
 

Abstract—The use of multiple atlases is common in medical 

image segmentation. This typically requires deformable 

registration of the atlases (or the average atlas) to the new image, 

which is computationally expensive and susceptible to entrapment 

in local optima. We propose to instead consider the probability of 

all possible atlas-to-image transformations and compute the 

expected label value (ELV), thereby not relying merely on the 

transformation deemed “optimal” by the registration method. 

Moreover, we do so without actually performing deformable 

registration, thus avoiding the associated computational costs. We 

evaluate our ELV computation approach by applying it to brain, 

liver, and pancreas segmentation on datasets of magnetic 

resonance and computed tomography images. 

 
Index Terms—Expected label value (ELV), supervised image 

segmentation, soft segmentation, atlas, MRI, CT. 

 

I. INTRODUCTION 

UTOMATIC image segmentation is often a central step in 

medical imaging studies, enabling the analysis of specific 

regions of interest (ROIs). In supervised segmentation, an 

algorithm segments a new image using the information derived 

from a training dataset of images that are accompanied with 

ground-truth (e.g. manually delineated) ROI labels. Two 

popular approaches to supervised image segmentation use 

multiple atlases [1-3] and deep neural networks [4, 5]. In multi-

atlas-based segmentation of a new image, atlas images are (or a 

mean template image is) deformably registered to the new 

(to-be-segmented) image. The manual labels are then 

propagated into the new image space using the computed 

transformations, and fused to form the new labels. 

Deformable registration of the atlas images to the new image 

is computationally very demanding (except for recent deep-

learning based approaches [6-9]) and is the bottleneck of atlas-

based segmentation. To improve computational efficiency, it 

has been proposed to use only a subset of atlases [10], albeit at 
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The transformation resulting from registration guides label 

propagation from the atlas to the new image. Being an iterative 

non-convex optimization, image registration is prone to 

becoming trapped in local optima, potentially leading to 

inaccurate propagation of the labels. Moreover, different but 

equally reasonable transformations may produce similar values 

for the registration objective function (within its margin of 

error). Thus, even if the global optimum is found, choosing it 

as the single correct transformation would disregard valuable 

information provided by other potentially valid 

transformations. Such a globally optimal solution is also rarely 

robust, as it is sensitive to disturbances of or changes to input 

images, or variations in acquisition parameters. To alleviate this 

issue, uncertainty in registration has been incorporated into 

Bayesian segmentation by approximating the marginalization 

over registration parameters via Markov Chain Monte Carlo 

techniques [11], which, even though efficiently implemented, 

would further increase the computational costs. Local measures 

of uncertainty in deformable registration have also been used to 

improve the sensitivity of the label propagation in atlas-based 

segmentation [12, 13]. 

In this work, we present a new atlas-based image soft-

segmentation method that – instead of attempting to determine 

a single correct label – produces the expected value of the label 

at each voxel of the new image, while considering the 

probability of possible atlas-to-image transformations. This is 

accomplished without either explicitly sampling from the 

transformation distribution (which would be intractable) or 

running the costly deformable registration in training or testing 

stages. We create a single image from the training data, which 

we call the key. Then, for a new image (after affine alignment, 

if necessary), we compute the expected label value (ELV) map 

simply via a convolution with the key, which is efficiently 

performed using the fast Fourier transform (FFT). Our fuzzy 

ELV map is therefore a robust combination of labels suggested 
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by atlas-to-image transformations, weighted by a measure of 

the transformation validity. This soft segmentation can be 

further used to initiate a subsequent hard-segmentation 

procedure. We validate our approach through brain, liver, and 

pancreas segmentation experiments on magnetic resonance 

(MR) and computed tomography (CT) images. 

This article extends our preliminary conference version [14]. 

In particular, we have improved the method as well as expanded 

our empirical evaluation by including several new datasets. 

Moreover, our Matlab toolbox is now publicly available 

(https://www.nitrc.org/projects/elv). In the following, we 

describe the proposed method in detail (Section II and the 

appendices) and present experimental results (Section III) along 

with some concluding remarks (Section IV). 

 

II. METHODS 

A. Segmentation from a Single Atlas 

Let �: ℝ� → ℝ be the �-dimensional image to be segmented, 

and �: ℝ� → ℝ an atlas image with the same contrast as �, for 

which the manual label of a specific ROI has been provided as �: ℝ� → 	0,1.1 For the new image �, we wish to compute the 

expected value of the ROI label, �: ℝ� → �0,1�, which is a 

measure of likelihood of each voxel belonging to the ROI. 

In traditional atlas-based image segmentation, the label � is 

propagated into the space of � as � ∘ �∗��, ��, where the 

transformation �∗��, �� is computed via registration as �: ℝ� →ℝ� that maximizes the similarity between � and � ∘ �.2 Here, 

instead, we propose to compute the expected value of the 

propagated �, while considering a probability for each possible 

transformation in � ≔ 	�: ℝ� → ℝ�, as follows: 

 � ≔ ��� ∘ �|�, �� = �Pr��|�, �� �� ∘ ��d�� . (1)

 

Equation (1) computes the ELV as an integral over the space 

of all transformations, which could be regarded as multiple 

(theoretically an infinite number of nested) integrals over the 

space of parameters representing �. For free-form deformation, 

as considered here, Eq. (1) in fact includes a �-dimensional 

integral – with respect to the value of �� � – for each  ∈ ℝ�. 

In standard atlas-based segmentation, Pr��|�, �� is considered a 

Dirac delta, "#� − �∗��, ��%, whereas here we will consider a 

full probability distribution for it. 

Using Bayes’ theorem, we can write the probability of the 

transformation given both the new and atlas images as: 

 Pr��|�, �� ∝ Pr��, �|�� Pr���, (2)

 

where the two right-hand-side factors correspond to the image 

similarity and the transformation regularity, respectively. For 

the former, we opt to use the inner product of the image and the 

 
1 The ground-truth segmentation may also be a soft label, �: ℝ� → �0,1�. 
2 We denote vector-valued variables in bold. 

transformed atlas, since it is expected to be higher when the two 

images are well aligned: 

 Pr��, �|�� ∝ � �� ��� ∘ ��� �d ℝ' . (3)

 

It is, however, well established that the inner product reflects 

the degree of alignment more effectively when only the phase 

information of the image is included [15, 16], which is how in 

practice we will proceed, as described in Section II.C. 

A discussion on our choice of the inner product of phase images 

as image similarity is provided in Appendix B. In the following, 

we first consider the case where � is only a translation. 

 

1) Translation 

For a translation, �� � =  − (, the inner product in Eq. (3) 

becomes the cross-correlation of the image and the atlas, which 

is commonly used for image alignment [15, 16]: 

 Pr��, �|(� ∝ � �� ��� − (�d ℝ'  = �� ∗ ��̅�(�, (4)

 

where ∗ denotes the convolution operator, and ��̅ � ≔ ��− �. 

By assuming a flat prior for the shift (i.e., a constant Pr�(�) and 

combining Eqs. (1), (2), and (4), the ELV at voxel * will be: 

 ��*� ∝ � �� ∗ ��̅�(���* − (�d(ℝ' , (5)

 

or, 

 � ∝ �� ∗ ��̅ ∗ � = � ∗ �� ̅ ∗ ��. (6)

 

In the second line, we exploited the associativity property of 

convolution, which leads to the following expression for the 

ELV: 

 � ∝ � ∗ +, (7)

 

where we define and pre-compute the key, +, from the atlas, as: 

 + ≔ �̅ ∗ �. (8)

 

As can be seen, + is obtained by flipping the atlas image, 

blurring it by the label, and shifting it so the label ROI is 

roughly at the center. 

Next, we will incorporate deformations in our transformation 

model. 

 

2) Deformation 

To generalize the transformation � to include deformations, 

we will use the common Tikhonov prior on the regularity of the 
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deformation field as the probability of the transformation: 

 Pr��� ∝ ,��� ≔ -. /012 3 ‖5��6�.7‖82 96ℝ' , (9)

 

where :� is the Jacobian matrix of �, 7 is the � × � identity 

matrix, and the constant parameter < represents a prior on the 

magnitude of the deformations. In Appendix A, we show that 

the ELV is still computed following Eq. (7), where the key, +, 

is initially computed as in Eq. (8), but then updated to 

incorporate the deformation. We show that we can approximate 

this update by an inhomogeneous blurring of the key, as: 

 +� � ← �+�6� ∗ >�6|?, ‖ ‖0<07��6@ , (10)

 

where >�∙ |B, Σ� represents the Gaussian function with the 

mean B and the co-variance matrix Σ. One can see that the size 

of the blurring kernel increases with the square root of the 

Euclidean distance from the center of + – i.e., the region 

corresponding to the label ROI (see Section II.A.1). Blurring a 

region in + decreases its contribution to soft segmentation by 

removing its high-frequency components prior to the 

convolution in Eq. (7). This means that the proposed ELV takes 

local deformations into account by giving a smaller weighting 

to regions in the atlas image that are farther from the ROI, 

making the information in such far areas less important. 

The proposed model accounts for large translations, as well 

as local deformations, even though we do not run any 

deformable registration. As for rotation and global scaling, 

accounting for local deformations covers a small amount of 

them, and to allow for large amounts, we can initially affinely 

align the image and the atlas. 

 

B. Multiple Atlases 

In case D atlases (affinely normalized in the same space) with 

manual labels are available, we will write Eq. (1) in the same 

fashion, as: 

 

� ≔ 1D E ���F ∘ �|�, �F�G
F@/ , (11)

 

where �F and �F are the HIJ pair of atlas and manual-label images, 

respectively. This will yield similar results as in Eqs. (7) and 

(10), with the only difference being Eq. (8), now generalized as: 

 

+ ≔ 1D E �F̅ ∗ �F
G

F@/ . (12)

 

Note that even in the case of multiple atlases, + is a single 

image that is pre-computed from the training data. 

 

 
3 For data that is not too noisy, the organ size can also be estimated as the 

inflection point of the curve obtained by sorting the ELV map in descending 

order. Alternatively, the ELV map can be thresholded with a value optimized 

from the training data.  

C. Implementation 

1) Computation in the Fourier Domain 

To create the key, +, we first ensure that the D training 

images are represented roughly in the same space; and if not, 

we affinely align them. By applying the convolution theorem to 

Eq. (12), we will then use FFT to initialize +: 

 

+ = ℱ./ L1D E �MF∗N�MFN �OF
G

F@/ P, (13)

 

where the hat ( ̂) sign and ℱ./ represent the Fourier and inverse 

Fourier transforms, respectively, and �M∗ is the complex 

conjugate of �M. By only keeping the phase information of the 

image (i.e., normalizing �MF by its magnitude), we create a 

sharper probability distribution for the aligning transformation 

in Eq. (3) [15, 16] (see Appendix B). In addition, this has an 

intensity normalization effect, preventing + from giving a 

different weighting to an atlas image due to its global intensity 

scaling. Next, to incorporate deformations (i.e., if < > 0), we 

update the key, +, voxel-wise following Eq. (10) by multiplying 

and summing it with a varying discretized Gaussian kernel. 

To segment a new image, �, we first make sure that it is 

correctly represented in the atlas space (otherwise, affinely 

align it to the mean atlas image), and then compute the ELV 

map from Eq. (7) as follows: 

 � ∝ ℱ./ S �MN�MN +MT. (14)

 

Note that +M is pre-computed from the atlases and kept offline. 

For hard segmentation of the organ (or structure) from the 

map, we threshold the map to keep a voxel subset with the 

volume 14% larger than that of an average organ (estimated 

from the atlases); see Appendix C for the rationale behind this 

choice.3 We then refine the mask by keeping the largest 

connected component (CC), as well as the CCs with at least half 

the volume of the largest CC, and then filling the holes.4 

 

2) Second Pass 

Once the initial ELV map is obtained, it can be refined by 

recalculating Eq. (14) while this time prioritizing the initial 

soft-segmented area. In our experiments, for instance, we used 

weighted versions of  +� � and �� �, as +� �>� |?, U07� and �� ����*� ∗ >�*|?, U07��*@ , respectively, where the size of 

the Gaussian window (2U) was chosen to be roughly that of an 

average organ. 

 

3) Intensity Prior 

Given that using the phase image discards some image 

intensity information, one can further augment the computed 

ELV volume with image intensities. At a given voxel, the Bayes 

4 A Markov random field prior on the voxel labels could also be used to 

encourage spatial regularity [3, 18]. 
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formula implies: 

 Pr��|�, ��= Pr��|�, �� Pr��|��Pr��|�, �� Pr��|�� + Pr��|¬�, �� Pr�¬�|��, (15)

 

where � indicates that the given voxel belongs to the label, with ¬ the negation operator, and � and � are the values of the image 

intensity and the computed ELV at the voxel, respectively. 

Were it known whether the voxel is included in the label or not, 

the image intensity would be conditionally independent of the 

ELV; i.e. Pr��|�, �� = Pr��|�� and Pr��|¬�, �� = Pr��|¬��. 

Using the ELV for Pr��|�� then leads to: 

 Pr��|�, �� = Pr��|�� �Pr��|�� � + Pr��|¬�� �1 − ��, (16)

 

where Pr��|�� and Pr��|¬�� can be approximated by Gaussian 

functions of the intensity values of �, with their parameters 

estimated from the atlases (or the image itself using the initial 

ELV map). For � to exhibit the properties of a probability, the 

ELV map needs to be normalized by its maximum, with any 

negative values projected to zero.  Pr��|�, �� can even substitute for � itself in the computation 

of the ELV, as – depending on the image contrast – it may better 

highlight the organ of interest, which is the most informative 

part of the image for segmentation. In that case, since the ELV 

map has not yet been computed, we use a constant � in Eq. (16) 

equal to the label-to-image volume ratio estimated from the 

atlases. 

Several other post-processing steps are possible after this 

soft-segmentation [1]. If binary segmentation is desired, the 

ELV map can then be thresholded (see Appendix C and 

Section II.C.1) or used as seed region to subsequently initialize 

an unsupervised hard segmentation algorithm [14, 17]. 

 

III. RESULTS AND DISCUSSION 

We evaluated our ELV computation method on several 

medical image databases via leave-one-out cross validation. For 

each test image in a database, we created the key from the 

remainder of the images (i.e., labeled atlases) in the database 

following Eq. (12), computed the label for the test image, and 

report the Dice overlap coefficient between the computed label 

and the known label. Given that the images in each database 

were correctly represented in the same space, we did not 

affinely register them. Furthermore, since optimizing for < in 

Eq. (10) improved the Dice scores only negligibly (< 1%) in our 

initial benchmarking, we report our results in this section for 

the simple case with < = 0. 

As described in Section II.C, we computed the ELV map in 

two passes, modulated the ELV with the intensity prior in 

Eq. (15), where we used the atlases to estimate the means 

(except for the liver; see Section III.B) and standard deviations, 

and then hard-thresholded the probability maps to create masks. 

Additional steps to preprocess the abdominal CT images 

included: smoothing the borders of each image, automatically 

removing the patient table (via thresholding the image and 

removing the lower-most one or two connected components), 

and using the intensity-prior image (Section II.C.3) instead of 

the abdominal image itself for ELV computation (thereby 

highlighting the organ amongst all other parts of the image). 

 

A. Brain 

We first assessed the ability of our method to imitate 

FreeSurfer [19] in segmenting brain subcortical structures. We 

used T1-weighted MR images of 1224 subjects from the third 

release in the Open Access Series of Imaging Studies (OASIS-3) 

[20], normalized to the size 256×256×256 with 1 mm³ isotropic 

resolution. We considered the FreeSurfer-generated labels for 

12 subcortical structures (left and right thalamus, caudate, 

putamen, pallidum, hippocampus, and amygdala) as “silver” 

standard and tried to reproduce the segmentation for each image 

via the proposed ELV approach. The median, mean, and 

standard error of the mean (SEM) of the resulting cross-

validation Dice scores between the labels generated by ELV 

and FreeSurfer are shown in Table I. Overall, the Dice score 

had a median of 0.782 and a mean of 0.766 ± (SEM) 0.001 

across subjects and structures. 

Since no manually delineated labels were used as the gold 

standard in this experiment, the results merely reveal how 

faithful the proposed approach is in reproducing FreeSurfer 

labels. For comparison, in a similar experiment [21], a U-Net 

type convolutional neural network (CNN) was trained on 581 

FreeSurfer-segmented T1-weighted brain images. The authors’ 

trained model produced mean Dice scores of 0.74 and 0.71 on 

two manually labeled test datasets. (The authors, however, did 

not compare the labels that they computed with FreeSurfer-

generated labels.) 

 

B. Liver 

Next, we used the training dataset of the public Liver Tumor 

Segmentation (LiTS) Challenge [22], which includes contrast-

enhanced abdominal CT images with manually delineated 

TABLE I 

DICE COEFFICIENTS BETWEEN ELV AND FREESURFER LABELS IN BRAIN 

Structure Hemisphere Median Mean SEM 

Thalamus 
Left 0.751 0.744 0.001 

Right 0.771 0.764 0.001 

Caudate 
Left 0.804 0.793 0.002 

Right 0.807 0.796 0.002 

Putamen 
Left 0.808 0.797 0.002 

Right 0.816 0.802 0.002 

Pallidum 
Left 0.758 0.685 0.005 

Right 0.769 0.743 0.003 

Hippocampus 
Left 0.793 0.784 0.001 

Right 0.806 0.799 0.001 

Amygdala 
Left 0.754 0.742 0.002 

Right 0.758 0.748 0.002 

All Both 0.782 0.766 0.001 
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labels for the normal tissue and lesions in the liver, provided by 

various clinical sites. We considered the entire (healthy and 

lesion) organ label in our experiments. 85 subjects passed our 

inclusion criteria, mainly the slice thickness being included in 

the header and no larger than 2 mm. The images were resampled 

in the space of the first image to (1.6mm)³ isotropic resolution, 

so they were all of the size 248×248×323. 

We then computed the ELV map for each subject, an 

example of which is illustrated in Fig. 1 (left) for the 

representative subject (corresponding to the median final Dice 

score; see below). To create the intensity-prior map, we 

estimated the standard deviation of the intensities of the liver 

and the background from the 84 atlas subjects, using the manual 

labels and their dilated versions (by a sphere of radius 50), 

respectively. For stability, we estimated the mean intensity 

using the initial ELV mask of the test subject, given that lesion 

size and intensity varied from subject to subject. Next, we 

modulated the ELV with the intensity prior (Fig. 1, middle), 

created a new mask, and further refined it with an updated 

intensity mean estimated from this mask. For mask preparation, 

we also performed morphological opening with a spherical 

structuring element with the radius of 2 voxels while keeping 

the largest connected component (i.e., eroding + keeping + 

dilating), which removed unwanted smaller structures attached 

to this relatively large ROI. 

The cross-validation Dice coefficients between the computed 

masks and manual labels (Fig. 1, right) had a median of 0.92 

across subjects (mean: 0.91 ± 0.01). A video of the ELV results 

for all subjects is available in the supplementary materials. 

Among those results with lower (entire-organ) Dice scores, 

lesion regions were frequently the culprit, as the intensity-prior 

map, although generally improving the segmentation, partially 

excluded some of those regions. 

For comparison, we also trained a 3D CNN with the U-Net 

architecture [5] to segment the liver from 2-time downsampled 

LiTS images. The network consisted of 3 downsampling layers 

and 40 initial filters (at the first convolutional layer). We trained 

the network using 65536 3D sample patches of size 

128×128×128 per epoch with a mini-batch size of 2. The CNN 

achieved a mean Dice score of 0.94 for the liver in cross-

validation. Furthermore, at the time of the submission of this 

article, the LiTS challenge website [22] reported mean Dice 

values for the liver on their test data ranging from 0.84 to 0.97 

(disregarding the outlier results with mean Dice ≤ 0.35), with 

many of the methods applying deep learning. 

 

C. Pancreas 

Lastly, we took a similar approach as in the previous 

subsection to segment the pancreas in two experiments, using 

two CT databases from The Cancer Imaging Archive (TCIA) 

acquired at the National Institutes of Health (NIH) Clinical 

Center [23, 24] (82 subjects) and from the Memorial Sloan 

Kettering Cancer Center [25] (225 subjects; those with slice 

thickness of 2~3 mm). The labels created from the ELV map in 

cross-validation and modulated with the intensity prior had a 

median Dice score of 0.59 (mean: 0.56 ± 0.02) for the former 

database and a median Dice score of 0.50 (mean: 0.48 ± 0.01) 

for the latter database. Note that the pancreas in the second 

dataset included lesions. 

The pancreas’ anatomical flexibility and variability in shape, 

size, and location make it a more challenging organ for 

segmentation than the liver and the brain subcortical structures, 

which could explain the lower accuracy of the results by our 

atlas-based method for this organ. For comparison, recent work 

using CNNs on the first (TCIA) dataset report Dice scores as 

high as 0.83 [24, 26, 27]. 

Note that, in contrast to mainstream supervised segmentation 

methods that employ deformable registration or sophisticated 

trained neural networks, we compute the ELV map via a simple 

linear convolution operation on the (phase) image. 

Fig. 1.  CT image (blue) of the representative subject (i.e., with median segmentation Dice score) in the LiTS dataset. The slice with the largest cross section with 

the manual label is shown.  Left: The ELV map of the liver (red; occasional negative values in green).  Middle: The ELV map modulated by the intensity prior 

(red).  Right: The resulting binary segmentation (red), the manual label (green), and their overlap (yellow). Intensities have been scaled for better visualization. 
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IV. CONCLUSIONS 

We have introduced a new approach to supervised soft-

segmentation, which computes the expected label value (ELV) 

of a region of interest from an image using a training dataset of 

annotated atlases. The proposed method does not perform 

costly deformable registration, thereby also avoiding 

entrapment in local optima. We have evaluated the performance 

of our ELV computation technique in segmentation of the brain, 

the liver, and the pancreas. Future work consists of using the 

ELV map to augment the input to a convolutional neural 

network beyond the image itself, expecting to increase the 

segmentation accuracy of the better-informed model. 

 

V. APPENDICES 

A. Incorporation of Deformation 

In this appendix, we derive the ELV while accounting for 

deformations in the transformation. By combining Eqs. (1), (2), 

(3), and (9), the ELV at voxel * will be: 

 ��*� ∝ � �� �d ��� ∘ ��� ��� ∘ ���*�,���d��ℝ' . (17)

 

Since   and * are fixed in the inner integral, we make the 

change of variables ��6� = Y�6 −  �. Note that such a global 

shift will not change either the regularization, i.e. ,��� =,�Y�, or the domain of the inner integral, �. Consequently: 

 ��*� ∝ � �� �d ��� ∘ Y��?��� ∘ Y��* −  �,�Y�dY�ℝ'  
= � �� �+�* −  �d ℝ' , (18)

 

or: 

 � ∝ � ∗ +, (19)

 

where we define the key, +, as: 

 +� � ≔ ��� ∘ Y��?��� ∘ Y�� �,�Y�dY� . (20)

 

Next, we write the transformation Y as the sum of a global 

translation [ ∈ ℝ� and a deformation (displacement) field \ ∈]: Y� � =  + [ + \� �, (21)

 

where ] ≔ ^\: ℝ� → ℝ�N 3 \� �d ℝ' = ?_ is the set of 

translation-free displacement fields. The regularity prior is 

now: 

 ,�Y� = ,̀�\� ≔ -. /012 3 ‖a\�6�‖82 96ℝ' . (22)

 

We combine the above three equations, and separate the 

integral over the space of all transformations into an integral 

over possible translation-free deformations and an integral over 

possible translations: 

 +� � ∝ � ,̀�\�d\ � �#[ + \�?�%�# + [ + \� �%d[ℝ'b . (23)

 

Note that this is a linear and invertible change of coordinates, 

hence dY ∝ d\d[ (with the ratio independent of Y). With \ and   being constant in the inner integral, we make the change of 

variables [ = [c − \� � −  , leading to: 

 +� � ∝ � ,̀�\�d\ � �#[c − \� � + \�?� −  %�#[c%d[cℝ'b  
= � ,̀�\�+d�\� � − \�?� +  �d\b , (24)

 

where +d is the key for the translation-only case, introduced in 

Eq. (8): 

 +d ≔ �̅ ∗ �. (25)

 

It can be verified that: 

 lim1→d + ∝ +d. (26)

 

We now analytically estimate the key, +, as a function of +d 

for < > 0. Combining Eqs. (22) and (24) leads to: 

 +� � ∝ � +d�\� � − \�?� +  �-. /012 3 ‖a\�6�‖82 96ℝ' d\b . (27)

 

For simplicity, let us for now assume that   lies on the 

positive half of the first Cartesian coordinate axis, i.e.,  = hi/, 

where i/ is the unit vector in the direction of the first axis, and h ≥ 0. We also define the line segment kl ≔ 	mi/|0 ≤ m ≤ h. 

Accordingly: 

 \� � − \�?� = � :\� o�d opq = � :/\�mi/�dml
d , (28)

 

where :/\ is the partial derivative of \ in the direction of i/. 

Therefore: 

 +�hi/� ∝ � +d rhi/ + � :/\�mi/�dml
d s5b × -. /012 3 ‖a\�6�‖82 96ℝ' d�:\�. (29)

 

Note that we made further simplifying approximation by 

integrating over the space of the Jacobian of the deformation, 
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∂], instead of the space of the deformation, ], itself.5 

In Eq. (29), the only values of :\ on which +d depends are :/\�6� for 6 ∈ kl. Thus, we separate the integral into the 

product of three integrals, the first one being: 

 

+�hi/� ∝ � +d rhi/ + � :/\�mi/�dml
d s5u^\:pq→ℝ'_× -. /012 3 ‖au\�viu�‖229vqw d�:/\�, 

(30)

 

and the second and third integrals are: 

 

� -. /012 3 ‖au\�6�‖2296ℝ'\yq d�:/\�
5u^\:ℝ'\pq→ℝ'_
× � -. /012 3 z52,…,'\�6�z82 96ℝ' d#∂0,…,�\%52,…,'b , (31)

 

which are integrals of normal distributions and therefore 

constant, hence not included in the expression for +�hi/� in 

Eq. (30). 

Calculation of +�hi/� can be made notationally easier by 

approximating the inner integrals in Eq. (30) as Riemann sums. 

We divide �0, h� into | equal intervals (| → ∞), with dm ≈h |⁄ , and define: 

 �� ≔ h| :/\ ��| hi/�. (32)

 

The integral is now approximated as: 

 

+�hi/� ∝ � +d �hi/ + E ��
�

�@/ �ℝ�'
× -. /0l12 �⁄ ∑ ‖��‖22���u d�/ … d�� . (33)

 

This is, in fact, | consecutive convolutions of +d with a �-dimensional Gaussian, 

 +�hi/�
∝ �+d�6� ∗ > �6�?, h| <07� ∗ … ∗ > �6�?, h| <07������������������������� �

6@liu
. (34)

 

Given that convolution of | identical Gaussians results in a 

Gaussian with | times the variance, we have: 

 +�hi/� ∝ �+d�6� ∗ >�6|?, h<07��6@liu . (35)

 
5 This change of variables (integrating with respect to :\ instead of \) is 

linear due to the linearity of the differential operator :, as well as invertible due 

to the translation-free constraint on \. We continue with the relaxing 

assumption that ∂\ has independent elements. Nevertheless, for � ≥ 2, the 

variable set :\ is redundant and has a larger dimension than \ does, with 

 

We now exploit the rotational invariance of the Gaussian in 

Eq. (35) and that of the Frobenius norm of the Jacobian in 

Eq. (27), to generalize Eq. (35) for any  ∈ ℝ�: 

 +� � ∝ �+d�6� ∗ >�6|?, ‖ ‖0<07��6@ . (36)

 

Equation (36) is indeed the update presented in Eq. (10). 

Despite our use of the convolution notation in Eq. (36), + is not 

computed via an actual convolution, because the co-variance 

matrix of the Gaussian kernel varies depending on  , where the 

result of the convolution is evaluated. 

 

B. Inner Product as the Image Similarity Metric 

The inner product of the new image � and the transformed 

atlas image � ∘ �, which we have proposed as the image 

similarity metric in Eq. (3), is closely related to the sum-of-

squared-differences (SSD) cost function that is commonly used 

in image registration: 

 ��� ≔ � #�� � − �� ∘ ��� �%0d ℝ' = � #�0� � + �� ∘ ��0� �%d ℝ'− 2 � �� ��� ∘ ��� �d ℝ' . 
(37)

 

In order to establish an equivalence between maximizing our 

inner-product similarity function and minimizing SSD, it would 

seem necessary to include in Eq. (3) the term −½ 3 #�0� � +ℝ'�� ∘ ��0� �%d , which is not necessarily constant with respect 

to � due to local volume changes in the transformation. The 

extra terms that such an addition would introduce in Pr��|�, �� 

of Eq. (2), however, can be seen to be independent of the 

global-translation component of �. Then, since an integral with 

respect to � can be taken separately with respect to a global 

translation value and translation-free displacement fields, as in 

Eqs. (21)–(23), the extra terms in ��*� of Eq. (1) (resulting 

from the new translation-independent terms in Pr��|�, ��) 

would be constant (independent of *), and therefore 

unnecessary in the computation of the ELV. Consequently, 

quantifying the similarity between two images as their inner 

product, as adopted here, corresponds to the common use of the 

SSD cost function in deformable image registration. 

As mentioned in Section II.A, we use only the phase 

information of the images in Eq. (3), and measure the image 

similarity with the following inner product: 

 Pr��, �|�� = � �M���� ∘ �����∗N�M���� ∘ �����∗N d�ℝ' . (38)

elements that are interdependent given the linear relationship � × :\ = ?. As 

a result, for an exact solution, the integral must be taken with respect to an 

independent subset of the elements of :\ that includes the (independent) set :/\�kl�. 
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Using only the phase of the images, as in Eq. (38), is more 

suitable for the estimation of Pr��, �|��, as it produces sharper 

probability distributions [15, 16]. To demonstrate this via an 

example, let us model the transformation as a simple 

translation, �� � =  + [. The inner product therefore 

becomes the cross-correlation of the phase images, similar to 

Eq. (4), with Eq. (38) exhibiting the anticipated normality 

property, 3 Pr��, �|[� d[ℝ' = 1 (although Pr��, �|[� can 

occasionally become negative). Subsequently, in the simplistic 

case where � is a shifted version of �, i.e. �� � = �� − [?�, 

Eq. (38) will lead to Pr��, �|[� = "�[ − [?�, which is the exact 

desired distribution here. 

Lastly, the inner product is zero for non-overlapping � and � ∘ �, which is a crucial property for the image similarity metric 

to have in ELV computation. 

 

C. Volume Threshold 

To threshold the computed probability map of the organ, 

such as the ELV, we sort the values of the map and keep the top �∗ voxels, where the optimal �∗ needs to be determined. 

Assuming that the ground-truth label has �� voxels, we define ���� as the value of the ground-truth label at the top �IJ voxel, 

where � ≔ ���. An ideal probability map, whose top �� voxels 

are the ground-truth label, is expected to produce the following 

boxcar function: 

 �d��� ≔ �1 , � ∈ �0 1�0 , o. w. . (39)

 

In practice, however, the transition to zero at � = 1 is less 

sharp due to inaccurately classified voxels, which we 

approximate with the following inverted sigmoid function: 

 �¢��� ≔ 1 + £1 + £ �1 + 1£��/¤¢�¥, 
(40)

 

where £ is a nonnegative constant. Note that lim¢→d �¢ is the �d 

defined in Eq. (39) for the ideal probability map, and that lim¢→¦ �¢��� = -.¥ . Furthermore, the normality of �¢, i.e. 3 �¢���d�¦d = 1, guarantees the expected property of 3 �¢#� ��⁄ %d�¦d = ��. 

Keeping the top � voxels results in a mask that overlaps with 

the ground-truth label with the following Dice similarity 

coefficient: 

 

��§ = 2 3 �¢#�′ ��⁄ %d�′©d � + �� = 2 3 �¢��′�d�′¥d 1 + �
=

2 log « £ + 1£ + � ££ + 1��/¤¢�¥¬
log �1 + 1£� �1 + �� . 

(41)

 

One can verify that, depending on the value of £, the �¢∗  that 

maximizes the above Dice score ranges from �d∗ = 1 to �¦∗ =−./�−-.0� − 2 = 1.146, where � is the branch � of the 

Lambert  function. Therefore, according to this model, the 

optimal number of top voxels of the probability map to keep (to 

maximize Dice) is �∗ = �¢∗ ��. Choosing the nominal value of £ = 1 results in �/∗ = 1.141, which led us to keep the top subset 

of voxels with a volume 14% larger than that of an average 

organ (Section II.C.1). Note that subsequent keeping of only the 

largest connected components in the resulting mask reduces the 

number of false-positive voxels, further increasing the Dice 

score. 
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