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Abstract
Cell type classification is an important problem in cancer research, especially with the1

advent of single cell technologies. Correctly identifying cells within the tumor2

microenvironment can provide oncologists with a snapshot of how a patient’s immune3

system is reacting to the tumor. Wide deep learning (WDL) is an approach to construct4

a cell-classification prediction model that can learn patterns within high-dimensional5

data (deep) and ensure that biologically relevant features (wide) remain in the final6

model. In this paper, we demonstrate that the use of regularization can prevent7

overfitting and adding a wide component to a neural network can result in a model with8

better predictive performance. In particular, we observed that a combination of dropout9

and `2 regularization can lead to a validation loss function that does not depend on the10

number of training iterations and does not experience a significant decrease in11

prediction accuracy compared to models with `1, dropout, or no regularization.12

Additionally, we show WDL can have superior classification accuracy when the training13

and testing of a model is completed data on that arise from the same cancer type, but14

from different platforms. More specifically, WDL compared to traditional deep learning15

models can substantially increase the overall cell type prediction accuracy (41 to 90%)16

and T-cell sub-types (CD4: 0 to 76%, and CD8: 61 to 96%) when the models were17

trained using melanoma data obtained from the 10X platform and tested on basal cell18

carcinoma data obtained using SMART-seq.19

1 Introduction20

Immunology is quickly becoming a popular area of study in cancer research and offers21

an opportunity to expand our understanding and ability to treat patients. Estimating22

the immune composition of an individual’s tumor has been the focus of several studies23

which have developed deconvolution methods [17,24] to estimate the cellular24

composition of the tumor micro-environment with bulk RNA expression data. Recently25

with the advent of single cell sequencing researchers are now able to measure gene26

expression in individual cells within the tumor-microenviroment and classify cells using27

heirarchical clustering and correlation-based methods [1, 2, 7]. Cell type classification28
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can be conducted by constructing visualizations such as t-Distributed Stochastic29

Neighbor Embedding (t-SNE) [28] or Uniform Manifold Approximation and Projection30

(UMAP) [16] plots to define clusters and assign these clusters to different cell types31

based on enriched canonical markers. However, a major drawback of this canonical32

process is that it heavily relies on the researchers’ knowledge on the cell-type-specific33

signature genes, and it can become arbitrary when making conclusions based on only a34

handful of genes. Also, the cell type marker genes are cancer type-specific and may not35

generalize to other datasets [31]. In addition, discriminating between fine immune cell36

sub-types, such as exhausted CD8 T cells vs. activated CD8 T cells, effector CD4 T37

cells vs. naive CD4 T cells is a much more challenging task due to the lack of universal38

marker genes.39

Identification of highly specific cell types is now possible with the development of40

single cell RNA-sequencing technology. However, a challenge in cell annotation in single41

cell RNA-sequencing is that transcription profiles are difficult to transfer between42

different platforms. Multiple platforms have been developed for single cell43

RNA-sequencing including SMART-seq [18], CEL-seq [11], Fluidigm C1 [13],44

SMART-seq2 [19], and more advanced droplet-based platforms including Drop-seq [15]45

and 10X Genomics Chromium system [35], etc. The two most commonly used platforms46

are SMART-seq/SMART-seq2 and 10X. The 10X platform is a droplet-based approach47

which generates a unique molecular identifier (UMI) at 5′ or 3′ ends to diminish the48

sequencing reads representation biases due to library amplification. On the other hand,49

SMART-seq and SMART-seq2 are designed to generate full-length cDNA.50

Droplet-based 5′ or 3′-tag methods like 10X can capture much more cells which in turns51

can give better overview of the heterogeneity within population; while a full-length52

proposal like SMART-seq is better suited for studies concerned with isoforms, splicing53

or gene fusion. Due to the differences in how they amplify the mRNA transcripts, the54

data generated from these platforms are not directly comparable, which presents great55

challenge to the integrated cell type identification in cross-platform56

datasets [4, 20,29,34]. Therefore, there is a great need for automatic cell identification57

method that be used across studies, single cell platforms, and cancer types.58

While there are many different single cell RNA-sequencing platforms whose results59

are on different scales and not directly comparable, the underlying gene to gene60

relationships should be consistent and navigating these relationships may allow for61

borrowing of information from different technologies. Deep learning brings us the62

possibility to explore and summarize complex highly non-linear relationships into63

high-level features from high throughput data sources. Deep learning is a powerful64

machine learning technique that is often used in visual recognition [12,14], natural65

language processing [21,32], and starting to infiltrate the realm of cancer66

research [3, 5, 25]. Deep learning learns patterns in data by using neural networks with67

many layers of nodes which transform the output model of the nodes from the previous68

layer with non-linear functions. The coefficients output from each node are augmented69

using gradient descent in order to optimize the prediction error of the network.70

Wide and deep learning (WDL) combines a deep neural network with a generalized71

linear model (GLM) based on a small set of features. Deep learning tends to generalize72

patterns in the data, while in contrast GLMs may only memorize the patterns in the73

data. WDL has been shown to be an effective tool in recommender systems [6].74

Specifically, we propose utilizing a deep learning model which can leverage large75

dimensional data (deep), as well as, incorporate a few known biologically relevant genes76

in the last hidden layer of a neural network to emphasize their biological importance77

(wide). The wide part of the model allows us make cell type classification more precise78

and fine tuned to classify more specific immune cell sub-types such as distinguishing79

activated from exhausted CD8 T cells.80
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This paper serves two purposes. First it provides some background information81

about deep learning specifically focusing on regularization methods to avoid overfitting82

the model. Models are trained, validated, and subsequently used to classify cells from83

the same dataset. This scenario is realistic since it is possible that some hospitals may84

not have the resources needed for generating large amounts of data to build their own85

model. In addition, in many clinical studies the patients’ tumor samples are collected86

over a fairly long period of time (years) in several batches. Waiting till sample collection87

is finished before single cell RNA-sequencing data analysis is not realistic. It will be88

extremely helpful to train a deep learning model using samples collected at earlier time89

points and subsequently apply it to later samples. Second, this paper provides an90

illustration of how incorporating known biologically relevant biomarkers can be used to91

transfer knowledge. In this scenario, we explore the possibility to transfer cell type92

annotations across different single cell RNA-sequencing platforms, which can help make93

full use of the enormous publicly available single cell RNA-seq data that are generated94

by different technologies.95

In the methods section, we will describe the data single cell RNA-seq datasets used96

in study, provide background about deep learning, and wide and deep learning. Then in97

the results section, we will present results from training and testing the models in the98

two scenarios. Finally, we make some concluding comments and discussion in the99

discussion section.100

2 Methods101

2.1 Chang Data102

Chang et al. [31] conducted droplet-based 10X 5’ single-cell RNA-sequencing on 79,046103

cells from primary tumors of 11 patients with advanced basal cell carcinoma before and104

after anti-PD-1 treatment. In total, RNA profiles from 53,030 malignant, immune and105

stromal cells, and 33,106 T cells were obtained from single cell RNA-sequencing. The106

cell types of interest were T cells, B cells, nature killer (NK) cells, macrophages, cancer107

associated fibroblasts (CAFs), endothelial cells, plasma cells, melanocytes, and tumor108

cells. The T cells were further classified into regulatory (Tregs), follicular helpers (TFH),109

T helper 17 (Th17), naive T cells, activated CD8, exhausted CD8, effector CD8, and110

memory CD8 T cells (Supplementary Figure 1).111

2.2 Tirosh data112

Tirosh et al. [26] applied SMART-seq to 4645 single cells isolated from 19 freshly113

procured human melanoma tumors, profiling T cells, B cells, NK cells, macrophages,114

endothelial cells, CAFs, and melanoma cells. To further analyze the T cell sub-types, we115

downloaded the log-transformed TPM (Transcripts per Million reads) gene expression116

values provided by the study and imported them to Seurat [23]. S and G2/M cell cycle117

phase scores were assigned to cells based on previously defined gene sets [27]using118

CellCycleScoring function. Scaled z-scores for each gene were calculated using119

ScaleData function by regressing the S and G2/M phases scores. Shared nearest120

neighbor (SNN) based clustering method was used to identify clusters based on the first121

30 principle components computed from scaled data with resolution = 1. UMAPs were122

generated using the same principle components with perplexity = 30 and used for all123

visualization. Clusters were annotated by identifying differentially expressed marker124

genes for each cluster and comparing to known cell type markers and markers reported125

by Tirosh et al. From this analysis, we confirmed the cell annotation provided by Tirosh126

et al., and were able to further identify CD4+ T cells and CD8+ T cells.127
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2.3 Background for Classification Problems with Deep128

Learning129

Deep neural networks (DNN) are able to learn and condense highly non-linear features
(genes) into a high level summary through the use of composition of functions. These
functions are dot products that undergo a non-linear transformation and are then
passed into another function in the next layer. There are three types of layers in a DNN
which are input, hidden, and output layers. Each node in the input layer corresponds to
the expression of a single gene. Information from the input layer is passed to each node
in the a hidden layer which optimizes the weights in a dot product to maximize the cell
type classification accuracy. The nodes in the output layer produce the probability that
a cell is classified as a specific type. The architecture of a generic DNN with two hidden
layers is seen in Figure 1. For multi-class classification the objective function to be
minimized is so called cross-entropy function, H(P,Q),

1

n

n∑
i=1

H(P,Q) = − 1

n

m∑
i=1

m∑
i=1

P (xi = j) log(Q(xi = j)), (1)

where m is the number of cell types, n is the sample size, P is the target probability130

distribution and Q is the predicted cell type probability distribution. This function is131

minimized by gradient descent which is computed by iterating the chain rule over all132

layers of the model. The architecture of a DNN is complex and requires careful tuning.133

Some examples of tuning parameters in a DNN are number of samples used for134

stochastic gradient, iterations to train the model, and nodes in each layer [9, 10].135

A challenge to training a deep learning model is to ensure that the results can be136

generalized to new data sets. One of the simplest ways to prevent overfitting is use to137

reduce the number of hidden layers or nodes which in turn decreases the number of138

parameters estimated by the model. Another technique is dropout which randomly139

deletes a specified proportion of nodes from each layer in the neural network. By140

deleting different sets nodes in each iteration the model is trained on different141

sub-networks and becomes less sensitive to the specific weights of nodes. Dropout can142

speed up the training of a DNN, however, it may require more iterations to train the143

network. It is recommended that the percentage of nodes to delete from each layer144

should be between 20-50% [22] Lastly, constraints can be imposed on the weight vector145

of each node requiring the norm be small. The regularizers work in a similar way to146

lasso or ridge penalization in a regression setting where there is an additional parameter147

which changes the influence of the penalization term. The aim is either to keep the148

value of the weights small or push as many as possible to zero (lasso). Elastic net149

penalization has also been used which allows for a balance between the `1 (lasso) and `2150

(ridge) penalty [9, 30,33].151

Understanding which genes were influential to a successful cell type classification
model is important for validating the results and can lead to detection of novel genes for
future research. Despite many machine learning techniques being seen as ‘black boxes’,
there have been efforts to interpret the results. One simple approach to evaluate the
importance of a feature is to calculate dot product of consecutive nodes [8]. This was
originally proposed for neural networks with a single hidden layer, but we extend this
work to a neural work with two hidden layers

wi = H(1)H(2)O =

h1∑
i=i

h2∑
j=i

m∑
k=1

H
(1)
ij H

(2)
jk Ok (2)

where H
(a)
ij is the coefficient passed from the ith node of the (a− 1)st hidden layer to152

the jth node in the ath hidden layer, and Ok probability that a cell is from the kth cell153
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Validation First Second Testing
Accuracy Layer Layer Accuracy

No Dropout 94.4 100 50 95.2
Dropout Only 94.2 100 75 94.5
Dropout + `2 94.3 100 75 93.8
Dropout + `1 92.9 75 100 92.2

Table 1. Summary of the parameter selection, validation, and testing accuracy for the
naive, and wide and deep learning models. The architecture was selected based on the
model that highest accuracy when classifying cells in the validation data set. The testing
accuracies arise from training a model with the specified architecture with training +
validation datasets and testing on previously unused test set.

type. By ranking these weights of each gene we can gain some notion of variable154

importance in the final classification.155

2.4 Emphasizing Important Genes for Improved Cell Type156

Classifiers157

Wide and deep learning (WDL) involves merging a set of features, wide component,158

with the last hidden layer in a DNN, deep component. Adding these features in the final159

step will ensure that they are emphasized in the model, since they may be lost due to160

dropout or assigned with small weights. The wide component is a generalized linear161

model where the input is a set original features. Wide components tend to memorize162

the patterns the data, while deep components can generalize non-linear patterns. The163

architecture of a WDL model is shown in Figure 1. In this study, specific genes that are164

exclusively expressed by a particular cell type are added to the last hidden layer forcing165

the model to emphasize them more. This may allow a DNN to produce a more accurate166

classify cells model than a model constructed with only a deep part, especially in167

scenarios where the data are obtained from different platforms or cancer types.168

3 Results169

3.1 Neural Network Tuning170

In this section, we want to describe how the hyperparameters (number of nodes,171

regularization, dropout) were selected. Traditional deep learning models with two172

hidden layers were constructed with no regularization (No Dropout), 20% dropout for173

both hidden layers (Dropout Only), 20% dropout and an `1 regularizer for both hidden174

layers (Dropout + `1), and lastly 20% dropout and an `2 regularizer for both hidden175

layers (Dropout + `2). A grid search was employed where the first hidden layer could176

have 1, 5, 10, 25, 50, 75, 100, 500, 1000 nodes and the second hidden layer could have 1,177

5, 10, 25, 50, 75, 100, 500 nodes.178

Figure 2 shows the training and validation accuracy (left) and loss (right) when179

there was the same architecture for each model, and a numerical summary is provided180

in Table 1 for the architecture leading to the best validation accuracy. Notice that with181

No Dropout, Dropout Only, and Dropout + `1 the validation loss increases as the model182

is trained. On the other hand, the validation accuracy and validation loss remains183

consistent with the training loss as epochs increase for Dropout + `2, suggesting that184

even if the model is trained with an excessive number of iterations that the model185

performance will not suffer heavily from overtraining. While the No Dropout and186

Dropout only models had the lowest validation loss and nearly 100% training accuracy,187

5/13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2020. ; https://doi.org/10.1101/2020.10.09.328732doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.09.328732
http://creativecommons.org/licenses/by-nc/4.0/


Input Layer Output LayerHidden Layer Hidden Layer

!"

!#

!$

!% &'(
"

&""

&')
#

&"#
*"
*#

*$

*+
!,(

!,-

Figure 1. Depiction of a generic wide and deep learning neural network where the wide
component is surrounded by the red lines and the deep component is encompassed by
the turquoise lines. The deep component equivalent a traditional deep learning model
described in sections 2.2 and 3.1. The gene names in yellow correspond to the genes that
are used in the wide part of the WDL model in section 3.2.

they are undoubtedly overtrained and will likely not generalize well for future data.188

Based on these finding, all models discussed in the remainder of this paper will be189

constructed with dropout and `2 regularization especially since there is not a significant190

difference between the testing accuracies of the four methods.191

The overall accuracy of the Dropout + `2 model is 93.8%, with the prediction192

accuracy of individual cell types ranging from 83 to 100% (Figure 3A). T-cell sub-types193

are similar in gene expression profiles and are difficult to distinguish. T-cell sub-type194

classification is commonly done as a second stage of classification where only the T-cells195

are considered [31]. Figure 3A shows that using a deep learning framework, each T-cell196

sub-type is classified with at least 83% accuracy, and 5 out of the 7 T-cell sub-types had197

greater than 91% percent accuracy, and the misclassified cells were classified as another198

type of T-cell. In single cell RNA-sequencing, the separation between activated CD8199

and exhausted CD8 T cells are particularly difficult. The exhausted cells are considered200

as chronically activated and they also highly express the activation markers such as201

TNF and IFNG. The subtle difference between activated and exhausted CD8 T cells is202

the overexpression of exhaustion markers such as TIGIT and HAVCR2. Our deep203
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Figure 2. Comparison of the accuracy (A) and categorical cross-entropy loss (B) of
four models from section 3.1 with varying methods of regularization and drop out. The
plots are for iteration number 5 through 100. The red and turquoise lines correspond to
the performance on the training validation set, respectively.

learning model with Dropout+ `2 setting was able to capture these genes and ranked204

their importance as 4th and 75th in total of 22,890 genes (Figure 3B, Supplementary205

Table 1). In addition, the model also put high emphasis on the genes that are typically206

over-expressed in tissue-resident memory cells, such as LAYN and CXCL13 (Figure 3A),207

which is consistent with Chang et al. original findings. The cell type classification208

accuracies for No Dropout, Dropout only, and Dropout + `1 are included in209

Supplementary Figure 2.210

3.2 Testing on Different Datasets211

Both naive and WDL learning models were constructed using the melanoma data212

generated by Chang for training and basal cell carcinoma data produced by Tirosh for213

testing the models. Both models were constructed with 100 and 75 nodes for the first214

and second layers respectively. A comparison of the true cells types and the predicted215

cell types from the WDL model are shown in Figure 4A and 4B. The naive model had216

an overall accuracy of 41% which is partly due to the model not classifying any cells as217

CD4 T cells (Figure 4C). Another discrepancy is that a majority of melanoma cells were218

classified as CAFs (62%), but the silver lining is that the naive model can distinguish219

tumoral from stromal cells. A large percentage of NK cells were also classified as CD8-T220

cells (45%) which is not surprising based on the similarity in cellular function and221

location in the UMAP in Supplementary Figure 1.222

With the addition of the 8 markers listed in Figure 1, the WDL model can better223

discriminate sub-types of T cells, CD8 T cells and CD4 T cells, with an accuracy of 95.8224

and 75.6% respectively (Figure 4B right) and obtained an overall accuracy of 90.1%225

accuracy (Supplementary Figure 3). The classification accuracy by cell type ranges from226

48.6% for NK Cells to 95.8% for CD8 T-cells with 6 of the 8 cell types having greater227

than 87% accuracy (Figure 4B right). A majority of the misclassified CD8 T-cells were228

classified classified within the same major cell type. Classification of melanoma cells229

saw the largest increase in accuracy from 31% to 98%.230

In order to understand why the models perform differently, we focus on the231

differences between specific markers that were highly influential in each model. The232
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Figure 3. Heatmap of accuracies by cell type for a deep learning model (A), trained and
tested on the Chang dataset, with two hidden layers with 100 and 75 nodes respectively,
and 20% dropout and `2 regularization. Average expression of the top 20 most influential
genes by cell type (B) where the size of the dot corresponds to the proportion of cells
that express this gene and color ranging from blue to red indicating low to high average
expression.

importance of the top 20 markers and their importance are displayed in the average233

expression profiles for the each cell type in Figures 5A and 5B. A total of 8 markers234

were included in the wide part of the WDL model, and these have by far the largest235

importance in the model, and four of these (CD8A, CD8B, GZMK, and IL7R) which236

are all important for identifying CD8 or CD4 T-cell. Thus the importance of these237

markers explains why the model was able to classify CD8-T cells with an accuracy of238

61%. Five out of the top 12 most important markers from the deep component of the239

WDL model were in the top 20 markers in the naive model with slightly larger weights240

in the WDL model. Additionally, there were no melanoma markers in the top 20 most241

influential genes in the naive model leading to many of the melanoma cells being labels242

as CAFs. Figures 5, Supplementary Figure 4 and Supplementary Table 2 show that are243
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Figure 4. Comparison of the true cell types (A) and predicted cell types from a WDL
model (B). Side-by-side comparison of the accuracy by cell type for the naive and WDL
models (C).

several genes that are highly influential, yet are not expressed in many cells in the244

training or test set, such as EOMES, SH2D1B, ENC1, VCAM1. This further illustrates245

a challenge understanding the importance of markers only a small subset of cells in a246

particular cell type may express these marker yet the model found them to be247

influential. Chang identified, after restricting data to only T-cells, EOMES as a marker248

to distinguish from CD4 memory T-cells other T-cell sub-types, while both deep249

learning models were able to identify this as in important marker without subsetting the250

data by major cell type (Supplementary Figure 4).251

4 Discussion252

WDL presents an opportunity to use a small set commonly known biological markers for253

cell type classification to allow models to be slightly less data driven. We have254

illustrated a substantial increase in overall accuracy (41 to 90%) and for T-cell255

sub-types (CD4 increased from 0 to 76% and CD8 increased from 61 to 96%). We have256

demonstrated that this can allow for training and testing of models from data obtained257

from different platforms and types of skin cancer, and even when the target258

classifications are not the same. Further refinement for classification of fine T-cell259

sub-types is needed to address questions such as ‘how strong is the CD8 T-cell response260

to a tumor?’, i.e. determine the proportion of CD8 T-cells that are exhausted, which are261

very relevant in cancer research. Additionally, there is a great need to develop systems262
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Figure 5. Dot plots for the Tirosh data using both naive (A) and WDL (B) with gene
importance weights increasing with brown color scale. The genes names highlighted in
red correspond to genes that were included in the wide part of the WDL model, and
the blue gene names correspond to the genes that were not in the wide part yet were
influential in both the naive and WDL models. Full list of genes and weights is included
in Supplemental Table 2.

to transfer knowledge across cancer types. WDL allows the opportunity to address this263

by including general set of genes for cell type classification and avoiding adding264

data/cancer specific markers as shown in section 3.2.265

In addition to adding a wide component to a DNN there is need for careful266

consideration for how model is trained to avoid the memorization of data. While267

dropout is a great tool for making deep learning models more generalizble there are268

many applications where there is a need for additional steps to avoid overfitting.269

Regularization is computationally intensive, but makes deep learning models for270

generalizable to test datasets. Models can very easily be overtrained but a combination271

of dropout and `2 regularization can provide a loss function that is stable across the272

training iterations. Another challenge for deep learning in general is the randomness in273

the initialization of node weights, dropout, and batches can lead to dramatically274

different performances for models that are tuned in the same manner and data.275

Studying an ensemble of deep neural networks could help study the stability of the276

models and comparing the most important biomarkers in each model can provide277

further confidence that the markers that are highly influential. Identifying these genes278

can help clinicians understand commonality between immune cells behavior across279

cancer types providing better insight and treatment of the cancers themselves.280
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