIs were quantified across 47 images taken from 4 tissue sections 

across from 2 donors (two sections/donor). 271 ROIs were classified as either DRD1+ or 

DRD2+ with >3 dots post lipofuscin masking in either gene, and among these ROIs, 

TAC1 and PENK expression was classified as >6 dots.  

- Star: 1003 ROIs were quantified across 44 images taken from 4 tissue sections across 

from 2 donors (two sections/donor). 482 ROIs were classified as either DRD1+ or 

DRD2+ with >3 dots (post lipofuscin masking) in either gene, and among these ROIs, 

HTR7 and CRHR21 expression was classified as >6 dots.  

- Swirl: 989 ROIs were quantified across 44 images taken from 4 tissue sections across 

from 2 donors (two sections/donor). 212 ROIs were classified as GAD1+ inhibitory 

neurons with >6 dots post lipofuscin masking, and among these ROIs, PVALB, KIT and 

PTHLH expression was classified as >6 dots.  

 

Data and Software Availability 

 All the code for processing and analyzing the data is available on the GitHub repository 

https://github.com/LieberInstitute/10xPilot_snRNAseq-human. The processed results files are 

hosted on Amazon S3 and the links are available on the README.md in the GitHub repository. 

For each of the five brain regions, we created an interactive website with the data using iSEE 

(Rue-Albrecht et al., 2018) and deployed at the LIBD shinyapps.io account at URLs such as 

https://libd.shinyapps.io/tran2020_Amyg/ (tran2020_sACC, tran2020_DLPFC, tran2020_NAc, 

tran2020_HPC). 
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Figure 1: Distinct subpopulations of D1- and D2-expressing MSNs in human NAc. (A) 
tSNE plot of 13,148 nuclei (n=5 donors) across 14 clusters, including 4 clusters of D1 MSNs 
and 2 clusters of D2 MSNs. (B) Heatmap depicting log2 expression of known marker genes in 
each cluster. (C) Violin plots for 4 genes differentially expressed (log2-normalized counts) in 
specific D1 subpopulations (CRHR2, DRD1, RXFP1, and TAC1) that were selected for 
validation using single molecule fluorescent in situ hybridization (smFISH). (D) Multiplex 
smFISH in human NAc depicting D1.2 and D1.3 MSNs. Maximum intensity confocal projections 
showing expression of DAPI (nuclei), CRHR2, DRD1, TAC1 and lipofuscin autofluorescence. 
Merged image without lipofuscin autofluorescence. Scale bar=10 μm. (E) Log2 expression of 
respective transcript counts per smFISH region of interest (ROI), post lipofuscin-masking 
(autofluorescence). Points are colored by CRHR2 expression and are enlarged where the 
Euclidean distance = 0 for prediction of MSN subclass for that ROI. (F) Heatmap of Pearson 
correlation values evaluating the relationship between our human-derived NAc statistics (rows) 
for 14,121 genes and data from (Savell et al., 2020) derived from rat NAc with data-driven 
clusters provided in their processed data.  
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Figure 2: Atlas of molecularly-defined cell types in human AMY. (A) tSNE plot of 6,582 
nuclei across 12 clusters, including 3 clusters of excitatory neurons and 5 clusters of inhibitory 
interneurons. (B) Expression violin plots for the top 2-3 genes for each of the neuronal 
subpopulations (log2-normalized counts). (C) Heatmap of Pearson correlation values evaluating 
the relationship between our human-derived amygdala statistics (rows) for 13,525 homologous 
genes and nuclei from (Chen et al., 2019) derived from mouse amygdala with data-driven 
clusters provided in their processed data.  
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Figure 3: Pan-brain analyses reveal whole brain transcriptomic architecture and neuronal 
subtype similarities across regions. (A) tSNE array of a total of 34,005 nuclei, profiled and 
clustered across the pan-brain analysis, including their coordinates displayed by each brain 
region. (B) Pairwise correlation of population-defined t-statistics, comparing 26,888 genes 
across a total of 47 neuronal subpopulations, collectively defined across each region (labeled in 
the suffix). Scale values are of Pearson correlation coefficient. 
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Figure 4. Genetic associations of NAc and AMY cell populations with psychiatric disease 
and addiction phenotypes. (A) MAGMA associations for each of 14 subpopulations profiled in 
human NAc or (B) 12 subpopulations profiled in human AMY. Heatmap is colored by empirical -
log10(p-value) for each association test. Displayed numbers are the effect size (𝞫) for significant 
associations (controlled for false discovery rate, FDR < 0.05), on a Z (standard normal) 
distribution. Bolded numbers are those that additionally satisfy a strict Bonferroni correction 
threshold of p < 6.8e-5. 
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Supplementary Figures 

 
 
Figure S1. Differential expression of neuropeptide genes TAC1 and PENK in D1 and D2 
MSN subpopulations.  Multiplex single molecule fluorescent in situ hybridization (smFISH) in 
human NAc. (A) Maximum intensity confocal projections showing expression of DAPI (nuclei), 
DRD1, DRD2, TAC1, and PENK  and lipofuscin autofluorescence in two separate fields. Merged 
image without lipofuscin autofluorescence. Scale bar=10 μm. Double arrow indicates TAC1 
negative D1 MSN.  Single arrow indicates dual D1 and D2-expressing MSN. (B) Corresponding 
violin plots showing differential expression of TAC1 and PENK in D1 and D2 MSNs 
subpopulations. (C) Log2 expression of respective transcript counts per smFISH ROI, post 
lipofuscin-masking (autofluorescence). Shape/color denote by DRD1/DRD2 expression, 
respectively, and are enlarged where the Euclidean distance = 0 for prediction of MSN subclass 
for the respective ROI. 
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Figure S2.  Further validation of D1 MSN subpopulations using smFISH. (A) Multiplex 
single molecule fluorescent in situ hybridization (smFISH) in human NAc depicting D1.3 MSN. 
Maximum intensity confocal projections showing expression of DAPI (nuclei), RXFP2, GABRQ, 
DRD1, TAC1 and lipofuscin autofluorescence. Merged image without lipofuscin 
autofluorescence. Scale bar=10 μm. (B) Corresponding violin plots showing differential 
expression of these three genes in specific D1 subpopulations by snRNAseq. (C) Log2 
expression of respective transcript counts per smFISH ROI, post lipofuscin-masking 
(autofluorescence). Points are colored by GABRQ expression and are enlarged where the 
Euclidean distance = 0 for prediction of MSN subclass for the respective ROI. 
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Figure S3. Confirmation of HTR7-expressing D2 MSNs in human NAc by smFISH. (A)  
Multiplex single molecule fluorescent in situ hybridization (smFISH) in human NAc depicting 
expression of HTR7 in D2 MSNs. Maximum intensity confocal projections showing expression 
of DAPI (nuclei), DRD1, HTR7, DRD2, CRHR2 and lipofuscin autofluorescence. Merged image 
without lipofuscin autofluorescence. Scale bar=10 μm. (B) Corresponding violin plots showing 
differential expression of HTR7 and CRHR2 in D1 and D2 MSNs subpopulations by snRNA-seq. 
(C) Log2 expression of respective transcript counts per smFISH ROI post lipofuscin-masking 
(autofluorescence). Shape/color denote by DRD1/DRD2 expression, respectively, and are 
enlarged where the Euclidean distance = 0 for prediction of MSN subclass for the respective 
ROI. 
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Figure S4. Other differentially expressed MSN markers and similarity between largest 
D1/D2 subpopulations. (A) Log2-normalized counts of other markers for MSN subpopulations 
not prioritized for smFISH validation, as above. GRM8 is included to show specific enrichment in 
D1.1 and D1.2. (B) Heatmap of mean snRNA-seq expression, showing top 40 markers for D1.4 
and a similar pattern of expression in D2.2 subpopulation (scale thresholded to log2-normalized 
counts = 5.0). 
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Figure S5. Characterization of interneuron subpopulations in human NAc. (A) Violin plots 
depicting top 4 genes (columns) in each interneuron subpopulation in NAc snRNA-seq. (B) 
Multiplex single molecule fluorescent in situ hybridization (smFISH) in human NAc depicting co-
expression of PVALB, KIT, and PTHLH in GAD1+ interneurons. Maximum intensity confocal 
projections showing expression of DAPI (nuclei), GAD1, PVALB, KIT, PTHLH and lipofuscin 
autofluorescence. Merged image without lipofuscin autofluorescence. Scale bar=10 μm. (C) 
Corresponding violin plots showing expression of these genes in different interneuron 
subpopulations by snRNA-seq. (D) Log2 expression of respective transcript counts per smFISH 
ROI, post lipofuscin-masking (autofluorescence). Points are colored by KIT expression and are 
enlarged where the Euclidean distance = 0 for prediction of interneuron subclass for the 
respective ROI. 
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Figure S6. Broad cell type marker expression for AMY subpopulations and ‘Inhib.5’ vs. 
corresponding MeA ‘N.8’ shared markers. (A) Mean log2-normalized expression for broad 
cell type markers, used for annotation of AMY subpopulations. (B) Mean expression of top 
enriched markers for human AMY subpopulation Inhib.5 shared with (C) mouse MeA neuronal 
subclusters, as reported in (Chen et al., 2019). Tll1, however, was not defined as a marker of 
MeA ‘N.8’. 
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Figure S7. Broad cell type marker expression for pan-brain-defined clusters or regionally-
defined populations. (A) Mean log2-normalized expression for broad cell type markers, used 
for annotation, in clusters defined across all nuclei in the five profiled regions. (B) Same as (A), 
but for regionally-defined subpopulations, for sACC, (C) DLPFC, and (D) HPC. 
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Figure S8. Benchmarking of HPC subpopulations to published data. (A) Correlation 
heatmap between HPC subclusters (rows) and the reported HPC populations in (Habib et al., 
2017); columns). Printed values and scales show the Pearson correlation coefficient, correlating 
across all shared expressed genes and the t-statistics of their specificity test. 
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Figure S9. Benchmarking of DLPFC subpopulations to published data. (A) Correlation 
heatmap between DLPFC spatially-registered subpopulations (rows) and PFC 10x snRNA-seq 
data (columns) from (Velmeshev et al., 2019). Printed values and scales show the Pearson 
correlation coefficient, correlating across all shared expressed genes (26,970) and the t-
statistics of their specificity test. 
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Figure S10. Benchmarking of sACC subpopulations to published data. (A) Correlation 
heatmap between sACC subpopulations (rows) and ACC 10x snRNA-seq data (columns) from 
(Velmeshev et al., 2019). Printed values and scales show the Pearson correlation coefficient, 
correlating across all shared expressed genes (27,422) and the t-statistics of their specificity 
test. 
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Figure S11. Comparison across all non-neuronal, regionally-defined subpopulations. 
Pairwise correlation of population-defined t-statistics, comparing 26,888 genes across the 21 
non-neuronal subpopulations, collectively defined across each region (labeled in the suffix). 
Scale values are of Pearson correlation coefficient. 
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Figure S12. Genetic associations for HPC and cortical regions with psychiatric disease 
and addiction phenotypes. (A) MAGMA associations for each of 10 subpopulations profiled in 
sACC, (B) 17 spatially-resolved DLPFC subpopulations, and (C) 15 HPC subpopulations. 
Heatmap is colored by empirical -log10(p-value) for each association test. Displayed numbers 
are the effect size for significant associations (controlled for false discovery rate, FDR < 0.05), 
on a Z (standard normal) distribution. Bolded numbers are those that additionally satisfy a strict 
Bonferroni correction threshold of p < 6.8e-5. 
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