
RESEARCH ARTICLE
Linking big biomedical datasets to modular
analysis with Portable Encapsulated Projects
Nathan C. Sheffield1,2,3,4,�, Michał Stolarczyk1, Vincent P. Reuter1,5, and André F. Rendeiro6,7

1Center for Public Health Genomics, University of Virginia
2Department of Public Health Sciences, University of Virginia
3Department of Biomedical Engineering, University of Virginia
4Department of Biochemistry and Molecular Genetics, University of Virginia
5Genomics and Computational Biology Graduate Group, University of Pennsylvania
6Institute for Computational Biomedicine, Weill Cornell Medical College
7Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medical College
� Correspondence: nsheffield@virginia.edu

Organizing and annotating biological sample data is critical in data-intensive bioinformatics. Unfortu-
nately, incompatibility is common between metadata format of a data source and that required by a
processing tool. There is no broadly accepted standard to organize metadata across biological projects
and bioinformatics tools, restricting the portability and reusability of both annotated datasets and anal-
ysis software. To address this, we present Portable Encapsulated Projects (PEP), a formal specification
for biological sample metadata structure. The PEP specification accommodates typical features of data-
intensive bioinformatics projects with many samples, whether from individual experiments, organisms,
or single cells. In addition to standardization, the PEP specification provides descriptors and modifiers
for different organizational layers of a project, which improve portability among computing environments
and facilitate use of different processing tools. PEP includes a schema validator framework, allowing
formal definition of required metadata attributes for any type of biomedical data analysis. We have im-
plemented packages for reading PEPs in both Python and R to provide a language-agnostic interface for
organizing project metadata. PEP therefore presents an important step toward unifying data annotation
and processing tools in data-intensive biological research projects.

Introduction
Biological data generation is accelerating, and consider-
able effort is now being invested in how to best share
it. These efforts include expansions of databases1,2 as
well as new data standards and ontologies, including
the FAIR guiding principles and other guidelines for data
sharing3–8. Major effort is being invested in building an
open data ecosystem upon which data of many types
may be easily shared and reused.

Data generation has outpaced analysis, making analysis
the limiting factor in many studies. To mitigate this,
new computational pipelines and analysis approaches
are under constant development. These pipelines are
increasingly federated though pipeline frameworks,
leading to now dozens of such frameworks that simplify
developing reusable computational pipelines9, as well as
standards for workflows such as the common workflow
language10, SnakeMake11, Galaxy12, and Nextflow13.
Similarly, new containerization technology is making
computing environments more portable14–16 and efforts
to build data commons17 and cloud analysis platforms18

are bringing analysis to data hosted in the cloud.
Collectively, these efforts seek to meet the challenge
of reproducible analysis in a complicated and growing
ecosystem that combines public and private data.

Efforts to both curate open biological data and to
standardize bioinformatics analysis are certainly com-
plementary, but progress in each area independently
does not necessarily make it easier to connect the two.
In fact, relatively less effort has been placed at the
confluence of data and analysis in biology. We may call
this connection a “data interface,” which describes how
a dataset connects to an analysis tool (Fig. 1A). As it
stands, published bioinformatics pipelines, even if repro-
ducibly built in a standard framework, typically describe
a unique data interface, requiring a user to manually
structure data repeatedly to fit each pipeline (Fig. 1B).
On the flipside, data repositories also typically expose
an individual procedure such as an API for accessing the
data. In practice, it requires substantial manual effort
to plug an arbitrary dataset into an arbitrary analysis
tool – even if both adhere to best-practice community
sharing and analysis development standards.

This challenge is surmountable for a typical project that
links one data set to one analysis process – the one lab,
one dataset, one analysis approach, which has been the
dominant model (Fig. 1C). But imagine an attempt to
link multiple datasets from multiple sources to multi-
ple analysis tools. Each pair of data and tool requires
a unique data description, which probably requires sub-
stantial manual data munging (Fig. 1D). The result is

1· Linking data to analysis · bioRχiv

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.08.331322doi: bioRxiv preprint

mailto:nsheffield@virginia.edu
https://doi.org/10.1101/2020.10.08.331322
http://creativecommons.org/licenses/by/4.0/

A

Interface

Analysis

Data B

Data

Analysis

Interface

C One
lab

One
dataset

One
analysis

D

E F

Data

Interface

Analysis
Analysis tools

Summarizers

Pipelines

Meta-analysis

Databases

Sharing
Portable

Encapsulated
Project

G

Must reshape
Fits natively

Fig. 1: A data interface links data to analysis. A) Schematic of a data interface. B) Each analysis typically describes its own unique data interface.
C) The one lab, one dataset, one analysis mode of research tightly couples datasets and analysis. D) With individual data interfaces, running a data
set through multiple analyses requires reshaping the data for every pairwise connection of data and analysis. E) The PEP specification provides a
standardized interface that reduces reshaping. F) Using PEP, no reshaping is required to run a data set through a different analytical tool. G) A PEP
may be used in different contexts, and by a variety of tools and programming languages.

that analysis done by an individual lab is often restricted
to a particular dataset generated by that lab for that
project. What would it take to build a computing ecosys-
tem that would relax this coupling, making it routine to
mix-and-match data and pipelines across groups?

A first step to realize this vision is to standardize the data
interface. This would make both datasets and tools more
portable, facilitating data integration and tool compari-
son. To this end, we present the Portable Encapsulated
Projects (PEP) specification. The PEP specification stan-
dardizes the description of sample-intensive biological
research projects, enabling data providers and data users
to communicate through a common interface (Fig. 1E).
This standardization facilitates using different pipelines
for the same datasets (Fig. 1F). In addition to standard-
ization, the PEP specification provides powerful porta-
bility called project modifiers and sample modifiers that
make project metadata annotation independent of a par-
ticular computing platform. PEP also provides a cus-
tomizable validation framework that can be used to first
define and then to validate the sample properties re-
quired for a particular application. Finally, we provide
tools that read and process PEPs in R and Python, which
can be extended by specialized tools.

PEP thus provides a unifying data organization that can
be employed by many tools to make it easier to share
data and tools. The goal of PEP follows the vision of the
Investigation/Study/Assay (ISA) biological metadata
management framework19. Relative to ISA, PEP empha-
sizes generality, programmatic metadata preprocessing,

and integration into workflow systems. Existing tools
can easily accommodate the PEP structure; for example,
SnakeMake includes a special directive to directly
import a PEP into a workflow that functions alongside
earlier, specialized data formats. Similarly, our compan-
ion tool, looper, can be used to submit arbitrary CWL
workflows to a CWL runner for each sample in a PEP
project. Together, these advantages realize a unified
specification that can be read and processed by many
types of downstream analysis (Fig. 1G).

Results
Basic PEP specification

The PEP specification defines a way to organize project
and sample metadata in files using YAML and CSV for-
mats. The term project refers to a collection of meta-
data that describes a set of samples. A sample is defined
loosely as any unit that can be collected into a project; it
consists of sample attributes, usually with one or more
that point to data files. A PEP is a set of files that conform
to the PEP specification. An common example could be
a typical biological research project made up of a set of
RNA-seq samples grouped to answer a particular ques-
tion.

The specification defines a PEP in two files: A YAML

configuration file, and a tabular comma-separated value
(CSV) annotation file (Fig. 2A). The configuration file
provides project-level descriptions, such as paths to
sources of data, global analysis parameters, or other
project attributes. The tabular file is a sample table,

2· Linking data to analysis · bioRχiv

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.08.331322doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.08.331322
http://creativecommons.org/licenses/by/4.0/

A B

Append Duplicate Imply Derive
E

name: my_project
pep_version: "2.0.0"
sample_table: samples.csv

sample_name, protocol, file
rat_0h, RNA-seq, rat_0h.fq.gz
rat_1h, RNA-seq, rat_1h.fq.gz
rat_2h, RNA-seq, rat_2h.fq.gz
rat_3h, RNA-seq, rat_3h.fq.gz

C

D

yaml csvyaml csv
yaml

Import Amend

Sample modifiers

csv csv
?

csv {...}

yaml

csv

csv

Remove

Project modifiers

PEP

Project
config

Sample
table

yaml

Subsample
table

csv

csv

Fig. 2: The PEP specification. A) A PEP consists of a YAML configuration file, a sample table, and a subsample table. B) The YAML file describes
project-level attributes. C) The sample table (and subsample table) describe sample-level attributes. D) Project modifiers allow the PEP to import
values from other PEPs, or embed multiple variations within a single PEP. E) Sample modifiers can change sample attributes by using the project
config YAML file, without actually changing the CSV file.

providing metadata attributes for each biological spec-
imen included in the project. An optional third file,
the subsample table, can be used to specify sample
attributes with multiple values (see documentation for
further details). A basic PEP configuration file has just
a few fields in YAML format, such as this example YAML

file (Fig. 2B) that points to a samples.csv file (Fig.
2C), which contains a header line of sample attributes
and then one data row per sample. Together, these two
files describe a minimal project. The basic PEP format is
thus extremely flexible and can accommodate assorted
sample-intensive biological research project data.

This very simple approach is then extended in two criti-
cal improvements: First, we added features that improve
portability called project modifiers and sample modifiers,
which enable us to remove environment-specific file
paths and analysis-specific metadata from the sample
table, making it easier to use a single metadata repre-
sentation for multiple analyses in different computing
environments. And second, we built a validation frame-
work for PEPs that includes a base schema to validate
generic PEPs along with tools to extend this schema to
more specific use cases. This generic + specialization
approach allows us to construct a re-usable project
definitions that can be extended modularly to provide
increased specificity. Together, these two improvements
provide the power and specificity that enables PEP to
unify and enhance our metadata descriptions for many
types of data-intensive biological research projects. We
describe these in more detail below.

Project modifiers

Project modifiers are special project attributes that pro-
vide additional functionality to a project. The two mod-
ifiers are import and amend, which allow users to either
merge or embed PEPs (Fig. 2D). At times it is useful
to create two projects that are very similar, but differ
just in one or two attributes. For example, you may de-
fine a project with one set of samples, and then want an
identical project that uses a different sample table. Or,
you may define a project to run on a particular reference

genome, and want to define a second project that is iden-
tical, but uses a different reference genome. You could
simply define 2 complete PEPs, but this would duplicate
information and make it harder to maintain. Instead,
project modifiers make it easier to tie projects together
through the import and amend relationships.

Project modifier: import

The import project modifier allows the configuration file
to import other PEPs. The values in the imported files
will be overridden by the corresponding entries in the
current configuration file. Imports are recursive, so an
imported file that imports another file is allowed; the
imports are resolved in cascading order with the most
distant imports happening first, so the closest configu-
ration options override the more distant ones. Imports
provide a way to decouple project settings so that more
specific projects can inherit attributes from more general
projects. Imports allow users to combine multiple files
into one PEP description. The import modifier handles
sample tables the same way it does any other attribute.
If a sample table is specified in both an imported and
importing PEP, it does not merge or update individual
samples or tables, but simply selects the highest priority
value of the sample table attribute.

Project modifier: amend

The amend project modifier allows the configuration file
to embed multiple independent projects within a sin-
gle PEP. When a PEP is parsed, you may specify one or
more included amendments, which will amend the val-
ues in the processed PEP. Amendments are useful to de-
fine multiple similar projects within a single project con-
figuration file. Under the amend key, you specify names
of amendments, and then underneath these you spec-
ify any project variables that you want to override for
that particular amendment. It is also possible to acti-
vate more than one amendment in priority order, which
allows you to combine different project features on-the-
fly.

When used in tandem, imports and amendments to-
gether make it possible to create powerful links between

3· Linking data to analysis · bioRχiv

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.08.331322doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.08.331322
http://creativecommons.org/licenses/by/4.0/

projects and analysis settings that can simplify running
multiple analyses across multiple projects.

Sample modifiers

Sample modifiers are project-level settings that adjust
sample attributes. After the sample table is read, sample
modifiers are applied, adding new attributes or changing
attributes from the original sample table. Sample mod-
ifiers enable keeping analysis-specific sample attributes
in the project configuration file so the sample table can
be more easily shared across projects. This allows the
creation of a sample table that does not need to be edited
when moved to either a different project or compute en-
vironment, making both project and sample metadata
more portable.

You can add sample modifiers to a PEP by adding a
sample modifiers section to a project configuration
file. Within this section, there are 5 subsections cor-
responding to 5 types of sample modifier (Fig. 2E).
Three modifiers–remove, append, and duplicate–are
very simple operations. The more expressive sample
modifiers–imply and derive–lend considerable flexibility
to the construction of PEP sample tables.

Sample modifier: remove
The remove modifier simply removes a specified attribute
from all samples. It can be useful if a particular analysis
needs to eliminate a particular attribute without modi-
fying the original sample table.

sample_modifiers:

remove:

- genome

Sample modifier: append
The append modifier adds constant attributes to all
samples in a project. For example, if you write genome:

hg38 as an entry under append, then when the PEP
is parsed, the samples will each have an additional
attribute, genome, with value hg38. This modifier is
useful because it allows keeping static attributes in the
project configuration file. It also allows the preservation
of project-level information (like genome) separate from
sample-level information, but still pass that information
along to pipelines that require it for each sample. This
addresses the structural mismatch in independence that
follows from project composition–very often, samples
may be processed independently while having high
dependence among their metadata. PEPs are friendly to
the don’t repeat yourself principle that improves project
maintainability.

Example:

sample_modifiers:

append:

genome: hg38

Sample modifier: duplicate
The duplicate modifier allows copying an existing sam-
ple attribute into a new one. For example, the “genome”
attribute could be a synonym of the “Genome” attribute.
This allows us to tweak settings at the project level,
which simplifies use of an alternate pipeline with
different requirements, without requiring modification
of the underlying sample table that may break earlier
analysis.

Example:

sample_modifiers:

duplicate:

oldattr: newattr

Sample modifier: imply
The imply modifier lets a user add sample attributes that
are modulated based on the value of an existing sample
attribute. For example, a common use case is to use im-
ply to set a genome attribute for any sample with a spe-
cific value in its organism attribute. This enables com-
plete separation of description of sample-intrinsic prop-
erties (like organism) from project-level values (like ref-
erence genome, which may change).

Example:

sample_modifiers:

imply:

- if:

organism: "human"

then:

genome_assembly: "hg38"

Sample modifier: derive
The most expressive sample modifier is called derive.
This modifier allows a project description to encode
paths to data files at the project level instead of at the
sample level. This allows tabular sample descriptions to
avoid including any environment-specific information
(such as a file path), so moving a project from one
compute environment to another requires editing only a
single line in the project configuration file.

The derive modifier consists of two pieces of data: First,
the attributes section lists sample attributes to be de-
rived. Second, the sources section contains key-value
pairs, where the keys are source names and values are
string templates. The source names are the original val-
ues of the derived attributes. The string templates are
used to derive new attribute values by the PEP proces-
sor, replacing the source names in the original table.
These templates may contain sample attributes enclosed
by curly braces, such as {sample name}.

Thus, the derive modifier allows us to create sample at-
tributes that are derived from other sample attributes.

4· Linking data to analysis · bioRχiv

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.08.331322doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.08.331322
http://creativecommons.org/licenses/by/4.0/

This system is most commonly used to construct system-
atic file paths. When derived source paths include a shell
variable, derived attributes enable not only a sample ta-
ble, but an entire PEP, to be made completely portable
with no editing.

Example:

sample_modifiers:

derive:

attributes: [read1, read2]

sources:

key1: "/path/{attr}/{sample_name}.fq"

key2: "/path/{attr}/{sample_name}.fq"

Project and sample validation
To make it easier to build valid PEPs, we also imple-
mented a PEP validation tool called eido. Eido is a spe-
cialized PEP validator based on JSON-schema. Eido can
be used with a generic PEP specification schema to val-
idate a PEP in general. Even more important, tool au-
thors can provide a schema that describes more specific
requirements for a tool, and eido can validate a given
PEP to make sure it conforms to both the generic schema
and the more stringent schema, ensuring that it can run
on a particular tool (Fig. 3A).

For example, an author of a pipeline may write a
schema specifying that samples must have attributes
named read1 and read2, which must point to input
files. Furthermore, the schema specifies that samples
must have an attribute called genome that specifies the
genome to align to. With this schema published, it is
now possible to validate a PEP to ensure that it fulfills
the requirements for this pipeline. PEP schemas can
also import other schemas (Fig. 3B). In this case, the
PEP must validate against all requirements specified by
imported schemas to be valid.

Specific schemas for PEPs are written using JSON-
schema with a few additions that extend the basic
vocabulary to tailor it to the PEP use case. For example,
the validator adds the term required files, which
allows a schema author to indicate which sample
attributes must point to files that exist. Eido uses a two-
stage validation that first validates the configuration
file, and then validates individual samples after they
have been processed (Fig. 3C). This ensures that sample
attributes that are added or modified can be properly
checked. These adjustments to the basic JSON-schema
validation allow eido to satisfy the requirements of
validating bioinformatics research projects. Complete
documentation and description of schema features can
be found at eido.databio.org.

PEP implementations in R and Python
The reference implementation of the PEP specification
is the peppy python package, available from the Python

Package Index (PyPI). Peppy instantiates in-memory
project objects and provides a Python API for pro-
grammatic access to any project metadata from within
Python. A user simply creates a Project object (prj =

Project("config.yaml")) and may now interact with
the project metadata within Python. This package is
a generic, extensible object framework that enables
developers to build additional tools using these objects.
For instance, SnakeMake relies on the peppy package
to handle parsing and reading PEP-formatted project
metadata to power a workflow run.

We have also developed an R implementation of PEP
in the pepr package, available on CRAN. PEP files
can be parsed in R with a similar function call, prj =

pepr::Project("config.yaml"), which provides an R
API for interacting with PEPs in R. These tools provide
a PEP project interface to programmers of two of the
most popular data science programming languages,
increasing portability of PEP projects. These APIs
provide basic functions for interacting with projects
and samples, including setting and accessing variables,
extracting the sample attributes and sub-attributes as a
tabular object (using pandas in Python and data.table
in R), accessing individual samples as objects. In each
case, all the sample and project modifiers are processed
behind the scenes so downstream tools can easily make
use of the PEP portability features. The formal API is
documented in the respective package documentation.

Discussion

As the amount of available data increases, it is useful
to build a common infrastructure to link it to analytical
tools. Currently, downloading and analyzing an external
dataset requires significant manual investment. Because
each analytical pipeline typically has a unique interface
to input data, testing multiple competing pipelines on
a single dataset requires describing the dataset multiple
times. These manual steps hinder re-analysis and re-use
of existing data.

We here propose reducing this barrier with the concept
of Portable Encapsulated Projects. The PEP specifica-
tion is at once standardized and flexible. It provides a
very loose generic specification that can be easily ex-
tended for specific use cases. It also provides a val-
idation framework that can easily accommodate both
generic and specialized PEPs. Together, PEP provides
an interface between data and tools that makes each
more useful. If a tool developer designs a tool to read
PEPs, then it is immediately possible to apply the tool to
any published, compliant PEPs. To describe how to use
the tool, the developer needs only define a PEP schema,
which can be validated using eido; any project defining
these attributes would then work without modification.
Users then immediately know how to format a project
for the tool, and by describing newly generated data
in PEP format, they may immediately plug that project

5· Linking data to analysis · bioRχiv

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.08.331322doi: bioRxiv preprint

http://eido.databio.org
https://doi.org/10.1101/2020.10.08.331322
http://creativecommons.org/licenses/by/4.0/

{x}
SCHEMA

PEP

yaml csv

+
{x}

SCHEMA

PEP

yaml csv

+
{x}

SCHEMA

PEP

yaml csv

+

Valid

Valid

Invalid

generic

analysis X

analysis Y

PEP Schema

yaml csv

A B
{x}

SCHEMA

properties:
 newattr:
 type: string

{x}
a.yaml

{x}
a.yaml

{x}
SCHEMA

import:
 - a.yaml
properties:
 attr:
 type: integer

PEP

yaml csv

+
Invalid

yaml

Valid

validate
config

sample
modifiers

csv

Valid

validate
samples

project
modifiers

yaml csv
yaml

4

C

Fig. 3: PEPs can be validated against generic or specific schemas. A) A generic schema ensures compliance with the PEP specification, while
specialized schemas describe requirements for a particular analysis. B) PEP schemas can import other schemas. C) Validation uses two steps so
samples are validated after PEP modification.

into the tool. As developers build pipelines that under-
stand PEP format, they make it simple to apply their
pipeline to new PEP-compatible projects as they emerge.
On the flipside, as data producers publish datasets in
PEP format, they make it easy for pipeline developers
to test new analytical techniques on data from a variety
of sources. This will incentivize data sharing and re-use,
driving innovation and discovery both in tool develop-
ment and in understanding of data.

To facilitate community uptake, we have developed a
series of tools and pipelines that subscribe to the PEP
standard. In addition to Python and R packages to pro-
cess PEPs, we have also developed a data fetcher that
accepts a list of SRA or GEO accession numbers and then
downloads raw sequence data from the Sequence Read
Archive and constructs a PEP, ready to be plugged into a
PEP-compatible analysis tool.

Together, these tools create a programmable link be-
tween data and analysis, making it simple to re-analyze
an existing dataset with a newly developed pipeline,
grab a relevant public dataset to include with newly
generated data in a private project, or test a published
PEP-compatible pipeline on some in-house data.

To our knowledge, this is the first major effort to pro-
duce a universal specification and framework for collec-
tions of biological sample metadata geared toward meta-
data and data processing. PEP can be tailored with ease
to specific use cases with schemas that define specific
tool requirements. We anticipate that these tools will
encourage both bioinformatics pipeline developers and
data producers to subscribe to a common format, ben-
efiting both and leading to increased ability to extract
useful information from biological data.

Availability

All described software is BSD2-licensed and developed
on GitHub at github.com/pepkit. The Python imple-
mentation is on PyPI and the R implementation is on
CRAN. The formal PEP specification can be found at
pep.databio.org.

Acknowledgments

We thank Johannes Köster, Jason Smith, Aaron Gu, and
the Sheffield lab for input. This work is funded by the
National Institutes of Health Institute for General Medi-
cal Sciences (NIGMS) award R35GM128636 to NCS.

References
1. Barrett, T. et al. NCBI GEO: Archive for functional genomics
data sets–update. Nucleic Acids Res. 41, D991–D995 (2013).

2. Leinonen, R., Sugawara, H., Shumway, M. & Collaboration,
I. N. S. D. The sequence read archive. Nucleic Acids Res. 39,
D19–D21 (2011).

3. Hoehndorf, R., Slater, L., Schofield, P. N. & Gkoutos, G.
V. Aber-owl: A framework for ontology-based data access in
biology. BMC Bioinformatics 16, 26 (2015).

4. Malladi, V. S. et al. Ontology application and use at the
ENCODE DCC. Database 2015, (2015).

5. Wilkinson, M. D. et al. The FAIR guiding principles for scien-
tific data management and stewardship. Sci. Data 3, 160018
(2016).

6. Birney, E., Vamathevan, J. & Goodhand, P. Ge-
nomics in healthcare: GA4GH looks to 2022. (2017).
doi:10.1101/203554

7. Krumholz, H. M. & Waldstreicher, J. The yale open data
access (YODA) project–a mechanism for data sharing. The New
England journal of medicine 375, 403–405 (2016).

8. Jupp, S. et al. The EBI RDF platform: Linked open data for
the life sciences. Bioinformatics 30, 1338–1339 (2014).

9. Leipzig, J. A review of bioinformatic pipeline frameworks.
Brief Bioinform (2016). doi:10.1093/bib/bbw020

10. Amstutz, P. et al. Common workflow language, v1.0.
(2016). doi:10.6084/m9.figshare.3115156.v2

11. Köster, J. & Rahmann, S. Snakemake–a scalable bioin-
formatics workflow engine. Bioinformatics 28, 2520–2522
(2012).

12. Afgan, E. et al. The galaxy platform for accessible, repro-
ducible and collaborative biomedical analyses: 2016 update.
Nucleic Acids Research 44, W3–W10 (2016).

6· Linking data to analysis · bioRχiv

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.08.331322doi: bioRxiv preprint

http://github.com/pepkit
http://pep.databio.org
https://doi.org/10.1101/203554
https://doi.org/10.1093/bib/bbw020
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.1101/2020.10.08.331322
http://creativecommons.org/licenses/by/4.0/

13. Ewels, P. A. et al. The nf-core framework for community-
curated bioinformatics pipelines. Nature Biotechnology 38,
276–278 (2020).

14. Merkel, D. Docker: Lightweight linux containers for con-
sistent development and deployment. Linux Journal 2014, 2
(2014).

15. Kurtzer, G. M., Sochat, V. & Bauer, M. W. Singularity:
Scientific containers for mobility of compute. PLOS ONE 12,
e0177459 (2017).

16. Sheffield, N. C. Bulker: A multi-container environment
manager. OSF Preprints (2019). doi:10.31219/osf.io/natsj

17. Volchenboum, S. L. et al. Data commons to support pe-
diatric cancer research. American Society of Clinical Oncology

Educational Book 37, 746–752 (2017).

18. Fenstermacher, D. et al. The cancer biomedical informatics
grid (caBIG). Conference proceedings : ... Annual International
Conference of the IEEE Engineering in Medicine and Biology So-
ciety. IEEE Engineering in Medicine and Biology Society. Annual
Conference 1, 743–746 (2005).

19. Rocca-Serra, P. et al. ISA software suite: Supporting
standards-compliant experimental annotation and enabling
curation at the community level. Bioinformatics 26, 2354–
2356 (2010).

7· Linking data to analysis · bioRχiv

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.08.331322doi: bioRxiv preprint

https://doi.org/10.31219/osf.io/natsj
https://doi.org/10.1101/2020.10.08.331322
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Results
	Basic PEP specification
	Project modifiers
	Project modifier: import
	Project modifier: amend
	Sample modifiers
	Sample modifier: remove
	Sample modifier: append
	Sample modifier: duplicate
	Sample modifier: imply
	Sample modifier: derive

	Project and sample validation
	PEP implementations in R and Python
	Discussion
	Availability

	Acknowledgments
	References

