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Abstract  

β-Propellers are found in great variety across all kingdoms of life. They assume many 

cellular roles, primarily as scaffolds for macromolecular interactions and catalysis. 

Despite their diversity, most β-propeller families clearly originated by amplification from 

the same ancient peptide - the β-propeller blade. In cluster analyses, β-propellers of the 

WD40 superfamily always formed the largest group, to which some important families, 

such as the α-integrin, Asp-box, and glycoside hydrolase β-propellers connected weakly. 

Motivated by the dramatic growth of sequence databases we revisited these connections, 

with a special focus on VCBS-like β-propellers, which have not been analysed for their 

evolutionary relationships so far. We found that they form a supercluster with integrin-like 

β-propellers and tachylectins, clearly delimited from the superclusters formed by WD40 

and Asp-Box β-propeller. Connections between the three superclusters are made mainly 

through PQQ-like β-propeller. Our results present a new, greatly expanded view of the β-

propeller classification landscape. 

Main text  

Introduction  

Proteins with a β-propeller domain are found in all kingdoms of life (Fig. S1c). They are 

involved in diverse biological processes, from adhesion to transcription regulation (Fülöp 

and Jones 1999; Pons et al. 2003; Guruprasad and Dhamayanthi 2004; Chen et al. 

2011). In them, the β-propeller acts mostly as a recognition site for different 

biomolecules, but may also carry catalytic activity. These repetitive domains (Andrade et 

al. 2001; Söding and Lupas 2003) adopt a toroid fold, where between 4 and 12 (Fig. S1d) 

copies of a widespread supersecondary structure, the 4-stranded β-meander, are 

arranged radially around a central channel (Fig. S1a,b). These repeats, whose strands 

are labelled A to D (Figs. 2b, 3 and S1b), are called ‘blades’ and the toroids they form 

correspondingly ‘propellers’. Blades carry specific sequence motifs which allow the 

classification of cognate β-propellers into a hierarchy of families and superfamilies (Fülöp 

and Jones 1999; Pons et al. 2003; Guruprasad and Dhamayanthi 2004; Chaudhuri et al. 

2008; Chen et al. 2011).  

Despite their wide sequence diversity (Fig. S1e,f), most β-propeller families are related to 

each other and emerged by independent amplification from a set of homologous 

ancestral blades, in a process that is still visibly ongoing (Chaudhuri et al. 2008; Kopec 
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and Lupas 2013; Dunin-Horkawicz et al. 2014; Alva et al. 2015; Afanasieva et al. 2019). 

Classification studies suggested that most β-propeller families form a supercluster 

centred on WD40 β-propellers, a large superfamily characterised by a Trp-Asp motif at 

the end of strand C (in position 40) (Fig. 2b). Proteins assigned to this supercluster in 

previous studies included the β-subunits of G-proteins, the low density lipoprotein (LDL) 

receptors, protein kinase PknD and the tachyletin-2 family, which comprises eukaryotic 

lectins involved in the innate immunity of cnidarians and crustaceans (Neer et al. 1994; 

Beisel et al. 1999; Chaudhuri et al. 2008; Hayes et al. 2010; Kopec and Lupas 2013). 

Some peripheral groups connected weakly to this supercluster (Chaudhuri et al. 2008; 

Kopec and Lupas 2013), such as the β-propeller domain of α-integrins, characterised by 

a Ca2+-binding DxDxDG motif in the loop connecting strands A and B (loop AB) and an 

FG-GAP/Cage motif, which is contiguous in space but not sequence, covering the N-

terminal end of strand A and the C-terminal end of strand B (Rigden and Galperin 2004; 

Chouhan et al. 2011). This connection was proposed to be weakly mediated by Asp-Box 

β-propellers, most of whose members are characterized by a SxDxGxTW motif in the 

loop connecting strands C and D (loop CD) (Quistgaard and Thirup 2009). 

Missing from these studies were β-propellers of the Vibrio, Colwellia, Bradyrhizobium, 

and Shewanella (VCBS) family (Pfam: PF1351), a poorly described group that has 

hitherto not been analysed systematically for its evolutionary relationships. VCBS 

encompasses the β-propellers in aldos-2-ulose dehydratases (AUDH) (Claesson et al. 

2012), ABC toxin component B (TcB) (Meusch et al. 2014), fungal PVL lectins (Cioci et 

al. 2006), and a variety of hypothetical archaeal toxins (Makarova et al. 2019). As PVLs 

carry a conserved Ca2+-binding DxDxDG motif in loop AB, their similarity to integrin-like 

β-propellers has been conjectured (Cioci et al. 2006), but their mode of carbohydrate 

recognition appears to be more similar to that of tachylectin-2 (Beisel et al. 1999; Cioci et 

al. 2006). In order to obtain further insight into this group and locate it within the β-

propeller landscape, we performed a survey of VCBS-like β-propellers and their 

relationship to integrin-like, Asp-Box, tachylectin and WD40 β-propellers.  

Results and Discussion  

PSI-BLAST searches with 13 β-propellers of known structure, chosen to represent the 

families described above (Table S1), yielded a total of 5996 sequences from bacteria, 

archaea and eukaryotes (see Methods). When clustered by pairwise similarity (Fig. 1), 

these sequences form three superclusters organized around cores of WD40, Asp-Box 

and VCBS-like β-propellers, respectively. The WD40 and Asp-Box superclusters were 
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expected, based on previous analyses (Chaudhuri et al. 2008; Kopec and Lupas 2013), 

but we were struck by the clear grouping of the other β-propeller families into a third 

supercluster, centered on VCBS and clearly delimited from the other two. 

The core of the VCBS supercluster comprises prokaryotic β-propellers from diverse 

hypothetical protein families (Fig. S2), which carry a signal sequence and may contain 

several β-propeller domains, accompanied by domains associated with biomolecular 

interactions (mostly immunoglobulin-like domains, but also armadillo repeats and jelly-

roll-like lectins, Fig. S2). The VCBS core group is connected to a large periphery of 

VCBS-like families, including PVL, TcB and AUDH, as well as to diverse hypothetical β-

propellers, which have hitherto remained unstudied (Figs. 1b and S2). β-Propeller 

families in this periphery are found in a variety of hypothetical proteins, whose domain 

composition suggests an involvement in biomolecular interactions and catalysis (Fig. 

S2a). The most peripheral families that still connect directly to the VCBS core are the 

integrin-like β-propellers and the bacterial RGL11 family (rhamnogalacturonan lyase 

YesX, ECOD: 001396995). Two other important β-propeller families complete the VCBS 

supercluster, comprising tachylectins and PQQ β-propellers, respectively. These connect 

to each other, and also to the VCBS core via RGL11, in the case of PQQ, and a β-

propeller family we have named VCBS actinolectins, in the case of tachylectins.  

We chose the name “VCBS actinolectins” given their exclusive occurrence in 

actinobacteria and evolutionary connection to tachylectins (Figs.1b and S2), but no 

member of this family has as yet been characterized. These β-propellers are found in 

proteins that carry a signal sequence and either consist of the single β-propeller domain 

or of the β-propeller preceded by a TIM barrel (Figs. S2a). Their connection to the 

tachylectin cluster is mediated by a core of bacterial tachylectin-like sequences, which 

are found in secreted proteins often containing additional domains involved in catalysis. 

Two groups radiate from this core, the eukaryotic tachylectins-2 and a second family of 

actinobacterial β-propellers, both of which are comprised of secreted proteins consisting 

of the β-propeller domain alone. The identification of these multiple tachylectin-like 

families was a striking result as tachylectin β-propellers have been considered for long 

time as near-orphans and have so far only been reported in eukaryotes (Beisel et al. 

1999; Hayes et al. 2010; Smock et al. 2016).  

HMM comparisons highlight the sequence motifs behind the connections described here 

(Fig. 2). The most prominent motif is the aspartate-rich DxDxDG sequence of loop AB 

(Figs. 2b and 3) (Rigden and Galperin 2004; Cioci et al. 2006; Chouhan et al. 2011). 
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While in PVL and α-integrin, this loop binds Ca2+ (Fig. 3b), in other members it may 

recognise also other metal cations (Rigden and Galperin 2004; Chouhan et al. 2011; 

Claesson et al. 2012; Meusch et al. 2014). Also conspicuous are two non-contiguous, 

highly conserved residues of loop CD, G and W (Fig. 2b). Their functional role is 

uncertain, but in integrin-like β-propellers the G coordinates a water molecule involved in 

Ca2+ binding (Chouhan et al. 2011), and in tachylectin-2 the W anchors a short α-helix 

involved in forming the sugar-binding pocket (Fig. 3). A fourth prominent motif is a GW in 

loop DA’ (the loop that connects strand D from one blade to strand A of the next) (Figs. 

2b and 3a,c), which in tachylectin-2 and PVL is involved in forming the sugar-binding 

pocket (Fig. S3) (Kawabata and Tsuda 2002; Cioci et al. 2006). 

While widely represented in the families of the VCBS supercluster, none of these motifs 

is universal. Thus, for example, the aspartate-rich motif of loop AB is not found in 

tachylectin-like and PQQ β-propellers. These are connected to other families in the 

supercluster by the sequence of loop CD and, in the case of tachylectin-like β-propellers, 

by the GW motif of loop DA’.  

Conclusions  

Our results confirm the relationship conjectured between fungal PVL lectins, tachylectin-2 

and integrin-like β-propellers (Cioci et al. 2006). We find that all three of these eukaryotic 

protein families are satellites of larger prokaryotic clusters, from which they are 

presumably descended. Jointly with these, they are part of a supercluster of β-propeller 

families, centred on the large group of prokaryotic VCBS β-propellers. This supercluster 

had not been recognised in previous studies (Chaudhuri et al. 2008; Kopec and Lupas 

2013) because most relevant proteins could not be included, primarily due to the lack of 

relevant sequences of known structure. 

We believe two factors were essential in our ability to resolve the evolutionary 

connections between the main β-propeller groups. The first is the presence of members 

of the VCBS superfamily, which revealed their intermediate position between integrin-like 

and PQQ β-propellers, providing a context for the weak links previously observed 

between integrin-like and Asp-Box β-propellers. The second was the collection of a 

substantial number of tachylectin-like sequences. Given the structural approach of 

previous studies (Chaudhuri et al. 2008; Kopec and Lupas 2013), these encompassed 

only the one tachylectin-like sequence found in PDB, which clustered in the WD40 

supercluster. In our study, more than 140 tachylectin-like sequences were collected, 
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including sequence intermediates essential for the establishment of evolutionary links. 

Many of these sequences are of bacterial origin and resulted from metagenomic studies, 

highlighting the importance of such efforts for the better understanding of protein 

evolution paths and the structure of the β-propeller sequence space. 

Materials and Methods  

Thirteen β-propeller representatives of known structure (Table S1) were used as queries 

for sequence searches with PSI-BLAST (Altschul 1997). Searches were carried out with 

the nr database filtered to a maximum sequence identity of 30% (nr30, as of May 2020) 

(Zimmermann et al. 2018). Tachylectins were searched on the nr database filtered to a 

maximum sequence identity of 50%. Matches covering more than 80% of the 

corresponding query were collected after 2 rounds and filtered to a maximum sequence 

identity of 50% with CD-HIT (Li and Godzik 2006). The final sequences were assigned an 

ECOD family with HHsearches against a database of HMM profiles for the ECOD 

database filtered to 70% maximum sequence identity (HHpred ECOD70 database as of 

March 2020) (Zimmermann et al. 2018). Each sequence was assigned the best match at 

a probability better than 90%. Taxonomic information was collected from the Entrez 

Taxonomy database.  

Sequences were clustered with CLANS (Frickey and Lupas 2004) based on the p-value 

of their BLASTp pairwise comparison, computed using the BLOSUM62 scoring matrix. 

Clustering of the entire set was preformed until equilibrium at a p-value of 10-5 and 

superclusters identified manually based on the name of the corresponding query 

sequences and the ECOD domains assigned. To identify subclusters and internal 

connections, the sequences in the VCBS supercluster, including and excluding the 

PQQ/RGL11 sequences, were re-clustered at p-values of 10-18 (Fig. 1b) and 10-20, 

respectively (Fig. S2a). 

In order to evaluate the domain environments of the β-propellers in each subcluster, their 

parent full-length proteins were collected and binned by size, with a step of 100 residues. 

A representative for each bin was collected and domains annotated iteratively with 

HHsearch as above. A maximum of 4 iterations were carried out, where sequence 

regions not yet mapped to a domain were searched individually. Only the best matches 

at a probability better than 70% and larger than 40 residues were considered. Signal 

peptide prediction was carried out with Phobius (Käll et al. 2004). 
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For HMM comparisons, the sequences composing the clusters and subclusters depicted 

in figure 1 were used. For each group, the sequences were aligned with MUSCLE (Edgar 

2004) and the alignment trimmed with trimAl (Capella-Gutierrez et al. 2009), removing 

columns where >25% of the positions were a gap (gap score of 0.75) and sequences that 

only overlapped with less than half of the columns populated by 80% or more of the other 

sequences. HMM profiles were built with HHmake and aligned with HHalign (Söding 

2005), using default parameters without secondary structure scoring. Structural 

alignments were carried out with TM-align (Zhang and Skolnick 2005). 
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FIGURES 

 
Figure 1. Classification landscape of representative β-propeller families, coloured based on the family 

name (f-name) of the best match in HMM searches against ECOD. (a) Cluster map of all 5996 sequences 

collected. Clustering was carried out with CLANS in 2D until equilibrium at a BLASTp p-value of 10-5, with 

connections represent similarities at this p-value (the darker, the more similar). Different regions of the map 

are annotated with the name of the sequences within the corresponding cluster or, when a cluster 

encompasses multiple families, by the β-propeller family as in ECOD and Pfam. (b) Cluster map of the 

2662 sequences in the VCBS supercluster. Clustering was carried out as in (a) but a BLASTp p-value of 

10-18, in order to expand it and uncover its internal structure. Connections are shown at a BLASTp p-value 

of 10-10. Multiple colours within the same cluster correspond to sequences that match multiple close β-

propeller families. HP stands for ‘hypothetical propeller’.  
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Figure 2. HMM comparison of β-propeller groups. (a) Sequence homology matrix of β-propeller groups 

selected from the cluster maps, as measured by the probability of the alignment of full-length HMM profiles 

with HHalign. (b) Multiple alignment of the HMM consensus sequences, focused on single-bladed regions. 

Sequence motifs common to the VCBS supercluster are highlighted in grey and summarised on top. Their 

function in members of known structure is depicted: a grey circle with Me+ represents ‘metal binding’ and a 

grey hexagon ‘sugar binding’. The Asp-Box motif is highlighted in light red. Arrows depict the four strands 

of blade and are named accordingly. This annotation was carried out based on the known structures of 

families shown, but represent only a consensus as, due to structural deviations or especial structural 

features, the specific start and end of these strands may be shifted. 
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Figure 3. Structure-based alignment of representative blades of the VCBS-PQQ and Asp-Box 

superclusters. (a-b) Structural superposition of the 4th blade of fungal PVL lectin (pdbID: 2BWM_A) to (a) 

the 2nd blade of the tachylectin-2 β-propeller (pdbID: 1TL2_A) and (b) the 5th blade in the α-integrin β-

propeller (pdbID: 1TYE_A). Ligands are highlighted, coloured according to the parental protein. SNG: 

methyl 2-acetamido-2-deoxy-1-seleno-beta-D-glucopyranoside; NDG: 2-acetamido-2-deoxy-alpha-D-

glucopyranose. (c) Structure-based sequence alignment of the 4th blade of fungal PVL lectin to individual 

representative blades. The pdbID as well as the corresponding blade indices are shown. Residues in 

stranded regions are highlighted in blue and those in helical regions in light red. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2020. ; https://doi.org/10.1101/2020.10.09.333302doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.09.333302
http://creativecommons.org/licenses/by/4.0/

