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ABSTRACT: 13 

Bioprinting is an emerging tissue engineering method used to generate cell-laden 14 

scaffolds with high spatial resolution. Bioprinted vascularized bone grafts are a potential 15 

application of this technology that would meet a critical clinical need, since current 16 

approaches to volumetric bone repair have significant limitations. However, generation of 17 

vascular networks suitable for bioprinting is challenging. Here, we propose a novel Q-18 

learning approach to quickly generate 3D vascular networks within patient-specific bone 19 

geometry that are optimized for bioprinting. First, the inlet and outlet locations are 20 

specified and the scenario is modeled using a grid world for initial agent training. Next, 21 

the path planned in the grid world environment is converted to a Bezier curve, which is 22 

then used to generate the final 3D vascularized bone model. The vessels generated using 23 

this procedure have minimal tortuosity, which increases the likelihood of successful 24 

bioprinting. Furthermore, the ability to specify inlet and outlet position is necessary for 25 

both surgical feasibility as well as generation of more complex vascular networks. In total, 26 

this study demonstrates the reliability of our reinforcement learning method for automated 27 

generation of 3D vascular networks within patient-specific geometry that can be used for 28 

bioprinting vascularized bone grafts. 29 
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I. Introduction 33 

 34 

Regenerative medicine is an emerging field that seeks to develop methods to regrow or 35 

replace damaged, diseased, or missing tissues with synthesized tissue that restores 36 

normal function [1][2]. The development of a regenerative medicine approach to generate 37 

new bone and cartilage for treatment of degenerative joint diseases has been an active 38 

research area for many years [3]. However, the bone and/or cartilage constructs 39 

generated using standard tissue engineering strategies lack the spatial complexity of 40 

native tissue. In this regard, bioprinting, which utilizes 3D printing technology to generate 41 

tissue using materials containing viable cells, may be a solution for generating patient-42 

specific tissue for bone grafting [4].  43 

 44 

Bioprinting is a growing field that is expected to significantly impact clinical practice by 45 

enabling new regenerative medicine approaches. In general, bioprinted constructs are 46 

generated by sequentially printing thin layers of specific materials, such as hydrogels, 47 

collagen, and bioceramics, that are laden with cells. The layer geometry is stored in a G-48 

code file that the bioprinter translates to extrude the particular material. With the potential 49 

to produce a specific 3D shape containing cells at high resolution, 3D bioprinting has 50 

become a popular biofabrication method for researchers [5]. In particular, bioprinting a 51 

vascularized bone tissue construct would be a significant improvement over current 52 

efforts [6][7] and would directly meet a pressing clinical need. 53 

 54 

In particular, strategies to repair large bone defects in humans in scenarios such as 55 

neoplasm, trauma, reconstruction, and infection are limited [8]. Osteoconductive bone 56 

substitutes can be used to provide a scaffold for mineralization by native osteoblasts but 57 

are limited by the slow rate and limited reach of bony ingrowth, technical difficulties 58 

shaping the construct, and concerns about structural strength [9]. Similarly, bone allograft 59 

is also limited by the rate of host bone ingrowth and has the added complications of donor 60 

availability and attritional weakening of the allograft [10]. Although autograft bone contains 61 

living cells able to produce new bone, it cannot be used to treat large defects due to 62 

diffusion limiting the ability of cells in the center of a large graft mass to obtain nutrients 63 

and remove waste products, ultimately resulting in fatigue failure [11]. Vascularized bone 64 

grafts, which utilize the native vascularity of a bone graft to accomplish nutrient and waste 65 

exchange, were introduced to address this major limitation [12]. Unfortunately, 66 

vascularized bone donor sites are limited in number, size, and contour. Furthermore, 67 

harvesting these grafts results in added patient morbidity, and their implantation requires 68 

considerable technical skill [13]. In total, there are many clinical scenarios of volumetric 69 

bone loss lacking a suitable method for treatment. 70 

 71 

Since the skeletal vascular network is critical to native bone mineralization and graft 72 

survival [14], bioprinted bone intended for the treatment of large defects must be 73 

effectively vascularized. As a result, this requirement necessitates the design of a 3D 74 

vascular network within the bioprinted bone. We have developed a novel method to 75 

implement a vascular network using patient-specific geometry at the desired vascular 76 

density with customizable inlet and outlet positions by optimizing tortuosity using 77 

Reinforcement Learning (RL). This paper introduces the implemented learning method 78 
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and shows the mathematical convergence and validation for the learning method (termed 79 

Q-Learning). This method presents our 3D-to-2D projection, agent training, and a proper 80 

learning environment called the grid world path planning. Bezier curve approximation and 81 

2D-to-3D methods are described as the final steps to implement the imported geometry's 82 

computed vessels.  83 

 84 

II. Q-Learning 85 

 86 

Reinforcement Learning (RL) is a semi-supervised learning method that solves a task by 87 

trial and error by acting within an environment and calculating the feedback rewards for 88 

each taken action in order to maximize the accumulated reward [15], [16]. For each time 89 

step in which the agent takes an action, the environment transitions to a new state. The 90 

environment feedback is less informative than supervised learning and more informative 91 

than unsupervised learning since agents in unsupervised learning must discover the 92 

world without any explicit feedback [17].   93 

 94 

RL contains Monte-Carlo learning, temporal difference, and dynamic programming 95 

learning. Q-learning and State-Action-Reward-State-Action (SARSA) are the two 96 

algorithms of temporal difference learning [18]. Single-agent RL algorithms are divided 97 

into both model-free and model-based methods. Model-based methods include dynamic-98 

programming; on the other hand, model-free methods are based on an online estimation 99 

[17].  100 

 101 

Markov Decision Process (MDP) describe the agent environment by the following 102 

definition. 103 

 104 

Definition 1: A Markov decision process is defined as a tuple 𝑀 = ( 𝑋, 𝐴, 𝑝, 𝑟) where 𝑋 is 105 

the countable, finite and continuous state space, 𝐴 is the finite, continuous, and countable 106 

action space. For the dynamic environments, the transition probability is 𝑝(𝑦|𝑥, 𝑎) for any 107 

𝑥 𝜖 𝑋 , 𝑦 ∈ 𝑋, and 𝑎 𝜖 𝐴. Equation (1) is the probability of observing a next state 𝑦 when 108 

an agent take action 𝑎 in the state space 𝑥.  109 

 110 

𝑝(𝑦|𝑥, 𝑎) = 𝑃 ( 𝑥𝑡+1 = 𝑦| 𝑥𝑡 = 𝑥, 𝑎𝑡 = 𝑎)  (1) 111 

 112 

 113 

Definition 2: Policy is a decision rule 𝜋𝑡 is a state to action mapping at the time 𝑡 ∈ ℕ 114 

which is define as equation (2). In a Markovian process, policy is the sequence of decision 115 

rules 𝜋 = ( 𝜋, 𝜋, 𝜋, … ). 116 

 117 

𝜋(𝑎 𝑠)⁄ = 𝑃 [𝐴𝑡 = 𝑎 | 𝑆𝑡 = 𝑠]  (2) 118 

 119 

The agent’s goal is to maximize the expected discounted return at each step time 𝑡 , as 120 

shown in equation (3):  121 

 122 

𝑅𝑘 = 𝐸 [ ∑ 𝛾𝑗𝑟𝑡+𝑗+1]∞
𝑗=0   (3) 123 

 124 
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In equation (3), 𝛾 ∈ [0,1) is the discount factor, which is considered as the uncertainty 125 

regarding the received rewards in the future. Small 𝛾 looking for short-term rewards and 126 

values close to 1 look for the long-term rewards, which result in the exploration versus 127 

exploitation criteria. 𝑅𝑡 represents the agent reward accumulated in the long process. 128 

According to the equation (3), in order to calculate the state value for infinite time with a 129 

discount factor, equation (4) is used: 130 

 131 

𝑉𝜋(𝑥) = 𝐸[ ∑ 𝛾𝑡𝑟(𝑥𝑡, 𝜋(𝑥𝑡))|𝑥0 = 𝑥; 𝜋]∞
𝑡=0    (4) 132 

 133 

Definition 3: the state value function or 𝑄-function for any policy 𝜋, 𝑄𝜋: 𝑋 ×  𝐴 →  ℝ is 134 

defined as equation (5): 135 

 136 

𝑄𝜋(𝑥, 𝑎) =  𝐸[ ∑ 𝛾𝑡𝑟(𝑥𝑡, 𝜋(𝑥𝑡))|𝑥0 = 𝑥, 𝑎0 = 𝑎, 𝑎𝑡 = 𝜋(𝑥𝑡), ∀𝑡 ≥ 1]∞
𝑡=0  (5) 137 

 138 

And the optimal 𝑄-function describes as 𝑄∗(𝑥, 𝑎) = 𝑚𝑎𝑥𝜋𝑄𝜋(𝑥, 𝑎) as we deduce that the 139 

optimal policy is 𝜋∗(𝑥) = arg 𝑚𝑎𝑥𝑎∈𝐴 𝑄∗(𝑥, 𝑎). The Bellman optimality equation defined as 140 

equation (6): 141 

 142 

𝑄∗(𝑥, 𝑎) =  ∑ 𝑓(𝑥, 𝑎, 𝑥′)[ 𝑟(𝑥, 𝑎, 𝑥′) + 𝛾 𝑚𝑎𝑥𝑎′𝑄∗(𝑥′, 𝑎′)]   ∀𝑥 ∈ 𝑋, 𝑎 ∈ 𝐴 𝑥′∈𝑋  (6) 143 

 144 

Equation (6) states that the current value by taking action a in state space 𝑥 is the 145 

expected immediate reward plus the optimal policy (discounted) from the future states 𝑥. 146 

𝑥′ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡. In the RL algorithm, the action goal is to 147 

maximize the return by choosing actions with epsilon greedy and the optimal 𝑄∗. 148 

 149 

Q-learning is an online estimation with a model-free learning method [19], [20]. It turns to 150 

a learning algorithm by putting the equation (6) into an iterative loop. The 𝑄∗ is estimated 151 

using samples of equation (6). The sample batch is computed in the environment by 152 

reward 𝑟𝑡+1 , and the states of 𝑥𝑡 , 𝑥𝑡+1: 153 

 154 

𝑄𝑡+1(𝑥𝑡, 𝑎𝑡) =  𝑄𝑡(𝑥𝑡, 𝑎𝑡) +  𝛼𝑡[𝑟𝑡+1 + 𝛾 𝑚𝑎𝑥𝑎′𝑄𝑡(𝑥𝑡+1, 𝑎′) −  𝑄𝑡(𝑥𝑡, 𝑎𝑡)]  (7) 155 

 156 

The equation (7) does not have any information regarding the transition probability and 157 

reward functions; therefore, Q-learning is a model-free algorithm. The parameter 𝛼𝑡 ∈158 

(0,1] is the time-varying learning rate that specifies how far steps can be taken to 159 

determine the value of the batch sample ( target ) 𝛾 𝑚𝑎𝑥𝑎′𝑄𝑡(𝑥𝑡+1, 𝑎′) −  𝑄𝑡(𝑥𝑡, 𝑎𝑡). The 160 

convergence of the equation (7) has been considered and mathematically proven under 161 

the following conditions[17], [21]: 162 

 163 

 Q-learning updated values must be stored for each state action 𝑄𝑡(𝑥𝑡, 𝑎𝑡) 164 

 The series of time-varying learning rate for each state action (𝑥𝑡, 𝑎𝑡) sums infinity, 165 

but the sum of its square should be finite[22]: 166 

 167 

∑ 𝛼𝑡(𝑥, 𝑎) = ∞∞
𝑡=1    and  ∑ 𝛼𝑡

2(𝑥, 𝑎) < ∞∞
𝑡=1  168 

 169 
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 The agent should explore the environment in all states with nonzero probability. 170 

 171 

In order to guarantee the third condition for the agent, a greedy policy is used. In this 172 

condition, at each step, the agent chooses a random action with probability of 𝜀 ∈ ( 0,1), 173 

and the greedy action with the probability (1 − 𝜀). This 𝜀-greedy technique is used to 174 

explore the environment rather than exploit in one action[23]. Another method, which is 175 

the Boltzmann exploration strategy, can be used to find the action probability by purely 176 

random action selection [24]. 177 

 178 

The difference between SARSA and Q-Learning algorithm is the Q-function update as 179 

indicated equation (8) vs (7). In the SARSA algorithm, it computes the difference between 180 

𝑄𝑡(𝑥𝑡, 𝑎𝑡) and the weighted sum of the average action value and the maximum Q Value. 181 

In the SARSA algorithm, the target policy is always same as the behavior policy [25]: 182 

 183 

𝑄𝑡+1(𝑥𝑡, 𝑎𝑡) =  𝑄𝑡(𝑥𝑡, 𝑎𝑡) +  𝛼𝑡[𝑟𝑡+1 + 𝛾𝑄𝑡(𝑥𝑡+1, 𝑎′) −  𝑄𝑡(𝑥𝑡, 𝑎𝑡)]  (8) 184 

 185 

III. Methodology 186 

 187 

The implementation of Q-learning for the generation of a 3D vascularization model based 188 

on the raw image data involves the following steps: In the first step, cross-sectional 2D 189 

images, such as those generated by CT or MRI medical imaging, will be converted into 190 

the 3D model to specify the inlet and outlet position of the vascular network. In the next 191 

step, the required vascularization density and number of the vessels will be specified and 192 

the 3D model will be sliced into 2D planes. In order to simulate the Q-learning algorithm 193 

to find the solution, which is the least tortuosity and least overall distance to the outer 194 

shells, the 2D slice is converted to a 2D grid plane containing both the inlet and outlet 195 

position. Tortuosity index is the ratio of the total length and preferential tortuous fluid 196 

pathways. 197 

 198 

Q-learning solution, which is a planned path, is converted to a 2D Bezier curve and a 3D 199 

shape with the specified diameter. This 3D vascularized model is then implemented by 200 

subtraction from the initial 3D solid bone model. This results in a 3D vascularized bone 201 

model that can be 3D printed or used for in silico simulation. 202 

 203 

A. 3D Model Reconstruction and Slicing 204 

 205 

Medical imaging techniques, such as CT or MRI, are in widespread use for visualizing 206 

musculoskeletal anatomy and pathologies. Therefore, these data can reasonably be used 207 

to extract patient-specific 3D geometry for bioprinting [26]. One way to reconstruct the 3D 208 

model is to detect the contour in each cross-sectional image, then construct the mixed 209 

layers in a triangular STL model [27][28]. 210 

 211 

We used a human scaphoid bone for implementation of the Q-learning algorithm, which 212 

is a non-convex shape. Figure 1 shows the generated mesh of human scaphoid from CT 213 

scan data. The inlet and outlet position on the vessel are essential for optimal clinical use. 214 

As indicated in the algorithm (1), the inlet and outlet position coordinates are saved for 215 
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the further use in the algorithm (2). The generated 3D mesh is sliced to convert the 3D 216 

model into 2D slices. The algorithm computes each slice area and chooses the maximum 217 

size as the target plane for implementing the vascularization network. This plane is 218 

generated by the specific Z position passing from the inlet and outlet pairs (xi, yi, zi) and 219 

(xo, yo, zo). The next step is to generate the vascularization network in the newly generated 220 

2D plane. 221 

 222 

Algorithm 1 3D Reconstruction and Slicing  

Procedure Slicing 
Inlet position ←  (𝒙𝒊,  𝒚𝒊, 𝒛𝒊)   
Outlet position ←  (𝒙𝒐,  𝒚𝒐, 𝒛𝒐)  
Z-Slicing imported 3D bone (:,:,Z) 
S ← Compute maximum area for each slice 
S_max ←  max(S) 
Generate 2D plane by S_max normal, Inlet, and oulet position 
Convert 2D plane into Grid World 

End procedure 

 223 

B. Q-learning  224 

 225 

Path planning vascularization in a 2D plane has several constraints. The algorithm should 226 

consider both the tortuosity index and the coverage area by measuring curvature distance 227 

to the model's outer shells. Therefore, it is required to look for an algorithm that can find 228 

a 2D space solution with numerous possibilities. Algorithm (2) is the general workflow for 229 

this aim. 230 

 231 

2D grid plane from part A is generated by choosing the scaphoid slice's maximum length 232 

and width. This 2D slice is converted to the grid world as the RL algorithm environment. 233 

In the next step, the Q-learning algorithm is set up to solve this problem by maximizing 234 

reward. The policy for each position shows the path and agent decision to move in this 235 

plane. This simulation is performed with MATLAB R2020a and Reinforcement Learning 236 

Toolbox.  237 

 238 

RL grid world problem consists of three main components: 239 

 240 

 Agent: in this scenario, as illustrated in Figure 2A, agent is the vessel that completes 241 

a path which will be used for vessel modeling. The agent does action a and the 242 

environment, which is a 2D plane, returns the 𝑟𝑡+1 and 𝑥𝑡+1 ,which is the next state. 243 

Agent training parameters, episode information, and average results are shown in 244 

Table 1. 245 

 246 

 Goal: this scenario aims to start from the inlet position and finish it at the outlet 247 

position. 248 

 249 
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 Obstacles: These obstacles are in black, as shown in Figure 2B. Agents should avoid 250 

these obstacles out of path planning areas or distance to the outer contour. The agent 251 

will receive a negative reward signal by passing over obstacles. 252 

 253 

This algorithm aims to train an agent to reach the goal of avoiding obstacles in the grid 254 

world so that the accumulated rewards by movements get maximized. To accomplish this 255 

aim, the agent has to discover the world and learn the environment's dynamics. A proper 256 

value for each environment section as movement, goal, and obstacles is defined. 257 

Colliding obstacles or defined boundaries, a highly negative reward signal is given to the 258 

agent. 259 

 260 

Algorithm 2 Q-Learning 

Procedure Environment 
Import 2D Plane (x_plane, y_plane) 
Import shape outline (x_outline, y_outline) 
Append 2D plane to shape outline 
Loop: 

For min(y_plane) < y < max(y_plane) 
For min(x_plane) < x < max(x_plane) 

If x_plane> x_outline or x_plane< x_outline 
0 ← (x_plane, y_plane) 

End if 
End for 

End for 
End loop 

End procedure 
Procedure Optimize Q function 

For number of epochs do 
Generate the Q value 
Find action a using epsilon greedy approach 
Take the action a and move to the new state s' 
Find reward r based on tortuosity function 
Find Q value for (s,a,s') 
Apply samples to find the optimal policy 

End for 
End procedure 

 261 

C. Bezier Curve Approximation and 3D Rendering 262 

 263 

Bezier curves were introduced by Paul de Casteljau in early 1960s [29].This algorithm is 264 

based on the interpolation between the pair of control points. A Bezier curve with degree 265 

of n needs n+1 control point 𝑏𝑖 ∈  𝑅𝑑, 𝑖 = 0, 1, … , 𝑛 , 𝑡 ∈ 𝑅: 266 

 267 

𝑏𝑖
𝑟(𝑡) = (1 − 𝑡)𝑏𝑖

𝑟−1(𝑡) + 𝑡𝑏𝑖+1
𝑟−1(𝑡)    {

𝑟 = 1, … , 𝑛
𝑖 = 0, … , 𝑛 − 𝑟

    (9) 268 

 269 
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And 𝑏𝑖
0(𝑡) =  𝑏𝑖. 𝑏0

𝑛(𝑡) is the point with parameter t on the Bezier curve 𝑏𝑛. The polygon P 270 

which is calculated by 𝑏0, … , 𝑏𝑛is called the Bezier polygon of the curve 𝑏𝑛. 𝑏𝑖 are called 271 

control points [30].  272 

 273 

Agent path planning solution as pairs of (𝑥𝑝𝑎𝑡ℎ,𝑛, 𝑦𝑝𝑎𝑡ℎ,𝑛) are considered as the control 274 

points 𝑏0, … , 𝑏𝑛. Therefore, the planned path turns to a 2D Bezier curve as Figure 3. For 275 

making a 3D path with a desired diameter, a Python script on Blender [31] is programmed 276 

to convert the 2D path into 3D model. The desired diameter is considered as a relation of 277 

the difference in pressure (Δ𝑃), the viscosity of the fluid (𝜇), and the vessel length (L) [14]:  278 

 279 

𝑄 =
𝜋𝑟4Δ𝑃

8𝜇𝐿
  (10) 280 

 281 

The final 3D Bezier curve will be implemented starting from the inlet position to the outlet 282 

position as pairs of (xi, yi, zi) (xo, yo, zo). 283 

 284 

IV. Results 285 

 286 

Different scenarios for 3D vascularization networks based on the grid world path planning 287 

with varying constraints of reward have been tested. Table 2 shows the different 288 

scenarios including number of episodes, episode Q0, average reward, and tortuosity 289 

index as a result. Figure 4A-E illustrates the different planned path based on the various 290 

reward function constraints. To validate the Q-Learning algorithm's training status using 291 

the planned path the training status for each Q0 episode, average reward, and episode 292 

reward have been plotted Figure 4F. Here, the final episode's value is converted to the 293 

desired reward value, which indicates the tortuosity index level as low, medium, or high. 294 

Algorithm picks the result which is converged and has the minimum value of tortuosity 295 

index. In this example the path planned with 1000 number of episodes is the solution for 296 

generating a vessel since it has the least tortuosity index and the plot is converged. 297 

 298 

Average reward reinforcement learning algorithms convergence follows the idea from a 299 

kind of Tauberian theorem; if the discount rate converges to one, it is converged to the 300 

average reward value [32]. The fact that episode reward and average reward are 301 

converged to the same value indicates the Q-learning algorithm convergence and 302 

validation of the training algorithm. 303 

 304 

3D vascularized scaphoid model is generated with Blender python scripts and Bezier 305 

curve approximation algorithm, as shown in Figure 5A. Using this algorithm, it is possible 306 

to generate a second vessel to increase vascular coverage in a large construct. To do so, 307 

the inlet and outlet of the second vessel is located at the main vessel with a larger 308 

diameter before and after the smaller vessel inlets and outlets. This scheme results in a 309 

more complex vascular network that remains compatible with 3D bioprinting (Figure 5B).  310 
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V. Conclusion 311 

 312 

A model-based RL algorithm was used to generate a vascular network in patient-specific 313 

geometry with the specified inlet and outlet position, vascularization density, and 314 

tortuosity index. This model-based RL algorithm has an efficient training method without 315 

considerable computation time. Furthermore, the ε-greedy Q-learning approach is a 316 

method requiring minimal computational resources for training agents in this path 317 

planning problem. With the slicing method, the grid world environment for the RL agent 318 

is extracted for the simulation. The data from this simulation was used to find the optimal 319 

policy regarding the minimum tortuosity and maximum area coverage. Finally, the 320 

planned path was converted to the Bezier curve with an approximation and then 321 

converted into a 3D model, which was then implemented in the initial 3D bone model. 322 

 323 

Here, the generated 3D model was 3D printed to validate the geometry and vessel 324 

functionality after optimization. We note that this model simulates a single agent in the 325 

grid world, and thus limits the grid world's multi-vessel generation flexibility. In future 326 

studies, it may be required to implement a multi-agent path planning algorithm to optimize 327 

the number of vessels required for a more complex model. One such example would be 328 

the implementation of multiple independent vascular networks in the same bone 329 

construct. 330 

 331 

Current techniques in bone grafting, and complex engineered tissues generally, are 332 

limited in size by the metabolic demands of living cells that exceed the limit of diffusion. 333 

As a result, semi-automated machine-learning generation of vascular networks provides 334 

a critical functionality for advancing bioprinted bone constructs. In turn, this study moves 335 

the field one step closer to routine clinical use of large volume, patient-specific bioprinted 336 

tissue grafts.  337 
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TABLES 446 

 447 

Table 1. Training Parameters  

Agent Training Parameters Value 

Maximum Steps Per Episode 
Epsilon 
Stop Training Value 
Maximum Number of Episodes 
Elapsed Time 
Episode Steps 
Episode Reward 
Episode Q0 
Total Number of steps 
Average Reward 
Average Steps 

50 
0.4 
1000 episodes 
1000 
108 seconds 
13 
-50 
-47 
22966 
-57 
14.4 
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Table 2. Comparison of path planning in a grid world  

Maximum number of 
Episodes 

Average Rewards 
 

Tortuosity 
Index 

Episode Q0 Converged 

200 
400 
700 
1000 
1500 

-78.8 
-60 
-77 
-57 
-114 

1.4 
1.3 
1.3 
1.16 
1.5 

-49.9 
-56 
-56 
-47 
-65 

No 
Yes 
No 
Yes 
No 
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FIGURES 450 

 451 

 452 
 453 

Figure 1. Scaphoid 3D Model. Reconstruction of the scaphoid bone from imaging data 454 

illustrates its non-convex surface.   455 
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 456 
 457 

Figure 2. Reinforcement Learning Environment. A) The Reinforcement Learning 458 

workflow in which the agent (vessel) takes action a in the grid world environment. The 459 

environment returns rt+1 and the next state xt+1. B) The grid world used to train the agent 460 

to find the path with least tortuosity between the inlet (red) and outlet (blue), where 461 

obstacles (defined avascular areas or boundaries) are black.   462 
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 463 
Figure 3. Bezier Curve. A vessel as defined by the Bezier Curve calculated from the 464 

four control points [p1,p2,p3,p4].  465 
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 466 
 467 

Figure 4. Path Planning in grid world and RL Training result. A-E) Path planned for 468 

vessel transiting from the inlet to the outlet in the grid world following A) 200, B) 400, C) 469 

700, D) 1000, and E) 1500 episodes. F) Results of Q-learning algorithm for 1000 470 

episodes.  471 
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 472 
 473 

Figure 5. Rendering of vessel generated by Q-learning. A) Path planned for the 474 

scaphoid geometry by Q-learning has been converted to a Bezier curve and 475 

implemented in 3D. B) Path planned for a second vessel within vascularized scaphoid 476 

by locating the inlet and outlet on the first vessel. 477 
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