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Abstract

We simulate stable distributions to study the ideal movement pattern for the spread of a virus using autonomous
carrier.

Keywords— Stable distributions, Lévy walk, Simulations.

Introduction

Biological systems cannot be described only in the aspects of probabilistic distributions. However in the interest of studying
interactions and common behaviours we consider systems to imitate similar laws at different scales [6]. Stable distributions
have scale invariant behaviour, where linear combination of independent and identical distributions (IID’s) with finite
mean and variance leads to a normal distribution (ND) [5]. Similarly when we consider rescaled and reordered sum of
IID’s with non-finite variance it may converge to a Lévy distribution (LD). Though ND’s are pervasive in most systems,
LD’s are found in biological systems mostly associated with optimal foraging behaviour [6, 8]. LD comprises of Lévy walk
(LW) where multiple short steps are taken with long steps in-between, whereas the ND comprises of Brownian walk (BW)
where multiple similar steps are taken. Observing the spread of present virus [2] we considered studying simulations of
a simple model using stable distributions comprising of BW and LW to compare them. It can be observed that spread
takes a Lévy like walk which seems to happen in different distance scales. Initially spread across different continents taking
long steps followed by multiple short steps within the continent, then again long steps across different countries within the
continent and followed by multiple short steps within the country, then different states within the country and so on, the
distance scales keep changing but the behaviour nearly is the same. Previously such models have been extensively studied
using many parameters to govern the spread [3]. Also other compartmental models typically forecast the rate of spread
and behavioural count of the population [7, 4] (Such as the compartments of Susceptibles, Infectives and Recovered in the
SIR model). We qualitatively concern our study only on which movement pattern is ideal for the spread of a virus on a
macroscopic scale, without the consideration of various factors influencing on microscopic scales. We implement simple
parameters to observe simulations based on the logic of steering behaviour developed by Craig Reynolds [9] and Daniel
Shiffman [10].

Simulation model

We take a two dimensional canvas characterised by blue dots indicative of population densities as shown in Fig. 1. The
population is highly dense in some regions and sparsely dense in other. A single autonomous carrier (blue triangle) moves
around controlled by ND or LD spanning across the canvas infecting and spreading the virus indicated by turning the blue
to red dots. As the autonomous carrier moves along in a direction it has a perceptive radius of few pixels where it infects
only the blue dots within a definite boundary surrounding it. The perceptive radius imitates the realistic situation where
a certain carrier can only infect a specific region around.

Simulations and discussion

We run multiple simulations to obtain time taken T50 by the autonomous carrier to infect fifty percent of the population
density for different stable distributions. For the LD shown in Fig. 2(a) we obtain mean time T50 as 291 ± 21 seconds.
Similarly for ND’s Normal1(N1) and Normal3(N3) as shown in Figs. 2(a) and 2(b), we obtain mean T50 as 714 ± 173
and 412 ± 57 seconds respectively. We take the variance of N1 such that it is comparable with the perceptive radius of
the autonomous carrier and the variance of N3 is comparable with the size of the canvas. We observe that the spread in
LW is more patchy but spans the entire region (Fig. 3(a)). Whereas in BW with low variance such as N1, the spread
is more thorough and confined to particular regions (Fig. 3(b)). It takes longer T50 compared to LW and is more non
deterministic. We also measure T50 for other ND’s with variance ranging between variance(N1) and variance(N3). Variance
of ND Normal2(N2) is the geometric mean of variance(N1) and variance(N3) as shown in Figs. 2(a), 2(b). For ND with
variance ranging between variance(N1) and variance(N2), T50 was obtained as 420 ± 64s. T50 for N2 was obtained as
400± 53s. Similarly for ND with variance ranging between variance(N2) and variance(N3), T50 was obtained as 372± 37s.
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Figure 1: Simulation

(a) Comparing Lévy and Normal1 distribution (b) Comparing Lévy and Normal3 distribution

Figure 2: Comparing probability distributions

We analyse that for our model, Lévy walk is the most ideal movement pattern for the spread. This may be related to
the principle of least effort in the context of Zipf distribution [12], which have similar long-range correlations [11, 1]. It
can perhaps be seen as, by following Lévy walk the autonomous carrier takes the least effort to achieve maximum spread
compared to Brownian walk. Further simulations can be tried using more realistic parameters [3, 4] such as restricting the
movement in infected zones and implementing multiple carriers.
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(a) Lévy walk (b) Brownian walk

Figure 3: Simulations of random walk
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