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Abstract 15 

Distinctness, Uniformity and Stability (DUS) is an intellectual property system introduced in 1961 16 

by the International Union for the Protection of New Varieties of Plants (UPOV) for safeguarding 17 

the investment and rewarding innovation in developing new plant varieties. Despite the rapid 18 

advancement in our understanding of crop biology over the past 60 years, the DUS system has 19 

not changed and is still dependent upon a set of morphological traits for testing candidate 20 

varieties. As the demand for more plant varieties increases, the barriers to registration of new 21 

varieties become more acute and thus require urgent review to the system. To highlight the 22 

challenges and remedies in the current system, we evaluated a comprehensive panel of 805 UK 23 

barley varieties that span the entire history of DUS testing. Our findings reveal the system 24 

deficiencies and provide evidence for a shift towards a robust genomics enabled registration 25 

system for new crop varieties.  26 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2020. ; https://doi.org/10.1101/2020.10.08.331892doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.331892
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Introduction 27 

Crop breeding involves considerable investment of time, resources and money by seed 28 

companies to produce improved varieties of plants. Plant Variety Rights (PVR) is a form of 29 

intellectual property introduced in 1961 by the International Union for the Protection of New 30 

Varieties of Plants (UPOV) to protect the breeders’ investment in creating new varieties, support 31 

innovation and serve market demand1. For almost 60 years, the protection of new plant varieties 32 

through the award of PVR relied on passing two tests: Distinctness, Uniformity and Stability 33 

(DUS), and Value for Cultivation and Use (VCU). DUS requires the new variety to be distinct from 34 

the common knowledge varieties, uniform across seeds that constitute the variety, and stable 35 

across environments2. DUS is usually defined by a set of morphological traits, although isozyme 36 

electrophoresis and molecular markers are occasionally used3. On the other hand, VCU requires 37 

the new crop variety to demonstrate improvement in yield, biotic or abiotic resistance, and quality 38 

characteristics4. Unlike VCU traits such as yield and disease resistance that have been the centre 39 

of attention in crop breeding5, the DUS system has received relatively little attention despite its 40 

pivotal role in the registration of new varieties6,7. 41 

The pressure on the current DUS system stems from multiple issues. As more new 42 

varieties arise, the DUS trait combinatorial space becomes more limited and requires additional 43 

effort in breeding unique DUS trait combinations. Many DUS traits have low heritabilities7 which 44 

means more trait variability due to environmental fluctuations and limited reliability of DUS trait 45 

scores outside of the trial environment. While the current system is well established for major 46 

crops, it is hard to implement in minor or orphan crops since the traits for DUS are hard to 47 

determine8,9. Furthermore, the current DUS system is largely designed for inbred species or 48 

varieties which is hardly practical in outbreeding species or hybrid varieties10. Lastly, there is also 49 

a lack of definition between new varieties and essentially derived varieties (EDVs) in the current 50 

system. 51 

Over the years, many attempts at improving the DUS system have met with little success. 52 

Suggestion for the use of molecular markers in DUS traces back to at least 1990 using 53 

minisatellites in soft fruits11. Since then, more molecular markers have been proposed for DUS, 54 

for examples, 28 SSR markers in maize12, 25 SNP markers in barley13, and 5 SSR markers in 55 

rice14. However, the number of available DUS markers that have been proposed thus far is too 56 

few and low throughput. More recently, larger marker sets using SNP arrays have been 57 

suggested, including 3,072 SNP markers in maize15 and 6,000 SNP markers in soybean16. As of 58 

now, none of these have been officially adopted by the UPOV. Instead, UPOV sanctions the use 59 
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of molecular markers only when they correlate with the DUS traits perfectly17, which is often 60 

possible only for a small subset of traits. 61 

Using the UK barley DUS system as a test case (panel of 805 spring, winter and alternative 62 

barley varieties that have been accepted into the UK national list (NL), as well as 28 DUS traits), 63 

we demonstrate both the challenges and opportunities for the creation of a new DUS system.  64 

 65 

Results 66 

 The 28 barley DUS traits include seasonal type and 27 above-ground morphologies, 67 

including leaves, ears and spikelets (Table 1). Currently within the UK, barley DUS trait data are 68 

publicly available from the National Institute of Agricultural Botany (NIAB) in England and the 69 

Science and Advice for Scottish Agriculture (SASA) in Scotland. We obtained the data from these 70 

two sources, and supplemented with additional data from7. The NIAB data serves as our primary 71 

data as it is more complete than the SASA data, which was only used for comparative analysis. 72 

21 DUS traits are scored on a scale of 1 to 9 or smaller subset of the scale, and seven traits are 73 

scored on a binary scale (Table S1). Of the 27 traits excluding seasonal type, two traits are not 74 

segregating in spring barley and one in winter barley (Fig. S1). The missing rate in the DUS trait 75 

data ranges from 0 to 78%, with only 5 traits above 10%. In addition, our analysis included marker 76 

data for 805 varieties from the IMPROMALT collection 77 

(http://www.barleyhub.org/projects/impromalt/), of which 710 had DUS trait data. 78 

 Comparison across DUS trait scoring organisations (NIAB vs. SASA) showed an average 79 

consistency in two-third of the DUS trait scores (Fig. 1a & 1b). In most cases, the trait score 80 

differences are small (Fig. 1a & Fig. S2). These differences are expected given that the DUS traits 81 

were scored in different environments by different DUS inspectors. There is little to no bias in trait 82 

score differences between NIAB and SASA (Fig. S2) except for trait 6 (flag leaf: glaucosity of 83 

sheath) and trait 25 (grain: spiculation of inner lateral nerves of dorsal side of lemma). On average, 84 

trait 6 is about 1 score higher in NIAB compared to SASA while trait 25 is about 1 score lower in 85 

NIAB, which may reflect the environmental effects on these traits. Regardless, with the reduction 86 

in DUS trait combinatorial space as measured by shrinkage in DUS trait Manhattan distances 87 

over time (Fig. 1c & 1d), especially in spring barley, small trait score differences can easily 88 

complicate variety identification. Manhattan distances are the sums of absolute differences 89 

between any two variety and lower distances imply reduced variation in DUS traits among the 90 

compared varieties. This may risk some barley varieties failing DUS testing in one country but not 91 
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another due to variations in DUS traits. Besides, the inconsistencies are present in the majority 92 

(392/395) of the barley varieties compared, which suggests that the inconsistencies are common 93 

and excludes the possibility of poor data handling by either organisation. Given the roles of the 94 

DUS system in granting PVR, a two-third consistency across organisations is inadequate and 95 

risky. 96 

 Of all 28 barley DUS traits, 15 have low heritabilities (h2 < 0.50) (Table 1 & S2) and are 97 

thus contradictory for DUS purposes. Briefly, any phenotypic trait can be described as an 98 

expression of genetic and environmental effects, and their interactions. Therefore, traits with low 99 

heritabilities have little replicability in trait values obtained from different environments (e.g. year, 100 

location). As expected, the DUS trait inconsistencies across scoring organisations are negatively 101 

correlated (-0.67) with heritabilities (Fig. 1e). Similar results were observed when the heritabilities 102 

were calculated from spring and winter barley separately. Consequently, instead of a fair 103 

evaluation of the genetic merits underlying new varieties, the current DUS system simply 104 

determines new varieties based on environmental stochasticity. 105 

 12 out of 21 barley DUS traits have non-zero genetic correlations with yield in spring barley 106 

(Fig. 2), which risk undesirable correlated responses upon selecting for either DUS traits or yield. 107 

Non-zero genetic correlations are the hidden cost in exchange for the genetic gain in yield. In 108 

traits with low phenotypic correlations, the unintended selection for DUS traits may not be 109 

immediately apparent to breeders. For instances, both DUS trait 10 (ear: attitude) and 11 (plant: 110 

length) are negatively correlated with yield, which translates to semi-dwarf barley plants with erect 111 

ears having higher yield than tall barley plants with recurved ears. Such correlations could help 112 

define ideal crop ideotypes18, however, they are not ideal for DUS purpose because high yielding 113 

plants are more likely to be semi-dwarf with erect ears. As the genetic gain in yield increases over 114 

time19, it is inevitable that DUS trait combinatorial space gets more limited (Fig. 1c & 1d) due to 115 

correlated selection responses. On the other hand, selection away from DUS trait combinatorial 116 

space risks losing the genetic gain in yield. While we have only considered correlations between 117 

DUS traits and yield, there are other VCU traits that may also constrict DUS trait combinatorial 118 

space. 119 

 GWAS results showed that 14 of 28 barley DUS traits are likely regulated by few major 120 

loci and some of these loci are likely fixed in either spring or winter barley populations (Table 2). 121 

Of the total 32 GWAS loci, 30 were identified in the combined dataset (Table S3, Fig. S3), 12 in 122 

spring-only dataset (Table S4, Fig. S4) and 16 in winter-only dataset (Table S5, Fig. S5). Part of 123 

the explanations for the difference is due to the individual datasets have smaller sample size and 124 
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thus lower power. Another reason is because some traits are not segregating or rare in either 125 

spring or winter germplasm. Examples of these traits are: 3 (lowest leaves: hairiness of leaf 126 

sheaths), 12 (ear: number of rows), 23 (grain: husk), 26 (grain: hairiness of ventral furrow) and 27 127 

(grain: disposition of lodicules). A major QTL for trait 3 is tightly linked to Vrn-H2, a major 128 

vernalisation locus20 while trait 12, 23 and 27 are largely monomorphic in the UK barley breeding 129 

pool due to preferences for two-rowed barley with hulled grains and clasping (collar type) 130 

lodicules. In comparison with a previous work on DUS traits GWAS7, the number of loci increased 131 

from 16 to 32 with 12 loci in common. 132 

In accordance to the UPOV guidelines17, molecular markers can only be used in DUS if 133 

they confer direct relationship with the DUS traits. This might work well with those 14 traits with 134 

known major loci, although there is a risk of ignoring effects from minor or exotic loci. One such 135 

example would be anthocyanin-related traits in flag leaf (trait 4) and awn (trait 8), where 136 

anthocyaninless 1 (ant1) and ant2 are segregating in winter but not spring barley varieties in the 137 

UK (Table 2). Unless the DUS markers for ant1 and ant2 are in perfect linkage with the causative 138 

polymorphisms, these markers would give misleading results if used in spring barley. To 139 

complicate this issue further, we identified a locus at ant2 for an anthocyanin-related trait in grain 140 

(trait 24) in spring barley, which may suggest an additional linked locus that is segregating in 141 

spring barley responsible for grain-only anthocyanin pigmentation. On the other hand, it is 142 

improbable to create molecular markers that would tag any of the other 14 traits without major 143 

loci. 144 

 To extend beyond locus-specific markers, a small marker set for DUS has been 145 

proposed21 although our evaluation showed limited distinguishing power. By simulating F6 146 

progeny from known parent pairs, we compared the marker set from these simulated progeny to 147 

their parents, actual variety (progeny of the parent pairs) and other simulated progeny. While most 148 

of these simulated progeny remained unique in older varieties, this is not true for newer varieties 149 

(Fig. 3a, 3b & S5), especially in spring barley. For example, LG Goddess matched perfectly with 150 

7.5% of the simulated progeny, and its parents Octavia and Shada matched perfectly with 8.0% 151 

and 7.8% of the simulated progeny respectively (Table S6). Furthermore, 88.4% of the simulated 152 

progeny have over 1% probability of matching with other simulated progeny (Table S6). A small 153 

marker set for DUS is problematic in a crop in which genomic diversity progressively gets narrower 154 

over time. Of the total 39 markers21, only 4 to 22 markers are segregating between the parents 155 

analysed. Besides, these markers are not randomly distributed as there are some in strong 156 

linkage disequilibrium (LD) which would not informative. 157 
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 As a follow-up, we investigated the number of markers required for proper separation of 158 

varieties in DUS and determined that approximately 500 – 1,000 markers are likely the minimum 159 

(Fig. 4a). By comparing the Manhattan distances calculated from all 28 DUS traits against a series 160 

of randomly sampled markers, the correlation between these two distances begins to plateau at 161 

about 500 – 1,000 markers. The correlation maxes out at about 0.60, which is similar to the value 162 

previously observed by Jones et al.10. This is not surprising given that the correlation depends on 163 

the DUS trait heritabilities. Manhattan distances determined from DUS traits with high heritabilities 164 

(h2 > 0.50) showed stronger correlation with Manhattan distances from the marker data than DUS 165 

traits with low heritabilities (h2 < 0.50) (Fig. 4a). Additionally, the distribution variances stabilise at 166 

similar range too (Table S7), which affirms that any marker set smaller than 500 markers is 167 

insufficient. 168 

 Given the various issues we have described in the DUS system so far, the remaining 169 

option is to use genomic markers. There are multiple ways to implement genomic markers in 170 

DUS, and we will provide a simple example here using Manhattan distances, which is one of 171 

many measures of dissimilarities among varieties. Under haploid marker coding of 0 and 1, 172 

Manhattan distance between any two varieties is equivalent to 2 × (1 - similarity) where similarity 173 

is measured as the proportion of exact marker matches between two varieties. Similar to the 174 

current DUS system, we will need a reference panel (common knowledge varieties set) and the 175 

genomic marker data for the reference panel. As an example, we set all 805 barley varieties as 176 

our reference panel and computed the Manhattan distances among these varieties. The distances 177 

are divided by within and across seasonal types, as the values ranged from 0.04 to 0.69 within 178 

spring barley, 0.04 to 0.87 within winter barley and 0.44 to 0.97 between spring and winter barley 179 

(Fig. 4b). To demonstrate how genomic markers work in DUS, we simulated 1,000 F6 and BC1S4 180 

progeny from two pairs of parents in spring barley. The first parent pair is Propino and Quench, 181 

which has a distance of 0.20 and thus represents the “low” distance parents. The second parent 182 

pair is Riviera and Cooper, which has a distance of 0.59 and thus represents the “high” distance 183 

parents. Given an arbitrary minimum threshold of 0.05 for distinctness, 13.0% of F6 progeny and 184 

59.6% of BC1S4 progeny from the low parents would be rejected for lack of distinctness, while 185 

none of the F6 progeny and 4.9% of the BC1S4 progeny from the high parents would be rejected 186 

(Fig. 4c). 187 

 Another important consequence of using genomic markers in DUS is the regulation of 188 

essentially derived varieties (EDVs). As of current standard, the definition of EDVs is unclear and 189 

it often involves complicated and expensive court proceedings to determine EDVs22. Furthermore, 190 
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the information on whether a market variety is an EDV is not generally disclosed to public, and it 191 

is possible that no EDV ever makes it into the market. With genomic markers, any varieties 192 

submitted for DUS evaluation that failed to pass the minimum distance threshold would be 193 

considered for EDVs. If these varieties demonstrate justifiable VCUs compared to the common 194 

knowledge varieties, then EDVs should be granted. Curiously, among the varieties in our 195 

reference panel, four varieties did not pass our arbitrary minimum threshold of 0.05 (Fig. 4b). 196 

Spring barley Class, and winter barley KWS Joy, Mackie and Angora all had distances of 0.04 197 

with their previously submitted parents Prestige, Wintmalt and KWS Tower and full sib Melanie, 198 

respectively. Since only 4 out of a total of 326,836 pairwise comparisons had a distance below 199 

the minimum threshold, it is not possible to visualise them in Fig. 4b. In addition, of these 4 pairs, 200 

Angora and Melanie were previously deemed indistinguishable in their DUS traits and had to be 201 

separated by either microsatellite markers23 or electrophoresis of hordein storage proteins24. 202 

 Ultimately, time and cost determine the feasibility of the current and alternative DUS 203 

methods. Here, we evaluated four methods: (1) morphological trait DUS25, (2) speed DUS26, (3) 204 

trait-specific marker DUS13, and (4) genomic DUS. Among these methods, the current DUS 205 

system with morphological trait takes the longest time as it usually requires one to two years of 206 

field or glasshouse trials. Recently, Jamali et al.26 proposed a speed DUS system by combining 207 

the current system with speed breeding27. However, this proposal requires experimental 208 

validations for every DUS trait since speed breeding alters plant development and many of the 209 

DUS traits are indeed developmental features. Both trait-specific marker and genomic marker 210 

methods require least amount of time, and it is possible to shorten the time to days provided there 211 

is a routine demand. From the monetary aspect, both trait-specific and genomic marker methods 212 

cost only a small fraction of the current DUS trait method. Trait-specific markers using Kompetitive 213 

Allele Specific PCR (KASP) cost approximately £11 for 100 markers28 while genomic markers 214 

using the barley 50k iSelect SNP array29 cost approximately £40 for over 40,000 markers30. While 215 

no cost information is available for speed DUS, it is unlikely to be less than the current DUS trait 216 

evaluation which costs £1040 per candidate variety31. Given all considerations, genomic markers 217 

remain the best method forward for DUS. 218 

Being in the genomic era, we have access to great genomic resources like the barley 50k 219 

iSelect SNP array29 for application in DUS. As an example, we have illustrated how genomic 220 

markers can be used to evaluate distinctness, uniformity and stability of new varieties (Fig. 5). 221 

Instead of relying on morphological trait differences from common knowledge varieties in the 222 

reference panel, we can determine a distance threshold based on genomic markers that would 223 
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allow us to decide if a variety is sufficiently distinct. By sampling multiple seeds (or multiple pools 224 

of seeds), we can also test for uniformity based on the distances among these seeds or pools. 225 

For instance, uniformity could be defined such that the distances among the seeds from a 226 

candidate variety cannot be more than its distances with common knowledge varieties. We can 227 

quantify stability by measuring the genomic heterogeneity of the variety seed pool since a fully 228 

homogenous seed pool ensures genomic stability in subsequent generations of seed production. 229 

In an inbred species, this can be achieved by checking for genomic heterogeneity between seeds 230 

in the initial DUS application and final commercial seed lot. In an outcrossing species, this could 231 

be done by evaluating the change in allele frequencies between the initial and final seed lots after 232 

accounting for possible genomic drift. Overall, genomic markers provide a robust and effective 233 

option for improving DUS testing. 234 

 235 

Discussion 236 

 Our analysis on the current DUS system using UK barley as an example has shown that 237 

morphological traits are not fit for DUS purposes. The trait combinatorial space gets narrower 238 

over time, and is likely worse in crop species with limited genetic variation. DUS traits with low 239 

heritabilities are not replicable outside the DUS trial and hence these traits have limited meaning 240 

to variety fingerprinting. As a consequence, there is no easy way for farmers to verify the identities 241 

of the varieties sown in their field. Genetic correlations between DUS and yield are detrimental to 242 

crop breeding due to the constraints imposed on selecting for higher yield and away from the 243 

common DUS trait combinatorial space. Besides, the current DUS process is time consuming and 244 

costly, which is non-ideal for small breeding companies. Unfortunately, alternatives like trait-245 

specific markers and small marker sets are inadequate for DUS. 246 

It is evident that the current DUS system is due for an update and we have shown that 247 

genomic markers are the best way forward. Aside from being able to address various 248 

shortcomings in the current system, it also opens up opportunities for bringing molecular editing 249 

into breeding practices and clarifies the boundary between new and essentially derived varieties. 250 

Genome-edited varieties can be traced back, while remain superior in agronomic performances, 251 

to their original non-edited varieties. Given the role of the DUS system in granting varietal rights, 252 

it is the perfect setup for addressing the lack of genetic diversity in modern crop which threatens 253 

food security46. This, obviously, is only possible with genomic markers. In addition, with the 254 

impacts from Brexit (in the UK and EU) and Covid-19 looming for an unforeseeable future, there 255 
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may be heavy restrictions on seed movement that impede the process of getting varieties into the 256 

market. Such limitations are non-ideal since only a small fraction of the candidate varieties ends 257 

up passing the DUS test while the rest ends up as a waste of time and money. With genomic 258 

markers for DUS, it is trivial for testing centres to either receive DNA samples from breeders or 259 

marker data from another testing centre in a different country. Lastly, genomic DUS will unlock a 260 

new opportunity for an improved seed certification system to better protect breeders, farmers and 261 

customers. 262 
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Methods 268 

DUS trait and marker data. DUS trait data from the UK national list were downloaded from the 269 

National Institute of Agricultural Botany (NIAB) and Science and Advice for the Scottish 270 

Agriculture (SASA) websites on 30th April 2020. NIAB data is available at 271 

https://www.niab.com/uploads/files/Spring_Barley_Descriptions_2019_V1.pdf and 272 

https://www.niab.com/uploads/files/Winter_Barley_Descriptions_2019_V1.pdf while SASA data 273 

is available at https://barley.agricrops.org/varieties. The NIAB data had a total of 287 barley 274 

varieties and the SASA data had a total of 728 varieties. Additional DUS trait data from NIAB were 275 

taken from Cockram et al.7, which had 577 varieties. After merging the different sources of NIAB 276 

data, there were 827 varieties remain. The original DUS trait data were stored as text descriptions 277 

and had to be converted into numerical scales using the key provided by APHA25. Both NIAB and 278 

SASA data had all 28 DUS traits, although some of the traits had high missing rate especially in 279 

the SASA data. Therefore, we used the NIAB data for our primary analyses and the SASA data 280 

for only comparative analysis between the two. While we attempted to source as many varieties 281 

with DUS trait data as possible, we did not have an exhaustive list of all UK barley varieties to 282 

date as we were limited to those which are available publicly. 283 

Marker data from the UK national list were obtained from the IMPROMALT project 284 

(http://www.barleyhub.org/projects/impromalt/). The original marker data contained 809 varieties 285 

with 43,799 SNP markers genotyped on the barley 50k iSelect SNP array29. This contrasts with a 286 

previous DUS study by Cockram et al.7 which had 500 varieties and 1,536 SNP markers. Since a 287 

large proportion of the markers did not have any missing data, we removed any marker with 288 

missing data which left us with 40,078 SNP markers. In addition, we also obtained year of national 289 

listing and pedigree information of all varieties from the IMPROMALT project. Within these 809 290 

varieties, 432 are spring barley, 372 are winter barley and 5 are alternative barley. We removed 291 

four varieties that did not have any Application for Protection (AFP) number, which left us with 292 

805 varieties. Since there are only few alternative barley varieties, we excluded them from any 293 

analysis that requires separation of the data by seasonal types. The trait and marker data were 294 

merged by their AFP numbers. Unlike the variety names that are occasionally recycled, the AFP 295 

numbers are unique for each variety. They are also ordered by date of submission for DUS testing. 296 

Overall, we had 710 varieties that are in common between the DUS trait and marker data, which 297 

serves as our primary data for analysis. 298 

DUS trait comparative analysis. We calculated the DUS trait discrepancies between NIAB and 299 

SASA by taking the absolute values of the trait score differences. Most of the traits were scored 300 
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on a scale with an increment of 1, except for trait 3, 23 and 26 which were scored as either 1 or 301 

9. To maintain a fair comparison across all traits, we converted those trait scores from 1 or 9 to 1 302 

or 2. All DUS trait comparisons were performed only when there is complete pairwise data 303 

between NIAB and SASA. 304 

 Additionally, we subset the DUS trait data into spring and winter barley respectively to 305 

calculate the change in trait combinatorial space over time. This analysis was done by first sorting 306 

the barley varieties by their AFP number. Next, we computed the rolling mean of 20 varieties’ 307 

Manhattan distances using dist function in R47 with an increment of one variety at a time. The 308 

lower the mean distance, the narrower the trait combinatorial space. 309 

Univariate mixed linear model analyses of DUS traits. By leveraging the genomic relationship 310 

among the varieties, we partitioned the DUS phenotypic variance into additive genetic and 311 

residual variances using mmer function in the “sommer” package48 in R47. Briefly, the mixed model 312 

is described as y = Xβ + g + e. For any DUS trait with n varieties, y is an n×1 vector of DUS trait, 313 

X is an n×n incidence matrix relating to fixed effects β, β is an n×m matrix of m fixed effects, g is 314 

an n×1 vector of random additive genetic effect and e is an n×1 vector of residual effect. The m 315 

fixed effects included intercept, year of entry into national listing, and seasonal type, although the 316 

last effect was dropped when spring and winter barley datasets were analysed separately. The 317 

random additive genetic effect g was restricted to a normal distribution of mean 0 and variance 318 

σg
2A, where σg

2 is the additive genetic variance and A is an n×n additive genetic relationship 319 

matrix calculated using A.mat function in “sommer”. Similarly, the residual effect followed a normal 320 

distribution of mean 0 and variance σe
2I, where σe

2 is the residual variance and I is an n×n identity 321 

matrix. For every DUS trait, we fitted the model using data from the spring barley dataset (n=370), 322 

winter barley dataset (n=335) and combined dataset (n=710). We then extracted the genetic (σg
2) 323 

and phenotypic (σg
2 + σe

2) variances and calculated heritabilities as σg
2/( σg

2 + σe
2). 324 

Calculating best linear unbiased estimates (BLUEs) for yield. We obtained the raw dry matter 325 

yield data for spring barley from Mackay et al.19 and the Agriculture and Horticulture Development 326 

Board (AHDB) website for 509 varieties that were included in the VCU trials from 1948 to 2019. 327 

These varieties were trialled in multiple environments and years. The dry matter yield data from 328 

1983 and onwards were taken from fungicide treated trials, and the data prior to that were taken 329 

from “best local practice” trials which meant that fungicide usage was left to the discretion of 330 

managers at each trial. To account for this difference, we created a “management” variable. 331 

Varieties from 1983 and onwards were scored as 1 and the varieties prior to that were scored as 332 

0 for this variable. 333 
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The raw dry matter yield data were fitted into a mixed linear model using lmer function in 334 

the “lme4” package49 in R47. Briefly, the raw dry matter yield was set as the response variable, 335 

with variety as fixed effects, and management, management-by-year, management-by-year-by-336 

variety and management-by-year-by-location as random effects. Next, we calculated the best 337 

linear unbiased estimates (BLUEs) for yield using the emmeans function in “emmeans” package50 338 

in R47. 339 

Bivariate mixed linear model analyses of DUS traits and yield. We merged the DUS traits and 340 

yield data by the variety AFP numbers, which left us with 192 spring barley varieties in common. 341 

Unfortunately, we did not have access to older winter barley dry matter yield data, so the analysis 342 

here is only limited to spring barley. Similar to the univariate analyses, we fitted each DUS trait 343 

and dry matter yield BLUE into a mixed linear model using mmer function in “sommer” package48 344 

in R47. Briefly, the bivariate models can be written as y1 = Xβ + g1 + e1 and y2 = Xβ + g2 + e2. For 345 

any pair of DUS trait and yield with n varieties, y1 is an n×1 vector of DUS trait, y2 is an n×1 vector 346 

of yield, X is an n×n incidence matrix relating to fixed effects β, β is an n×m matrix of m fixed 347 

effects, g1 is an n×1 vector of random additive genetic effect for DUS trait, g2 is an n×1 vector of 348 

random additive genetic effect for yield, e1 is an n×1 vector of residual effect for DUS trait and e2 349 

is an n×1 vector of residual effect for yield. The m fixed effects included intercept and year of entry 350 

into national listing. Unlike the univariate analyses, here the random additive genetic effect g1 and 351 

g2 were restricted to a multivariate normal distribution of mean 0 and variance 352 

|
𝜎𝑔1
2 𝜌𝑔𝜎𝑔1𝜎𝑔2

𝜌𝑔𝜎𝑔1𝜎𝑔2 𝜎𝑔2
2 |⊗A, where σg1

2 is the additive genetic variance for DUS trait, σg2
2 is the 353 

additive genetic variance for yield, ρg is the additive genetic correlation between DUS trait and 354 

yield, ⊗ is a Kronecker product and A is an n×n additive genetic relationship matrix calculated 355 

using A.mat function in “sommer”. Similarly, the residual effect followed a multivariate normal 356 

distribution of mean 0 and variance |
𝜎𝑒1
2 𝜌𝑒𝜎𝑒1𝜎𝑒2

𝜌𝑒𝜎𝑒1𝜎𝑒2 𝜎𝑒2
2 |⊗I, where σe1

2 is the residual variance 357 

for DUS trait, σe2
2 is the residual variance for yield, ρe is the residual correlation between DUS 358 

trait and yield and I is an n×n identity matrix. From the bivariate mixed models, we extracted the 359 

genetic correlation as ρg and phenotypic correlation as (ρgσg1σg2 + ρeσe1σe2)/((σg1
2 + σe1

2)(σg2
2 + 360 

σe2
2))½. 361 

GWAS on DUS traits. We performed GWAS on each DUS trait using data from the spring barley 362 

dataset (n=370), winter barley dataset (n=335) and combined dataset (n=710). We used a similar 363 

model as the univariate mixed linear model for GWAS as provided by the GWAS function in 364 
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“sommer” package48 in R47. Briefly, the GWAS model is y = Xβ + miki + g + e, where mi is an n×1 365 

vector of marker genotype, ki is the marker effect and i is the marker index from one to the total 366 

number of markers. The other terms are the same as previously described in the univariate mixed 367 

linear model. We evaluated the GWAS results for significant markers by using a threshold of false 368 

discovery rate (FDR) of 0.05, as determined from qvalue function in “qvalue” package51 in R47. 369 

Since barley is an inbreeding species, linkage disequilibrium (LD) can complicate GWAS results 370 

especially when there is a highly significant marker. Therefore, for any trait where the marker 371 

significance exceeded -log10p of 10, we performed a follow-up GWAS with the most significant 372 

marker as a fixed effect. The re-evaluation threshold was chosen as 10 to minimise the number 373 

of GWAS runs as we were only interested in identifying any potential peaks that are masked due 374 

to major segregating loci. If any of the markers on other chromosomes were initially significant 375 

due to LD with the causative locus, then these markers should drop below the significance 376 

threshold in the second GWAS. 377 

Evaluation on the usefulness of small marker set in DUS via simulation. To evaluate the 45 378 

DUS markers in Owen et al.21, we simulated these markers in the progeny of known parent pairs. 379 

We used 39 out of the 45 markers for simulation as six of the markers were either absent or low 380 

quality in our dataset. Based on the pedigree information, there were 212 varieties with marker 381 

data available for their parents and these varieties were generated from intercross between the 382 

parents. For each variety and its parents, we simulated 10,000 F6 progeny using “AlphaSimR” 383 

package52 in R47. We then compared the simulated progeny to the known progeny (variety) and 384 

its two parents, and counted the number of exact matches in the DUS markers. Additionally, we 385 

bootstrapped the comparisons for 1,000 times to get a better estimate of the mean count of exact 386 

matches. For comparison within the simulated progeny, we tabulated the number of occurrences 387 

of each progeny with unique DUS marker haplotype. 388 

Comparing Manhattan distances from DUS traits against different number of markers. To 389 

evaluate the number of markers needed for DUS, we randomly sampled one to the maximum 390 

number of markers with an increment of log10 of 0.1. We then calculated the Manhattan distances 391 

from DUS traits and markers using dist function in R47. For each set of markers, we computed the 392 

correlation between the Manhattan distances from DUS traits and marker data. In addition, we 393 

also separated the DUS traits into a high heritability group (h2 > 0.5) and low heritability group (h2 394 

< 0.5), and computed the correlations similarly. 395 

Demonstrating the use of genomic markers in DUS via simulation. To test how genomic 396 

markers can be used in DUS, we chose two known spring barley parent pairs with low and high 397 
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genomic distances. Acumen’s parents, Propino and Quench with a distance of 0.20 represents 398 

the low distance option, while Berwick’s parents, Riviera and Cooper with a distance of 0.59 399 

represents the high distance option. From each of these parent pairs, we simulated 1,000 F6 and 400 

BC1S4 progeny using the “AlphaSimR” package52 in R47. We then computed the Manhattan 401 

distances from each simulated progeny group using dist function in R47. 402 

Data availability. The compiled DUS trait data from NIAB and SASA and BLUEs for dry matter 403 

yield are available in Supplementary File 1. The IMPROMALT marker data is available at 404 

http://www.barleyhub.org/projects/impromalt/. All source file website links have been archived at 405 

https://web.archive.org/. The R scripts for all analyses are available at https://github.com/cjyang-406 

sruc/DUS.  407 
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Table 1. DUS trait names and heritabilities, standard errors in parentheses. 408 

Trait Name 
h2 

Combined Spring Winter 

1 kernel: colour of aleurone layer 0.78 (0.04) 0.16 (0.06) 0.79 (0.06) 

2 plant: growth habit 0.25 (0.05) 0.17 (0.06) 0.24 (0.07) 

3 lowest leaves: hairiness of leaf sheaths 0.75 (0.04) NA 0.69 (0.07) 

4 flag leaf: intensity of anthocyanin colouration of auricles 0.74 (0.05) 0.19 (0.06) 0.84 (0.08) 

5 flag leaf: attitude 0.28 (0.13) 0.28 (0.19) 0.25 (0.16) 

6 flag leaf: glaucosity of sheath 0.12 (0.04) 0.05 (0.03) 0.10 (0.05) 

7 time of ear emergence (first spikelet visible on 50% of ears) 0.28 (0.05) 0.20 (0.06) 0.26 (0.07) 

8 awns: intensity of anthocyanin colouration of tips 0.67 (0.05) 0.09 (0.04) 0.83 (0.08) 

9 ear: glaucosity 0.42 (0.05) 0.45 (0.07) 0.33 (0.08) 

10 ear: attitude 0.25 (0.05) 0.26 (0.07) 0.17 (0.06) 

11 plant: length (stem, ear and awns) 0.17 (0.04) 0.13 (0.05) 0.14 (0.06) 

12 ear: number of rows 1.00 (0.01) NA 1.00 (0.03) 

13 ear: shape 0.10 (0.04) 0.04 (0.03) 0.09 (0.05) 

14 ear: density 0.23 (0.05) 0.14 (0.05) 0.24 (0.07) 

15 ear: length (excluding awns) 0.18 (0.05) 0.05 (0.04) 0.29 (0.08) 

16 awn: length (compared to ear) 0.18 (0.04) 0.15 (0.05) 0.11 (0.05) 

17 rachis: length of first segment 0.34 (0.05) 0.32 (0.07) 0.28 (0.07) 

18 rachis: curvature of first segment 0.26 (0.05) 0.25 (0.07) 0.20 (0.07) 

19 ear: development of sterile spikelets 1.00 (0.04) 1.00 (0.06) 1.00 (0.09) 

20 sterile spikelets: attitude (in mid-third of ear) 0.64 (0.06) 0.63 (0.08) 0.49 (0.10) 

21 median spikelet: length of glume and its awn relative to grain 0.15 (0.04) 0.07 (0.04) 0.18 (0.06) 

22 grain: rachilla hair type 1.00 (0.01) 1.00 (0.02) 0.84 (0.05) 

23 grain: husk 0.01 (0.02) 0.04 (0.03) 0.00 (0.02) 

24 grain: anthocyanin colouration of nerves of lemma 0.69 (0.05) 0.31 (0.07) 0.78 (0.07) 

25 
grain: speculation of inner lateral nerves of dorsal side of 
lemma 

0.74 (0.04) 0.49 (0.07) 0.78 (0.06) 

26 grain: hairiness of ventral furrow 0.96 (0.02) 0.65 (0.07) 0.94 (0.04) 

27 grain: disposition of lodicules 0.91 (0.02) 0.99 (0.03) NA 

28 seasonal type 1.00 (0.00) NA NA 

  409 
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Table 2. GWAS results. Significant GWAS peaks (FDR < 0.05) are summarised here along 410 

with their closest known gene or locus. 411 

Trait 
GWAS peaka Allele frequency Known gene/locus 

Chr Pos (Mb) Effect -log10p Popb C S W Name Pos (Mb) 

1 4H 525.07 0.74 96.02 C,S,W 0.19 0.02 0.37 MbHF35c (Blx1)32 534.04 

2 3H 631.83 -0.69 6.40 C 0.49 0.05 0.98 HORVU3Hr1G090910d,33 633.53 

3 1H 473.27 -0.25 4.92 C 0.16 0.01 0.32 NA NA 

3 4H 631.68 3.32 116.93 C,W 0.44 0.00 0.91 
HORVU4Hr1G085920d, 
HORVU4Hr1G085590d (Hsh1)20 633.03 

4 2H 676.76 -2.25 42.77 C,W 0.25 0.00 0.53 HORVU2Hr1G096810 (Ant2)7 676.85 

4 7H 73.55 -0.80 10.67 C 0.10 0.02 0.19 HORVU7Hr1G034630 (Ant1)34 72.92 

8 2H 675.76 -2.27 55.97 C,W 0.25 0.00 0.53 HORVU2Hr1G096810 (Ant2)7 676.85 

8 6H 536.07 0.57 6.75 S 0.30 0.16 0.45 NA NA 

8 7H 73.55 -0.69 11.01 C,W 0.10 0.02 0.19 HORVU7Hr1G034630 (Ant1)34 72.92 

9 1H 0.29 -0.52 6.23 C,S,W 0.07 0.07 0.06 EAR-G_135 0.50e 

9 2H 6.18 -0.33 6.98 C 0.43 0.52 0.34 NA NA 

11 4H 608.43 -0.30 5.93 C 0.45 0.49 0.41 NA NA 

12 2H 663.88 0.04 6.05 C,W 0.30 0.24 0.37 HORVU2Hr1G092290 (Vrs1)36 651.03 

12 5H 579.73 -0.04 6.11 C 0.42 0.00 0.89 HORVU5Hr1G081450 (Vrs2)37 564.41 

13 3H 437.24 0.63 5.56 C 0.05 0.00 0.11 NA NA 

15 4H 608.38 -0.22 4.76 S 0.45 0.49 0.41 4_538 618.00e 

19 2H 652.42 -0.49 146.59 C,S,W 0.29 0.24 0.34 HORVU2Hr1G092290 (Vrs1)39 651.03 

20 1H 404.92 -0.38 11.39 C,S,W 0.30 0.02 0.60 HORVU1Hr1G051010 (Vrs3)40 378.41 

20 2H 655.81 -0.63 19.19 C,S,W 0.22 0.20 0.25 HORVU2Hr1G092290 (Vrs1)39 651.03 

20 3H 659.54 -0.19 4.12 C 0.16 0.01 0.32 NA NA 

20 5H 488.46 -0.16 4.37 C 0.06 0.02 0.11 NA NA 

21 7H 47.56 0.17 7.93 C,W 0.08 0.07 0.08 NA NA 

22 5H 542.50 -0.16 24.72 C,S,W 0.36 0.52 0.18 Srh7 547.24e 

23 7H 612.52 -0.31 6.71 C,S 0.06 0.10 0.02 HORVU7Hr1G089930 (Nud)41 546.59 

24 2H 676.20 -1.45 44.08 C,S,W 0.34 0.14 0.56 HORVU2Hr1G096810 (Ant2)7 676.85 

24 7H 72.97 -0.56 8.46 C,W 0.22 0.03 0.43 HORVU7Hr1G034630 (Ant1)34 72.92 

25 2H 638.37 1.97 57.54 C,S,W 0.17 0.09 0.26 Gth17 647.46e 

26 6H 0.33 3.85 152.61 C,W 0.14 0.00 0.29 11_208817 5.20e 

27 2H 724.71 -0.10 24.45 C,S 0.48 0.05 0.95 HORVU2Hr1G113880 (Cly1)42 730.03 

28 1H 511.92 -0.51 47.74 C 0.48 0.00 1.00 HORVU1Hr1G076430 (Ppd-H2)43 514.1 

28 4H 643.68 -0.63 63.95 C 0.48 0.00 1.00 Vrn-H244 NA 

28 5H 571.03 -0.34 38.29 C 0.46 0.00 0.98 HORVU5Hr1G095630 (Vrn-H1)45 599.09 
 412 
a If the GWAS peak is found in more than one population, only the results from the combined (C) analysis are shown here. 413 
b This column indicates which populations (C: Combined, S: Spring, W: Winter) showed significance for any given GWAS peak. 414 
c MbHF35 is a cluster of 3 linked genes: HvMYB4H (HORVU4Hr1G063760), HvMYC4H (NA) and HvF35H (HORVU4Hr1G063780). 415 
d Unverified candidate genes. 416 
e Approximated physical positions based on genetic positions.417 
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 418 

Fig. 1. DUS trait discrepancies and combinatorial space. a, Boxplots of proportion of DUS trait score 419 
differences between NIAB and SASA data. b, Proportion of DUS trait score differences for each variety, with 420 
oldest variety (1963) on the left and newest variety (2007) on the right. c, Rolling mean distances of 20 spring 421 
barley varieties calculated from DUS traits with an increment of one new variety at a time. Leftmost point on the 422 
“Time” axis indicates the mean from 20 earliest varieties, while rightmost point indicates the mean from 20 latest 423 
varieties. d, Rolling mean distances of 20 winter barley varieties calculated from DUS traits with an increment of 424 
one new variety at a time. e, Relationships between proportion of DUS trait score differences and heritabilities, 425 
separated by all (spring and winter combined), spring only and winter only groups. Each point is shown as its trait 426 
number, which is available in Table 1. 427 
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 428 

Fig. 2. Genetic and phenotypic correlations between DUS traits and yield. Genetic and phenotypic 429 
correlations, along with their error bars, are shown for each DUS trait and yield. No correlation is available for trait 430 
3, 5, 12, 19, 22, 26 and 28 because of either high missing rate or lack of variation in the DUS trait.  431 
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 432 

Fig. 3. Usefulness of a small marker set for DUS. This small marker set is taken from 39 DUS markers in 433 
Owens et al.21. Percentage of exact matches in marker data between simulated F6 progeny and their real sibling 434 
and parents. Grey vertical bars represent the spread of match percentage among the simulated progeny. a, 114 435 
spring barley varieties sorted from oldest (left, 1982) to newest (right, 2016). b, 97 winter barley varieties sorted 436 
from oldest (left, 1987) to newest (right, 2016).  437 
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 438 

Fig. 4. Analyses of genomic markers for DUS. a, Correlation in Manhattan distances from DUS traits and 439 
various number of randomly sampled markers. b, Distribution of Manhattan distances among 805 barley varieties. 440 
Within seasonal type distances dominate the first left peak while between seasonal type distances dominate the 441 
two right peaks. Arbitrary distance threshold of 0.05 is marked with a red vertical line. c, Distribution of minimum 442 
Manhattan distances from each simulated progeny and reference panel (805 varieties). Similar arbitrary threshold 443 
of 0.05 is marked.  444 
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 445 

Fig. 5. Simplified illustrations of the current DUS system and its potential successor. In the current system, 446 
distinctness, uniformity and stability of a candidate variety is determined by comparison of 28 morphological traits 447 
to a reference panel of common knowledge varieties and itself. We propose that an upgrade to the current system 448 
by using genomic markers instead of morphological traits. Here, distinctness is evaluated based on a minimum 449 
distance threshold, and anything below the threshold could be considered EDVs. Uniformity and stability 450 
evaluations are straightforward, as they each require the seeds to be close in distance to each other and low in 451 
genetic heterogeneity.  452 
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