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Abstract 

Overfertilization with nitrogen fertilizers has damaged the environment and health of soil; yields are 

declining, while the population continues to rise. Soil is a complex, living organism which is 

constantly evolving, physically, chemically and biologically. Standard laboratory testing of soil to 

determine the levels of nitrogen (mainly NH4
+ and NO3

-) is infrequent as it is expensive and slow and 

levels of nitrogen vary on short timescales. Current testing practices, therefore, are not useful to guide 

fertilization. We demonstrate that Point-of-Use (PoU) measurements of NH4
+, when combined with 

soil conductivity, pH, easily accessible weather (in this study, we simulated weather in the laboratory) 

and timing data (i.e. days passed since fertilization), allow instantaneous prediction of levels of NO3
- 

in soil with of R2=0.70 using a machine learning (ML) model (the use of higher-precision laboratory 

measurements instead of PoU measurements increase R2 to 0.87 for the same model). We also show 

that a long short-term memory recurrent neural network model can be used to predict levels of NH4
+ 

and NO3
- up to 12 days into the future from a single measurement at day one,   with R2

NH4+ = 0.64 and 

R2
NO3- = 0.70, for unseen weather conditions. To measure NH4

+ in soil at the PoU easily and 

inexpensively, we also developed a new sensor that uses chemically functionalized near ‘zero-cost’ 

paper-based electrical gas sensors. This new technology can detect the concentration of NH4
+ in soil 

down to 3±1ppm (R2=0.85). Gas-phase sensing provides a robust method of sensing NH4
+ due to the 

reduced complexity of the gas-phase sample. Our machine learning-based approach eliminates the 

need of  using dedicated, expensive sensing instruments to determine the levels of NO3
- in soil which 

is difficult to measure reliably with inexpensive technologies; furthermore, crucial nitrogenous soil 

nutrients can be determined and predicted with enough accuracy to forecast the impact of climate on 

fertilization planning, and tune timing for crop requirements, reducing overfertilization while 

improving crop yields.  
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1. Introduction 

There is a global effort to find practices for food production that can sustainably feed the population, 

which is expected to surpass 10 billion people by 2050.(1) The Haber-Bosch process enabled 

inexpensive nitrogen-based fertilizers to feed the booming population, with >600% increase in their 

use in the past 50 years.(2, 3) Increased fertilization has, however, come with a great environmental 

cost. Approximately 12% of available arable land is now degraded, of which >240Mha (~926,000 mi2 

or four times the area of France or state of Texas) is chemically degraded – i.e. contaminated with 

heavy metals and/or acidified, especially from nitrogen fertilizers, which interfere with nutrient 

mobility and uptake by plants.(4, 5) Over-fertilization has visibly destroyed ecosystems by the 

leaching of excess NO3
- into surface waters causing eutrophication, giving rise to dead zones such as 

in the Gulf of Mexico.(6) Over-fertilization also impacts the soil microbiome.(7, 8) Although this is 

an actively studied topic, N fertilization appears to shift relative abundance of certain microbial 

communities in soil, with important implication on C cycling and ecosystems(9).   

Application of fertilizers is poorly understood and largely varied between regions and 

countries; for example, eight times more is applied per hectare in China than Australia.(10) Farmers 

across the globe typically rely on guidelines from their governments, fertilizer suppliers, or family 

know-how when deciding the economic optimum rate of fertilization to ensure maximum crop yields. 

Professional agronomists generally advise along guidelines and look at yields from previous years to 

estimate fertilizer requirements; they may also take soil samples for laboratory testing prior to sowing. 

Laboratory testing, however, is an expensive and slow process hence not performed regularly. Soil 

nitrogen (Soil-N) is crucial for high yields, and nitrogen fertilizer is the most frequently applied 

fertilizer. The optimal application rate is highly variable, however, since soil-N fluctuates widely with 

the properties of soil and weather over short timescales. Benchmark guidelines are unable to account 

for these variations. With the lack of data concerning the current and future nitrogen levels in soil, 

farmers tend towards overfertilization to protect yields, an environmentally and economically 

inefficient practice.(11–13)  
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 Measurement of Soil-N is important for optimizing the use of nitrogen fertilizers and enabling 

spatiotemporal variable rate fertilization. Indirect spectroscopic precision farming technologies such 

as crop canopy sensors (e.g., near infrared spectroscopic cameras) can be used to approximate the N 

requirements of plants.(14–16) Indirect spectroscopic techniques, however, do not measure the levels 

of nitrogen in soil, instead they measure green light from the leaves of plants (related to nitrogenous 

compounds) to indirectly estimate levels of N fertilizer required. Machine learning algorithms are 

suitable for calibrating spectra (e.g., near-infrared) to soil-N.(17) Spectroscopic methods require plant 

mass (e.g., leaves), so the measurements cannot be performed until after germination and growth. 

Fertilizer, however, is usually applied just before seeds are sown, hence spectroscopic techniques 

rarely help in-season, and only compliment national guidelines. Using ion-selective membranes, 

levels of nitrogen in soil (mainly in the form of NO3
- and NH4

+) can be directly detected 

electrochemically.(18) Such sensors can be integrated into Internet-of-Things (IoT) type remote 

sensors that can provide continuous data streams concerning levels of nitrogen in soil. To provide 

spatiotemporal resolution, however, many units would need to be deployed to fields.(19) Statistical 

models using machine learning are, therefore, well suited for filling in missing soil data(20) and 

forecasting them into the future.(21) Given each sensor node is not disposable (and expensive), they 

would require collection before harvest (i.e. labor intensive) and are susceptible to theft. They also 

require infrastructure investments to create a wireless network with access points etc. With the 

challenges such as large investment requirements, sector heterogeneity, data ownership and privacy, 

user acceptance and lack of interoperability, the adoption of IoT systems for soil sensing has been 

slow.(22–24) Ion-selective electrochemical sensors can also be produced in a small Point-of-Use 

(PoU) formfactor (e.g., Horiba LAQUAtwin, ELIT 8021). These sensors demonstrate high accuracy 

for NO3
-
 (R2=0.96)(25) and NH4

+ (R2=0.98)(26) however they are delicate, relatively expensive (i.e. 

Horiba LAQUAtwin NO3
- sells for ~350 USD; each electrode ~150 USD), require sample preparation 

and calibration.(27) 

In this work, we demonstrate a new and quick approach for determining crucial, but difficult 

to measure N-levels in soil. We combine a new type of gas-phase NH4
+ sensor (to eliminate matrix 

effects due to the complex sample)(28, 29), simulated climate data (i.e. rainfall and temperature), time 
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passed since fertilization (i.e. number of days) and off-the-shelf soil pH and conductivity sensors with 

a statistical machine learning model to instantaneously and accurately determine levels of NO3
- in 

soil. We demonstrate that the N-levels in soil can also be predicted into the future using a long short-

term memory recurrent neural network over a 12-day period. With this new approach (Figure 1), 

fertilization can be provided more precisely to improve yields, while preventing over fertilization, 

thus environmental degradation. 

 

2. Results and Discussion 

Disposable Point-of-Use NH4
+ Sensor 

To measure levels of NH4
+ in soil, we have developed an electrical PoU sensor to accurately  

determine soil-NH4
+ (R2= 0.85, limit of detection 3±1 ppm, tested up to 144 ppm) at low-cost with a 

large dynamic range (Figure 2.1). Each sensing module (i.e. cartridge) only consisted of a container 

and a disposable, chemically functionalized paper-based electrical gas sensor (chemPEGS) and 1ml 

15M NaOH, costing <$0.10 (Video SV1)(30–33). The chemical functionalization (10 µl 0.025M 

H2SO4) of chemPEGS was the best compromise between precision and measurement time (Figure 

S1). Sensing of NH3 with chemPEGS is susceptible to interferences from other water-soluble alkaline 

gases, however, because NH3 has the highest water solubility and is the dominant water-soluble 

alkaline gas species in our samples due to the fertilizer (ammonium nitrate), the signal generated by 

the chemPEGS largely originates from NH3. To operate the cartridge, a soil solution was created by 

pressing 100 ml deionized water through 100 g of soil. A 5 ml soil solution was injected into each 

container. In the container, the solubilized soil-NH4
+

(aq) is in equilibrium with solubilized NH3(aq) 

(Equation 1), which is in equilibrium with volatilized NH3(g) in the headspace of the container under 

Henry’s law (Equation 2).  

𝑁𝐻4(𝑎𝑞)
+ + 𝑂𝐻(𝑎𝑞)

− ↔ 𝑁𝐻3(𝑎𝑞) + 𝐻2𝑂     (1) 

𝑁𝐻3(𝑎𝑞) ↔ 𝑁𝐻3(𝑔)      (2) 

The pH increased to 14 by the concentrated NaOH solution, shifts the equilibrium toward NH3(aq) and 

ultimately NH3(g). The NH3(g) in the headspace of the container once again dissolves in the layer of 
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water adsorbed on the paper sensors as described by Barandun et. al. previously,(29) then neutralizes 

the H2SO4 in paper causing an increase in the ionic impedance (mainly due to the neutralization of 

highly mobile H+ ions) of the sensor in a concentration dependent manner (Figure 2.2)(28, 34–36).  

Neutralization of NH3 in chemPEGS (Equation 3) draws out more NH4
+ from the soil solution to 

maintain equilibrium, hence the paper sensor acts as a scrubber of soil- NH4
+.  

2𝑁𝐻4
+ + 2𝑂𝐻− + 2𝐻+ + 𝑆𝑂4

2− → 2𝑁𝐻4
+ + 𝑆𝑂4

2− + 2𝐻2𝑂    (3) 

There is a decrease in ionic impedance during neutralization on the chemPEGS, which is measured 

electrically using our home-made electronics.(29) An alternating voltage (10 Hz, 4 V amplitude) was 

supplied across the chemPEGS, and the current passing through was measured as a voltage with a 

transimpedance amplifier, amplified with a gain resistor (see Supporting Information, SI, Figure S2). 

As the H2SO4 neutralization continued, the impedance of paper increased slowly and the time it took 

to complete or slow dramatically was used as the analytical signal shown in Figure 2.3 (see SI Figure 

S3 for raw data and mathematical criteria). Before measuring unknown concentrations, we calibrated 

the sensor in a range of concentrations of NH4
+ from 4.5-144 ppm, in soil fertilized with NH4NO3; the 

calibration curve (log-log) is shown in Figure 2.4. Our measurements were compared to external 

laboratory measurements with a score of R2 = 0.85 (Figure S4). This is below reported ISE scores 

mentioned above, but our new sensing mechanism needs only simple and robust components for 

matrix free sensing and is, therefore, likely to offer more dependable results in-field. We also 

measured a calibration curve for NH4NO3 in water (no soil) and verified that our soil measurements 

are indeed from NH4
+ alone (Figure S1). 

 

Time-dependent Nitrogen Dynamics in Soil 

Understanding how nitrogen species evolve after fertilization, in particular the nitrification from NH4
+ 

to NO3
-, is important to growers for tailoring fertilization to climatic conditions and crop types, while 

reducing losses and environmental damage.(37) Time series data concerning dynamics of soil 

nitrogen were collected over short timescales (<20 days) in experiments simulating soil in a field 

(Figure 3). To reduce complexity, we did not grow any plants and investigated the nitrogen dynamics 
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only due to microbial activity, run-off and volatilization (escape of NH3(g)). We placed 5.1 kg of soil 

(Westland Top Soil, unfertilized) in a 15 L plastic pots and stored them in the laboratory without 

covering their tops. In each experiment, we controlled the environmental conditions in two ways: i) 

adding a controlled amount of water to simulate rainfall, ii) passing an electrical current through a 

resistive heating wire (nichrome wire), wrapped around the containers, to control temperature 

uniformly. We kept the soil type (sandy loam, sieved) and amount of fertilizer added fixed for all 

experiments (fertilizer NH4NO3 was added in the beginning of each experiment to produce a 

concertation of 120 ppm, approximately equal to 241 kg/ha of NH4NO3 or 85 kg/ha nitrogen – 

calculation in SI). Experiments were performed for eight sets of environmental conditions spanning 

arid (1 mm/day rainfall) to tropical (10 mm/day rainfall) with temperatures ranging from 19-21°C 

(temperate) to 26-34°C (warm). Measurements of soil temperature, rainfall, pH, electrical 

conductivity (EC) and NH4
+ were made in our laboratory (Güder Research Group - GRG). Levels of 

pH, EC, NH4
+ were also measured in an external laboratory (NRM, Cawood Scientific), in addition to 

dryness and NO3
-, for comparison and training of the machine learning model. Although when 

building the machine learning model we relied on the dryness values provided by the commercial 

laboratory, dryness is highly correlated with rainfall and temperature (in our dataset, temperature and 

rainfall predict dryness using linear regression with R2 = 0.86, see Figure S5 and the equation in the 

SI) hence can be estimated using these two metrics without needing further analytical measurements.  

Dynamics of soil NH4
+: In all time dependent soil experiments, the level of NH4

+ dropped rapidly over 

time, levelling out after about a week, independent of the environmental conditions. Temperature 

played a considerable role only in the case of 1 mm/day rainfall/ in which the NH4
+ levels settled at 

~50 ppm for warm conditions, in comparison to ~0 ppm for temperate conditions. In all other 

scenarios, temperature or rainfall only slightly affected the NH4
+ dynamics without large differences 

in the trends. Decreasing levels of NH4
+ result from multiple processes, such as nitrification (i.e. 

conversion of NH4
+ → NO2

- → NO3
-)  or environmental losses (leaching or volatilization), that run in 

parallel; however, the extent of each process might vary with environmental and soil conditions. Soil 

dehydration tends to limit nitrification, by restricting substrate supply to microbes and lowering 

activity of enzymes,(38) which may explain retention of NH4
+ at higher temperatures (and low 
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rainfall). This observation is further supported by the fact that the levels of NO3
- were lower for warm 

conditions than temperate conditions.  

Dynamics of soil NO3
-: Nitrification is a complex, aerobic microbial process affected by temperature, 

moisture, levels of O2, pH and of course availability of NH4
+ among other things (e.g., nitrifier 

populations).(37) We observed that, while at 1 mm/day rainfall the level of NO3
- increased compared 

to the initial (day zero) concentration, for 3 mm/day it remained relatively unchanged both for warm 

and temperate conditions. For 5 mm/day rainfall in warm conditions, the levels of NO3
- only slightly 

increased toward the end of the experiment. For temperate conditions the concentration of NO3
- nearly 

halved with a rapid drop after day 10. For heavy rainfalls (10mm/day), the concentrations of 

NO3
-
 dropped toward zero in a linear manner over the course of the experiments. From these 

experiments, it could be concluded that the optimum point for maximum nitrification and retention of 

NO3
- in soil occurs in temperate and drier conditions, which are consistently more favourable than 

warm and wetter conditions. The reasons behind these trends may differ, however, depending on the 

conditions. While the run-off caused by the heavy rainfall (i.e. 10 mm/day) may physically leach NO3
- 

away (the excess water was pouring out from the bottom of the pots), less rainfall (5, 3 mm/day) may 

hinder penetration of O2 into the soil (i.e. waterlogged soil) therefore reduce nitrification, especially if 

the climate is temperate so that not enough water is removed from the soil to allow oxygenation.(39) 

The optimal temperatures for nitrification are typically reported between 24-27 °C,(40) in line with 

our observations. In the experiments where the dryness of soil did not increase, temperature did not 

have a large effect, evidenced by the first 4 days of the experiment with 3 and 5 mm/day rainfall. 

Dryness (i.e. rainfall + temperature), therefore appears to be a more important factor in determining 

the levels of NO3
- than temperature alone. 

Dynamics of soil EC and pH: EC and pH were measured to investigate their correlation with soil 

nitrogen under different environmental conditions. Due to technical difficulties, we were unable to 

complete the EC and pH measurements for all samples in a single day, hence missed measurements 

which were to be performed in our laboratories. Nevertheless we did not observe any major trends in 

pH or EC regardless of rainfall or temperature except for the experiments with 1 and 10 mm/day 

rainfall. For 1 mm/day rainfall, the EC only slightly increased and pH slightly decreased over time. 
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Ammonium based fertilizers are known to acidify soil therefore decrease pH.(41, 42) With an 

increase in the concentration of mobile NO3
- ions in soil, EC is also known to increase.(42) When the 

rainfall was increased to 10 mm/day, however, the run-off leached out ionic species from the soil, in 

turn reducing EC of soil without affecting pH. The EC and pH measurements performed in our 

laboratory and externally did not correlate to the degree we expected, although the instruments used in 

our laboratory were calibrated weekly with calibration solutions to produce reliable measurements. 

Upon investigation, we found out that the difference in sample preparation was the likely culprit 

behind differences in the results. The external laboratory dried the soil samples before taking a fixed 

weight and mixing with water for measurements, whereas we took the samples directly from the pots 

without drying and mixed with water, which caused varied values for EC and pH. In any case, in the 

context of this work, these differences in sample preparation did not affect the underlying trends in the 

data generated by the external laboratory and such small errors may happen under real experimental 

conditions at the point-of-use (hence the entire system should be robust enough to absorb these 

errors).  

 

Prediction of levels of nitrogen in soil using machine learning 

Retention, conversion or loss of nutrients added to soil is a complex function of rainfall, temperature, 

pH, microbe populations, soil type etc. This complexity renders creation of deterministic models to 

understand the relationship between nitrogenous species and their levels in soil, difficult (if not 

impossible) after some time, even if initial concentrations are known. We have, therefore, attempted 

to create a statistical model using (existing) machine learning (ML) approaches to predict levels of 

hard-to-measure NO3
- in soil using information concerning weather (i.e. rainfall and temperature), 

time since fertilization, pH, EC, and NH4
+ (Video SV2).  

Using supervised ML, we attempted to predict the level of NO3
- in soil instantaneously, and 

both NH4
+ and NO3

- into the future (see Figure S6 for the ML prediction process flow). We used the 

measurements performed by the external laboratory (Figure 3) as a training set (data processing for 

ML described in SI). The performance of the model was then tested either with data from the external 
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lab or data generated by the PoU sensors in our lab as inputs. Training data matching the same 

environmental conditions (temperature and rainfall) as the test inputs were removed, so the model was 

always tested on unseen environmental conditions. Features were ranked in order of importance (by 

XGBoost, Figure 4.1 top left), where soil dryness, time since fertilization and NH4
+ were the most 

important. We compared combinations of features, regressors and tuning parameters exhaustively (by 

grid search) to find the best general regressor to estimate the levels NO3
- instantaneously (see Figure 

S7 for R2 scores for each set of environmental conditions). We have determined that the K-nearest-

neighbors (Knn) algorithm, trained on all 7 features with tuning parameters of k=14, leaf size=1 and 

p=1, can predict instantaneous levels of NO3
-  with R2 = 0.63 using external lab results for training and 

our lab PoU sensors for test input (Figure 4.1 bottom left). Using the same model, but with external 

lab results as test inputs, removes the impact of inaccuracy from our lab (PoU) sensors, resulting in 

R2=0.68 (Figure S8).  We have also determined that XGBoost regressor produced the best predictions 

for dryer soils and Knn for wetter. Taking our lab PoU sensors as test inputs, and the optimal 

regressor and tuning for each set of environmental condition offers even better performance, giving an 

optimised score of R2
av= 0.70 (score averaged across each set of environmental conditions – Figure 

4.1 bottom left). The same process, but with external lab result as test inputs, produces on optimized 

best-case scenario score of R2
av= 0.87 (Figure 4.1 bottom right). This score for predicting levels of 

NO3
- in soil is comparable to direct measurements using optical (R2 = 0.83; Fourier-transform infrared 

spectroscopy) or electrochemical methods (R2 = 0.96; ion selective electrodes) as reported in the 

literature.(26, 43) This result was pleasantly surprising given that no additional hardware was required 

for determining levels of NO3
- with high accuracy. We have also tuned a Knn model (k=11, leaf 

size=3, p=1) to predict levels of NO3
- in soil using only the most basic inputs – days since 

fertilization, rainfall and temperature (i.e. requiring no soil sensors at all) which yielded R2 = 0.54 

(Figure S9). 

 Although determining the concentration of NH4
+ and NO3

- in soil at any given moment is 

important (as described above), from an operational point of view, it would also be useful to know 

what the levels of soil nitrogen (i.e. NH4
+ and NO3

-) will be in the future from a single measurement 

to create a precise schedule for future fertilization. Soil, however, introduces a memory effect: 
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nutrient levels today depend on the nutrient levels and other factors from yesterday (property X at 

time t will be a function of X at t-1). Forecasting of soil-N into the future must, therefore, consider 

time and sequence of data, and possess a degree of memory, for multiple correlated features. Using 

the time-series dataset generated by the external lab, we trained a long short-term memory recurrent 

neural network (LSTM) model (another supervised ML algorithm) to forecast NH4
+ and NO3

- into the 

future for unseen environmental conditions. We tuned the model using grid search, minimizing root-

mean-squared error using time lag and model hyperparameters (training epochs, batch size, number of 

neurons). The optimal tuning was time lag=1, epochs=50, batch size=3 and number of neurons=3. The 

dataset was first concatenated into one multivariate time series. Each time series was then removed 

sequentially, and the model trained to predict the removed time series from the remaining data. 

Models were retrained for each desired forecast time (1-12 days into the future). Predictions for 

longer time periods were distorted by subsequent time series in the concatenation. Comparing 

predicted to real values over the 12-day period gives a score of R2
NH4+ = 0.64 and R2

NO3- = 0.70 using 

only the initial concentrations for NH4
+ and NO3

- on Day 0 which demonstrates efficacy even with our 

limited training dataset (Figure 4.2, with R2 plots in Figure S10). In essence, by measuring  NH4
+, EC 

and pH in the field and gathering other environmental data from public sources, levels of NO3
- can be 

estimated for today and both levels of NH4
+ and NO3

- into the future. 

 

3. Conclusions 

In this study, we demonstrated that it is possible to estimate the levels of hard-to-measure chemicals 

in soil using easily accessible soil/climate data and ML models. This entirely new strategy allows 

determining and predicting levels of nitrogen (NH4
+

 and NO3
-) in soil, both instantaneously and into 

the future. We have produced the first soil nitrification dataset that provides enough temporal 

resolution (≈3 day measurement frequency), for a range of conditions, to train a ML model. The 

strength of our approach is that we primarily use, inexpensive/easily accessible tools for the soil 

measurements (pH and EC meter with the exception of a new PoU paper-based, gas-phase NH4
+ 

sensor developed in this work) and publicly available weather data (rainfall and temperature; in this 
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study we simulated weather in a controlled manner) to estimate the levels of soil nitrogen through 

ML. The method presented is remarkably high performance such that concentration of instantaneous 

soil-NO3
- can be estimated using PoU inputs with R2

av=0.70, and external laboratory inputs with 

R2
av=0.87 (comparable to existing high performance NO3

- sensors) without the need for additional 

hardware. Using a LSTM model, the levels of NH4
+ and NO3

- can also be forecasted 12 days into the 

future, for unseen environmental conditions, with R2
NH4+ = 0.64 and R2

NO3- = 0.70. Furthermore, the 

paper-based, disposable, gas-phase NH4
+ sensors (i.e. chemPEGS) developed in this work could also 

be used alone at the PoU without the ML model or other sensors if instantaneous detection of NH4
+ is 

needed alone. The approach presented in this work has the following three weaknesses:  

i) The supervised ML algorithms used for the prediction of soil-N require a training dataset, 

meaning prior measurements/climate data are needed to make the estimation algorithms 

work. This problem could partially be resolved by using data for soil nitrogen already 

published in the literature to create a training dataset. A training dataset could also be 

created using the PoU sensor toolkit described in this work in addition to occasional 

measurements of soil-NO3
- in an external laboratory. We expect that performance of the 

algorithms will increase over time as more data are generated using the sensors and 

laboratory measurements. Although leave-one-out cross validation was used for training, 

the lack of a validation dataset may have resulted in overfitting of the hyperparameters to 

the weather conditions in Figure 4.1 (bottom left and bottom right). The LSTM approach 

also concatenated all training data into one long multivariate time series, resulting in a 

model that would only predict cyclical patterns if allowed to predict longer times than the 

length of the input time series ( t ⩾ 16 days). This problem may be addressed by treating 

each set of environmental conditions as panel data (with separate multivariate time series 

for PoU measurements in different locations/environmental conditions), linking between 

panels and training over longer time periods. 

ii) chemPEGS (for measuring NH4
+ at the PoU) is expected to be cross-sensitive to other 

alkaline gases and currently takes a long time to perform a measurement; 30-450 minutes 

for 144-4.5 ppm NH4
+. chemPEGS, however, demonstrated sufficient performance for 
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measuring soil- NH4
+ as it is most sensitive to NH3(g) due to its high water solubility. The 

time it takes to produce a result could also be reduced by measuring the rate of change of 

the impedance during neutralization or training a predictive machine learning model on 

short measurement times. The sensitivity of chemPEGS could also be improved by using 

a lower concentration of H2SO4.(29, 30, 44)  

iii) The dataset generated in this work is limited (sparse) and does not include various 

scenarios such as sudden changes in weather, different types of soils and fertilizers (e.g., 

urea). The current work also does not include crops, which would draw nitrogen from the 

soil and affect nitrogen dynamics. A limited dataset may explain the unusual optimized 

LSTM settings for batch and number of neurons (both 3) Further work is needed to create 

a model to predict nitrogen uptake by plants. 

The impact of this work is that growers can instantly determine crucial soil nutrients using only point-

of-use measurements and weather data, and forecast nutrients into the future to build better 

fertilization plans. This would ensure that appropriate nutrients are present, when needed, by the 

crops. This approach could enable precision farming of a new caliber (with significantly lowered 

capital investment), reducing fertilizer requirements, soil degradation and eutrophication, while 

improving crop yields. Furthermore, we hope this approach will extend to complex media other than 

soil, where simple chemical measurements and easily accessible data, combined with machine 

learning, can be used to predict, and forecast crucial outputs in healthcare, food and environmental 

monitoring. 
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4. Experimental Details 

Soil experiments: Top soil with sandy loam texture (69% sand 2.00-0.063mm diameter, 25% silt 

0.063-0.002mm diameter, 6% clay <0.002mm diameter, density 774 g/l measured in NRM 

Laboratories, part of Cawood Scientific, United Kingdom) was purchased from Westland and used in 

the experiments without further modifications. For the soil experiments performed in our laboratory, 

the water-soluble compounds and small particles were extracted from the soil samples by mixing 

100ml diH2O with 100g of soil, and pressing with a potato press (VonShef). The solution extracted 

was used in the subsequent, pH, EC and NH4
+ measurements in our laboratory. Soil samples (200 g), 

for the measurements at the external laboratory (NRM), were extracted from the soil pots and stored 

in a Ziploc bag (placed inside a cool box along with cooling element) which were collected and 

analysed within 2 days. Different to our method of handling, the external lab used a soil-to-water ratio 

of 1:2.5 as they dried the samples before processing to improve consistency (we did not do this, which 

caused issues surrounding unmatching results between the external measurements and measurements 

performed by our group). Levels of soil nitrogen were measured colorimetrically by the external 

laboratory. NH4
+ was reacted with alkaline hypochlorite and phenol to form indophenol blue. Sodium 

nitroprusside acted as a catalyst in formation of indophenol blue which was measured at 640nm. NO3
- 

was reduced to nitrate using cadmium in an open tubular cadmium reactor. A diazo compound formed 

between nitrite and sulphanilamide, which was coupled with N-(1-Napthyl)ethylenediamine 

dihydrochloride to give a red azo dye, measured at 540nm. For all soil experiments, soil was weighed 

into pots of 5.1 kg, and fertilized with 51ml 0.665M (12,000ppm) NH4NO3 while mixing thoroughly, 

resulting in soil at approximately 120ppm NH4NO3. 

 

Fabrication of chemPEGS: chemPEGS with carbon electrodes (No. C2130925D1 conductive carbon 

ink, 55/45 wt % with No. S60118D3 diluent from GWENT Group) were screen-printed on 

chromatography paper (WhatmanTM, grade 1 chromatography paper, 20 cm × 20 cm, 0.18 mm 

thickness) and dried overnight at room temperature to remove excess organic solvents from the 

electrodes. The design of the electrodes consists of three interdigitated electrodes with 1 mm spacing 
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between each finger which was optimized to increase sensitivity – i.e. we would like to keep the 

sensors as resistive as possible up to the level where our electronics could handle the low-currents. To 

contain the H2SO4 added in a certain region within paper, wax was deposited around the electrode 

area to provide a hydrophobic barrier. We printed wax designs using a Xerox ColorQube 8580 printer 

on to Office Depot transparent acetate sheets, then heat-transferred to the chemPEGS substrate with a 

Vevor HP230B heat press (180 °C). 10µl 0.025M H2SO4 was then drop casted on the chemPEGS 

before use, to neutralize the ammonia gas. An array of batch processed chemPEGS sensors is shown 

in Figure S11. 

 

Gas-phase measurement of NH4
+ with chemPEGS: A gold plated card-reader (Midland Ross CD6734 

BRN 34 Way IDC Ribbon Cable Card edge Connector) was inserted into a screw cap of a 50ml 

centrifuge tube (VWR) and sealed with a glue gun. Using the electrical contacts on the back (left 

outside the tube), the card-reader was connected to a custom-built printed circuit board containing 

electronics that can apply a10Hz, 4Vp-p signal across the chemPEGS. chemPEGS was inserted into the 

card-reader and placed in a sealed centrifuge tube containing 1ml 15M NaOH. The current produced 

as a result of the voltage applied was converted to a voltage again by an operational amplifier-based 

transimpedance amplifier (with a ratio defined by a gain resistor); the voltage signal was subsequently 

recorded by an Arduino Due using its onboard Analog-to-Digital Converter and communicated to a 

near-by PC over a serial link. Once the electrical signal (current passing through the sensor) stabilized 

(i.e. the paper substrate reached an equilibrium with the humidity inside the tube), a 5ml soil solution 

was injected into the tube using a syringe and changes in the electrical current was recorded as the 

analytical signal. 

 

Calibration of chemPEGS for measuring soil-NH4
+: The increase in impedance (calculated using 

Ohm’s Law) of the chemPEGS was measured over time during neutralization of H2SO4 that was drop 

casted previously. Calibration was first performed without soil for a range of NH4NO3 concentrations 

(4.5, 9, 18, 36, 72, 144 and 287ppm), and a range of H2SO4 concentrations (0.1, 0.05 and 0.025M), 

shown in Figure S1. Calibration was attempted by comparing concentration of NH4NO3 to the total 
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change in the impedance of chemPEGS, and the time taken for impedance to stop increasing or slow 

dramatically (Figure S3). A concentration of  0.025M for H2SO4 gave the fastest and most precise 

measurements (Figure S1). Calibration in soil solution was performed for a range of concentrations 

(4.5, 9, 18, 36, 72, and 144ppm) of NH4NO3 spiked in the soil sample and then extracted. A 

calibration curve was fitted as NH4
+

[ppm] = (Time[minutes] × 5.43e-4)-1.26 with R2
Cal.

 = 0.96 (Figure 2.4). 

 

Control of rainfall and temperature: Rainfall was fixed at 1, 3, 5, or 10 mm/day, implemented by 

adding a daily equivalent (pots were watered every 2 days) of 57ml, 172ml, 286ml and 573ml 

respectively to a pot area of 573cm2. Temperature was controlled by wrapping pots containing soil 

with nichrome wire (purchased from Amazon) and applying a 36V potential, resulting in an electrical 

current of 1.5A supplied from two Tenma 72-8350A power supplies in series. Soil temperature was 

measured at 3 points (centre, edge and in between) and averaged to estimate the temperature of soil 

periodically, using a Silverline 469539 Pocket Digital Probe Thermometer. 

 

Measurement of EC and pH of soil: Using a Hanna Instruments HI5222-type benchtop EC/pH meter, 

the pH and EC of the solution extracted from the samples of soil were measured. Each sample was 

measured five times and the readings were averaged to reduce error.  

  

Machine learning model: All computational work was performed using Python (3.6) in PyCharm 

integrated development environment. For modelling and optimization, we used the following core 

packages: Keras API for Tensorflow (LSTM model), Scikit-learn (ensemble and Knn regressors), 

XGBoost, pandas and NumPy.  
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Figures 

 

Figure 1: Nitrogen fertilizer is the backbone of modern agriculture, and is typically applied as urea or 

ammonium nitrate (we used ammonium nitrate in this work), fuelling the soil-nitrogen cycle. These 

fertilizers produce NH4
+ and NO3

- in soil, available to be taken up by plants. We have combined 

point-of-use (PoU) electrical measurements (including a new soil-NH4
+

 sensor) with a machine 

learning model to quantify difficult-to-measure soil nutrients (such as NO3
-) and forecast them into the 

future. This provides information concerning dynamics of soil nitrogen instantaneously and into the 

future to guide fertilization (reduce over-fertilization, understand the effect of weather, and ensure 

enough plant-available nitrogen to maximise crop yield) without laboratory measurements. At scale, 

this model could use a bare minimum of readily available input data to quantify and predict crucial 

outputs (e.g., soil macronutrients) in highly complex systems (such as soil). 
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Figure 2: Gas-phase NH4
+ sensor cartridge, consisting of a container, 1ml 15M NaOH and a disposable 

chemPEGS that acts as a scrubber of soil-NH4
+ connected to an integrated circuit (IC) to perform impedance 

analysis. (Figure 2.1) The volatilized NH3(g) dissolves in the layer of water adsorbed on the chemPEGS, (Figure 

2.2) neutralizing the H2SO4 and increasing ionic impedance, which was measured electrically. The neutralization 

reaction draws out the remaining NH4
+ from the soil solution to maintain the equilibrium of NH3 in the 

headspace. The time it took for neutralization to slow dramatically or complete was used as the analytical signal 

(see SI Figure S3 for raw data and mathematical criteria). An example signal from 144ppm soil- NH4
+ is shown 

in Figure 2.3 with the analytical signal circled in red and the error shown in grey (calculated by standard 
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deviation of n=5 measurements). We calibrated the sensor in a range of concentrations of NH4
+ from 4.5-

144ppm in soil fertilized with NH4NO3 (Figure 2.4).  
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Figure 3: Time series data of soil nitrogen dynamics were measured over short timescales (<20 days), 

where each corresponds to soil under different environmental conditions. We controlled rainfall and 

temperature by adding a controlled amount of water and passing current through a resistive heating 

wire (top of Figure 3). Environmental conditions span arid (1mm rain/day) to tropical (10mm 

rain/day), temperate (20±2 °C) and warm (31±2°C). Initial fertilization with NH4NO3 was fixed at 120 

ppm. Measurements of soil temperature (n=3), rainfall, pH (n=5), EC (n=5) and NH4
+ (n=5) were 

made in our laboratory (GRG) with errors corresponding to the standard deviation, and pH, EC, dry 

%, NH4
+ and NO3

- were measured in an external laboratory (NRM) for comparison and training the 

machine learn model.  
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Figure 4: Instantaneous Soil-NO3
- was predicted with instance based and ensemble learning 

regressors. Features were first ranked by importance to the XGBoost model, calculated by weight 

(number of times the feature occurs in the trees) and gain (each feature’s contribution to each tree), 

shown in Figure 4.1 (top left). The best performing regressor for all environmental conditions is Knn, 

which predicts NO3
-  using only PoU sensors from our lab as test inputs with R2=0.63 (Figure 4.1 top 

right). Optimizing the model for each set of environmental conditions (regressor and tuning for each 

shown in Figure S7) improves the score to R2=0.70 (Figure 4.1 bottom left). Using external lab data 

as test inputs (removing any inaccuracy from our PoU sensors) gave optimized predictions for NO3
- 

with R2=0.87 (Figure 4.1 bottom right). The timeseries dataset was used to train a long short-term 

memory recurrent neural network (LSTM-RNN) model to forecast NH4
+ and NO3

- into the future, also 

for unseen environmental conditions. Models were retrained for each desired forecast time (1- 12 days 

into the future) and comparing predicted to real values over the 12 day period gives a score of R2
NH4+ 

= 0.64 and R2
NO3- = 0.70 (Figure 4.2). 
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