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Abstract

We take a data-driven approach to deducing the local volume changes accompanying early devel-
opment of the fetal human brain. Our approach uses fetal brain atlas MRI data for the geometric
changes in representative cases. Using a nonlinear continuum mechanics model of morphoelastic
growth, we invert the deformation field obtained from MRI registration to arrive at a field for the
growth deformation gradient tensor. Our field inversion uses a combination of direct and adjoint
methods for computing gradients of the objective function while constraining the optimization by
the physics of morphoelastic growth. We thus infer a growth deformation gradient field that obeys
the laws of morphoelastic growth. The errors between the MRI data and the forward displacement
solution driven by the inverted growth deformation gradient field are found to be smaller than the
reference displacement by well over an order of magnitude, and can be driven even lower. The results
thus reproduce the three-dimensional growth during the early development of the fetal brain with
controllable error.

1 Introduction

Like other organs, the fetal human brain undergoes large changes in volume and geometry during
development in utero. A foundational understanding of these growth-induced changes can be gained
from a morphoelastic treatment. Such an approach underlies the now accepted model of morphological
development of most biological structures: Mass accretes, either due to cell growth and division,
or from the deposition of extra-cellular matrix elements. Due to the elasticity of the newly grown
(accreted) tissue, some energy is stored in it, and the relaxation of this energy occurs via an expansion
of the tissue. The brain’s grey and white matter are soft materials with molecular structures that are
subjected to stress-dependent breakage of secondary bonds, and furthermore, are fluid-filled. There is,
therefore, a rate-dependence to the mechanical response of the brain’s constituent matter. However,
on the time scales of days to weeks over which the brain undergoes morphological changes, viscous
effects are fully relaxed, and elasticity prevails. Specifically, hyperelastic models governed by the
equations of nonlinear elasticity describe the mechanical changes accompanying growth.

This is the foundation for the morphoelastic theory of growth, which relies upon a growth defor-
mation gradient tensor as one component of a multiplicative decomposition of the total deformation
gradient tensor. In general, it is incompatible, meaning that it cannot be expressed as the gradient
of a smooth vector field. However, its product, conventionally written by pre-multiplication by the
elastic deformation gradient tensor, is indeed compatible, since it expresses the total deformation
gradient. The morphoelastic theory of growth has gained interest over the last two decades from the
standpoint of neurodevelopmental studies that seek to explain the folding of the brain.
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Folding, or sulcification and gyrification, of the brain is common in mammals including primates,
cetaceans, pachyderms and ungulates. Folds form in the cortical layer of grey matter, and in species
such as humans that demonstrate pronounced gyrencephaly, the sulci can be significantly deeper than
the cortical thickness. A folded cortex confers a cognitive advantage by increasing the surface area
enclosed within the skull, translating to greater capacity for intelligence. Normally developed human
brains have a gyrification index (ratio of actual surface area to the surface area of an enveloping
surface) approaching 2.55 [44]. Neurodevelopmental pathologies are associated with significant de-
partures from this value. In humans, polymicrogyria (shallow, more frequent folding) is associated
with developmental delays and epilepsy [23]. Pachygyria (shallow, less frequent and flatter folds) is
associated with seizures, cognitive impairment and in rare cases, afflictions such as bipolar disorder
[33]. Lissencephaly (abscence of folds) is associated with abnormal EEG patterns, intractable epilepsy
[24] and cognitive impairment [28].

Fetal MRI data indicate that the human brain is almost perfectly smooth until 24 weeks of
gestation [21, 15, 17], from which stage gyrification proceeds until well after birth. Therefore, there
is a clear neurophysiological motivation to understand the physics governing cortical folding and the
conditions for normal or pathological cortical folding. Incompatible morphoelastic growth in the
cortical layer results in circumferential compression and causes an elastic buckling bifurcation. It is
then followed by extreme strains leading to highly folded structures in the post-bifurcation regime.
While a theory of axonal tension had been advanced to explain cortical folding under forces imposed
by interconnected neurons [12], more recent studies of cutting followed by elastic relaxation on ferret
brains established that axonal tension does not cause folding, while computational studies strongly
suggested that incompatible growth does [41]. Bayly et al. [3] explained gyrification patterns by
analytic and computational studies based on incompatible morphoelastic growth and Tallinen et al.
[35] used experiments in a surrogate, polymeric gel model combined with nonlinear finite element
computations to further support the morphoelastic theory of growth .1

Wrinkling of surfaces, such as seen on the cortex, and of interfaces, is a common phenomenon.
In some cases it is influenced by mismatched elastic moduli between a thin elastic layer and an
underlying substrate, a setting common to biological and non-biological thin films [43]. Among the
former, it also may control the patterns of wrinkling of fruit and vegetable skins [42]. However, the
essence of the phenomenon of brain folding does not depend on stiffness contrasts [31, 10, 11]; the
Young’s Modulus of cortical grey matter and of the white matter underlying it are of the same order
of magnitude [7, 40]. Therefore, the elastic matter of the folding brain may be reasonably taken as
homogeneous.

A number of recent studies have sought to explain aspects of brain folding by incompatible growth
under linearized and, more appropriately, nonlinear morphoelasticity [3, 35, 4, 6, 7, 9, 19, 22, 34,
36]. While drawing upon insight from linearized buckling of beams, plates and shells [19, 22, 8],
most of the computational work is based on finite strains in the post-bifurcation regime–albeit on
analytic ellipsoidal shapes. This body of work has shed light on the mechanical conditions governing
the development of the organ-wide pathologies of polymicrogyria, pachygyria and lissencephaly [6,
19, 9].

It is notable that the early-forming primary sulci and gyri in humans and other gyrencephalic
species show a remarkable robustness of placement in normally developed brains [38]. This is empha-
sized in fetal brain atlases with data on the geometry of developing brains, such as those obtained from
67 individuals by Gholipour et al. [17]. After uniform scaling to normalize volumes, an “average”
brain defined by computing the mean geometry showed well-resolved primary folds. This suggests
that, when scaled for volume, the placement of those folds is consistent across individuals. Absent this
persistence, the folds would have been smeared out in the averaged geometry. A second observation
is that despite the organ scale lateral symmetry of the brain the sulci and gyri do not localize into
symmetric modes of folding at all scales [21, 29] as seen in computational studies on high-symmetry
reference shapes. These observations serve as motivations to identify the sequence of kinematic and
mechanical steps that lead to precise placement of the primary folds as well as the range of variation
in secondary and tertiary folds. Recent work studied the mechanisms of cell growth and migration
and linked them to the developing pattern of the early folds [36, 32].

Here, we take a broader view, seeking to deduce the local volume changes that develop throughout

1Albeit, solved as elastic unloading from the folded configuration with first-order dynamics added to numerically
stabilize the system against bifurcations.
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the brain and drive its expansion as well as folding by incompatible, morphoelastic growth. Our
approach is a data-driven one. Using magnetic resonance imaging (MRI) data on the geometric
changes of the fetal brain, recorded weekly, we seek to solve a series of inverse problems to arrive at
the spatially varying growth deformation gradient tensor of the morphoelastic theory. The methods
we use begin with MRI segmentation and computational mesh generation to enable image registration
across successive weeks of brain development. These steps, themselves involving inverse modelling,
provide us with the geometric data for the final stage of physics-constrained inference. Here, we
combine direct and adjoint methods for computing gradients of objective functions in a generalized
optimization setting, subject to the constraint imposed by the physics of morphoelastic growth.
This will leave us with mechanics-constrained geometric data in the form of the precisely defined
growth deformation tensor that describes the three-dimensional development of the fetal brain. From
this basis, further physically well-founded inference will be possible on the dynamics of fetal brain
development.

The morphoelastic growth model is discussed in §2, the inverse problem for the growth deformation
tensor and tests with synthetic data appear in §3. MRI segmentation of fetal brain atlas data and
computational mesh generation with it appear in §4. The MRI registration problem is discussed in §5,
and the extraction of morphoelastic growth deformation data in §6. Results for the inferred growth
deformation gradient tensor are in §7, and conclusions in §8

2 The theory of morphoelastic growth

The theory of morphoelastic growth is well-established and traces its roots to multiplicative plasticity,
and even before that to multiplicative theormoelasticity. For a discussion of the kinematics we direct
the reader to Ref. [13], to Refs [14, 27] for its coupling with mass transport, and to Ref. [2] for
a perspective of growth and remodelling. A complete treatment that includes the mathematical
background and a proper placement of the theory within nonlinear elasticity can be found in Ref.
[18]. The treatment that follows here is rigorous, but eschews formalism in favor of accessibility of
the important ideas.

Given the displacement field u ∈ R3, and the reference position of material points X ∈ R3, the
deformation gradient tensor is F = 1 + ∂u/∂X, where 1 is the isotropic tensor. The multiplicative
decomposition of F that underlies the theory splits it into elastic and growth components, F e and
F g, respectively, so that F = F eF g.

Incompatibility is admitted by this decomposition in that F g, which we think of as driving mor-
phoelastic growth, is not, in general, obtained as a gradient field in the manner that F arises from
u. It therefore does not satisfy the classical kinematic compatibility conditions that F does.

As explained in the Introduction, we work within the theory of hyperelasticity. We adopt a neo-
Hookean strain energy density function ψ from [36], which depends exclusively on the elastic right

Cauchy-Green tensor Ce = F eTF e,

ψ(Ce) =
1

4
λ (detCe − 1)− 1

2

(
1

2
λ+ µ

)
log detCe +

1

2
µ(trCe − 3), (1)

where µ and λ are the standard Lamé parameters. The first Piola-Kirchhoff stress tensor P follows
as the derivative of the strain energy W :

P =
∂ψ

∂F e
= µF e +

1

2
λJcF e−T −

(
1

2
λ+ µ

)
F e−T , (2)

where Jc = detF e. The first Piola-Kirchhoff stress is governed by the quasistatic balance of linear
momentum with no body force:

∇ · P = 0 in Ω, u = ū on ∂Ωu, PN = t̄ on ∂ΩP , (3)

where Ω ⊂ R3 denotes the domain, which is the brain, and its Dirichlet and Neumann boundaries
are Ωu and ΩP , satisfying Ωu ∪ ΩP = ∂Ω and Ωu ∩ ΩP = ∅. In this study, t̄ = 0 and deformation
will be driven by F g resulting from observed displacement data.
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Figure 1: Classical morphoelastic growth presumes that the entire path of growth and mor-
phogenesis can be described kinematically with the initial state of the brain as the reference
configuration. In the case of fetal brain development and the emergence of new material,
we posit that this assumption proves problematic and propose a theory of evolving reference
configurations. Specifically, we split the growth path into multiple individual steps defined by
their own reference configuration Ωτ , kinematics and strain energy density functions defined
on them.

2.1 A theory of evolving reference configurations

The theory of morphoelastic growth has traditionally been applied to a fixed reference configuration,
relative to which the tensors F and F g have been defined. For finite growth and morphogenesis,
which characterise fetal brain development, however, this theory proves inadequate. Its premise is
that the entire path of growth and morphogenesis can be described kinematically with the initial
state of the brain as the reference configuration. This assumption proves problematic when taken to
the logical conclusion that the reference configuration is therefore the singularity when the first brain
cell appears. Furthermore, it does not account for mass appearing at some time, say τ , introducing
material points where none existed before, thus defining the reference state from which the newly
formed material deforms. Finally, it does not address the evolution of local material properties,
in this case represented by the strain energy density function on the reference configuration, which
can change as growth and morphogenesis proceed. To circumvent these difficulties, we define a
continuously evolving reference configuration, Ωτ , which coincides with the deformed configuration
resulting from all morphoelastic processes from times t ≤ τ (see Figure 1).

In this setting, the kinematics of finite strain multiplicative morphoelasticity is elaborated upon
by time parameterization yielding F τ ,F

g
τ ,F

e
τ , that satisfy:

F τ = 1 +
∂uτ
∂Xτ

, (4)

F τ = F e
τF

g
τ , (5)

Ce
τ = F e

τF
eT

τ , (6)

and the strain energy density function is similarly written as

ψτ (Ce
τ ) =

1

4
λ (detCe

τ − 1)− 1

2

(
1

2
λ+ µ

)
log detCe

τ +
1

2
µ(trCe

τ − 3). (7)

Finally, the stress and governing partial differential equation are:

P τ =
∂ψτ
∂F e

τ

= µF e
τ +

1

2
λJcF e−T

τ −
(

1

2
λ+ µ

)
F e−T

τ , (8)

∇τ · P τ = 0 in Ωτ , uτ = ūτ on ∂Ωτu , P τN τ = t̄τ on ∂ΩτP . (9)
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The strain energy density, ψτ , while written here in time-independent functional form, could also
evolve in general. This reflects the understanding that the strain energy density, like the free energy,
is defined relative to some reference. Here, as Figure 1 suggests, it is redefined at each reference
state, Ωτ . In practice, a discrete time parameterization is adopted at instants τ ∈ {t0, t1, . . . }. This
is natural for data acquisition and computations.

3 An inverse problem posed on the geometry of the develop-
ing brain

In §4–6 we describe the steps by which we arrive at geometric field data, û that represents displace-
ments during growth of the developing brain. With these data, we seek to solve an inverse problem for
the growth tensor field F g

τ and displacement field uτ such that the error ûτ −uτ is minimized under
the constraint of the physics expressed in Equations (4–9). The data field ûτ will be interpolated

from pointwise displacement vectors d̂τ1 , . . . d̂τN at N points Xτ1 , . . .XτN . Similarly, we will use the

finite-dimensional version F gh

τ of the unknown growth tensor and the corresponding displacement
field, uhτ . Our approach is to use the finite-dimensional weak form of the governing equations (9),

which is expressed as follows in terms of uhτ and F gh

τ :
For some uhτ ∈ S h ⊂ S , where S h = {uhτ ∈H 1(Ω) | uhτ = uτ on ∂Ωu}, and ∀ wh ∈ V h ⊂ V ,

where V h = {wh ∈ H 1(Ω) | wh = 0 on ∂Ωu}, the finite-dimensional (Galerkin) weak form of the
problem is satisfied: ∫

Ω

∇wh : P τ (uhτ ,F
gh

τ )dV −
∫

∂ΩP

wh · tdS = 0. (10)

In a forward solution of the weak form, a constitutive model would be written for F gh

τ . This
approach, with some variations, has been followed almost universally in the literature up to this

point [3, 35, 4, 6, 7, 9, 19, 22, 34, 36]. The determination of F gh

τ by solution of an inverse problem
is a significant departure in the current work. By seeking to invert a tensor field it also stands in
contrast to classical inverse problems in mathematical physics that infer a small number of scalar
parameters. We decompose Ω into element sub-domains Ωe, for e = 1, . . . nel. The variations wh,

trial displacement solutions uh and growth tensor F gh

τ are defined by using a finite number of basis
functions in each element,

wh
e =

n∑
a=1

caNa, uhτe =

n∑
a=1

dτaNa, F gh

τe =

m∑
a=1

χτaMa (11)

where ca,dτa ∈ R3, χτa ∈ R3×3, n is the dimensionality of the function spaces S h and V h, m is the

dimensionality of the expansion for F gh

τ and Na,Ma represent basis functions. If the growth tensor is
assumed to be diagonal and anisotropic, the dimensionality could be reduced to n, and the diagonal
terms are defined by:

diag
(
F gh

τe

)
=

n∑
a=1

χ̃τaMa (12)

where χ̃τa ∈ R3. This form was motivated by the total deformation gradient tensor, which when
extracted from MRI data on normative, developing fetal brains in Gholipour et al.’s atlas [17] by
the methods in §4–6, was found to be similarly diagonally dominant and anisotropic. We made this
assumption throughout the following of this communication, and dispensed with the tildes on χa.

We define the residual vector arising from finite element assembly of the weak form:

Rτ (dτ ,χτ ) =A
e

∫
Ωe

n∑
a=1

∇Na · P (uhτ (dτ ),F gh

τ (χτ ))dV −
∫

∂ΩPe

NatdS

 (13)

where Ae denotes the assembly operator over the elements, and the arbitrariness of the degrees of
freedom corresponding to the variations has been used, as is the practice in the variational setting.
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Recall that the dimensionality of the vector Rτ is the total number of unknown displacement degrees
of freedom. The discretized, Galerkin weak form of the problem is then Rτ (dτ ,χτ ) = 0. In the
current setting, it represents the physics that constrains the inverse problem, for whose solution we
adopt two approaches.

3.1 Inverse solution for F g
τ by gradient descent on a loss function

In this approach we directly define the field data û as a finite-dimensional function:

ûτe =
n∑
a=1

d̂τaNa (14)

and use it instead of uhτ in the weak form (10) and residual equation (13) to arrive at Rτ (d̂τ ,χτ ).
The loss function is

`gd(Rτ ) = |Rτ | (15)

defined via the Euclidean norm. We use gradient descent algorithms, and their variants, to find

χτ = arg min
χ̃

`gd(Rτ (d̂τ , χ̃)). (16)

Note that the form of the loss, `gd = |Rτ |, means that the exact satisfaction of the constraint

R(d̂,χ) = 0 is the optimal solution to (16). As in many high-dimensional, nonlinear optimization
problems, this solution is not attainable, in general. Instead, we seek to arrive at `gd < ε for some

tolerance ε using either the classical gradient descent algorithm or one of its variants. The field F gh

τ

is then recovered by Equation (12).

3.2 Solution of the inverse problem by adjoint-based gradient optimization

With ûτ written as in Equation (14) we solve the following minimization problem, beginning with
the loss redefined as the L2-norm of the error

`L2 = ‖ûτ (d̂τ )− uhτ (dτ (χ̃τ ))‖2,
χτ = arg min

χ̃τ
`L2 , such that Rτ (dτ ,χτ ) = 0. (17)

The minimization is solved classically, by computing gradients of the loss `L2 . Importantly, the PDE
constraint Rτ (dτ ,χτ ) = 0 makes dτ an implicit function of χ. This makes the functional derivatives
δ`L2/δdτ challenging to compute. The obvious approach is to solve the PDE constraint repeatedly for
a range of values of χτ and construct the implicit derivative by numerical differentiation. In addition
to the expense of a large number of PDE forward solves for a single derivative evaluation, numerical
differentiation is noisy and ultimately introduces instabilities. The well-established alternative is to
employ the adjoint of the Jacobian of the PDE constraint with respect to dτ to compute δ`L2/δdτ .
The Jacobian arises in the complete first-order Taylor expansion of the PDE constraint equation, and
allows the computation of δ`L2/δdτ with a single adjoint solution per step. We have adopted this
approach to PDE constrained optimization here, and refer to it as adjoint-based gradient optimization.
In this work we use the L-BFGS-B optimization algorithm from SciPy [37] with the aid of the dolfin-
adjoint [26] package for adjoint-based gradient optimization.

3.3 Algorithm testing with synthetic data

The gradient descent and adjoint-based gradient optimization approaches were first tested against
synthetic data for nonuniform but continuous growth tensor fields. These fields were obtained by
solving a three-dimensional, steady state diffusion problem for a scalar field c and defining F g to be
a function of this argument. The steady state diffusion problem is:

∇2c = 0 in Ω, (18)

c = 1 on Γv, (19)

c = 1.2 on Γc, (20)
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Figure 2: We generated synthetic displacement fields on the fetal brain mesh of week 24 in
order to test the accuracy of our two optimization algorithms. We show the solution of the
inverse problem in the form of the inferred detF g fields using the gradient descent and the
adjoint-based optimization approach. Top rows show the three dimensional view and the
bottom rows shows the coronal view for three levels of superposed noise p.

where Ω was taken as the normative fetal brain geometry at week 21 from the atlas of Gholipour et
al. [17], Γv is the interface between the ventricles and sub-cortex and Γc is the outer surface of the
cortex. The growth deformation gradient tensor is chosen to be diagonal, but anisotropic, and of the
form:

F̂
g

= 1 + 0.15(c− 1)e1 ⊗ e1 + 0.05(c− 1)e2 ⊗ e2 + 0.1(c− 1)e3 ⊗ e3. (21)

The field of determinant of the synthetic F̂
g

is shown in Figure 2. The forward problem of mor-
phoelastic growth, described in Equations (4–13) was then solved by the finite element method for
time τ = 0 on a mesh with 27306 tetrahedral elements using the FEniCS open source code [1]. The
neo-Hookean strain energy density function (1) was used in the the nearly incompressible limit with
λ = 82214.8 Pa and µ = 16777.8 Pa [36], corresponding to a Poisson ratio ν = 0.49 in the infinites-
imal strain regime. We denote the resulting synthetic displacement field by us. To model the noise
present in the displacement fields extracted from the fetal brain atlas, varying amounts of Gaussian
noise were applied to the synthetic data. For displacement fields with applied noise fraction p, nodal
displacements were offset by δu ∼ N (0, puc), where p ∈ {0, 0.01, 0.02}.

3.3.1 Inverse solution by gradient descent on synthetic data

The problem as posed in §3.1 and 3.2 admits a multitude of feasible solutions, and optimal solutions,
if they are obtained also could be non-unique. This situation is typical of inverse problems. The op-
timization algorithms navigate a high-dimensional landscape of feasible solutions seeking the optimal
one. Furthermore, there is the stiffness induced by the nonlinearity of the PDE constraint in the form
of the residual (13). This combination can lead to slow convergence or even divergence. Aiming to
mollify this problem, we linearly subdivide the synthetic data us into some number of, in this case
ten, steps. The gradient descent approach at step i uses ûi = i

10uc. The initial guess for the nodal
values of F g at step i 6= 0, i.e., the nodal tensor unknowns χi, was the inferred F g from the previous
step such that χi0 = χi−1final

. The initial guess for χ at Step 1 was chosen to be the diagonalized

deformation gradient tensor constructed by 1
10uc, i.e. the target displacement at Step 1. Specifically,

we project diagonal components of the deformation gradient tensor to the nodes by solving an L2
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Noise, p ‖û‖∞ ‖F g‖∞ ‖e(u)‖gd
2 ‖e(F g)‖gd

2 ‖e(u)‖adj
2 ‖e(F g)‖adj

2

0.00 5.212× 10−1 1.767 6.697× 10−4 1.640× 10−3 6.415× 10−5 5.148× 10−3

0.01 5.196× 10−1 1.767 9.978× 10−3 7.352× 10−2 5.476× 10−4 1.053× 10−2

0.02 5.284× 10−1 1.767 1.753× 10−2 1.183× 10−1 1.104× 10−3 2.001× 10−2

Table 1: Results of the inverse problem for synthetic data. The superscripts ”gd” and ”adj”
denote the solution obtained via using gradient descent with the Adam optimizer and adjoint-
based optimization, respectively.

projection problem: ∫
Ω

w10
:
(
χ10
− diag (F )

)
dV = 0, (22)

with w10 being the variations on χ10
. We define the volume averaged L2 error for the final inferred

F g at the tenth step as:

‖e(F g)‖2 :=

 1

V

∫
Ω

|F g10 − F̂
g
|2FdV

1/2

, (23)

where | • |F denotes the Frobenius norm and F̂
g

is the field from Equation (21). With the inferred
F g10, we then evaluate the displacement by solving the forward elasticity problem, and evaluate the
volume averaged L2-error by

‖e(u)‖2 :=

 1

V

∫
Ω

|u− û|2dV

1/2

. (24)

Gradient descent updates were driven by the Adam optimizer with default parameters [25]. For steps
1-9, 10,000 epochs were used with learning rate decay given by ηt = ηt−1

1+(5×10−8)t and η0 = 10−4. To

ensure convergence on the final step, 100,000 epochs were used with learning rate decay given by
ηt = ηt−1

1+(2×10−9)t and η0 = 10−3.

Figure 2 shows det F̂
g

inferred by gradient descent from synthetic data at different level of noise.
Also shown in Table 1, gradient descent with the Adam optimizer allows inference of an F g field with
volume-averaged L2-error that is three orders of magnitude lower (fifth column) than the L∞-norm
of the applied F g for synthetic data generation, and even with noise fraction p = 0.02 remains an
order of magnitude lower. However, the inferred F g field appears less smooth when obtained from the
noisy data. We also have included the volume-averaged L2-error in the forward displacement (fourth
column) computed by applying the gradient descent-inferred F g field. For synthetic data without
noise, the volume-averaged L2-error is three orders of magnitude lower than the L∞-norm of û and
one order of magnitude lower for noise with p = 0.02.

3.3.2 Inverse solution by adjoint-based gradient optimization

As discussed in §3.2 adjoint-based gradient optimization involves the forward solution of the PDE
constraint R(d,χ) = 0 at each step of the algorithm–see Equation (17). As also expressed there, this
forward solution is driven by the inferred nodal growth tensor field χ at each iteration. This forward
problem is numerically stiff due to the nonlinearity, near-incompressibility and complex geometry
of the brain. While the adjoint solution step to determine gradients typically poses no difficulty,
divergence of the forward solution will cause the termination of the overall algorithm. Therefore, we
now linearly subdivide the inferred χ into 100 steps in driving the forward solution. The initial guess
for χ was again chosen to be the diagonalized deformation gradient tensor constructed from us.

Figure 2 and Table 1 also includes the results obtained by adjoint-based gradient optimization.
Using noise-free data, the volume-averaged L2-error in the inferred F g is higher than that obtained by
the gradient descent approach, but the volume-averaged L2-error in the forward displacement solution
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obtained as an inherent part of the adjoint-based gradient optimization approach is about one order
of magnitude smaller than the corresponding error obtained by gradient descent. The superiority
of the adjoint-based approach is more apparent in the presence of noise, improving to an order of
magnitude lower volume-averaged L2-error for u and F g over the gradient descent approach for
p = 0.02. Additionally, the inferred F g field is smoother than that obtained by gradient descent. The
adjoint-based approach is, in general, more computationally expensive since it needs one evaluation of
the adjoint solution per step. Nevertheless, given these performance metrics, we choose to exclusively
use the adjoint-based gradient optimization approach with the real MRI data from the fetal brain
atlas, because of the inevitability of noise therein.

4 MRI Segmentation and FE Model Generation

We obtained data on brain geometries from a spatiotemporal magnetic resonance imaging (MRI) atlas
of the fetal brain developed for the study of early brain growth [16]. Based on MRIs of 81 normal
fetuses scanned between gestational weeks 19 and 39, Gholipour et al. created a four-dimensional
atlas of brain development during the second half of gestation and covering weeks 21 through 37
[17]. Six to eight scans were used for the reconstruction of each week’s atlas. The automatic atlas
generation includes repeated motion correction, super-resolution volume reconstruction, brain mask
segmentation, rigid alignment to the atlas space and intensity homogenization [16]. The resulting
atlas clearly illustrates the temporally and spatially heterogeneous growth during early in utero
brain development, including numerous instances of folding and creasing. In a first step, the present
work focuses on weeks 21 through 25 during which the first major elastic bifurcation occurs, and
from which the central sulcus (CS) emerges [20]. For each gestational week, we created a finite
element model of the brain from the respective MR images using the ScanIP software environment
of Simpleware (Synopsys, Mountain View CA), see Figure 3. In a semi-automatic segmentation
procedure, we delineated the cortex, subcortex and lateral ventricles based on grayscale contrast and
created a three-dimensional reconstruction of these structures [39]. The software converted these
segmentations into a volumetric model consisting of tetrahedral elements. We prescribed a minimum
and maximum element edge length of 2.0mm and 2.5mm, respectively, and obtained meshes with a
total number of 68849 elements for the model of week 21, 78385 elements for week 22, 83000 elements
for week 23, 97138 elements for week 24 and 172289 elements for week 25. The number of elements
and nodes of each subregion are summarized in Table 2. Based on our segmentations, we observe that
the total brain volume, i.e. cortex and subcortex, increases by 130% and ventricular volume increases
by 17% between weeks 21 and 25. Specifically, cortical volume changes from 17155 mm3 at week 21,
to 20651 mm3 at week 22, 20468 mm3 at week 23, 26099 mm3 at week 24 and 35232 mm3 at week
25; subcortical volume increases from 23834 mm3 at week 21, to 29159 mm3 at week 22, 33056 mm3

at week 23, 41360 mm3 at week 24 and 58646 mm3 at week 25; and ventricular volume changes from
5079 mm3 at week 21, to 5176 mm3 at week 22, 4011 mm3 at week 23, 4527 mm3 at week 24 and
5946 mm3 at week 25. The rostral-caudal brain length increases by 29.5% between weeks 21 (59.86
mm) and 25 (77.54 mm); the width of the brain increases by 26.4% between weeks 21 (49.31 mm)
and 25 (62.33 mm); and the height of the brain increases by 33.8% between weeks 21 (39.19 mm)
and 25 (52.44 mm).

5 MRI Registration Framework

The continuous morphological changes of the fetal brain during in utero development are inherently
contained in the fetal brain atlas described previously. To determine the incremental brain defor-
mations driven by growth between consecutive gestational weeks, we use a previously developed
registration method that determines the non-rigid spatial transformation between two MR images
that maximizes the congruence of image intensities. Specifically, we built on the work of Pawar et al.
[30] who optimized their algorithm for large deformations and topological changes between medical
images. The source image I1(f(x, t)) and the target image I2(x) are both embedded in hierarchical
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Figure 3: MR image segmentation and finite element model generation. We use a) structural
MRIs from gestational weeks 21 through 25 and create 3D reconstructions based on a semi-
automatic segmentation process. b) We delineate the cortex, subcortex and ventricles based
on their grayscale thresholding and manual correction. c-d) show coronal and axial slices of
the segmentation, respectively. The fully e) three-dimensional reconstructions are converted
into f) volumetric finite element models that consist of tetrahedral elements.

model week 21 week 22 week 23 week 24 week 25
#e #n #e #n #e #n #e #n #e #n

cortex 25747 8262 29363 9439 29873 9623 34618 11188 97945 14957
subcortex 35749 8712 41996 9995 46852 10894 55066 12911 65217 15576
ventricles 7353 2106 7026 2068 6275 1881 7454 2157 9127 2638

total 68849 14262 78385 16204 83000 17095 97138 19982 172289 25197

Table 2: Mesh properties of our five finite element models for gestational weeks 21 through
25. Proportional to the increase in mesh size, total brain volume increases by 130% during
this time period. #e = number of elements; #n = number of nodes.

truncated B-spline objects with the spatial transformation function f(x, t) given by [30]

f(x, t) =

Nb∑
m=1

Pm(t)φm(x), (25)

where Pm(t) are the control points associated with the trivariate basis functions φm(x), and Nb
represents the total number of basis functions. As part of the registration process, the transformation
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function f(x, t) is incrementally varied until dissimilarities between source and target image are
minimal. To that end, we followed the proposed energy functional E(f(x, t)) proposed by Pawar et
al. which accounts for intensity differences and penalizes non-smoothness of the deformation field
[30]. The minimization of the energy functional is achieved by posing it as an L2 gradient flow, thus
simplifying the optimization problem to a partial differential equation. The energy functional takes
the following form [30]

E(f(x, t)) =

∫
Ω

g(x, t) (I2(x)− I1(f(x, t)))
2

dΩ

+ λ1

∫
Ω

(
‖f,u(x, t)‖22 + ‖f,v(x, t)‖22 + ‖f,w(x, t)‖22

)
dΩ

+ λ2

∫
Ω

(
‖f,u(x, t)‖22 ‖f,v(x, t)‖

2
2 − (< f,u(x, t), f,v(x, t) >)

2
)

+
(
‖f,v(x, t)‖22 ‖f,w(x, t)‖22 − (< f,v(x, t), f,w(x, t) >)

2
)

+
(
‖f,u(x, t)‖22 ‖f,w(x, t)‖22 − (< f,u(x, t), f,w(x, t) >)

2
)

dΩ,

(26)

where the first term measures the sum of squared differences of the intensity between the itera-
tively updated source and target images, and λ1 and λ2 are regularization parameters that penalize
non-smoothness and inconsistent area change of each face of the 3D control grid elements during de-
formation. The terms f,u(x, t), f,v(x, t) and f,w(x, t) are the first derivatives of f(x, t) with respect
to coordinates {u, v, w}, and g(x, t) is given by

g(x, t) =
1√

γ +
(
∂I1(f(x,t))

∂u

)2

+
(
∂I1(f(x,t))

∂v

)2

+
(
∂I1(f(x,t))

∂w

)2
, (27)

where γ is a small number to prevent division by zero. The gradient flow form for minimization of E
is:

dPm(t)

dt
= −δEm(f(x, t)). (28)

Control points are updated using the Forward Euler method and by introducing a pseudo timestep
ε. The control points Pm(t) are iteratively computed for time point s + 1 based on the solution of
the previous timestep s as follows

P s+1 = P s − ε δEs(f(x, t)). (29)

δEs(f(x, t)) is the derivative of the energy functional with respect to parametric domain x, see Ref.
[30] for a detailed derivation. The optimization loop ends when the change in intensity difference falls
below a given tolerance. We direct the reader to Ref. [30] for a detailed derivation of the registration
framework. In the work presented here, we embed our images in an initial three-dimensional grid
of size 32 × 32 × 32 control points, set maximum number of refinement steps to 3, regularization
parameters λ1 and λ2 to 0.0001 and 0.0001, respectively, and chose a timestep size of 1×10−5.
We used the registration framework to determine the four deformation fields between weeks 21 and
22, weeks 22 and 23, weeks 23 and 24 and weeks 24 and 25. For each pair, we selected the first
week as the source image and the second week as the target image. It took 22 iterations for the first
two steps of 21-22 and 22-23 weeks, 24 iterations for 23-24 weeks and 57 iterations for 24-25 weeks
to obtain the optimal transformation map with an average similarity ratio of 81.95%. This increase
in iterations reflects the evolving morphological complexity of the progressive developmental steps.
Local spline refinement increased the number of active degrees of freedom on average by a factor of
5.3; additional convergence properties are summarized in Table 3.

6 Growth-Induced Full-Field Brain Deformations

Following the registration step, we extracted the displacement vector of each control point in our
grid. In Figure 4 we show the undeformed and deformed grids on a coronal and axial slice for all four
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week 21 to 22 week 22 to 23 week 23 to 24 week 24 to 25

max active DOF 179293 184738 211560 260623
# iterations 22 22 24 57
similarity ratio (RS) [%] 84.87 69.86 86.06 87.00

Table 3: Convergence properties of the registration framework. We achieve a mean similarity
ratio of 81.95% after registering two consecutive weeks. Local spline refinement increased the
number of active DOFs on average by a factor of 5.3.

registration steps. The effect of the regularization terms is clearly reflected in the smoothness of the
deformation field throughout the brain. Simultaneously, the week-wise registration steps allow identi-
fication of the major folding event, i.e. the formation of the central sulcus, at week 24. Increased grid
density leads to a higher spatial resolution of the three-dimensional deformation field and improves
the detection of local growth phenomena.

Figure 5 shows registration results for changes between weeks 24 and 25 in three representative
slices, the coronal, axial and sagittal views, respectively. The magnified images reveal the grid defor-
mation and identify local growth patterns that produce highly heterogeneous deformation fields. Two
challenges are encountered in the steps of MR image registration and computation of growth-induced
deformation:

Newly formed brain regions limit the registration framework:
The registration framework faces significant challenges when new substructures emerge between two
distinct scans. In general, the registration framework assumes that all material points are preserved
and simply undergo a potentially large deformation. The generation of new material points leads to
non-uniformities and incompatibilities in the displacement field which we have not yet addressed in
the present work. Therefore, our approach provides reliable displacement data in the case of morpho-
genetic growth which manifests in the form of pure volumetric expansion. In this case, material points
preserve their intensity value in MR images and simply displace. When new material emerges and
influences the intensity distribution, the registration framework is observed to artificially distort the
grid. Therefore, we are limited to one-week intervals over which the emergence of new substructures
is minimal.

Heterogeneous Growth Field:
In order to prepare data for the inverse problem, we use the nodal displacement vectors in our
FE meshes for weeks 21 through 24 to determine the reference configurations. Specifically, we use
trilinear interpolation in the registration data to obtain the full-field displacement data for every
node in each mesh based on the registration results from that particular week. Figure 6 shows the
respective results as displacement vectors that are color-coded by magnitude. Earlier weeks (21 to
23) are characterized by rather homogeneous small displacements across the cortex. Later weeks
(23 to 25) exhibit increasingly heterogeneous displacements which is characteristic for localization
of growth due to the formation of the central sulcus, and the subsequent formation of folds within
each lobe. The rapid proliferation and migration of neurons during this period of development [5]
leads to an acceleration of brain growth. The observed growth patterns are also indicative that brain
development is significantly more complex than purely uniform, morphological growth but must
adhere to genetically encoded cell migration patterns that result in the highly reproducible brain
topology observed within any species. The top row of Figure 6 shows the displacement field of the
outer cortical surface; the bottom row shows the displacement field of the ventricular surface. We
measured a maximum displacement of 5.79 mm in the temporal lobe between weeks 24 and 25. We
observe mean displacements of the outer cortical surface of 0.45±0.27 mm between weeks 21 and 22,
0.88±0.42 mm between weeks 22 and 23, 1.91±0.74 mm between weeks 23 and 24 and 3.03±1.06 mm
between weeks 24 and 25. Mean displacements of the ventricular surface are 0.19±0.13 mm between
weeks 21 and 22, 0.28±0.19 mm between weeks 22 and 23, 0.8±0.51 mm between weeks 23 and 24
and 1.49±0.7 mm between weeks 24 and 25. Overall, we find that growth is highly symmetric during
this early stage of brain development and posit that individual differences between hemispheres are
the result of averaging data from multiple brains when the atlas was constructed [16].
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Figure 4: The registration framework iteratively updates the positions of control points that
belong to the spline object embedded in each week’s MRI data. Here, we plot the undeformed
and deformed grids in representative coronal and axial slices for the registrations between
weeks 21 and 22, weeks 22 and 23, weeks 23 and 24 and weeks 24 and 25. From the MRI
images we observe the overall volume increase of the brain during the 5 week period. The two
grids per image show the increasingly heterogeneous displacement field with rather uniform
morphogenetic growth between weeks 21 and 23 and more localized displacement patterns in
individual lobes between weeks 23 and 25.

6.1 Gaussian Filtering

While filtering techniques typically are applied to raw MRI data to generate the images in Figure 3a,
noise is reintroduced by the registration algorithm. The displacement field reported in Figures 5-6
is therefore in need of smoothing before its use in the numerical techniques of inverse modelling.
We applied Gaussian filtering to the post-registration displacement field, noting however, that the
standard discrete Gaussian filter cannot be applied in a straightforward manner to unstructured
meshes that must be used for the irregular geometry of the brain. Consider the continuous Gaussian
filter over the infinite domain:

û(x0) =

∫
R3

G(x0,x)ureg(x)dV

=

∫
Ω

G(x0,x)ureg(x)dV,

where G(x0,x) = 1

(
√

2πσ2)
3 e
− ‖x‖

2

2σ2 is the three-dimensional Gaussian distribution, σ is the standard

deviation and ureg is the displacement field after registration. Since
∫

Ω
GdV < 1 we scale the filtered

displacement at each node to obtain:

û(x0) =

∫
R3 G(x0,x)dV∫
Ω
G(x0,x)dV

∫
Ω

G(x0,x)ureg(x)dV

=
1∫

Ω
G(x0,x)dV

∫
Ω

G(x0,x)ureg(x)dV . (30)

7 Inference of the fetal brain’s growth deformation tensor

The displacement field data for weeks τ to τ + 1 obtained after registration and filtering, as detailed
in §4–6, is ûτ . The corresponding nodal values on various meshes are d̂τ . As explained at the
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Figure 5: Coronal, axial and sagittal views of the registration results for week 24 to 25. We
notice increasingly heterogeneous displacement patterns due to localized growth in distinct
subregions of the brain. The registration framework delivers highly smooth displacements of
the control points- to the extent that some local phenomena might be eliminated due to over-
regularization of the spline object. As a consequence of this smoothing, the emergence of new
substructure between two scans will lead to artificial grid distortions. Overall, the registration
delivers a reliable displacement field representative of the temporally and spatially varying
growth patterns [5].

Figure 6: Full-field displacement data between week 21 and 22, week 22 and 23, week 23 and
24 and week 24 and 25. We observe a homogeneous displacement field between weeks 21 and
23 and increasingly heterogeneous displacement patterns between week 23 and 25. Specifically,
we notice that the emergence of the central sulcus leads to localization of growth patterns that
are attributed to the onset of secondary buckling in individual lobes and increased folding of
the cortical surface. A maximum displacement of 1.24 mm was observed from week 21 to 22,
2.29 mm was observed from week 22 to 23, 3.65 mm was observed from week 23 to 24 and
5.79 mm from week 24 to 25.

end of §3.2, we used adjoint-based gradient optimization guided by the lower volume-averaged L2-
errors obtained relative to optimization by gradient descent. The following subsections discuss the
meshes used, further interpolation of data between d̂τ and d̂τ+1 to aid convergence, initialization of
χ (nodal values of F g) and numerical performance. Results are presented as tables and figures for
the volume-averaged L2-errors, Equation (24) with û = ûτ and figures for the inferred fields of F g.
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7.1 Meshes

The MRI data at weeks 21 and 23 yield the corresponding reference configurations, Ω21 and Ω23, on
which tetrahedral meshes were constructed with 27306 and 32385 elements, respectively. Reference
configurations Ω22 and Ω24 were then generated by deforming Ω21 and Ω23, respectively, using the
displacement fields û21 and û23 obtained by MRI registration for week 21-22 and week 23-24. These
displacement fields applied to the meshes on Ω21 and Ω23 also yield the meshes on Ω22 and Ω24. All
these meshes appear in Figure 11.

7.2 Data interpolation to aid convergence

The displacement field data, û23, between weeks 23 and 24, results in large distortions that appear in
the deformation gradient, F̂ 23. Since this field also drives, and confers these distortions on, the iterates
of the inferred F g

23, it makes the forward solution for u23 numerically stiff and prone to divergence in
the adjoint-based gradient optimization. We therefore carried out a linear interpolation and redefined
the displacement on Ω23 to be ũ23 = 1

2 û23 to an interpolated reference configuration Ω23.5. In a con-
tinuation of this interpolation, we also defined ũ23.5 = 1

2 û23 on Ω23.5 to Ω24. In a further magnification
of this large morphoelastic growth, û24 between weeks 24 and 25 leads to even greater distortions
and more severe divergence of the forward solution for u24 during adjoint-based gradient optimiza-
tion. We therefore defined eight intermediate displacement fields ũ24, ũ24.125, . . . ũ24.875 = 1

8 û24

and the corresponding interpolated reference configurations Ω24.125, . . .Ω24.875. These interpolated
geometries represent the evolving reference configurations discussed in Section 2.1. Given these inter-
polated displacement fields, we aimed to infer the growth deformation tensor, F g

τ , between reference
configurations Ωτ and Ωτ+∆τ defined as above.

The initial guess at each configuration F g
τ0 was chosen to be diagonal and assembled from the

corresponding components of the deformation gradient tensor F̂ τ = 1 + ∂ûτ/∂Xτ or F̃ τ = 1 +
∂ũτ/∂Xτ (if displacement interpolation to intermediate reference configurations was used). The
nodal values, χτ0 were then obtained by solving the L2-projection:∫

Ω

Ξ :
(
χτ0 − diag

[
F̂ τ

])
dV = 0 if ũτ has not been defined,

∫
Ω

Ξ :
(
χτ0 − diag

[
F̃ τ

])
dV = 0 if ũτ has been defined, (31)

with Ξ being the variations on χτ0 .

7.3 Convergence

Our approach to the inverse problem involves iterations in which the adjoint equation is used to
update χτ , which is then interpolated for F g

τ . Each solution of the adjoint equation is followed
by a forward solution for uτ . In order to mollify numerical stiffness and ease the direct solver’s
path to convergence, we linearly subdivided χτ into 100 steps in driving the forward solution. The
convergence threshold was set to requiring that the loss (see Equation 17) be smaller than 2× 10−2

of ‖ûτ‖∞, and that the relative change in loss between successive adjoint solution steps falls below
10−3.

7.4 Results

Gaussian filtering with zero means and standard deviations σ = 0, 0.5 mm were used on all the
data, except for û24, which was also subjected to the σ = 1 mm filter. Table 4 includes results with
σ = 0, 0.5 mm. Filtering leads to a lower volume-averaged L2-error between the MRI data and the
forward displacement solution driven by the inverted growth deformation gradient field for all cases.
However, filtering reduces ‖ûτ‖∞ to a degree, especially because surface effects truncate the integrals
where the raw displacement is expected to be greatest.

Figure 7 shows the final forward displacement field solution, uτ , obtained during the adjoint-
based gradient optimization using data subjected to filtering with σ = 0. The top and bottom row
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Figure 7: Inferred displacement fields between weeks 21-22, weeks 22-23, weeks 23-24 and
weeks 24-25 using our adjoint-based optimization approach and shown here for the cortical
and ventricular surface. Changes between weeks 23-24 and weeks 24-25 are broken into 2
and 8 substeps, respectively. Magnitude and orientation of the displacement vectors show
remarkable agreement with the registration results shown in Figure 6.

in Figure 7, show the inferred displacement field uτ on the cortical and ventricular surfaces and are
counterparts to Figure 6 which showed the displacement data fields after registration. This comparison

provides a visual understanding of how close the inferred F g
τ is to the unknown, true F̂

g

τ , using the
displacement fields as surrogates. The second and third row show the forward displacement fields
corresponding to the interpolated ũτ fields. Note that in each case, these are incremental fields, for
which reason, interpolation into more steps over 23-24 and 24-25 weeks results in smaller magnitudes
uτ . As a result, over 24-25 weeks, in particular, it appears that the forward displacement solution has
lower magnitude than the MRI displacement data by registration. The corresponding error between
the inferred displacement field and the MRI displacement data by registration is shown in Figure 8.
Higher errors appear over the frontal, parietal and occipital lobes, and over the cerebellum, where
the MRI displacement data have greater magnitudes. Table 4 shows, for each stage (by week or
at interpolated instants) of the inference, the maximum displacement ‖û‖∞ and volume-averaged
L2-norm of the error, as defined in Equation (24). Note that ‖e(u)‖2 ≤ 2 × 10−2‖û‖∞ at each
stage. Furthermore, on summing ‖e(u)‖ over the eight steps interpolating between weeks 24 and 25
and using the triangle inequality, it follows that the total volume-averaged L2-error in the forward
displacement field from the inference relative to the MRI displacement data is bounded from above
by 4.3× 10−2.

The main goal of this study is the inference of F g
τ fields at the time instants, τ , from adjoint-

based gradient optimization. Following inference and before plotting in the figures that follow, these
fields were smoothed by Gaussian blurring (Equation 30 with σ = 0.5) in order to minimize artifacts
introduced by mesh topology. Figure 9 shows the volume change induced by growth alone—i.e., dis-
counting elastic deformation—via detF g

τ on three representative slices: the coronal, axial and sagittal
planes, respectively. Recall that detF g

τ is the volume change induced at each stage τ by cell division,
growth and migration. Figure 9 therefore offers, to our knowledge, the first data-driven inference of
these cell dynamics that are the cause of morphoelastic brain growth, and ultimately of its folding.
We draw attention to the radial distribution of growth, seen best in the axial, coronal and sagittal
sections and increasing from lower values near the ventricles to higher in the cortex. This distribu-
tion is the first data-driven confirmation of the assumption underlying the morphoelastic theory of
brain folding: that growth is radially distributed, increasing along the ventricular-cortical direction.
Note that the interpolation of morphoelastic growth displacements over eight steps between 24 and
25 weeks, combined with the treatment using evolving reference configurations, renders the inferred
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Figure 8: Error vectors representing the difference between the inferred displacement fields and
registration-based displacement fields. Maximum absolute error is smaller than 0.5mm and is
primarily observed in the frontal lobe for later weeks during which overall brain growth accel-
erates. Generally, we observe a homogeneous distribution of the magnitude and orientation
across all weeks. Arrow size is amplified by factor 20 for visualization purposes.

detF g
24, . . .detF g

24.875 smaller than detF g
21, . . .detF g

23.5. However, the same pattern of radially dis-
tributed growth, increasing from ventricles to the cortical surface, is seen for the eight steps between
24 and 25 weeks when replotted over a narrower range in Figure 10. Also, the volume-averaged
detF g in the cortex is larger than in the subcortex in all cases, except for growth between 22 and 23
weeks (see Table 5). This strain mismatch between the layers is additional quantitative validation
of the kinematic assumption commonly used in morphoelastic growth theories and that drives the
emergence of folding, wrinkling and creasing.

While it is suggestive to gain a measure of the total growth over 24 to 25 weeks by multiply-
ing detF g

24 × detF g
24.125 · · · × detF g

24.875, this is not mathematically correct according to the treat-

ment of evolving reference configurations. That is, there is no notion of a quantity, say F
g

24−25 =
F g

24.875F
g
24.75 . . .F

g
24 representing pure growth kinematics between 24 and 25 weeks.

Through Figures 9 and 10 it also emerges that cell dynamics-induced growth is indeed localized
in the frontal, parietal and occipital lobes, and the cerebellum.

Finally, the effect on the inferred F g
τ fields from Gaussian filtering of the MRI displacement data

(introduced at the beginning of this section) is presented in the Appendix as Figure 12. Larger filters
smooth out the displacement fields obtained from MRI data, and also contribute to a more uniform
distribution of detF g

τ .

8 Conclusions

The morphoelastic theory of growth has formed the basis of a large body of computational work
on brain development. However, to the best of our knowledge, it has not been used previously to
make inferences on the nature of morphogenesis over the course of development. Our communication
takes a step in this direction by building on fetal brain atlases. For it, we have gathered a diversity of
methods: MR imaging, segmentation and registration to obtain raw data on the evolving displacement
fields that can be regarded as the mapping underlying the geometric changes in the brain over many
weeks of development, and inverse modelling to infer the growth tensor via optimization techniques.
Notably, the registration techniques that yield displacement data themselves use inverse modelling
and L2 gradient flow-based optimization. The optimization methods that we explored for inferring
the growth tensor included gradient descent of a physics-constrained loss function, and separately,
adjoint-based gradient optimization, also with the same physics constraint—the satisfaction of the
PDEs of morphoelastic growth in weak form. Also notable among our methods is the casting of
morphoelastic growth in the framework of evolving reference configurations. Without this version
of the morphoelastic growth theory, the problem would become numerically intractable due to the
extremely large changes in morphology even over just weeks 21-25 of fetal development.

We note that the results of the inference consistently show that cell dynamics distributes growth
radially, increasing from the ventricles to the cortical surface. While the central sulcus begins to form
prominently over weeks 24-25, we anticipate that the persistence of this radial distribution leads to
the multiscale folding, wrinkling and creasing, whose simulation has been the main goal of previous
forward computations of brain morphogenesis—albeit without the strongly data-driven approach that
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Figure 9: We calculate the determinant of the inferred growth deformation tensor detF g

for all weeks and show them here on the 3D geometry, as well as in representative axial,
coronal and sagittal slices. The determinant ranges from 0.65 to 1.36 indicating both localized
shrinking and expansion behavior. The growth fields differ between individual weeks suggesting
a characteristic chronological order to brain development throughout gestation.
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Figure 10: The determinant of the inferred growth deformation tensor detF g at the eight
intermediate steps between week 24 and 25 shown here with a re-scaled color range from 0.9
to 1.1. This closer look at changes between weeks 24 and 25 highlights the localized growth
fields predominantly noticeable in the frontal and temporal lobes. The growth behavior is
mostly symmetric with respect to both hemispheres.

we have adopted here.
The present work serves as a demonstration that the combination of brain atlas data and methods

of image segmentation, registration and finally physics-constrained inverse modelling can provide
greater insight to the developmental process.
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Figure 11: We generated tetrahedral meshes based on the segmentation at each gestational
week 21 through 24 in support of our proposed theory of evolving reference configurations. At
24 weeks, the central sulcus begins to emerge and the temporal lobe expands noticeably.

Figure 12: Gaussian filtering with increasing standard deviation σ leads to noticeable smooth-
ing of the determinant of the inferred growth deformation tensor detF g, shown here for the
example of changes between week 24 and 25 broken down into two steps.

Appendix
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week σ mm ‖û‖∞ mm ‖e(u)‖2 mm

21-22
0 1.8201× 100 1.5233× 10−2

0.5 1.5932× 100 1.1700× 10−2

22-23
0 1.4246× 100 1.4532× 10−2

0.5 1.3070× 100 1.1615× 10−2

23-23.5
0 1.4507× 100 2.0958× 10−2

0.5 1.2572× 100 1.7730× 10−2

23.5-24
0 1.4507× 100 2.1542× 10−2

0.5 1.2572× 100 1.7702× 10−2

24-24.125
0 4.0326× 10−1 6.7394× 10−3

0.5 3.5334× 10−1 5.3730× 10−3

24.125-24.25
0 4.0326× 10−1 6.8180× 10−3

0.5 3.5334× 10−1 5.4294× 10−3

24.25-24.375
0 4.0326× 10−1 6.6352× 10−3

0.5 3.5334× 10−1 5.5020× 10−3

24.375-24.5
0 4.0326× 10−1 6.7756× 10−3

0.5 3.5334× 10−1 5.3364× 10−3

24.5-24.625
0 4.0326× 10−1 6.9141× 10−3

0.5 3.5334× 10−1 5.3310× 10−3

24.625-24.75
0 4.0326× 10−1 6.4876× 10−3

0.5 3.5334× 10−1 5.3485× 10−3

24.75-24.875
0 4.0326× 10−1 6.3955× 10−3

0.5 3.5334× 10−1 5.1621× 10−3

24.875-25
0 4.0326× 10−1 6.2983× 10−3

0.5 3.5334× 10−1 5.0780× 10−3

Table 4: Results summary. The values of standard deviation σ correspond to Gaussian filtering
of the registration data. From the triangle inequality, the total volume-averaged L2-error in
the forward displacement field from the inference relative to the MRI displacement data is
bounded from above by 4.3× 10−2 for either value of σ.
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week σ mm
Cortex Sub-cortex

detF g
τ max detF g

τ detF g
τ max detF g

τ

21-22
0 1.080 1.419 1.042 1.459

0.5 1.058 1.239 1.036 1.371

22-23
0 1.031 1.413 1.041 1.398

0.5 1.033 1.240 1.035 1.279

23-23.5
0 1.071 1.321 1.048 1.337

0.5 1.057 1.346 1.044 1.252

23.5-24
0 1.071 1.367 1.048 1.364

0.5 1.057 1.379 1.044 1.244

24-24.125
0 1.021 1.190 1.013 1.140

0.5 1.016 1.146 1.012 1.089

24.125-24.25
0 1.021 1.211 1.013 1.152

0.5 1.016 1.165 1.012 1.096

24.25-24.375
0 1.021 1.227 1.013 1.153

0.5 1.016 1.176 1.012 1.095

24.375-24.5
0 1.021 1.229 1.013 1.136

0.5 1.016 1.180 1.012 1.103

24.5-24.625
0 1.021 1.236 1.013 1.337

0.5 1.0160 1.184 1.012 1.135

24.625-24.75
0 1.021 1.233 1.013 1.162

0.5 1.016 1.185 1.012 1.166

24.75-24.875
0 1.021 1.226 1.013 1.178

0.5 1.016 1.183 1.012 1.177

24.875-25
0 1.021 1.205 1.013 1.207

0.5 1.016 1.184 1.012 1.194

Table 5: The volume-averaged detF g
τ , denoted as detF g

τ in the cortex is larger than in the
sub-cortex in all cases except for weeks 22-23.
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