
Discovery of novel tumor suppressors from CRISPR screens reveals lipid-sensitive 1 

subtype of AML 2 

  3 

W. Frank Lenoir1,2, Micaela Morgado2, Peter C DeWeirdt3, Megan McLaughlin1,2, Audrey L 4 

Griffith3, Annabel K Sangree3, Marissa N Feeley3, Eiru Kim2, Medina Colic1,2, Merve Dede1,2, 5 

John G Doench3, Traver Hart2,4,* 6 

 7 

  8 

1 - The University of Texas MD Anderson Cancer Center UTHealth Graduate School of 9 

Biomedical Sciences; The University of Texas MD Anderson Cancer Center, Houston, TX 10 

 11 

2 - Department of Bioinformatics and Computational Biology, The University of Texas MD 12 

Anderson Cancer Center, Houston, TX, USA 13 

 14 

3 - Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA 15 

 16 

4 - Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 17 

Houston, TX, USA 18 

  19 

 20 

 21 

 22 

* - Corresponding author: traver@hart-lab.org 23 

 24 

  25 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.08.332023doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.332023
http://creativecommons.org/licenses/by/4.0/


 

 2

Abstract 26 

  27 

CRISPR knockout screens in hundreds of cancer cell lines have revealed a substantial number 28 

of context-specific essential genes that, when associated with a biomarker such as lineage or 29 

oncogenic mutation, offer candidate tumor-specific vulnerabilities for targeted therapies or novel 30 

drug development. Data-driven analysis of knockout fitness screens also yields many other 31 

functionally coherent modules that show emergent essentiality or, in some cases, the opposite 32 

phenotype of faster proliferation. We develop a systematic approach to classify these 33 

suppressors of proliferation, which are highly enriched for tumor suppressor genes, and define a 34 

network of 103 genes in 22 discrete modules. One surprising module contains several elements 35 

of the glycerolipid biosynthesis pathway and operates exclusively in a subset of AML lines, 36 

which we call Fatty Acid Synthesis/Tumor Suppressor (FASTS) cells. Genetic and biochemical 37 

validation indicates that these cells operate at the limit of their carrying capacity for saturated 38 

fatty acids. Overexpression of saturated acyltransferase GPAT4 or its regulator CHP1 confers a 39 

survival advantage in an age-matched cohort of AML patients, indicating the in vitro phenotype 40 

reflects a clinically relevant subtype, and suggesting a previously unrecognized risk in clinical 41 

trials for fatty acid synthesis pathway inhibitors. 42 

 43 

   44 
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 45 

Introduction 46 

 47 

Gene knockouts are a fundamental weapon in the geneticist’s arsenal, and the discovery of 48 

CRISPR-based genome editing1 and its adaptation to gene knockout screens has revolutionized 49 

mammalian functional genomics and cancer targeting2–8. Hundreds of CRISPR/Cas9 knockout 50 

screens in cancer cell lines have revealed background-specific genetic vulnerabilities9–13, 51 

providing guidance for tumor-specific therapies and the development of novel targeted agents. 52 

Although lineage and mutation state are powerful predictors of context-dependent gene 53 

essentiality, variation in cell growth medium and environment can also drive differences in cell 54 

state, particularly among metabolic genes14,15, and targeted screening can reveal the genetic 55 

determinants of metabolic pathway buffering16,17.  56 

 57 

The presence and composition of metabolic and other functional modules in the cell can also be 58 

inferred by integrative analysis of large numbers of screens. Correlated gene knockout fitness 59 

profiles, measured across hundreds of screens, have been used to infer gene function and the 60 

modular architecture of the human cell18–21. Data-driven analysis of correlation networks reveals 61 

clusters of functionally related genes whose emergent essentiality in specific cell backgrounds is 62 

often unexplained by the underlying lineage or mutational landscape21. Interestingly, in a recent 63 

study of paralogs whose functional buffering renders them systematically invisible to monogenic 64 

CRISPR knockout screens22,23, it was shown that the majority of context-dependent essential 65 

genes are constitutively expressed in cell lines23. Collectively these observations suggest that 66 

there is much unexplained variation in the genetic architecture, and emergent vulnerability, of 67 

tumor cells. 68 

 69 

Building human functional interaction networks from correlated gene knockout fitness profiles in 70 

cancer cells is analogous to the yeast functional interaction networks from correlated genetic 71 

interaction profiles24–27. The fundamental difference between the two approaches is that, in 72 

yeast, a massive screening of pairwise gene knockouts in a single yeast strain was conducted 73 

in order to measure genetic interaction - a dual knockout phenotype more or less severe than 74 

that expected by the combination of the two genes independently. In coessentiality networks, 75 

CRISPR-mediated single gene knockouts are conducted across a panel of cell lines that sample 76 

the diversity of cancer genotypes and lineages. Digenic perturbations in human cells, a more 77 

faithful replication of the yeast approach, are possible with Cas9 and its variants, but library 78 
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construction, sequencing, and positional biases can be problematic16,28–34. Recently, we showed 79 

that an engineered variant of the Cas12a endonuclease, enCas12a35, could efficiently perform 80 

multiplex gene knockouts34, and we demonstrated its effectiveness in assaying synthetic 81 

lethality between targeted paralogs23. These developments in principle enable researchers to 82 

measure how biological networks vary across backgrounds, a powerful approach for 83 

deciphering complex biology24,36,37. 84 

 85 

CRISPR perturbations in human cells can result in loss of function alleles that increase as well 86 

as decrease in vitro proliferation rates, an extreme rarity in yeast knockouts. These fast-growers 87 

can complicate predictions of genetic interaction29 and confound chemoresistance screens38. 88 

However, there is no broadly accepted method of classifying these genes from CRISPR 89 

screens. Here we describe the development of a method to systematically identify genes whose 90 

knockout provides a proliferation advantage in vitro. We observe that genes which confer 91 

proliferation advantage are typically tumor suppressor genes, and show the same trends of co-92 

occurrence and functional coherence as the pathways and complexes identified in network 93 

analyses of context-dependent essential genes. Moreover, we discover a novel module that 94 

includes several components of the glycerolipid biosynthesis pathway that slows cell 95 

proliferation in a subset of AML cell lines, and we show a rewired genetic interaction network 96 

using enCas12a multiplex screening, with strong genetic interactions corroborated by clinical 97 

survival data. A putative tumor-suppressive role for glycerolipid biosynthesis is surprising since 98 

this process is thought to be required to generate biomass for tumor cell growth, and may 99 

represent an unanticipated risk factor for pathway inhibitors currently in clinical trials39,40. 100 

  101 

Results 102 

 103 

Identifying Proliferation Suppressor Signatures 104 

 105 

We previously observed genes whose knockout leads to overrepresentation in pooled library 106 

knockout screens. These genes, which we term proliferation suppressor (PS) genes, exhibit 107 

positive selection in fitness screens, a phenotype opposite that of essential genes. As expected, 108 

many PS genes are known tumor suppressor genes; for example, TP53 and related pathway 109 

genes CDKN1A, CHEK2, and TP53BP1 show positive selection in select cell lines (Figure 1a). 110 

Detection of these genes as outliers is robust to the choice of CRISPR analytical method, as we 111 

tested BAGEL2, CERES, JACKS, and mean log fold change (LFC) (Supplementary Figure 1a-112 
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d). Unlike core-essential genes, PS genes are highly background-specific: TP53 knockout 113 

shows positive LFC only in cell lines with wild-type TP53 (Figure 1b), and PTEN knockout 114 

shows the PS phenotype only in PTENwt backgrounds (Figure 1c). These observations are 115 

consistent with the role of tumor suppressor genes (TSG) in cell lines: in wildtype cells, TSG 116 

knockout increases the proliferation rate in cell culture, but when cell lines are derived from 117 

tumors where the TSG is already lost, gene knockout has no effect. TSG are therefore context-118 

specific PS genes, but it is not necessarily the case that genes with a PS phenotype in vitro act 119 

as TSG in vivo; PS genes are at best putative TSG in the absence of confirmatory data from 120 

tumor profiling. 121 

  122 

Though detection of known PS genes is possible using existing informatics pipelines, several 123 

factors complicate a robust detection of these genes. There is no accepted threshold for any 124 

algorithm we considered to detect PS genes, since all were optimized to classify essential 125 

genes. A related second issue is that cell line screens show a wide range of variance in LFC 126 

distributions, making robust outlier detection challenging (Supplementary Figure 1e). Third, the 127 

signatures are strongly background-dependent, as demonstrated by PTEN and TP53. Finally, 128 

there is no consistent expectation for whether or how many putative tumor suppressor genes 129 

are present in a given cell line. 130 

  131 

To address this gap, we developed a method to detect proliferation suppressor genes based on 132 

the normalized mean LFC of gRNA targeting a gene. To generate a null distribution, we label-133 

shuffled guide-level LFC values for each screen, calculated gene-level mean fold change, and 134 

repeated this shuffling 1,000 times (Figure 1d). We used the mean and standard deviation of 135 

this randomized distribution of gene-level mean fold changes to calculate a Z-score for raw 136 

gene-level mean fold change for each cell line. This approach normalizes variance 137 

(Supplementary Figure 1e-f) across LFC distributions in different cell lines. 138 

  139 

To evaluate the effectiveness of this shuffled Z-score approach, we used COSMIC41,42 tumor 140 

suppressor genes as a positive reference set, and we combined COSMIC-defined oncogenes 141 

(removing dual-annotated tumor suppressors) with our previously-specified set of nonessential 142 

genes as a negative reference set8,43. Since there is no consistent expectation for the presence 143 

of PS genes across cell lines, we analyzed each of the 563 cell lines from the Avana 2019q2 144 

data release independently10,44,45, calculating gene-level scores on each cell line individually and 145 

then combining all scores into a master list of 563 x 17k = 9.8 million gene-cell line observations 146 
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(Supplementary Table 1). Moreover, since there is also no expectation that all COSMIC TSG 147 

would be detected cumulatively across all cell lines, and similarly no expectation that any subset 148 

of known TSG would be detected in all cell lines, we judged that traditional recall metrics (e.g. 149 

percentage of the reference set recovered) were inappropriate. We therefore defined recall as 150 

the total number of TSG-cell line observations. Using this evaluation scheme, the shuffled Z-151 

score approach outperforms comparable methods by a substantial margin, identifying more than 152 

500 PS-cell line instances at a 10% false discovery rate (FDR) (Figure 1e). This is roughly 50% 153 

more than the closest alternatives, JACKS46 and a nonparametric rank-based approach. 154 

BAGEL47,48, a supervised classifier of essential genes, performed worst at detecting PS genes, 155 

and the raw mean LFC approach also fared poorly, highlighting the need for variance 156 

normalization across experiments. We applied this 10% FDR threshold for all subsequent 157 

analyses. 158 

  159 

Common tumor suppressor genes PTEN and TP53 were observed in ~15% of cell lines (Figure 160 

1f), with other well-known tumor suppressor genes appearing less frequently. Among 288 161 

COSMIC TSGs for which we have fitness profiles (representing 1.65% of all 17k genes), we find 162 

that 58 (20.1%) of these genes occur as proliferation suppressors at least once 163 

(Supplementary Table 2), and make up 16.6% of total proliferation suppressor calls 164 

(Supplementary Figure 2a-b), a 10-fold enrichment. All of the known TSG hits come from just 165 

249 of the 563 cell lines (49.7%) in which proliferation suppressor hit calls were identified 166 

(Figure 1g), yet we did not observe a bias toward particular tissues: in every lineage, most cell 167 

lines carried at least one PS gene (Supplementary Figure 1g).   168 

 169 

To further validate our approach, we compared the set of TSGs in our PS hits to other molecular 170 

profiling data. When identified as a proliferation suppressor, 63% of the 58 TSGs demonstrate 171 

higher mRNA expression relative to backgrounds where the same TSG is not a proliferation 172 

suppressor (Supplementary Figure 2c and Supplementary Table 2). Similarly, 84.5% of the 173 

58 TSGs, when identified as a proliferation suppressor, demonstrate lower rates of nonsilent 174 

mutations compared to backgrounds where the TSG is not a hit (Supplementary Figure 2d & 175 

Supplementary Table 2). Together, these observations confirm the reliability of our method to 176 

detect genes whose knockout results in faster cell proliferation, and that, analogous to essential 177 

genes, these genes must be expressed and must not harbor a loss-of-function mutation in order 178 

to elicit this phenotype. 179 

  180 
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We attempted to corroborate our findings using a second CRISPR dataset of 342 cell line 181 

screens from Behan et al.13, including >150 screens in the same cell lines as in the Avana data. 182 

However, these screens were conducted over a shorter timeframe than the Avana screens (14 183 

vs. 21 days), giving less time for both positive and negative selection signals to appear. The 184 

fitness enhancement introduced by PS gene knockout, relatively weak compared to severe 185 

defects from essential gene knockout, often precludes detection in a shorter experiment. In the 186 

example F5 cell line (Figure 1a), a 2.5-fold change over a 21-day time course corresponds to a 187 

fitness increase of only ~12% for rapidly growing cells, or a doubling time decrease from 24 to 188 

21 hours. In a 14-day experiment, this increased proliferation rate would result in an observed 189 

log fold change of only ~1.7, within the expected noise from genes with no knockout phenotype 190 

(see Methods). As a result, when we compared cell lines screened by both groups, the Avana 191 

data yielded many more TSG hits (Supplementary Figure 3a). While most of these do not 192 

meet our threshold for PS genes in the Sanger data, hits at our 10% FDR threshold across all 193 

Avana screens are strongly biased toward positive Z-scores in the Sanger screens 194 

(Supplementary Figure 3b), consistent with a weaker signal of positive selection as a result of 195 

the shorter assays rather than a lack of robustness in the screens49. 196 

  197 

Discovering Pathways Modulating Cell Growth With A Proliferation Suppressor Co-198 

Occurrence Network 199 

  200 

Although known TSG act as PS genes in only a subset of cell lines, we observed patterns of co-201 

occurrence among functionally related genes. PTEN co-occurs with mTOR regulators NF250 (P 202 

< 2x10-6, Fisher’s exact test) and the TSC1/TSC2 complex (P-values both < 2x10-13)51, as well 203 

as Programmed Cell Death 10 (PDCD10)52, a proposed tumor suppressor8,53 (Figure 2a). The 204 

p53 regulatory cluster (TP53, CDKN1A, CHECK2, TP53BP1) also exhibited a strong co-205 

occurrence pattern that was independent of the mTOR regulatory cluster (Figure 2a). mTOR54 206 

and cell cycle checkpoint genes55,56 have been heavily linked to cancer development, given their 207 

roles in controlling cell growth and proliferation, and thus have been the focus of studies 208 

characterizing patient genomic profiles to identify common pathway alterations57,58. 209 

  210 

The modularity of mTOR regulators and TP53 regulators demonstrates pathway-level 211 

proliferation suppressor activity. This reflects the concept of genes with correlated fitness 212 

profiles indicating the genes operate in the same biochemical pathway or biological 213 

process19,21,59,60. However, the sparseness of PS genes, coupled with their smaller effect sizes, 214 
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renders correlation networks relatively poor at identifying modules of genes with proliferation 215 

suppressor activity. In order to identify such modules, we developed a PS network based on 216 

statistical overrepresentation of co-occurring PS genes (Figure 2b); see Methods for details. 217 

This approach yields a network of 103 genes containing 157 edges in disconnected clusters; 218 

only 9 clusters have 3 or more genes (Figure 2c and Supplementary Figure 4c). Of these 157 219 

edges, 31 (20.1%, empirical P<10-4) are present in the HumanNet61 functional interaction 220 

network (Supplementary Figure 4a-b), indicating high functional coherence between 221 

connected genes. The network recovers the PTEN and TP53 modules as well as the Hippo 222 

pathway, the aryl hydrocarbon receptor complex (AHR/ARNT), the mTOR-repressing GATOR1 223 

complex, the STAGA chromatin remodeling complex, TYK2-STAT signaling, and the gamma-224 

secretase complex (Figure 2c), all of which have been associated with tumor suppressor 225 

activity. The functional coherence and biological relevance of the PS co-occurrence network 226 

further validates the approach taken, and establishes this dataset as a resource for exploring 227 

putative tumor suppressor activity in cell lines and tumors. 228 

 229 

Variation in Fatty Acid Metabolism in AML Cells 230 

 231 

In addition to the known tumor suppressors, we observed a large module containing elements of 232 

several fatty acid (FA) and lipid biosynthesis pathways (Figure 2c). Interestingly, while there 233 

does not appear to be a strong tissue specificity signature for most clusters (Figure 2c), the 234 

fatty acid metabolism cluster shows a strong enrichment for AML cell lines (P = 1.1x10-5). AML, 235 

like most cancers, typically relies on increased glucose consumption for energy and diversion of 236 

glycolytic intermediates for the generation of biomass required for cell proliferation. Membrane 237 

biomass is generated by phospholipid biosynthesis that uses fatty acids as building blocks, with 238 

FA pools replenished by some combination of triglyceride catabolism, transporter-mediated 239 

uptake, and de novo synthesis via the ACLY/ACACA/FASN palmitate production pathway using 240 

citrate precursor diverted from the TCA cycle. Indeed the role of lipid metabolism in AML 241 

progression is indicated by changes in serum lipid content62 in particular for long-chain 242 

saturated fatty acids that are the terminal product of the FAS pipeline. Inhibition of FA synthesis 243 

is therefore an appealing chemotherapeutic intervention63,64  and FASN inhibitors are currently 244 

undergoing clinical trials for treatment of solid tumors and metabolic diseases40. The 245 

observation that knocking out FAS pathway genes results in faster proliferation in some AML 246 

cells, and their signature as putative tumor suppressor genes, is therefore very unexpected, and 247 

in our view warrants further study. 248 
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 249 

To learn whether additional elements of lipid metabolism were associated with the FAS cluster, 250 

we examined the differential correlation of shuffled Z-scores in AML cells. We and others have 251 

shown that genes with correlated gene knockout fitness profiles in CRISPR screens are likely to 252 

be involved in the same biological pathway or process (“co-functional”)18–21 , analogous to 253 

correlated genetic interaction profiles in yeast 25,27,65. Strikingly, all gene pairs within the fully 254 

connected clique in the FAS cluster (containing genes FASN, ACACA, GPAT4, CHP1, and GPI, 255 

Figure 2c) had a median Pearson correlation coefficient (PCC) of 0.90 in the 15 AML cell lines 256 

(range 0.87-0.97, Figure 3a, red), compared to median correlation of 0.18 in the remaining 548 257 

cell lines (range -0.04-0.58, with the highest correlation between FASN and ACACA, adjacent 258 

enzymes in the linear palmitate synthesis pathway; Figure 3a, gray). These high differential 259 

Pearson correlation coefficients (dPCC) suggest that variation in lipid metabolism is pronounced 260 

in AML cells66. 261 

 262 

We sought to explore whether this difference in correlation identified other genes that might give 263 

insight into metabolic rewiring in AML. Calculating a global difference between PCC of all gene 264 

pairs in AML and in the remaining >500 cell lines yielded many gene pairs whose dPCC 265 

appeared indistinguishable from random sampling (Supplementary Figure 5a-b). To filter 266 

these, we calculated empirical P-values for each gene pair. We randomly selected 15 cell lines 267 

from the pool of all screens, calculated PCC for all gene pairs in the selected and remaining 268 

lines, and calculated dPCC from these PCC values (Figure 3b). We repeated this process 269 

1,000 times to generate an empirically-derived null distribution of dPCC values for each gene 270 

pair, against which a P-value could be computed (Figure 3c-d).  271 

 272 

Expanding the set to a filtered list of genes whose correlation with a gene in the FAS clique 273 

showed significant change in AML cells (P<0.001; see Methods) yielded a total of 61 genes, 274 

including the 5 genes in the clique (Figure 3e) and the remaining genes in the co-occurrence 275 

network cluster (LSS, ERO1A, SLC2A1, PGP) plus Holocarboxylase Synthetase (HLCS), which 276 

biotinylates and activates acetyl-CoA-carboxylase, the protein product of ACACA. Interestingly, 277 

about a third of the genes showed significantly increased anticorrelation with the FAS cluster, 278 

indicating genes preferentially essential where the FAS genes act as proliferation suppressors 279 

(Figure 3e). These genes include fatty acid desaturase (SCD), which operates directly 280 

downstream from FASN to generate monounsaturated fatty acid species, and Sterol Regulatory 281 

Element Binding Transcription Factor 1 (SREBF1), the master regulatory factor for lipid 282 
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homeostasis in cells. Other lipid pathways are also represented, including 283 

plasmanylethanolamine desaturase (TMEM189), critical for plasmalogen synthesis67, and 284 

ceramide synthase 2 (CERS2), involved in de novo ceramide biosynthesis68, an important 285 

precursor for sphingomyelin in cell membranes. 286 

 287 

Clustering the AML cells lines according to these high dPCC genes reveals two distinct subsets 288 

of cells. The FAS cluster and its correlates show strong proliferation suppressor phenotype in 289 

four cell lines, NB4, MV411, MOLM13, and THP1. The remaining eleven AML cell lines show 290 

negligible to weakly essential phenotypes when these genes are knocked out. The 291 

anticorrelated genes, including SCD and SREBF1, show heightened essentiality in these same 292 

cell lines. Together these observed shifts in gene knockout fitness indicates that this subset of 293 

AML cells has a specific metabolic rewiring. Because these cells share a genetic signature 294 

among fatty acid synthesis pathway genes that is consistent with tumor suppressors, we call 295 

these cell lines Fatty Acid Synthesis/Tumor Suppressor (FASTS) cells (Figure 3e). 296 

 297 

Cas12a-mediated Genetic Interaction Screens Confirm Rewired Lipid Metabolism 298 

 299 

We sought to confirm whether gene knockout confers improved cell fitness, and to gather some 300 

insight into why some AML cells show the FASTS phenotype and others do not. We designed a 301 

CRISPR screen that measures the genetic interactions between eight selected “query genes” 302 

and ~100 other genes (“array genes”). The query genes include FASN and ACACA, from the 303 

cluster of proliferation-suppressor genes, as well as lipid homeostasis transcription factor 304 

SREBF1, anticorrelated with the FAS cluster in the differential network analysis, and 305 

uncharacterized gene c12orf49, previously implicated in lipid metabolism by coessentiality21 and 306 

a recent genetic interaction study60. Additional query genes include control tumor suppressor 307 

genes TP53 and PTEN and control context-dependent essential genes GPX4 and PSTK 308 

(Figure 4a). The array genes include two to three genes each from several metabolic pathways, 309 

including various branches of lipid biosynthesis, glycolysis and glutaminolysis, oxphos, 310 

peroxisomal and mitochondrial fatty acid oxidation. We include the query genes in the array 311 

gene set (Figure 4a) to test for screen artifacts and further add control essential and 312 

nonessential genes to measure overall screen efficacy (Supplementary Table 3-4). 313 

 314 

We used the enCas12a CRISPR endonuclease system to carry out multiplex gene knockouts35 . 315 

We used a dual-guide enCas12a design, as described in DeWeirdt et al.34, that allows for 316 
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construction of specific guide pairs through pooled oligonucleotide synthesis (Figure 4b). The 317 

library robustly measures single knockout fitness by pairing three Cas12a crRNA per target 318 

gene each with five crRNA targeting nonessential genes8,43 (n=15 constructs for single knockout 319 

fitness), and efficiently assays double knockout fitness by measuring all guides targeting query-320 

array gene pairs (n=9) (Figure 4c & Supplementary Table 4). Using this efficient design and 321 

the endogenous multiplexing capability of enCas12a, we were able to synthesize a library 322 

targeting 800 gene pairs with a single 12k oligonucleotide array.  323 

 324 

We screened one AML cell line from the FASTS subset, MOLM13, and a second one with no 325 

FAS phenotype, NOMO1, collecting samples at 14 and 21 days after transduction with a five-326 

day puromycin selection (Supplementary Table 5-6). Importantly, by comparing the mean log 327 

fold change of query gene knockouts in the “A” position vs. the same genes in the “B” position of 328 

the dual knockout vector, we find no positional bias in the multiplex knockout constructs (Figure 329 

4d), consistent with our previous findings23,34. Single knockout fitness measurements effectively 330 

segregated known essential genes from nonessentials, confirming the efficacy of the primary 331 

screens (Supplementary Figure 6). Context-dependent fitness profiles are consistent with the 332 

cell genotypes, with PTEN and TSC1 showing positive selection in PTENwt NOMO1 cells and 333 

TP53 being a strong PS gene in P53wt MOLM13 cells. Strikingly, CHP1 and GPAT4 are the next 334 

two top hits in MOLM13, confirming their proliferation suppressor phenotype (Figure 4e), while 335 

neither shows a phenotype in NOMO1. Together these observations validate the enCas12a-336 

mediated multiplex perturbation platform, confirm the ability of CRISPR knockout screens to 337 

detect proliferation suppressors, and corroborate the background-specific fitness enhancing 338 

effects of genes from the FAS cluster. 339 

 340 

To measure genetic interactions, we fit a linear regression for each guide between the 341 

combination LFCs and the single guide LFCs, Z-scoring the residuals from this line, and 342 

combining across all guides targeting the same gene pair (Supplementary Figure 6 & 343 

Supplementary Table 6). Here, positive genetic interaction Z-scores reflect greater fitness than 344 

expected and negative Z-scores represent lower than expected based on the single gene 345 

knockouts independently, similar to the methodology applied in a recent survey of genetic 346 

interactions in cancer cells using multiplex CRISPR perturbation33 (see Methods). Gene self-347 

interactions (when the same gene is in the A and B position, Figure 4d) should therefore be 348 

negative for proliferation suppressors and positive for essentials (Figure 4f-g, Supplementary 349 

Figure 6). Overall, genetic interaction Z-scores in the two cell lines showed moderate 350 
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correlation (Figure 4g) and previously reported synthetic interactions between C12orf49 and 351 

low-density lipoprotein receptor LDLR17 and between SREBF1 and its paralog SREBF217 are 352 

identified in both cell lines (Supplementary Figure 6f-g).  353 

 354 

In contrast with the interactions found in both cell lines, background-specific genetic interactions 355 

reflect the genotypic and phenotypic differences between the cells. The negative interaction 356 

between tumor suppressor PTEN and mTOR repressor TSC1 in PTENwt NOMO1 cells is 357 

consistent with their epistatic roles in the mTOR regulatory pathway. Both genes show positive 358 

knockout fitness in NOMO1 (Figure 4e) but their dual knockout does not provide an additive 359 

growth effect, resulting in a suppressor interaction with a negative Z-score (Figure 4g-h). 360 

Similarly, suppressor genetic interactions between ACACA and downstream proliferation 361 

suppressor genes CHP1 and GPAT4 are pronounced in MOLM13 cells, consistent with epistatic 362 

relationships in a linear biochemical pathway (Figure 4h). These interactions are not replicated 363 

with query gene FASN, but both FASN and ACACA show negative interactions with fatty acid 364 

transport gene FABP5 and positive interactions with SREBF1 and SCD, the primary desaturase 365 

of long-chain saturated fatty acids. All of these interactions are absent in NOMO1, 366 

demonstrating the rewiring of the lipid biosynthesis genetic interaction network between these 367 

two cell types (Figure 4h).  368 

 369 

FASTS Signature Predicts Sensitivity to Saturated Fatty Acids 370 

 371 

The significant differences in the single- and double-knockout fitness signatures between the 372 

two cell lines suggests a major rewiring of lipid metabolism in these cells. CHP1 and GPAT4 are 373 

reciprocal top correlates in the Avana coessentiality network (r=0.43, P=2.5x10-34), strongly 374 

predicting gene co-functionality21. Two recent studies characterized the role of lysophosphatidic 375 

acid acyltransferase GPAT4 in adding saturated acyl moieties to glycerol 3-phosphate, 376 

generating lysophosphatidic acid (LPA) and phosphatidic acid (PA), the precursors for cellular 377 

phospholipids and triglycerides, and further discovered CHP1 as a key regulatory factor for 378 

GPAT4 activity69,70. Within hematological cancer cell lines, the coessentiality network is 379 

significantly restructured, with the ACACA/FASN module correlated with SCD in most 380 

backgrounds (r=0.33) but strongly anticorrelated (r=-0.63) in blood cancers (Figure 3e). The 381 

magnitude of this change in correlation is ranked #7 out of 164 million gene pairs, with the other 382 

six comprising interactions that are specific to other contexts -- e.g. BRAF-SOX10 are 383 

anticorrelated in blood (r= -0.41) but highly correlated ex-blood (r=0.59) due to their co-384 
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essentiality in BRAFV600E melanoma cells. In contrast, ACACA and FASN are weakly correlated 385 

with CHP1 in most tissues but strongly correlated in AML, with underlying covariation largely 386 

driven by the PS phenotype in FASTS cells (Figure 3e). This pathway sign reversal is 387 

confirmed in the single knockout fitness observed in our screens: SCD is strongly essential in 388 

MOLM-13 but not in NOMO-1 (Figure 4e). 389 

 390 

Collectively these observations make a strong prediction about the metabolic processing of 391 

specific lipid species. Faster proliferation upon knockout of genes related to saturated fatty acid 392 

processing, coupled with increased dependency on fatty acid desaturase (Figure 5a), suggests 393 

that these cells are at or near their carrying capacity for saturated fatty acids. To test this 394 

prediction, we exposed three FASTS cell lines and four other AML cell lines to various species 395 

of saturated and unsaturated fatty acids. FASTS cells showed significantly increased apoptosis 396 

in the presence of 200 µm palmitate (Figure 5b-c) while no other species of saturated or 397 

unsaturated fatty acid showed similar differential sensitivity. In addition, analysis of metabolic 398 

profiles of cells in the Cancer Cell Line Encyclopedia71,72 showed that saturated acyl chains are 399 

markedly overrepresented in triacylglycerol (TAG) in FASTS cells (Figure 5d), in contrast with 400 

other lipid species measured (Supplementary Figure 7). Palmitate-induced lipotoxicity has 401 

been studied in many contexts – and importantly, the role of GPAT4 and CHP1 in mediating 402 

lipotoxicity was well described recently69,70 – but, to our knowledge, this is the first instance of a 403 

genetic signature that predicts liposensitivity. 404 

 405 

Clinical Relevance of FASTS Subtype 406 

  407 

To explore whether the FASTS phenotype has clinical relevance, we compared our results with 408 

patient survival information from public databases. Using genetic characterization data from 409 

CCLE71, we did not find any lesion which segregated FASTS cells from other CD33+ AML cells 410 

(Figure 6a), so no mutation is nominated to drive a FASTS phenotype in vivo. Instead, we 411 

explored whether variation in gene expression was associated with patient outcomes. We 412 

included genes in the core FASTS module as well as genes with strong genetic interactions with 413 

ACACA/FASN in our screen (Figure 6a). To select an appropriate cohort for genomic analysis, 414 

we first considered patient age. Although AML is present across every decade of life, patients 415 

from whom FASTS cell lines were derived are all under 30 years of age (sources of other AML 416 

cells ranged from 7 to 68 years; Figure 6b). With this in mind, we explored data from the 417 

TARGET-AML73 project, which focuses on childhood cancers (Figure 6c).  Using TARGET 418 
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data, we calculated hazard ratios using univariate Cox proportional-hazards modeling with 419 

continuous mRNA expression values for our genes of interest as independent variables. We 420 

observed that both CHP1 and GPAT4 show significant, negative hazard ratios (HR), consistent 421 

with a tumor suppressor signature (Figure 6d), and that no other gene from our set shows a 422 

negative HR. Indeed, tumors in the top quartile of gene expression showed significantly 423 

improved survival for both CHP1 (P-value 0.007, Figure 6e) and GPAT4 (P-value 0.035, Figure 424 

6f). These findings are not replicated for CHP1 and GPAT4 in the TCGA74 or OHSU75 tumor 425 

genomics data sets, suggesting the FASTS phenotype might be restricted to juvenile leukemias. 426 

 427 

Discussion 428 

 429 

CRISPR screens have had a profound impact on cancer functional genomics. While research 430 

has been mainly focused on essential gene phenotypes, there is still much clinically relevant 431 

biology that can be uncovered by examining other phenotypes from a genetic screen. We 432 

establish a methodology that can identify the proliferation suppressor phenotype from whole-433 

genome CRISPR knockout genetic screens. This represents, to our knowledge, the first 434 

systematic study of this phenotype in the ~1,000 published screens7,10,11,13,44.  435 

 436 

The activity of PS genes is inherently context-dependent, rendering global classification difficult. 437 

As with context-dependent essential genes, the strongest signal is attained when comparing 438 

knockout phenotype with underlying mutation state. For example, wildtype and mutant alleles of 439 

classic tumor suppressor examples TP53 and PTEN are present in large numbers of cell lines, 440 

enabling relatively easy discrimination of PS behavior in wildtype backgrounds, but most 441 

mutations are much more rare, reducing statistical power. Our model-based approach enables 442 

the discovery of PS phenotype as an outlier from null-phenotype knockouts. Using this 443 

approach, we recover COSMIC-annotated TSGs exhibiting the PS phenotype when wildtype 444 

alleles are expressed at nominal levels.  445 

 446 

Co-occurrence of proliferation suppressors follows the principles of modular biology, with genes 447 

in the same pathway acting as proliferation suppressors in the same cell lines. We observe 448 

background-specific putative tumor suppressor activity for the PTEN pathway, P53 regulation, 449 

mTOR signaling, chromatin remodeling, and others. The co-occurrence network also reveals a 450 

novel module associated with glycerolipid biosynthesis, which exhibits the PS phenotype in a 451 

subset of AML cells. Analysis of the rewiring of the lipid metabolism coessentiality network in 452 
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AML cells corroborated this discovery, and led us to define the Fatty Acid Synthesis/Tumor 453 

Suppressor (FASTS) phenotype in four AML cell lines. A survey of genetic interactions, using 454 

the enCas12a multiplex knockout platform, showed major network rewiring between FASTS and 455 

other AML cells, and revealed strong genetic interactions in FASTS cells with GPAT4, a key 456 

enzyme in the processing of saturated fatty acids, and its regulator CHP1. Collectively these 457 

observations suggest that FASTS cells are near some critical threshold for saturated fatty acid 458 

carrying capacity, which we validated biochemically by treatment with fatty acids and 459 

bioinformatically by comparison with CCLE metabolomic profiling. 460 

 461 

Confirming the clinical relevance of an in vitro phenotype can be difficult. No obvious mutation 462 

segregates FASTS cells from other AML cells, and with only four cell lines showing the FASTS 463 

phenotype, we lack the statistical power to discover associations in an unbiased way. However, 464 

by narrowing our search to strong hits from the differential network analyses, we found a 465 

significant survival advantage in a roughly age-matched cohort for GPAT4 and CHP1 466 

overexpression. This finding is consistent with a wholly novel tumor suppressor signature for our 467 

PS gene module. 468 

 469 

The combination of genetic, biochemical, and clinical support for the discovery of a novel tumor 470 

suppressor module has several implications. First, it provides a clinical signature that warrants 471 

further research as a prognostic marker as well as a potential therapeutic target -- and a high-472 

risk group for fatty acid synthesis inhibitors. Second, it demonstrates the power of differential 473 

network analysis, and in particular differential genetic interaction networks, to dissect the 474 

rewiring of molecular pathways from modular phenotypes. And finally, it suggests that there still 475 

may be much to learn from data-driven analyses of large-scale screen data, beyond the low-476 

hanging fruit of lesion/vulnerability associations. 477 

 478 

 479 

  480 
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662 
 663 

Figure 1. Discovery of Proliferation Suppressor genes. (a) Fold-change distribution of a664 

typical CRISPR knockout screen has a long left tail of essential genes, and a small number of665 

genes whose knockout increases fitness (proliferation suppressors, “PS genes”). (b) and (c)666 

Fold change of known tumor suppressors across 563 cell lines. Red, P-values are from667 

corresponding Wilcoxon rank-sum tests. (d) Distribution of mean log fold change before and668 

after label-shuffling. (e) Precision vs. recall of shuffled Z-score and other CRISPR analysis669 

methods. Dashed line, 90% precision (10% FDR). (f) Fraction of cell lines in which known tumor670 

suppressors are classified as PS genes at 10% FDR. (g) Presence of each known TSG across671 

563 cell lines, vs. cell genetic background. Gold, mutation present; gray, absent. Green, gene is672 

classified as a proliferation suppressor. 673 
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676 
 677 
 678 
Figure 2. Co-occurrence of PS genes. (a) Co-occurrence/mutual exclusivity of common TSG679 

as PS genes in CRISPR screens. Brown, number of cell lines in which two genes co-occur as680 

PS genes at 10% FDR. Blue, FDR of co-occurrence. Hierarchical clustering indicates functional681 

modules. (b) Pipeline for building the co-PS network. (c) Examples from the Co-PS network.682 

Nodes are connected by edges at FDR < 1%. Heatmaps indicate presence of PS gene vs. cell683 

lineage. The fatty acid synthesis cluster (orange) is selected for further analysis. 684 
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685 
 686 
 687 
Figure 3. Differential network analysis of fatty acid synthesis module. (a) Among genes in688 

the FAS module, Pearson correlation coefficients of shuffled Z score profiles are substantially689 

higher in AML cells (red) than in other cells (gray). (b) Significance testing of differential PCC690 

(dPCC) involves building a null distribution by randomly selecting 15 cell lines, and calculating691 

PCC between all gene pairs in the selected cells and the remaining cells. (c) After 1,000692 

repeats, a null distribution is generated for each pair, and a P-value is calculated for the693 

observed AML-vs-other dPCC. (d) Volcano plot of dPCC vs. P-value. (e) Heatmap of shuffled Z694 

score for 15 AML cell lines vs. genes with P<0.001 and |Z| > 3 in at least one AML cell line.695 
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Clustering indicates the putative Fatty Acid Synthesis/Tumor Suppressor (FASTS) subtype. 696 

Green boxes indicate genes that are preferentially essential (top) or nonessential (bottom) in 697 

FASTS. Orange, genes involved in fatty acid and membrane biosynthesis. 698 
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 700 

701 
 702 
 703 
Figure 4. Genetic interactions reveal a rewired lipid biosynthesis pathway in FASTS cells.704 

(a) Genetic interaction screen targets 8 query genes and 100 array genes, for a total of 800705 

pairwise knockouts. (b) Library design uses a dual-guide enCa12a expression vector which706 

targets the query gene in the “A” position and array gene in the “B” position. (c) Overall library707 

design includes three crRNA/gene plus control crRNA targeting nonessential genes. Single-708 

knockout constructs (target gene paired with nonessential controls) allow accurate709 

measurement of single knockout fitness. (d) Considering single knockout fitness of query genes710 

in the “A” and “B” position of the crRNA expression vector shows no position effects in the two711 
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cell lines screened (MOLM-13, NOMO-1). LFC, log fold change. (e) Single knockout fitness (Z-712 

score of mean LFC) is highly consistent between MOLM-13 and NOMO-1, but reveals 713 

background-specific PS genes. (f) Enrichment among GI for coessential and same-gene genetic 714 

interactions. Same-gene interactions among genes that show single knockout fitness 715 

phenotypes are expected, reflecting quality of GI observations. (g) Global comparison of MOLM-716 

13, NOMO-1 genetic interaction Z scores. (h) Network view of interactions in each background 717 

shows rewiring in MOLM-13 FASTS cells. 718 
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721 
 722 
 723 
Figure 5. FASTS cells are sensitive to saturated FA. (a) Schematic of the fatty724 

acid/glycerolipid synthesis pathway. Blue, PS genes in FASTS cells. Red, essential genes.725 

Pathway analysis suggests saturated fatty acids are a critical node. (b) Apoptosis of FASTS726 

cells in response to media supplemented with 200 µm fatty acids. All three cell lines show727 

marked sensitivity to palmitate. (c) Apoptosis of other AML cells in response to fatty acids shows728 

no response to palmitate. (d) Triacylglycerol (TAG) species metabolite differences. The x axis729 

represents the median difference of log10 normalized peak area of the metabolite in FASTS730 

cells vs all other AML cells. The y axis represents the number of saturated bonds present. Each731 

dot represents a unique metabolite.  732 
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734 
 735 
 736 
Figure 6. Prognostic signature of FASTS module. (a) Heatmap of shuffled Z scores for737 

genes implicated in the genetic interaction network. Top, common AML lesions. (b) Shuffled Z-738 

score of FASN in AML cell lines vs. age of patient from which cell lines were derived. Blue,739 

FASTS cells. (c) Age distribution of AML patients in three genomics cohorts. (d) Hazard ratios740 

(95% CI; univariate Cox proportional hazards test) for expression of genes in (a), using741 

genomics and survival data from TARGET. (e) Kaplan-Meier survival analysis of AML patients742 

in TARGET, comparing top quartile of CHP1 expression vs. others. (e) Same, with GPAT4. 743 
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