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ABSTRACT
In this work, we extended the recently developed tensor decomposition (TD) based unsuper-
vised feature extraction (FE) to a kernel based method, through a mathematical formulation.
Subsequently, the kernel TD (KTD) based unsupervised FE was applied to two synthetic ex-
amples as well as real data sets, and the relevant findings were compared with those obtained
previously using the TD based unsupervised FE approaches. The KTD based unsupervised FE
demonstrated the most competitive performance against the TD based unsupervised FE in large
p small n situations, involving a limited number of samples with many variables (observations).
Nevertheless, the KTD based unsupervised FE outperformed the TD based unsupervised FE in
non large p small n situations. In general, although the use of the kernel trick can help the TD
based unsupervised FE gain more variations, a wider range of problems may also be encoun-
tered. Considering the comparable performance of the KTD based unsupervised FE and TD
based unsupervised FE when applied to large p small n problems, it is expected that the KTD
based unsupervised FE can be applied in the genomic science domain, which involvesmany large
p small n problems, and in which, the TD based unsupervised FE approach has been effectively
applied.

Introduction
Recently, the tensor decomposition (TD) and principal component analysis (PCA) based unsupervised feature ex-

traction (FE) (Taguchi, 2020) approach was developed to identify a limited number of genes in large p small n problems
involving a small number of samples (n) with a large number of features (genes) (p). This approach, applied to ge-
nomic science applications, which frequently involve large p small n problems, could successfully identify the limited
number of biologically reliable genes that cannot be selected using conventional statistical test based feature selection
methods. Nevertheless, because the TD and PCA based unsupervised FE do not include any tunable parameters owing
to their linearity, the methods cannot be modified or optimized in failure scenarios. Thus, it is desirable to extend the
TD and PCA based unsupervised FE to include non-linearity.

To this end, we aimed at extending the TD based unsupervised FE to incorporate the kernel trick (Schölkopf,
2000) to introduce non-linearity. Because tensors do not have inner products that can be replaced with non-linear
kernels, we incorporate the self-inner products of tensors. In particular, the inner product is replaced with non-linear
kernels, and TD is applied to the generated tensor including non-linear kernels. In this framework, the TD can be
easily “kernelized”.

Several researchers have attempted to apply kernel methods to process tensor data. For instance, Signoretto et al.
(2011); Signoretto et al. (2012) and Zhao et al. (2013b,a)) input tensors into vectors (or matrices), which were then used
to construct the kernels. However, such conversionmay destroy the structural information of the tensor data. Moreover,
the dimensionality of the resulting vector is typically extremely high, which leads to the curse of dimensionality and
small sample size problems (Liu et al. (2015), Yan et al. (2007)). He et al. (2017) proposed an implementation in which
the tensor was reproduced using a kernelized TD.

It is expected that these problems can be avoided by computing the inner product of the tensors, as realized in the
proposed approach.
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Results
Mathematical formulations

Suppose there exists a tensor xijk ∈ ℝN×M×K , which represents the value of the ith feature of the samples with
properties j and k. For example, xijk might represent the price of product i that a person with a gender k and age j
previously bought. In this case,N is the number of products available,M is the age, andK ∈ [1, 2] represents male or
female. Alternatively, in genomic science applications, which is the focus domain of this work, xijk is the expression ofthe ith genes of the kth tissue of the jth person; in this case,N is the number of genes,M is the number of participants
in the study, and K is the number of tissues for which the expression of genes is to be measured. As another example,
xijk might represent the electric current of the ith circuit at the jth temperature and kth atomic pressure; in this case,
N is the number of circuits in a machine, andM andK denote the number of recordings of the temperature and atomic
pressure, respectively.

The aim of TD based unsupervised FE is to select the limited number of critical features among all the features (as
many asN). In the first case, when i represents a product, the purpose of analysis may be to identify the limited number
of products, the buyers of which are restricted to specific ages and genders. In the second case, when i represents a
gene, the purpose of analysis may be to determine the limited number of genes whose altered expression may cause
diseases. In the third example, when i is a circuit, the purpose of analysis may be to identify the limited number of
circuits whose malfunctioning may result in the failure of the machine. Thus, in general, the purpose of TD based
unsupervised FE is to screen a small part of the large features that are of significance.

In this regard, in TD based unsupervised FE, higher order singular value decomposition (Taguchi, 2020) (HOSVD)
is applied to xijk to yield

xijk =
N
∑

l1=1

M
∑

l2=1

K
∑

l3=1
G(l1l2l3)ul1iul2jul3k (1)

where G(l1l2l3) ∈ ℝN×M×K is a core tensor, which represents the weight of product ul1iul2jul3k of the contribu-tion to xijk. ul1i ∈ ℝN×N , ul2j ∈ ℝM×M , ul3k ∈ ℝK×K denote singular value vectors that represent the various
dependencies of xijk on i, j, k, respectively; these vectors are orthogonal matrices.

To select the critical is, we must specify ul1i to select is; The is must be those for which the absolute values of
ul1i are large. In this context, we must first identify ul2j and ul3k, which represent the properties of interest. In the
first example, the absolute value of ul2j , which corresponds to the age, must be larger than a specific age. ul3j , whichcorresponds to the genders, must be assigned distinct values for the two genders. In the second example, ul2j , whichcorresponds to study participants, must be assigned distinct values for the patients and healthy controls. ul3j , whichcorresponds to tissues, must have distinct values for the different tissues. In the third example, ul2j and ul3k must be
assigned extremely large values at specific temperatures and atomic pressures.

After identifying the ul2j and ul3k of interest, we attempt to identify G(l1l2l3) that have larger absolute valuesgiven l2 and l3. Once l1 with G having the large absolute values is specified, we attempt to identify i with large
absolute values of ul1i. These is might represent the critical products bought by persons with specific ages and gender,
genes expressive in certain specific tissues of patients, and circuits in which the electric current increases drastically
at specific temperatures and atomic pressures.

The application of TD based unsupervised FE to problems in genomic science yielded satisfactory results even
when conventional feature selection methods based upon statistical tests failed (Taguchi, 2020; Taguchi and Turki,
2020; Ng and Taguchi, 2020). Nevertheless, TD based unsupervised FE involve certain limitations. Specifically,
owing to the tunable parameters, this approach cannot be modified or optimized in failure scenarios. The proposed
method aims at extending the TD based unsupervised FE to be incorporated with kernel tricks (Schölkopf, 2000). In
this scenario, because many kernels to be selected, a better strategy can likely be identified to be applied to the target
problems.

To apply the kernel trick, TD must be suitably modified. First, we consider the partial sum as
xjkj′k′ =

∑

i
xijkxij′k′ (2)
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Substituting Eq. (1) into the aforementioned equation yields

xjkj′k′ =
∑

i

N
∑

l1=1

M
∑

l2=1

K
∑

l3=1
G(l1l2l3)ul1iul2jul3k

N
∑

l′1=1

M
∑

l′2=1

K
∑

l′3=1
G(l′

1l
′
2l

′
3)ul′1iul′2j′ul′3k′ (3)

=
N
∑

l1=1

M
∑

l2=1

K
∑

l3=1

N
∑

l′1=1

M
∑

l′2=1

K
∑

l′3=1
G(l1l2l3)ul2jul3kG(l

′
1l

′
2l

′
3)ul′2j′ul′3k′

∑

i
ul1iul′1i (4)

=
N
∑

l1=1

M
∑

l2=1

K
∑

l3=1

N
∑

l′1=1

M
∑

l′2=1

K
∑

l′3=1
G(l1l2l3)ul2jul3kG(l

′
1l

′
2l

′
3)ul′2j′ul′3k′�l1l′1 (5)

=
M
∑

l2=1

K
∑

l3=1

M
∑

l′2=1

K
∑

l′3=1

( N
∑

l1=1
G(l1l2l3)G(l1l′

2l
′
3)

)

ul2jul3kul′2j′ul′3k′ (6)

Thus, we can obtain ul2j and ul3k by applying the HOSVD to Eq. (2) as

xjkj′k′ =
∑

l2

∑

l3

∑

l′2

∑

l′3

G(l2l3l′
2l

′
3)ul2jul3kul′2jul′3k. (7)

Note that when using the linear kernel, as indicated in Eq. (2), the KTD is equivalent to the (linear) TD.
Because Eq. (2) is expressed in the form of an inner product, it can be easily extended to (non-linear) kernels.

Although in the presented analysis, we only considered the radial base function (RBF) kernel as an example, any other
kernel can be used in place of the RBF kernel. Eq. (2) can be easily extended to the RBF kernel as

xjkj′k′ = exp

{

−�
∑

i

(

xijk − xij′k′
)2
}

(8)

to which the HOSVD can be applied as is. This operation generates an expression corresponding to Eq. (7) with
distinct Gs and ul2j , ul3k, ul′2j , ul′3ks.To integrate two matrices xij and xkj that share the sample j, we consider

xjj′ =
∑

j′′

∑

i
xijxij′′

∑

k
xkj′′xkj′ (9)

to which the singular value decomposition (SVD) can be applied as is
xjj′ =

∑

l

ulj�lvlj′ (10)

This expression can be easily extended to the RBF kernel as

xjj′ =
∑

j′′

[

exp

{

−�
∑

i

(

xij − xij′′
)2
}

exp

{

−�′
∑

k

(

xkj′′ − xkj′
)2
}]

(11)

to which the SVD can be applied as is, and an expression similar to Eq. (10) can be obtained with distinct ulj,�l , vlj′Finally, if two matrices, xij and xik, share feature i, we have
xjk =

∑

i
xijxik (12)

to which the SVD can be applied as is, yielding
xjk =

∑

l

ulj�lvlk. (13)
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This expression can be easily extended to the RBF kernel as

xjk = exp

{

−�
∑

i

(

xij − xik
)2
}

(14)

to which the SVD can be applied as is, and we can obtain an expression similar to Eq. (13) with distinct ulj,�l , vlks.
Application to various data sets

The KTD based unsupervised FE was applied to various datasets (Fig. 1).

  

Swiss Roll Synthetic data set 
that simulate large 
p small n problems

SARS-CoV-2 
data set

Kidney cancer 
data set (TCGA)

Kidney cancer 
data set (GEO)

TD based unsupervised FE
LinearPolynomialRBF

P values assuming Gaussian Dist.
t test based P values 

Correlation 
based P values 

Gene selection

SVD

KPCA based unsupervised FE

KTD based unsupervised FE

Figure 1: Overview of performed analyses

Swiss Roll
To verify if the TD extended to the kernel (KTD approach) can capture the non-linearity, the Swiss Roll framework

is considered, represented as xijk ∈ ℝN×3×10

pi = −1 + 2i
N
, 1 ≤ i ≤ N (15)

xi1k = pi cos
(

2�pi
) (16)

xi2k = −1 + "ijk (17)
xi3k = pi sin

(

2�pi
) (18)

where "ijk is drawn the from uniform distribution between -1 and 1 (xij1 is shown in Fig. 2(A)). Here, ∑j xijk =
0,
∑

i xijk = N,N = 1000. This expression is equivalent to that of 10 ensembles of Swiss Rolls, each of which are
generated with distinct "ijk. To verify that the linear method cannot capture non-linear structures (i.e., the order of
i along the curved space) of the Swiss Roll, we apply the SVD to the xij1 shown in Fig. 2(A). Figure 2(B) shows
uli, 1 ≤ l ≤ 3. Clearly, the SVD cannot capture the non-lineer structure of the Swiss Roll. Moreover, even when the
HOSVD is applied to xijk, the non-linear structure is not well captured (Fig. 2(C)). The kernel based tensor can be
generated as

xiki′k′ = exp

{

−�
∑

j

(

xijk − xi′jk′
)2
}

, � = 10−2 (19)

to which the HOSVD can be applied to yield
xiki′k′ =

∑

l1

∑

l3

∑

l′1

∑

l′3

G(l1l3l′
1l

′
3)ul1iul3kul′1i′ul′3k′ . (20)
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Figure 2: Swiss roll. The colors represent the direction of i (1 to N) in gradation. (A) xij1, (B) uli, 1 ≤ l ≤ 3 by SVD,
(C) ul1i, 1 ≤ l ≤ 3 by HOSVD, (D) ul1i, 1 ≤ l ≤ 3 by kernel (RBF) based HOSVD.

ul1i, 1 ≤ l1 ≤ 3 represents the non-linear structure to a certain extent (Fig. 2(D)). Thus, by replacing the inner product
of the tensor with kernels, the developed TD can identify the non-linear structure of the Swiss Roll, at least partially.

Although in the aforementioned synthetic example, the KTD based unsupervised FE can successfully identify the
non-linear structure of Swiss Roll, which cannot be captured by the original (linear) TD based unsupervised FE, the
key intent of the TD based unsupervised FE is to realize the feature selection in large p small n problems, with p ≫ n.
Thus, we must examine if the KTD based unsupervised FE can outperform the TD based unsupervised FE in large p
small n problems.
Large p small n problem

We consider the following synthetic example: xijk ∈ ℝN×M×M , as

xijk ∼
{

 (�, �) i ≤ N1 ≤ N, j, k ≤ M
2

 (0, �) otherwise (21)

where (�, �) is theGaussian distribution of themean� and standard deviation �. This problem is slightly challenging
as it is a two class problem although it appears to be a four class problem. We apply the KTD as well as the kernel
PCA (KPCA) as

K(xijk, xij′k′ ) =
∑

i
xijkxij′k′ (22)

= exp

{

−�
∑

i

(

xijk − xij′k′
)2
}

(23)

Y-h. Taguchi et al.: Preprint submitted to Elsevier Page 5 of 14

permission. 
for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without 

The copyright holderthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.10.09.333195doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.09.333195


Kernel tensor decomposition: mathematical formulation and applications

Table 1
Geometric mean P -values computed through the t tests performed on singular value vectors determined using the KTD
and KPCA. Smaller P -values are better. N = 1000, N1 = 10,M = 6, � = 2, � = 1.

Kernel RBF (� = 10−6) RBF (� = 10−3) linear
P -values raw corrected raw corrected raw corrected
KTD 8.19 × 10−3 4.31 × 10−2 1.95 × 10−2 9.22 × 10−2 7.18 × 10−3 3.87 × 10−2
KPCA 9.45 × 10−3 2.59 × 10−1 1.45 × 10−2 3.89 × 10−1 7.30 × 10−3 2.01 × 10−1
Kernel polynomial (d = 2) polynomial (d = 3)
P -values raw corrected raw corrected
KTD 1.36 × 10−1 4.38 × 10−1 3.03 × 10−1 3.61 × 10−1
KPCA 7.43 × 10−2 6.43 × 10−1 2.28 × 10−1 3.81 × 10−1

=

(

1 +
∑

i
xijkxij′k′

)d

(24)

The expressions correspond to the linear, RBF and polynomial kernels (from top to bottom). When the KPCA is
applied, a tensor, xijk, is unfolded to a matrix, xi(jk) ∈ ℝN×M2 .

The performance evaluation is realized as follows. For the KTD, uljulk, 1 ≤ l ≤M , are divided into two classes,
j, k ≤ M

2 , or others, for each l. A two way t test is performed on these classes. The computedM P -values for each
l are corrected considering the BH criterion (Taguchi, 2020), and the smallest P -value is recorded. This process is
repeated one hundred times, while generating new random variables from the Gaussian distribution. The geometric
mean of the P -value is computed as a performance measure. For the KPCA, ul(jk), 1 ≤ l ≤M2 are divided into two
classes for each l, and the computedM2 P -values for each l are corrected using BH criterion. The smallest P -value
is recorded. This process is repeated one hundred times, while generating new random variables from the Gaussian
distribution used to generate xijk. The geometric mean of the P -value is computed as a performance measure. Table 1
presents the results of this analysis. It can be noted that the raw P -values for the KPCA and KTD are not considerably
different; nevertheless, the corrected P -values are smaller in the KTD than those for the RBF and linear kernel. In
other words, the KTD can effectively identify the singular value vectors coincident in the two classes with a smaller
number of singular value vectors. Nevertheless, the RBF could not outperform the linear kernel. We implemented
other � values for the RBF kernel, but the RBF kernel could not outperform the linear kernel through any of the �
values. This finding suggests that in large p small n situations, the introduction of non-linearity in the kernel is not
entirely beneficial, which is likely why the TD based unsupervised FE could outperform the conventional statistical
methods despite its linearity. Furthermore, the introduction of the non-linearity in the kernels could not not improve
the performance in large p small n situations even when the KTD based unsupervised FE was applied to real problems,
as described in the following sections.

We also examined if the restriction of ul(jk) to 1 ≤ l ≤M could improve the performance of the KPCA owing to
the smaller number of P -values considered in the results. Nevertheless, the performance was not performed, thereby
indicating that the smallest P -values for the KPCA lies in l > M , and thus, ul(jk),M < l ≤M2 cannot be neglected.
SARS-CoV-2 data set

We applied the KTD based unsupervised FE to real data sets. The first dataset corresponded to the repurposing of
drugs for COVID-19, which the TD based unsupervised FE was successfully applied to the gene expression profiles of
SARS-CoV-2 infected cell lines (Taguchi and Turki, 2020). In particular, the TD based unsupervised FE could predict
many promising drugs including ivermectin, the clinical trials using which have been recently initiated. Herein, we
briefly summarize the process implemented in the previous work (Taguchi and Turki, 2020) to enable a comparative
analysis of the results of the KTD based unsupervised FE with the previous results. The gene expression profiles was
formatted as a tensor, xijkm ∈ ℝN×5×2×3, which indicated whether the gene expression of the ith gene of the jth cell
line infected (k = 1) or not infected (k = 2, control) considering three biological replicates. The HOSVD was applied
to xijkm to yield

xijkm =
5
∑

l1=1

2
∑

l2=1

m
∑

l3=1

N
∑

l4=1
G(l1l2l3l4)ul1jul2kul3mul4i (25)
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whereG(l1l2l3l4) ∈ ℝ5×2×3×N is a core tensor, and ul1j ∈ ℝ5×5, ul2k ∈ ℝ2×2, ul3m ∈ ℝ3×3 are orthogonal singular
value matrices.

The purpose of the analysis was to identify the genes whose expressionwas distinct between the control and infected
cells, independent of the cell lines and replicates. To this end, we selected l1,l2,l3 with constant ul1js and ul3msand ul21 = −ul22. It was noted that l1 = l3 = 1 and l2 = 2 could satisfy these requirements. Next, we identified
l4 = 5 associated with G having the largest absolute values given l1 = 1,l2 = 2,l3 = 1. Once l4 = 5 was selected,
the P -values were assigned to gene i assuming the null hypothesis that ul4i obeys the Gaussian distribution:

Pi = P�2

[

>
(

u5i
�5

)2
]

(26)

where P�2 [> x] is the cumulative �2 distribution in which the argument is larger than x, and �5 is the standard
deviation. The obtained P -values were corrected using the BH criterion. A total of 163 genes for which the adjusted
P -values were less than 0.01 were selected and used to predict the drugs effective against COVID-19.

The objective of this study was to compare the performance of the KTD based unsupervised FE applied to xijkmwith that of an existing study (Taguchi and Turki, 2020). Therefore, we employed the RBF kernel as

xjkmj′k′m′ = K(xijkm, xij′k′m′ ) = exp

{

−�
∑

i

(

xijkm − xij′k′m′
)2
}

(27)

with � = 1 × 10−6, to which the HOSVD was applied. We obtained

xjkmj′k′m′ =
5
∑

l1=1

2
∑

l2=1

3
∑

l3=1

5
∑

l′1=1

2
∑

l′2=1

3
∑

l′3=1
G(l1l2l3l′

1l
′
2l

′
3)ul1jul2kul3mul′1j′ul′2k′ul′3m′ (28)

It was observed that u1j and u1m were constant, and ul21 = −ul22 with l2 = 2. We compared the u1ju2ku1m computed
using the HOSVD and KTD with k. It was clarified that u1ju2ku1m computed using the KTD were more notably
coincident with k (Fig. 3). Thus, the KTD exhibited a slight improvement over the HOSVD. Next, we were required
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Figure 3: Scatter plot of u1ju2ku1m and k. left:TD, right:KTD.

to select genes, albeit the process was challenging as ul4i used for gene selection could not be obtained. To apply the
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Table 2
Confusion matrix of the selected genes for the KTD and TD based unsupervised FE. In the KTD based unsupervised FE,
the ranking was based on the correlation coefficients. The P -value computed using Fisher’s exact test was 6.614619×10−108,
and the odds ratio was 168.

KTD based unsupervised FE
rank > 163 rank ≤ 163

TD based adjusted P -values ≥ 0.01 21540 94
unsupervised FE adjusted P -values < 0.01 94 69

Table 3
Coincidence between 163 genes and human proteins that are known to interact with SARS-CoV-2 proteins during infection.
The P -values were computed by applying Fisher’s exact tests to the confusion matrix. For more details, please refer to
the reference (Taguchi and Turki, 2020).

SARS-CoV-2 proteins P values Odds Ratio
SARS-CoV2 E 6.58 × 10−26 9.84
SARS-CoV2 M 4.14 × 10−22 7.26
SARS-CoV2 N 1.46 × 10−29 13.63
SARS-CoV2 nsp1 5.51 × 10−15 7.78
SARS-CoV2 nsp10 3.88 × 10−19 11.02
SARS-CoV2 nsp11 1.2 × 10−27 10.03
SARS-CoV2 nsp12 2.41 × 10−15 7.72
SARS-CoV2 nsp13 7.41 × 10−28 9.65
SARS-CoV2 nsp14 2.78 × 10−18 10.18
SARS-CoV2 nsp15 1.08 × 10−14 7.90
SARS-CoV2 nsp2 6.34 × 10−31 11.11
SARS-CoV2 nsp4 5.53 × 10−26 9.36
SARS-CoV2 nsp5 4.63 × 10−24 11.91
SARS-CoV2 nsp5_C145A 4.65 × 10−14 9.72
SARS-CoV2 nsp6 4.97 × 10−22 7.94
SARS-CoV2 nsp7 1.61 × 10−22 8.65
SARS-CoV2 nsp8 1.11 × 10−28 9.84
SARS-CoV2 nsp9 6.71 × 10−28 11.85
SARS-CoV2 orf10 1.16 × 10−26 10.01
SARS-CoV2 orf3a 1.62 × 10−24 8.80
SARS-CoV2 orf3b 2.50 × 10−27 11.06
SARS-CoV2 orf6 8.03 × 10−22 9.05
SARS-CoV2 orf7a 1.18 × 10−23 8.57
SARS-CoV2 orf8 1.27 × 10−20 7.25
SARS-CoV2 orf9b 9.11 × 10−28 11.36
SARS-CoV2 orf9c 5.76 × 10−26 7.69
SARS-CoV2 Spike 6.07 × 10−22 8.81

KTD for gene selection, we recomputed u1ju2ku1m excluding i sequentially. In addition, the correlation coefficient
between u1ju2ku1m and k were obtained. Subsequently, the is were ranked in ascending order of the absolute values
of the correlation coefficients, as excluding the genes with expressions coincident with the distinction between k = 1
and k = 2 was expected to result in less significant (i.e., smaller absolute values of) correlation coefficients. Table 2
presents the confusion matrix of the selected genes. Notably, the genes are highly coincident and can even be regarded
as identical considering that there existing twenty thousand genes, of which we selected only 163.

Next, we biologically evaluated the 163 genes selected using the KTD based unsupervised FE. In particular, we
compared the selected 163 genes with gold standard human proteins that are known to interact with the SARS-CoV-2
proteins during infection (Gordon et al., 2020), following the procedure described in the previous study (Taguchi and
Turki, 2020) (Table 3). Although the 163 genes selected by the KTD based unsupervised FE are highly coincident
with the gold standard SARS-CoV-2 interacting human proteins, the results in Table 3 are slightly less coincident with
the results for the gold standard SARS-CoV-2 interacting human proteins compared to the results presented in Table
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S33 (Taguchi and Turki, 2020) corresponding to the application of the TD based unsupervised FE (Taguchi and Turki,
2020). Notably, only one protein group (SARS-CoV2 N) among the 27 protein groups in Table 3 exhibits a larger odds
ratio in Table 3 (corresponding to the KTD based unsupervised FE) than that in Table S33 (corresponding to the TD
based unsupervised FE (Taguchi and Turki, 2020)).

Tables 2 and 3 indicate two main findings. First, the KTD based unsupervised FE could not outperform the TD
based unsupervised FE. At most, the results were comparable, similar to those when the KTD based unsupervised FE
was applied to synthetic data simulating a large p small n problem (eq.(21)). It is thus likely that the KTD based un-
supervised FE generally cannot outperform the TD based unsupervised FE when applied to large p small n problems.
This aspect is likely why the TD based unsupervised FE can often outperform the state of art of methods despite its
linearity. If linear methods such as the TD based unsupervised FE exhibit a performance that is comparable to that
of non-linear methods such as the KTD based unsupervised FE, it is reasonable that the linear methods can outper-
form other more advanced methods since such methods are already competitive against non-linear methods. Second,
although the KTD based unsupervised FE could not outperform the TD based unsupervised FE, the formulation of the
KTD based unsupervised FE was effective. In other words, when this approach is applied to other problems, e.g., non
large p small n problems, it is expected to outperform the TD based unsupervised FE, as in the case of the Swiss Roll
(Fig. 2).
Kidney cancer data sets

In a previous work, we attempted to realize the integrated analysis of multiomics data by applying the TD based
unsupervised FE (Ng and Taguchi, 2020). In the existing study (Ng and Taguchi, 2020), the objective was to select
genes that act as prognostic biomarker for kidney cancer. To this end, the TD based unsupervised FE was employed to
identify the differentially expressed genes (DEGs) between normal kidneys and tumors in two independent data sets.
The TD based unsupervised FE successfully identified 72 mRNAs and 11 miRNAs for the first data set retrieved from
the TCGA, and 209 mRNAs and 3 miRNAs for the second data set retrieved from the GEO. To extend this analysis,
in the present study, the mRNA expression matrix xij ∈ ℝN×M , which represents the ith mRNA expression in the
jth sample, and the miRNA expression matrix xkj ∈ ℝK×M , which represents the kth miRNA expression in the jth
sample were integrated into the tensor xijk ∈ ℝN×M×K as

xijk = xijxkj (29)
and converted to a matrix xik ∈ ℝK×M

xik =
∑

j
xijk (30)

to which the SVD was applied to yield
xik =

∑

l

uli�lvlk. (31)

The missing singular value vectors attributed to the jth mRNA and miRNA samples were recovered as follows:
umRNA
lj =

∑

i
xijuli (32)

umiRNA
lj =

∑

k
xkjulk (33)

The P -values attributed to mRNAs and miRNAs were derived as

Pi = P�2

[

>
(

u2i
�2

)2
]

(34)

Pk = P�2

⎡

⎢

⎢

⎣

>

(

v2k
�′2

)2
⎤

⎥

⎥

⎦

(35)

as umRNA
2j and umiRNA

2j were noted to be coincident with the distinction between the tumors and normal kidneys. The
mRNAs and miRNAs with the adjusted P -values of less than 0.01 were selected.
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Table 4
Performances of the linear and RBF kernel TD based unsupervised FE and that achieved in the previous study (Ng and
Taguchi, 2020) by using Eq. (30). The P -values marked by an asterisk correspond to the most significant values.

1st data set (TCGA) linear kernel RBF kernel previous study
u2j (mRNA), tumor vs. normal kidney 6.78 × 10−45* 1.06 × 10−44 7.10 10-39
v2j (miRNA), tumor vs. normal kidney 6.10 × 10−79* 4.24 × 10−38 2.13 10-71

u2j vs. v2j correlation coefficient 0.922 (7.18 × 10−135) 0.974 (5.93 × 10−212*) 0.905 (1.63 × 10−121)
2nd data set (GEO)

u2j (mRNA), tumor vs. normal kidney 5.48 × 10−15 5.42 × 10−15 6.74 × 10−22*
v2j (miRNA), tumor vs. normal kidney 3.44 × 10−18 1.17 × 10−13 2.54 × 10−18*

u2j vs. v2j correlation coefficient 0.954 (2.85 × 10−18) 0.966 (2.06 × 10−20*) 0.931 (1.58 × 10−15)

Note that the kernel trick cannot be applied to this formulation as the summation is obtained over the sample index
j and not the feature index i, k. Thus, instead, we formulated a kernel-trick-friendly integration of xij and xkj as

xmRNA
jj′ = K(xij , xij′ ) =

∑

i
xijxij′ (36)

xmiRNA
jj′ = K(xkj , xkj′ ) =

∑

k
xkjxkj′ (37)

xjj′ =
∑

j′′
xmRNA
jj′′ x

miRNA
j′′j′ (38)

to which the SVD can be applied to yield
xjj′ =

∑

l

ulj�vlj′ . (39)

As this expression includes the inner product, for which the summation is obtained over the feature index i (eq. (36))
and k (eq. (37)), the expressions can be easily extended to the RBF kernel as

xmRNA
jj′ = K(xij , xij′ ) = exp

{

−�
∑

i

(

xij − xij′
)2
}

(40)

xmiRNA
jj′ = K(xkj , xkj′ ) = exp

{

−�′
∑

k

(

xkj − xkj′
)2
}

. (41)

xjj′ was computed using Eq. (38), and the SVD was applied to xjj′ , to obtain an expression similar to Eq. (39).
A possible biological validation of the performances of the KTD based unsupervised FE is by evaluating ulj and

vlj , corresponding to the mRNA and miRNA samples, respectively. Specifically, we consider whether
• uljs are distinct between tumorous and normal kidneys,
• vljs are distinct between tumorous and normal kidneys,
• uljs and vljs are coincident.

To examine the first point, we compute ulj and vlj using linear (eqs. (36) and (37)) and RBF (eqs. (40) and (41))
kernels (� = 10−12 and �′ = 10−2). As in the previous study (Ng and Taguchi, 2020), the second singular value
vectors, u2j and v2j are noted to be the most coincident with the aforementioned three requirements. Table 4 presents
the comparisons of the P -values used to evaluate the aforementioned three conditions for the linear kernel, RBF
kernel, and the approach employed in the previous study. The P -values to evaluate the distinction between tumorous
and normal kidneys were computed through the t test, whereas those evaluating the coincidence between u2j and v2jwere computed considering the correlation coefficients. Although the three types of approaches exhibited a reasonable
performance, the RBF kernel that considered the non-linearity could not outperform the two other linear methods. The
superiority of the RBF kernel was noted only when evaluating the coincidence. Thus, the non-linear method could not
outperform the linear methods in the large p small n situation.
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Table 5
Confusion matrix of the selected genes between the KTD (linear and RBF kernel) and TD based unsupervised FE (previous
study (Ng and Taguchi, 2020) using Eq. (30)). The ranking in the KTD based unsupervised FE was t test based.

1st data set (TCGA) linear kernel RBF kernel
mRNA adjusted P > 0.01 adjusted P < 0.01 rank > 72 rank ≤ 72

previous study 19418 46 19437 27
21 51 27 45

miRNA adjusted P > 0.01 adjusted P < 0.01 rank > 11 rank ≤ 11
previous study 813 1 807 7

10 1 7 4
2nd data set (GEO) linear kernel RBF kernel

mRNA adjusted P > 0.01 adjusted P < 0.01 rank > 209 rank ≤ 209
previous study 33764 25 33620 169

61 148 169 40
miRNA adjusted P > 0.01 adjusted P < 0.01 rank > 3 rank ≤ 3

previous study 316 0 315 1
0 3 1 2

Finally, we compared the genes selected using the three methods. For the RBF, we followed the procedure pertain-
ing to the RBF kernel TD based unsupervised FE applied to the SARS-CoV-2 infection cell lines. xjj′ was computed
excluding one of the miRNAs or mRNAs, and the SVD was applied to the obtained xjj′ to obtain u2j . The t test
was applied to u2j to compute the P -values using which the distinction of u2j between tumorous and normal kidneys
could be evaluated. When the first data set was considered, 72 top ranked mRNAs and 11 top ranked miRNAs having
large (thus, less significant) P -values were selected, as the exclusion of the mRNAs or miRNAs distinct between the
tumorous and normal kidneys was expected to decrease the significance of the distinct u2j between the two entities.
Similarly, when the second data set was considered, 209 top ranked mRNAs and 3 top ranked miRNAs were selected.
For the linear kernel, the P -values attributed to the miRNAs and miRNAs were computed using Eqs. (34) and (35)
with

u2i =
∑

j
xiju2j (42)

v2k =
∑

j
xkjv2j . (43)

Subsequently, the mRNAs and miRNAs with adjusted P -values of less than 0.01 were selected. Table 5 presents the
confusion matrices of the selected genes between the present study and previous study (Ng and Taguchi, 2020). The
higher coincidence of the RBF or linear kernel with that obtained in the previous study depended on the data set. When
the first and second data sets were considered, the RBF and linear kernels were more coincident with the findings of
the previous study, respectively.

Although no gold standard data sets exist to evaluate the selected genes, one possible evaluation pertains to the
coincidence of the selected genes between the first (TCGA) and second data sets (GEO). As these two data sets are
independent, it is unlikely that commonly selected genes are present, and the selected genes are at most 1% of all
genes. In the previous study (Ng and Taguchi, 2020) that employed Eq. (30), 11 genes were commonly selected
between TCGA and GEO, whereas seven and eight genes were commonly selected between the TCGA and GEO
for the linear and RBF kernels, respectively. Although these overlaps are still significant (using Fisher’s exact test,
P = 3.43 × 10−6, odds ratio: 12.54 for RBF kernel and P = 1.27 × 10−6, odds ratio: 11.59 for linear kernel), the
values are inferior to those for the previous study (Ng and Taguchi, 2020) that involved 11 commonly selected genes
(P = 8.97 × 10−11, odds ratio: 19.7). Thus, the KTD based unsupervised FEs are at most competitive with the TD
based unsupervised FE in large p small n problems.

Discussion
In the aforementioned analyses, we successfully formalized the KTD based unsupervised FE to be applied to select

DEGs. Although the implementation was effective, the KTD based unsupervised FE could not outperform the TD
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based unsupervised FE that can address only the linearities. This finding may appear to be unexpected, as non-linear
methods generally outperform linear methods pertaining to non-linear application by definition. Nevertheless, this
expectation does not always hold, especially when the linear methods can achieve optimal solutions similar to those
attained by non-linear methods.

As shown in Fig. 2(D), the KTD can precisely recognize the non-linearity in Swiss Rolls, at least partially. How-
ever, when the KTD based unsupervised FE is applied to large p small n problems, even the use of non-linear kernels
could not outperform the TD based unsupervised FE or linear kernel based KTD based unsupervised FE. The rea-
son for this aspect can be explained as follows. To represent complicated structures that only non-linear methods can
recognize, many number of points are required. For example, to represent nth order polynomials, we need at least
n+1 points. As the higher order polynomials can represent more complicated structures, more points are necessary to
realize this representation. In large p small n problems, the number of samples in insufficient to represent complicated
structures. As shown in Fig. 2, there exist 1,000 points in three-dimensional space. In contrast, in the considered large
p small n problems, the number of samples ranges from a few tens to hundreds, whereas the number of corresponding
features varies from 102 to 104. Thus, clearly, the points cannot effectively represent complicated structures. The
TD based unsupervised FE, despite its linearity, has outperformed conventional statistical test based gene selection
methods. It is rather unexpected that such a simple linear method can outperform more sophisticated advanced tools.
Specifically, the TD based unsupervised FE has already achieved the performances that KTD based unsupervised FE
employing non-linear kernels is expected to achieve in large p small n problems.

In addition, the KTD based unsupervised FE cannot exploit certain advantages that the TD based unsupervised FE
exhibits. For example, as the KTD cannot yield singular value vectors attributed to the features (genes), we cannot
apply the empirical P -value computation assuming that the singular value vectors obey the Gaussian distribution.
Instead, we must repeatedly compute the singular value vectors excluding the features sequentially, which is a time-
consuming process. In addition, the computation of inner products exponentially doubles the amount of memory
required. As the number of samples is small, this aspect may not be an immediate problem. Nevertheless, this process
for the first data set (TCGA) required half a day of CPU time while using 12 CPU units as the set included hundreds
of samples. In contrast, the TD based unsupervised FE can complete the corresponding computation in a few minutes.
Furthermore, the P -values computed by the KTD based unsupervised FE cannot be directly used for gene selection.
When used to rank the genes, the process is effective (Tables 2 and 5). However, the process is ineffective when used to
screen features directly, because the P -values are sufficiently small even after excluding one variable feature, e.g., those
distinct between two classes (e.g., control and cancers). In this scenario, we cannot identify the number of features to
be selected only considering the P -values. Nevertheless, this decision can be made using TD based unsupervised FE.

Despite these disadvantages of KTD based unsupervised FE, there may exist scenarios in which the results can
be improved, whereas this aspect does not hold true for TD based unsupervised FE that lacks tunable parameters.
At present, although we were unable to identify the cases in which the KTD unsupervised FE employing non-linear
kernels could outperform the TD base unsupervised FE in large p small n problems, it is expected that the proposed
approach can outperform the existing approach in scenarios involving large p small n problems in which the TD based
unsupervised FE cannot achieve a high performance.

Methods
Data set

The data sets used in this study are all public domain. The information regarding the retrieval of these data sets
has been presented in previous studies (Taguchi and Turki, 2020; Ng and Taguchi, 2020), in which the TD based
unsupervised FE approach was applied to these data sets.
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