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Abstract 22 

Chia (Salvia hispanica L.), now a popular superfood, is one of the richest sources of dietary 23 

nutrients such as protein, fiber, and polyunsaturated fatty acids. At present, the genomic and 24 

genetic information available in the public domain for this crop is scanty, which hinders 25 

understanding its growth and developmental processes and impedes genetic improvement 26 

through genomics-assisted methods. We report RNA-seq based comprehensive transcriptome 27 

atlas of Chia across 13 different tissue types  covering vegetative and reproductive growth 28 

stages. We generated ~394 million raw reads from transcriptome sequencing, of which ~355 29 

million high-quality reads were used to generate de novo reference transcriptome assembly and 30 

the tissue-specific transcript assemblies. After quality assessment of merged assemblies and 31 

using redundancy reduction methods, 82,663 reference transcripts were identified. Of these, 32 

53,200 transcripts show differential expression in at least one sample and provide information on 33 

spatio-temporal modulation of gene expression in Chia. We identified genes involved in the 34 

biosynthesis of omega-3 and omega-6 polyunsaturated fatty acids, and various terpenoid 35 

compounds. The study also led to the identification of 633 differentially expressed transcription 36 

factors from 53 gene families. The coexpression analysis suggested that members of the B3, 37 

bZIP, ERF, WOX, AP2, MYB, C3H, EIL, LBD, DBB, Nin-like, and HSF transcription factor 38 

gene families play key roles in the regulation of target gene expression across various 39 

developmental stages. This study also identified 2,411 simple sequence repeat (SSRs) as 40 

potential genetic markers residing in the transcribed regions. The transcriptome atlas provides 41 

essential genomic resources for basic research, applications in plant breeding, and annotation of 42 

the Chia genome. 43 

 44 
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 47 

Introduction 48 

Salvia hispanica L. (Chia), an annual herbaceous plant originally from Central America (Cahill, 49 

2005), is a member of the Lamiaceae (mint) family. Chia plants usually grow around one meter 50 

in height and produce raceme inflorescence bearing small purple flowers. Chia displays levels of 51 

cold and frost-tolerance, and its growth excels at higher altitudes (Ixtaina, Nolasco & Tomás, 52 

2008; Baginsky et al., 2016). It is cultivated primarily for its nutrient-rich seeds. Chia seeds are 53 

traditionally a core component of the Mayan and Aztec population’s diet. Recently, its 54 

consumption has grown outside of South America due to its rich nutritional and gluten-free 55 

characteristics (Mohd Ali et al., 2012). The Chia seed contains approximately 40% oil by weight, 56 

of which the majority fraction is omega-3 and omega-6 polyunsaturated fatty acids (Mohd Ali et 57 

al., 2012). The seeds are gluten-free, rich in protein (15-20%), dietary fiber (20-40%), minerals 58 

(4-5%), and antioxidants (Reyes-Caudillo, Tecante & Valdivia-López, 2008; Ayerza (h) & 59 

Coates, 2009; Muñoz et al., 2013). These nutritional attributes have made Chia a desirable 60 

‘superfood’. Several studies in humans and mouse models on a diet supplemented with Chia seed 61 

(Marcinek and Krejpcio, 2017; Oliva et al., 2013; Ullah et al., 2016; Valdivia-López and 62 

Tecante, 2015; Vuksan et al., 2017a, 2017b, 2010, 2007) report improvement in muscle lipid 63 

content, cardiovascular health, total cholesterol ratio, triglyceride content, and helped attenuate 64 

blood glucose levels in type-2 diabetes patients (Vuksan et al., 2007; Chicco et al., 2009; Peiretti 65 

& Gai, 2009; Oliva et al., 2013). Chia seeds come with variations of color and texture and may 66 

include black or dark spots. The Chia is known to show  site of cultivation and environment-67 
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dependent effects on the growth of the plant, seed protein and oil content, and fatty acid 68 

composition (Ayerza, 2009). No correlation was found between nutritional composition and seed 69 

color of Chia seeds, though it is positively correlated to geographic location and environmental 70 

differences where Chia plants are grown (Ayerza (h) & Coates, 2009; Ayerza, 2010). In addition 71 

to food, Chia is a rich source of other useful products. For example, plant leaves contain various 72 

essential oil components such as β-caryophyllene, globulol, γ-muroleno, β-pinene, α-humulene, 73 

germacrene, and widdrol that are known to have insect repellant or insecticidal properties 74 

(Amato et al., 2015; Elshafie et al., 2018). 75 

High�throughput experiments have reported large amounts of genome�wide gene 76 

expression data from various oilseed crops such as Glycine max, Arachis hypogaea, Camelina 77 

sativa (Libault et al., 2010; Severin et al., 2010; Clevenger et al., 2016; Kagale et al., 2016). 78 

Whereas, only a handful of studies investigated fatty acid metabolism in Chia seeds (R. V. et al., 79 

2015; Peláez et al., 2019) and to our knowledge none across different developmental stages of 80 

Chia. As we know, plant growth and development processes are controlled by the programmed 81 

expression of a wide array of genes at Spatial and temporal scales. Gene expression atlases help 82 

predict regulatory networks and gene clusters expressed in each tissue at different developmental 83 

stages which helped in revealing the key regulators of metabolic and developmental processes 84 

(Druka et al., 2006; Sekhon et al., 2011; Stelpflug et al., 2016; Cañas et al., 2017; Kudapa et al., 85 

2018). 86 

In spite of Chia being one of the traditionally valued plants in South America, there are 87 

limited genetics or genomics resources available to undertake functional and comparative 88 

genomics and design plant breeding projects. Therefore, we took an initiative to build genetic 89 

and genomic resources for this important crop for the community of plant researchers and 90 
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breeders. In this study, we describe tissue-specific gene expression atlas developed from 13 91 

tissues across the vegetative and reproductive stages of Chia (Table 1). Differential expression of 92 

transcripts involved in metabolic and regulatory pathways was examined. Furthermore, we added 93 

a functional-structural annotation to transcripts and identified potential simple sequence repeat 94 

(SSRs) molecular markers and pathway enrichment to learn about important metabolic pathways. 95 

The gene expression atlas presented here is a valuable functional genomics resource and a tool 96 

for accelerating gene discovery and breeding strategies in Chia. 97 

 98 

Results 99 

Sequencing and de novo assembly 100 

The transcriptome of Chia was generated from 13 different tissue types, including mature dry 101 

seeds, seedling shoots, leaf stages, internode, inflorescence, and flowers (Table 1). The 101 102 

basepair (bp) length paired-end sequencing of the 39 cDNA libraries (prepared from the poly-A 103 

(mRNA) fraction of the total RNA from three biological replicates for each sample) resulted in 104 

393,645,776 sequence reads and approximately 80Gb of the nucleotide sequence (supplementary 105 

file S1). The high-quality reads were assembled for 65 and 75 k-mer lengths, and unique 106 

transcripts were generated after merging both k-mer assemblies for each tissue type.  The 107 

number of assembled transcripts were observed in the range of 27,066 to 43,491 for tissue-108 

specific assemblies (Fig. 1A). Among vegetative tissues, D69-P1-P2 showed maximum number 109 

(43,491), and seed showed the lowest number (27,066) of assembled transcripts (Fig. 1A). 110 

Among reproductive tissues, the maximum number of transcripts (43,418) with the highest 111 

average length of about 1000 bases was observed in the top half part of the D158-Raceme 112 

inflorescence (Fig. 1A). Total high-quality paired-end reads (352,976,255) from all tissue 113 
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libraries were pooled and assembled at 67 and 71 k-mer lengths using Velvet (Zerbino & Birney, 114 

2008) and Oases (Schulz et al., 2012). Chia transcript isoforms generated by each k-mer (67 and 115 

71 k-mer lengths) assembly were consolidated (referred to as merged assembly) to represent the 116 

total number of 145,503 unique transcripts of ≥201 bases in length (Fig. 1B).  117 

As part of the quality assessment addressing redundancy, we first used the CD-HIT-EST 118 

algorithm (Li & Godzik, 2006) to reduce the number of redundantly assembled transcripts by 119 

grouped sequences displaying similarities higher than 90%. This yielded 82,663 transcripts (Fig. 120 

1B). This step was followed by running the transcriptome quality assessment software, 121 

TransRate (Smith-Unna et al., 2016). TransRate detects the redundant transcripts by aligning the 122 

reads to multiple transcripts, but the assignment process assigns them all to the transcript that 123 

best represents the canonical form. This process reduced the originally assembled transcriptome 124 

(145,503 transcripts) to 35,461 transcripts (Fig. 1B). We observed that the assembly produced by 125 

CD-HIT-EST experienced little to no loss in percentage of reads aligned. The assembly produced 126 

by TransRate, which utilizes Salmon (Patro et al., 2017) to estimate transcript abundance using 127 

map-based methods, contained nearly 50% less reads aligned in comparison to the CD-HIT-EST 128 

assembly. Furthermore, we used quality assessment tool QUAST (Mikheenko et al., 2016) on the 129 

original assembly and each of the redundancy reduced assemblies (Supplementary file S2). The 130 

original and TransRate assemblies both had the better statistics in transcript number and length 131 

and both assemblies also contained the worst statistics in the complementing category 132 

(Supplementary file S2). The assembly produced by CD-HIT-EST represented the most 133 

moderate version of the assembly. Using the quality assessment and alignment data as criteria, 134 

we decided that the CD-HIT-EST assembly with 82,663 transcripts would be the most 135 
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appropriate for downstream analyses. Workflow for assembly and downstream analysis is 136 

showed in Supplementary file S3. 137 

Functional annotation of Chia transcriptome 138 

We compared the 82,663 assembled Chia transcripts to publicaly available genomes and gene 139 

models of Eudicots using BLASTx and tBLASTx (Mount, 2007) to estimate approximate 140 

coverage of genes represented in the assembled transcriptome (Fig.1C). More than 84% of 141 

assembled Chia transcripts mapped to the closely related Salvia miltiorrhiza (Wenping et al., 142 

2011) and Salvia splendens (Ge et al., 2014) transcriptomes (Fig. 1C). The dispersion of 143 

coverage within the genus is not surprising since the Salvia genus is very diverse. Both S. 144 

miltiorrhiza and S. splendens share a common center of origin in China, whereas Salvia 145 

hispanica originated in Central America. Within the Lamiaceae, about 56% of the transcripts 146 

mapped to members of the Mentha (mint) genus, namely, Watermint (M. aquatica), Peppermint 147 

(M. piperita), and Spearmint (M. spicata) (Ahkami et al., 2015a). Moving up the taxonomic rank 148 

to the order of Lamiales, 75% of Chia transcripts mapped to sesame (Sesamum indicum) (Zhang 149 

et al., 2013), an oilseed crop. A total of 71% and 74% of assembled Chia transcripts aligned to 150 

the model plant Arabidopsis thaliana and the Solanum lycopersicum (tomato) proteome set, 151 

respectively (Fig. 1C). Although assembled transcriptomes were not available, the RNA-Seq 152 

reads from two recently sequenced and publicly available Salvia hispanica projects (Sreedhar et 153 

al., 2015; Boachon et al., 2018) for seed (INSDC Accession PRJNA196477) and leaf tissues 154 

(INSDC Accession PRJNA359989) were aligned  against our assembled chia transcriptome. 155 

About 69% sequence reads from the seed, and 43% of the leaf transcriptome sequences mapped 156 

to our assemblies.  157 
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Peptide sequences from the assembled transcripts were generated using TransDecoder, 158 

which scans all ORFs based on homology searches from Pfam and BlastP as ORF retention 159 

criteria. Out of total 82,663 transcripts, 65,587 transcripts from Chia were translated into 99,307 160 

peptides. The number of peptides is higher than the number of transcripts assembled due to 161 

multiple open reading frames (ORFs) occurring in a single transcript. Functional annotation of 162 

peptides was first carried out using InterProScan (Jones et al., 2014a) to assign structural-163 

functional domains and then by employing agriGO (Du et al., 2010b). We were successful in 164 

assigning InterPro accessions to the 45,209 peptides (Supplementary file S4) and Gene Ontology 165 

(GO) terms to a total of 32,638 peptides (Supplementary file S5). A total of 20,857 peptides were 166 

with GO biological process (BP); 8,677 peptides were associated to GO cellular component 167 

(CC), and 26,877 peptides were annotated to GO molecular function (MF) terms (Supplementary 168 

file S5).  169 

Development of gene expression atlas 170 

A final set of 82,663 assembled transcripts and the RSEM (Li & Dewey, 2011b) package was 171 

used to estimate transcript abundance based on FPKM (Fragments Per Kilobase of transcript per 172 

Million mapped reads). After removing transcripts with extremely low/insignificant expression, 173 

we considered 82,385 transcripts for further analysis. In order to visualize cross-sample 174 

comparison, a heatmap of distance matrix was generated that showed hierarchical clustering of 175 

Pearson's correlations based upon FPKM values for all transcripts (Fig. 2). Most of the tissues 176 

clustered together based on developmental attributes that provide an intriguing clue about the 177 

spatial and temporal scale of the samples pattern. For example, vegetative tissues, D3 (cotyledon 178 

and shoot) and D12 (shoot and very first leaf at shoot apex), clustered together. Leaf stages 179 

varied at maturity level were also clustered together. Interestingly, we observed that seed and 180 
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internode tissues clustered together, suggesting that they share common transcripts. Similarly, 181 

among reproductive tissues, flowers (D159 and D164) and inflorescence tissues (raceme top and 182 

bottom half) clustered together.  183 

In order to study the gene clusters with a similar expression, the expression trend of all 184 

transcripts across developmental stages were represented in 20 clusters (Supplementary file S6). 185 

Most of the transcripts in cluster #1 (7507 transcripts), #5 (4616 transcripts), #12 (3909 186 

transcripts), #15 (3619 transcripts), #18 (2679 transcripts), and #20 (2173 transcripts) showed 187 

higher expression in seeds, D3-tissues (cotyledon and shoot), mature leaf stage (D69-P5-6-7), 188 

flowers (D-159 and D-164), inflorescence (top half and bottom half) and internode, respectively 189 

(Supplementary file S6). Transcripts in cluster #1 enriched for LEA (Late embryogenesis 190 

abundant), seed storage proteins, oil body-associated proteins, and oleosin family members 191 

(Supplementary file S7). In soybean seed transcriptomes, storage protein genes like beta-192 

conglycinins, oleosins, glycinins, several LEA proteins and dehydrin genes showed higher 193 

expression with respect to other genes (Severin et al., 2010; Jones & Vodkin, 2013). Cluster #5 194 

was considered rich in transcripts required for initial growth (D3-Cotyledon, D3-Shoot) of 195 

seedling after germination. The majority of highly expressed transcripts were annotated as zinc 196 

finger, basic leucine zipper family members, photosystem I and II related proteins, aquaporins, 197 

and calcineurin-like phosphoesterase domain-containing proteins (Supplementary file S7). In 198 

cluster #12, highly expressed transcripts in D69-P5-6-7 leaf stage were annotated as disease 199 

resistance proteins, leucine-rich receptor kinases (LRR-RLKs), and wall-associated receptor 200 

kinases (WAKs) (Supplementary file S7). Transcripts that encode transporter (ABC, phosphate, 201 

aluminum transporters) proteins, cytochrome P450s, glycosyltransferases, and WRKY 202 

transcription factors also enriched in this cluster. Cluster 15 represents transcripts that showed 203 
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higher expression in flowers. Transcripts annotated as beta-glucosidase, multidrug and toxic 204 

compound extrusion proteins, cinnamyl alcohol dehydrogenase (involved in lignin biosynthesis 205 

in floral stem in Arabidopsis) (Sibout et al., 2005), germin-like proteins (might play a role in 206 

plant defense), pectin acylesterases, MYB family transcription factors (MYB21 and MYB24), 207 

GDSL lipase family members, and cytochrome P450s were highly enriched in this cluster 208 

(Supplementary file S7). MYB21 and MYB24 transcription factors are known for their role in 209 

petal, stamen, and gynoecium development in flowers (Reeves et al., 2012). Cinnamyl alcohol 210 

dehydrogenases are involved in lignin biosynthesis in floral stem in Arabidopsis (Sibout et al., 211 

2005), and germin-like proteins play an important role in response to pathogens (Zimmermann et 212 

al., 2006; Manosalva et al., 2009; Wang et al., 2013). Transcripts that are highly upregulated in 213 

inflorescence tissues grouped in cluster #18. Transcription factors that play a vital role in floral 214 

meristem development enriched in this cluster. For example - agamous-like MADS-box proteins 215 

and MYB family transcription factors (Supplementary file S7). MYBs and MADS-box 216 

transcription factors are essential regulators of various developmental processes (Zimmermann et 217 

al., 2004; Millar & Gubler, 2005; Yang et al., 2007; Gomez et al., 2011; Kobayashi et al., 2015). 218 

Cluster #20 enriched with the transcripts upregulated in the D69-Internode sample 219 

(Supplementary file S7). It includes expression of transcription factors from the– MYB (MYB54, 220 

MYB52) and NAC domain-containing transcription factor families known for their role in the 221 

development of the vegetative internodes. MYB54, MYB52, and NAC transcription factors are 222 

also known to regulate secondary cell wall biosynthesis (Zhong et al., 2008; Grant et al., 2010; 223 

Cassan-Wang et al., 2013). Transcripts encode xyloglucan endotransglucosylase, which 224 

participates in cell wall construction of growing tissues, were also upregulated in internode 225 

(cluster 20) compared to other tissues. A set of transcripts encode for receptor-like protein 226 
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kinases, involved in the signaling pathways known to regulate cell expansion (Guo et al., 2009; 227 

Haruta et al., 2014) is upregulated in cluster 20. 228 

Differential expression at each growth stage 229 

A total of 53,200 unique transcripts were differentially expressed among all tissue types of which 230 

38,480 transcripts show log2 fold change ≥ 2. Seed shows the highest number of differentially 231 

expressed transcripts, followed by D69-P5-P6-P7, D69-Internode, and D12-P1 (Table 2). Only 232 

D3-cotyledon showed the higher number of transcripts were under the upregulated category 233 

compared to the downregulated ones, whereas in the other 12 tissues, this pattern was opposite 234 

(Table 2). Seed showed the maximum number of tissue-specific differentially expressed 235 

transcripts (13,450) followed by D69-P5-P6-P7, D69-internode, D12-P1, and D3-Cotyledon 236 

tissue types (Table 2). The maximum number of upregulated transcripts was observed in seed 237 

(6,284) followed by D3-Cotyledon (2,632), D69-P5-P6-P7 (1,884), D69-Internode (1,390), and 238 

D159-Flowers (1,274). Similarly, the maximum number of downregulated transcripts were also 239 

observed in seed (13,429), followed by D69-P5-P6-P7 (6,637), D69-Internode (5,163), D12-P1 240 

(3,976), and D164-Flowers (3,353). 241 

Besides, the distribution of differentially expressed transcripts between different 242 

combinations of similar or related developmental stages was evaluated (Fig. 3). In the initial 243 

growth stages: seed, D3-cotyledon, D3-shoot, and D12-shoot tissues, only 213 differentially 244 

expressed transcripts were common, and 70%, 8.9%, 2.4%, and 2.5% transcripts were specific to 245 

seed, D3-Cotyledon, D3-shoot and D12-shoot tissues, respectively (Fig. 3A). The majority of 246 

transcripts highly upregulated (log2 fold change ≥ 10) in seed but downregulated (log2 fold 247 

change ≤ -4) in other initial growth stages are seed storage, and LEA proteins. Among all leaf 248 

developmental stages, only 1.6% of differentially expressed transcripts were common, and 5372, 249 
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1599, 1092, and 9938 transcripts were specific to  D12-P1, D69-P1-P2, D69-P3-P4, and D69-P5-250 

P6-P7, respectively (Fig. 3B). Transcripts encoding for LRR-RLKs, WAKs, and RHD3 domain-251 

containing proteins were highly expressed in D69-P5-6-7 compared to other leaf developmental 252 

stages. In early leaf developmental stages (D12-P1 and D69-P1-P2), transcripts encoding for 253 

Growth Regulating Factors (GRF2, GRF5) and bHLH domain-containing (SPEECHLESS) 254 

transcription factors were highly expressed compared to those in the mature leaf stages. GRF 255 

transcription factors play an important role in leaf growth, and the bHLH SPEECHLESS factors 256 

are involved in stomata initiation and development (Kim et al., 2003; MacAlister et al., 2007; 257 

Kanaoka et al., 2008; Lampard et al., 2008). Among raceme inflorescence and flower tissues, 258 

only 2.8% (414) of differentially expressed transcripts were common, and 3315, 1689, 2591, and 259 

2648 transcripts were specific to RacemeTopHalf, RacemeBottomHalf, D159-Flowers, and 260 

D164-Flowers, respectively (Fig. 3C). The higher expression of transcripts that encode ZFP2 and 261 

MYB transcription factors, cinnamyl alcohol dehydrogenase, and pectin acylesterases showed up 262 

in flowers. ZFP2 controls floral organ abscission (Cai & Lashbrook, 2008), and cinnamyl alcohol 263 

dehydrogenases are involved in lignin biosynthesis in floral stem (Sibout et al., 2005). 264 

Transcripts annotated as terpene synthases show upregulation in flowers as compared to the 265 

inflorescence tissues. Transcripts annotated as oxidation-reduction related activities were highly 266 

enriched in flowers, inflorescence, D-69 leaf stages, and internode tissues, which indicated that 267 

ROS concentration increases during these growth stages as in other species (Rogers, 2012; 268 

Rogers & Munné-Bosch, 2016; Singh et al., 2016). 269 

Pathways enriched across different development stages 270 

The metabolic network representation across developmental stages of Chia were determined by 271 

mapping to KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. A total of 5,555 272 
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transcripts mapped to 464 pathways. The higher numbers of transcripts mapped to starch and 273 

sucrose metabolism (PATH:ko00500), fatty acid metabolism (PATH:ko01040), phenylpropanoid 274 

biosynthesis (PATH:ko00940), photosynthesis (PATH:ko00195), fatty acid biosynthesis 275 

(PATH:ko00061), and various amino acids metabolism processes (Supplementary file S8). 276 

The expression pattern of transcripts encoding the enzymes for fatty acid metabolism and 277 

unsaturated fatty acid (including omega-3 and omega-6) metabolism across different 278 

developmental stages was analyzed(Figure 4). Transcripts for acetyl-CoA carboxylase (EC 279 

6.4.1.2), the very first enzyme catalyzing the conversion of acetyl-CoA to malonyl-CoA in the 280 

fatty acid biosynthesis were highly expressed in all tissues except seeds.  The malonyl group 281 

from malonyl-CoA is transferred to acyl carrier proteins (ACP) in the next step for further 282 

elongation. We identified transcripts for all the enzymes participating in the elongation steps. 283 

Acyl-ACP thioesterases (3.1.2.14) acts in the last steps of fatty acid biosynthesis and serves as a 284 

determining factor for the generation of a variety of fatty acids within an organism. Since, Chia 285 

seeds are very rich in unsaturated fatty acids: linoleic and α-linolenic acids, genes involved in 286 

unsaturated fatty acids biosynthesis  were queried for their expression pattern across all tissue 287 

types (Fig. 4B). Fatty acid desaturases (FADs) are the crucial enzymes to perform the 288 

desaturation of fatty acids. We identified 32 FAD transcripts from FAD2, FAD3, FAD6, 289 

FAD7and FAD8 families (Table 3). Endoplasmic reticulum localized FAD2 and plastid localized 290 

FAD6 encode two ω-6 desaturases required to convert oleic acid to linoleic acid (18:2∆9,12) 291 

(Zhang et al., 2012). The desaturation of linoleic acid (18:2∆9,12) to α-linolenic acid (18:3∆9,12,15) 292 

is catalyzed by the endoplasmic reticulum localized FAD3 and plastid localized FAD7 and 293 

FAD8 proteins (Dar et al., 2017; Xue et al., 2018).  294 
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Mint, a Lamiaceae family plant, is primarily known for the production of monoterpenes, 295 

e.g., menthol and limonene (Aharoni, Jongsma & Bouwmeester, 2005; Ahkami et al., 2015b); 296 

however, the majority of Chia terpenes are sesqui-, di-, and tri-terpenes (Ma et al., 2012; Trikka 297 

et al., 2015; Cui et al., 2015). In our Chia dataset, we observed the expression profile of 298 

transcripts involved in the biosynthesis of terpenoid backbone, monoterpenes, and sesqui-299 

terpenes. Transcripts encoding enzymes for each catalytic step of terpenoid backbone 300 

synthesized by the MEP (2-C-methyl-D-erythritol 4-phosphate) and the mevalonate (MVA) 301 

pathways showed differential expression pattern among all tissue types (Fig. 5). Transcripts for 302 

monoterpene synthases such as 1,8-cineole synthase (EC 4.2.3.108), myrcene synthase (EC 303 

4.2.3.15), and linalool synthase (EC 4.2.3.25) were highly expressed in reproductive tissues (Fig. 304 

5), indicating that flowers are the prime site for the biosynthesis of essential oils known to have 305 

therapeutic properties. However, transcripts for the sesquiterpene synthases,  β-caryophyllene 306 

synthase (EC 4.2.3.57), α-humulene synthase (EC 4.2.3.104), Germacrene synthase (EC 307 

4.2.3.60), and solavetivone oxygenase (EC 4.2.3.21), known for plant herbivory defense 308 

enriched in the vegetative tissues (Fig. 5).  309 

Transcription factor network 310 

Transcription factors are the key regulators that control many biological processes in plants, 311 

including growth and development. To gain detailed information about transcription factors, we 312 

investigated Chia transcriptome and identified 633 differentially expressed transcripts annotated 313 

to 53 transcription factor families (Supplementary file S9). The highest number of transcripts 314 

belong to MYB (60), followed by bHLH (45), NAC (38), bZIP (32), WRKY (28), C2H2 (27), 315 

MYB-related (25), MADS-box (26), C3H (24), G2-like (22), Hd-ZIP (22), Trihelix (17), TCP 316 

(14), Dof (13), GATA (13), GRAS (13), and TALE (13) gene families, etc.. The expression 317 
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pattern of differentially expressed transcription factors across developmental stages is shown in 318 

Fig. 6A.  319 

To gain insight into the regulatory role of transcription factors in Chia, we filtered out 320 

highly upregulated transcription factors in any of the 13 tissues (≥ 5 log2 fold change) to build a 321 

coexpression network. In an in-silico experiment, we used 23 transcription factors as baits 322 

(nodes) and FPKM values of 38,480 transcripts as an expression matrix. This analysis revealed a 323 

total of 1,98,746 connections (edges) among 23 bait transcript nodes and 11,055 differentially 324 

expressed transcript nodes (Fig. 6B). Two transcription factors, Sh_Salba_v2_130985, 325 

Sh_Salba_v2_121906 highly expressed in D69-Internode but downregulated or absent in other 326 

tissues, were annotated as MYB and C3H family members, respectively. Both the  transcription 327 

factors connected to a set of 1,593 transcripts that showed no connection to any other bait nodes. 328 

A set of 16 transcripts solely connected to sh_salba_v2_112851 an ERF transcription factor that 329 

was highly upregulated (log2 fold change 5.561) in seed. All correlated 15 transcripts were 330 

downregulated in seed and other tissue types. The MYB transcription factor transcript 331 

sh_salba_v2_131530 was upregulated in seed and connected to a set of 59 transcripts that were 332 

downregulated in seed and other tissues. Two transcripts (sh_salba_v2_32610, 333 

sh_salba_v2_03332), that downregulated in seed showed a connection to B3-domain containing 334 

sh_salba_v2_89434 bait. A transcript (sh_salba_v2_86132), downregulated in seed and 335 

annotated as disease resistance protein correlated to a HSF transcription factor bait transcript 336 

sh_salba_v2_80249. A set of 14 transcripts downregulated in seed and D69-Internode were 337 

connected to all 23 bait transcripts. Bait transcripts also correlated to each other suggesting a 338 

multiple regulatory modules within the network (Fig. 6B).  339 

Identification of Simple Sequence Repeat molecular markers 340 
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Simple Sequence Repeats (SSRs) are an important class of genetic markers widely used in 341 

molecular breeding applications.  SSRs identified from the transcriptome are highly 342 

advantageous as compared to SSRs identified from the genome. If the SSRs identified from the 343 

transcribed region is polymorphic, they may have a direct impact on the expression, structure, 344 

stability of the open reading frame, and altered peptide sequence and functional domains. We 345 

identified a total of 2,411 SSRs in the de novo assembled transcriptome represented by di-, tri-, 346 

and tetra-nucleotide motifs (Supplementary file S10). The most abundant di-, tri, and tetra-347 

nucleotide motifs were CT (201), GAA (84), and AGTC (12), respectively (Supplementary file 348 

S11). A total of 1,771 SSRs were present in the significantly differentially expressed transcripts, 349 

and 148 SSR markers found in the expressed transcripts mapped to at least one metabolic 350 

pathway (Supplementary file S12).  351 

 352 

Discussion 353 

At present, the genetic information and genomic resources on Chia are scanty. Before this work, 354 

a couple of studies focused on the expression of lipid biosynthesis genes in developing Chia 355 

seeds has been reported (Sreedhar et al., 2015; Peláez et al., 2019; Wimberley et al., 2020). Big 356 

data biology can fill in this gap and build reference resources for breeding and improvement of 357 

this important crop. Using RNA-Seq coupled with the de-novo transcriptome assembly approach, 358 

we developed a comprehensive gene-expression atlas for Chia from 13 different tissue samples 359 

(see Table 1) collected at various developmental stages of plants. Assembled transcripts were 360 

annotated using BLASTx and tBLASTx and then translated into peptides using Transdecoder 361 

(v2.1.0) with a minimum peptide length of 50 or more amino acids. The derived peptide set was 362 

subjected to InterProScan (Zdobnov & Apweiler, 2001a) and AgriGO (Du et al., 2010a) analyses 363 
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to assign structurally conserved domains and GO terms.  Overall, the Chia transcriptome dataset 364 

is diverse, representing a majority of peptides belong to the cellular metabolic process, catalytic 365 

activity, regulation of gene expression, transport, ion binding, organelle, nucleus and 366 

macromolecular complexes. A comparison of Chia transcripts data sets to genomic/transcriptome 367 

datasets (Figure 1C) from the six most closely related eudicots including topmost matching with 368 

transcripts of perennial herbs, the red sage Salvia miltiorrhiza (Wenping et al., 2011) and the 369 

scarlet sage, Salvia splendens (Ge et al., 2014) - both species-rich in secondary metabolites 370 

known for their ue in traditional medicine. In de novo assembled transcripts, the read mapping 371 

ambiguity is prevalent, and other popular tools, such as edgeR (Robinson, McCarthy & Smyth, 372 

2010) and DESeq (Anders & Huber, 2010) do not take variance due to read mapping uncertainty 373 

into consideration. Therefore, we employed EBSeq (Leng et al., 2013) for conducting differential 374 

gene expression analysis that takes variance due to the sequence read mapping ambiguity into 375 

account by grouping the isoforms.  376 

This comprehensive expression atlas facilitated in the mining of gene expression data for 377 

regulatory and metabolic processes, tissue-specific gene expression pattern, and provided 378 

insights about functional relatedness of genes and their expression across developmental stages. 379 

Hierarchical clustering of Chia transcripts suggested the role of different gene families in the 380 

development of each growth stage, thus providing a foundation for studying the molecular 381 

mechanisms occurring in different tissues and developmental stages. For example, seed-specific 382 

transcripts: seeds are rich in storage, and LEA proteins are required for seed germination and 383 

embryogenesis. The Leaf-specific transcripts: mature leaves have higher expression of LRR-384 

RLKs and WAKs proteins. LRR-RLKs are involved in guard cells and stomatal patterning 385 

(Shpak et al., 2005), and resistance to pathogens. GRF family transcription factors play an 386 
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essential role in the growth and development of leaf, were highly expressed in D69-P1-P2 leaf 387 

stages. In Arabidopsis, GRF1, GRF2, and GRF5 regulate leaf number and size (Kim, Choi & 388 

Kende, 2003; Horiguchi, Kim & Tsukaya, 2005; Lee et al., 2009).  389 

The flower-specific transcripts show higher expression of terpene synthases, which 390 

suggested that as a characteristics of Lamiaceae family, Chia flowers are also rich in 391 

monoterpene synthases, e.g., 1, 8-cineole synthase (EC 4.2.3.108) and β-myrcene synthase (EC 392 

4.2.3.15). Cineole and myrcene are found in fragrant plants and are known to have therapeutic 393 

properties such as sedative, anti-inflammatory, antispasmodic, and antioxidant (do Vale et al., 394 

2002; Moss & Oliver, 2012; Bouajaj et al., 2013; Juergens, 2014; Khedher et al., 2017). The 395 

reproductive versus vegetative tissue comparison shows that monoterpene synthases were 396 

expressed highly in reproductive tissues, and sesquiterpene synthases were prominent in 397 

vegetative tissues. These findings confirm that flowers are involved in the synthesis of fragrance 398 

and therapeutic essential oils, whereas vegetative tissues are rich in herbivory defense and 399 

insecticidal compounds.   400 

Chia seeds are a rich source of polyunsaturated fatty acids. We observed lower 401 

expression of FAD transcripts in seeds as compared to other tissue types. This suggested that 402 

seed might serve as a storage organ for polyunsaturated fatty acids rather synthesis site or seeds 403 

we used in this study were dry and in semi-dormant condition. Essential oils, the secondary 404 

metabolic plant products of the terpenoid pathway produced by Lamiaceae plant family 405 

members, are highly desired for their usage in medicine, food, cosmetics, and for their 406 

agronomic properties such as insecticides, herbivory, and pathogen defense. In this Chia dataset, 407 

we identified transcripts encoding enzymes for terpenoid backbone (MVA and MEP) pathways. 408 

Monoterpene synthases are involved in essential oil biosynthesis, and sesquiterpene synthases 409 
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are primarily involved in the biosynthesis of insecticidal compounds. Phenylpropanoid and 410 

flavonoid biosynthesis pathways are also highly enriched in seeds and other tissue types 411 

(Supplementary file S8). These pathways synthesize precursors for various secondary 412 

metabolites and antioxidants vital for human health and thus make seeds more nutritious. 413 

The correlation analysis gave us a hint of a significant relationship between highly 414 

upregulated transcription factors, and the other differentially expressed transcripts. We observed 415 

that MYB and C3H zinc finger transcription factors were highly upregulated in D69-Internode. 416 

Recent studies revealed that both transcription factor types are involved in internode elongation 417 

and development processes (Zhong et al., 2008; Kebrom, McKinley & Mullet, 2017; Gómez-418 

Ariza et al., 2019). Sh_Salba_v2_112851, an AP2/ERF family member, is highly expressed in 419 

seed only and might play a role in dehydration-induced response as DREB2A proteins that are 420 

involved in response to drought, salt, and low-temperature stress (Nakashima et al., 2000; 421 

Sakuma et al., 2002). A set of 15 transcripts, correlated with Sh_Salba_v2_112851, were 422 

downregulated in seed, and participate in pathways that are downregulated in seed. For example- 423 

sh_salba_v2_ 33433 (CONSTANS-like 10) might be involved in the regulation of flowering 424 

genes (Tan et al., 2016), sh_salba_v2_01428 (histidine kinase 4) in cytokinin signaling (Ueguchi 425 

et al., 2001; Nishimura et al., 2004), sh_salba_v2_107585 (microtubule regulatory protein) in 426 

hypocotyl cell elongation (Liu et al., 2013), and sh_salba_v2_52914 (Apyrase) in normal growth 427 

and development of plant (Wolf et al., 2007). The correlation analysis suggests that transcription 428 

factors upregulated in seed and D69-internode tissues regulate various biological processes by 429 

controlling the expression of their target transcripts.  430 

Further analysis of de novo assembled Chia transcriptome revealed 2,411 SSRs (see 431 

Supplementary file S11).  Simple Sequence Repeats (SSRs) are an important class of genetic 432 
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markers widely used in molecular breeding applications. SSRs identified in chia reference 433 

transcriptome might be a valuable resource for breeding and genetic improvement of the crop. 434 

Overall, this is the first study that generated a tissue-specific reference transcriptome atlas for a 435 

Chia, a neo model and an agronomically important crop.  436 

 437 

Materials and Methods 438 

Plant material, growth conditions and sampling 439 

Seeds of Chia (Salvia hispanica L.) bought online from Ancient Naturals, LLC, Salba Corp, 440 

N.A. were sown in autoclaved soils and watered thoroughly under controlled greenhouse 441 

conditions. All seeds germinated on the third day after sowing. Since the primary seed material 442 

was expected to a heterogeneous mixture, biological replicates for each tissue type were 443 

collected from three randomly chosen plants. The description of the samples collected from 444 

various developmental stages and tissue types is shown in Table 1. The tissue samples include 445 

seeds, cotyledons, shoots from 3 and 12 days old seedlings, leaves from 12  (D12-P1) and 69 446 

days old plants (D69-P1-P7), internode from 69 days old plants, raceme inflorescence from 158 447 

days old plants, and flowers from 1 and 5 days post-anthesis. Collected samples were 448 

immediately frozen in liquid nitrogen and stored at -80°C. 449 

Sample preparation and sequencing 450 

Total RNA from frozen tissues was extracted as per manufacturer’s protocol using RNA Plant 451 

reagent (Invitrogen Inc., USA), RNeasy kits (Qiagen Inc., USA), and treated with RNase-free 452 

DNase (Life Technologies Inc., USA). Total RNA concentration and quality were determined 453 

using ND-1000 spectrophotometer (Thermo Fisher Scientific Inc., USA) and Bioanalyzer 2100 454 

(Agilent Technologies Inc., USA). Samples were prepared separately from each of the three 455 
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biological replicates of each tissue type using the TruSeqTM RNA Sample Preparation Kits (v2) 456 

and sequenced using the Illumina HiSeq 2500 instrument (Illumina Inc., USA) at the Center for 457 

Genomic Research and Biocomputing, Oregon State University. 458 

De novo transcriptome assembly and quality estimation  459 

FASTQ file generation from the RNA-Seq sequences was done by CASAVA software v1.8.2 460 

(Illumina Inc.). Read quality was assessed using FastQC, and poor-quality reads were removed 461 

with Sickle v. 1.33 (-q = 20) (“najoshi/sickle”). The transcripts were assembled using Velvet 462 

(v1.2.10), which uses De Bruijn graphs to assemble short reads (Zerbino & Birney, 2008). An 463 

assembly of 67 and 71 k-mer lengths was performed using all tissue-specific reads. Assemblies 464 

produced by Velvet were merged into a single consensus assembly by Oases (v0.2.08) (Schulz et 465 

al., 2012), which produced transcript isoforms using read sequence and pairing information. 466 

Quality estimation to reduce redundancy in transcript assembly (a quality control check for de 467 

novo assembled transcriptome) was carried out using CD-HIT-EST (Li & Godzik, 2006), 468 

TransRate (Smith-Unna et al., 2016), and QUAST (Gurevich et al., 2013) software packages. 469 

The assembled transcripts passing the CD-HIT-EST quality control step were used for further 470 

downstream analyses and considered as a reference transcriptome for differential gene 471 

expression analyses. 472 

Functional annotation and pathway enrichment analysis 473 

Assembled transcripts were annotated using BLASTx and tBLASTx with an E-value cutoff of 474 

10-10. The assembled transcripts were translated into peptides using Transdecoder (v2.1.0) 475 

(“TransDecoder (Find Coding Regions Within Transcripts)”) with a minimum peptide length of 476 

50 or more amino acids. Transdecoder used the BLASTp and PfamA search results to predict the 477 

translated ORF. Resulting peptides were analyzed using InterProScan Sequence Search 478 
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(v5.17.56) (Zdobnov & Apweiler, 2001b; Jones et al., 2014b) hosted by the Discovery 479 

Environment and powered by CyVerse (Joyce et al., 2017). We used the AgriGO Analysis 480 

Toolkit (Du et al., 2010b) to identify statistically enriched function groups of transcripts. AgriGO 481 

uses a Fisher’s exact test with a Yekutieli correction for false discovery rate calculation. 482 

Significance cutoffs were set at a P-value of 0.05 and a minimum of 5 mapping entries per GO 483 

term. KAAS-KEGG automation server was used for orthologue assignment and pathway 484 

analysis (Moriya et al., 2007). 485 

Gene expression and clustering  486 

Bowtie2 (Langmead & Salzberg, 2012) was used to align sequence reads from each tissue type 487 

to the assembled transcriptome. The RSEM software package (Li & Dewey, 2011a) was used to 488 

estimate the transcript expression counts (FPKM) from the aligned sequence reads. Count data 489 

obtained from RSEM was used in EBSeq (Leng et al., 2013) to identify differentially expressed 490 

genes based on the False Discovery Rate Corrected P-value of 0.05. Heatmaps were generated 491 

using Morpheus (Gould) developed by Broad Institute 492 

(https://software.broadinstitute.org/morpheus) and MEV (version 4.8.1) (mev, 2017) was used to 493 

cluster expression data from Chia. Log2 transformed fold change value for each transcript was 494 

used as input (p-value 0.1). Due to the orders of magnitude in the expression of transcripts 495 

between tissue types, we chose several methods of data normalization for cluster generation. 496 

Unit variance, median centering of transcripts, and summation of squares were applied to the 497 

dataset. In the investigation of individual gene families, transcripts were hierarchically clustered 498 

using a Pearson correlation.  499 

Coexpression and network analysis 500 
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The transcription factor transcripts were classified based on homology searches in Plant TFDB 501 

database v5.0 (http://planttfdb.cbi.pku.edu.cn) (Jin et al., 2017) and BlastX searches against 502 

Arabidopsis thaliana. For the coexpression analysis, CoExpNetViz tool (Tzfadia et al., 2015) 503 

was used. This tool utilizes a set of query or bait genes as an input and a gene expression dataset. 504 

Transcription factor transcripts displaying maximum expression cutoff of log2 transformed 505 

FPKM ≥ 5 were used as baits, and differentially expressed transcripts displaying maximum 506 

expression cutoff of log2 transformed FPKM ≥ 2 were used as expression matrix. Baits and 507 

expression matrix were loaded in CoExpNetViz tool, and the analysis was run to calculate 508 

coexpression with the setting of the Pearson correlation coefficient. For the expression matrix, 509 

transcripts considered as coexpressed if their correlation does not lie between the lower (5th) and 510 

upper (95th) percentile of the distribution of correlations between a sample of genes per gene 511 

expression matrix. The output files from the CoExpNetViz tool were used for displaying gene 512 

coexpression network using Cytoscape (version 3.7.1).  513 

Identification of Simple Sequence Repeats 514 

Multiple length nucleotide SSRs were identified in the transcripts of the CD-HIT-EST assembly 515 

by using the stand-alone version of Simple Sequence Repeat Identification Tool (SSRIT) 516 

(Temnykh, 2001). 517 
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Figure Legends: 532 

 533 

Figure 1: Statistics of S. hispanica transcriptome assemblies and BLAST results. (A) tissue-534 

specific assembly; (B) reads from each tissue types are combined and assembled at 67 k-mer and 535 

71 k-mer, Merged assembly of 67 k-mer and 71 k-mer, CD-HIT-EST and TransRate assemblies 536 

by removing redundant reads; (C) Comparison of S. hispanica transcripts with publically 537 

available Lamiales and eudicot gene models and peptide set. 538 

 539 

Figure 2: Gene expression patterns across different tissues of Chia. Heatmap of hierarchical 540 

clustering of the Pearson correlations for all 13 tissues included in the gene expression atlas. 541 

Log2 transformed FPKM values were used for the similarity matrix of transcripts. The color 542 

scale indicates the degree of correlation.  543 

 544 

Figure 3: Differential expression of Chia transcripts among (A) seed, D3-cotyledon, D3-shoot, 545 

and D12-shoot; (B) D12- P1 and D69- P1-P2, D69-P3-P4, D69-P5-P6-P7; (C) reproductive 546 
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stages including RacemeTop and BottomHalf tissues, D159- and D164-flowers. Vein diagrams 547 

in the upper panel represent common and unique differentially expressed transcripts in each 548 

tissue type, and scatter plots in the lower panel represent the distribution pattern of differentially 549 

expressed transcripts across each tissue type.  550 

 551 

Figure 4: Expression pattern of transcripts involved in fatty acid metabolism across tissue types. 552 

(A) Fatty acid metabolism; (B) Unsaturated fatty acids, Omega-3 (�-Linolenic acid) and Omega-553 

6 (Linoleic acid) fatty acids metabolism 554 

 555 

Figure 5: Expression pattern of transcripts involved in biosynthesis of terpenes across tissue 556 

types. Biosynthesis of IPP, a central precursor for other terpenes biosynthesis, via cytosolic 557 

MVA (mevalonate) and plastid localized MEP (2-C-methyl-D-erythritol 4-phosphate) pathways. 558 

Biosynthesis of various monoterpenes from GPP and sesquiterpenes from FPP. AACT, Acetyl-559 

CoA acetyltransferase; HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; MVA, mevalonate; 560 

MVA-5-P, mevalonate 5-phosphate; MVAPP, mevalonate diphosphate; IPP, isopentenyl 561 

diphosphate; DMAPP, dimethylallyl diphosphate; GPP, geranyl diphosphate; FPP, farnesyl 562 

diphosphate; HMGS, HMG synthase; HMGR, HMG reductase; MK, mevalonate kinase; PMK, 563 

phosphomevalonate kinase; MDD, Mevalonate diphosphosphate decarboxylase; IPI, IPP 564 

isomerase; GPPS, geranyl diphosphate synthase; FPPS, FPP synthase; Gly-3-P, glyceraldehyde-565 

3-phosphate; DOXP, 1- deoxy-D-xylulose-5-phosphate; MEP, 2-C-methyl-D-erythritol-4-566 

phosphate; CDP-ME, 4-diphosphocytidyl-2-C-methyl-D-erythritol; CDP- MEP, 4-567 

diphosphocytidyl-2-C-methyl-D-erythritol-2-phosphate; MECP, C-methyl-D-erythritol-2,4-568 

diphosphate; HMBPP, hydroxy methylbutenyl-4-diphosphate; DXS, DOXP synthase; DXR, 569 
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DOXP reductoisomerase; CDP-MES, 2-C-methyl-D-erythritol4-phosphatecytidyl transferase; 570 

CDP-MEK, 4-(cytidine-5-diphospho)-2-C-methyl- D-erythritol kinase; MECPS, 2,4-C-methyl-571 

D-erythritol cyclodiphosphate synthase; HDS, 1-hydroxy-2-methyl-2-(E)-butenyl-4-572 

phosphatesynthase; HDR, 1-hydroxy-2-methyl-2-(E)-butenyl-4-phosphate reductase; NDH, 573 

neomenthol dehydrogenase; MS, myrcene synthase; 1,8-CS 1,8-cineole synthase; LS, linalool 574 

synthase; AHS, alpha-humulene synthase; BCS, beta-caryophyllene synthase; VS, vetispiradiene 575 

synthase; PO, premnaspirodiene oxygenase; SQ, squalene, SqS, squalene synthase; SqE, 576 

squalene epoxide; SqM, squalene monooxygenase; BAS, beta-amyrin synthase; GCS, 577 

germacrene C synthase. 578 

 579 

Figure 6: Expression pattern of transcription factors and coexpression analysis with 580 

differentially expressed transcripts. (A) Expression pattern of differentially expressed 581 

transcription factors (633) across various developmental stages. (B) Coexpression network of 23 582 

highly upregulated (log2 fold change ≥ 5) transcription factors (bait) and differentially expressed 583 

transcripts (11,055) with log2 fold change ≥ 2. Bait transcripts are shown in white color nodes 584 

with corresponding transcripts IDs, whereas correlated transcripts are represented as colored 585 

nodes. Each set of nodes is represented with different colors based on the number of correlating 586 

edges (yellow lines) connected to that node. For example- In a set of blue color nodes (1593), 587 

each transcript (blue node) showing 2 edges connected to two bait transcripts 588 

(Sh_Salba_v2_130985, Sh_Salba_v2_121906). 589 

 590 
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Table 1: Description of the plant material used for developing the Chia transcriptome Atlas. 591 

Samples were collected from various developmental stages and tissue types used for 592 

transcriptome analysis. DAS = Days after sowing; DAF= Days after flowering 593 

Growth stage 
Sample collection 

(DAS) 
Sample description Sample name 

Vegetative 

Day 0 Dry Seed Seed 

Day 3   Green cotyledon D3-Cotyledon 

Day 3   Above ground shoot parts (whole shoot) D3-Shoot 

Day 12   Above ground shoot parts  (whole shoot) D12-Shoot 

Day 12   Very first/youngest leaf at shoot apex D12-P1 

Day 69   First and Second leaves at the shoot apex D69-P1-P2 

Day 69   Third and fourth leaves at the shoot apex D69-P3-P4 

Day 69   Fifth, sixth and seventh leaves at the shoot apex D69-P5-P6-P7 

Day 69   Internode between 6th and 7th leaves D69-Internode 

Reproductive 

Day 158  
Top half of the raceme inflorescence  (pre-

anthesis) 
D158-RacemeTopHalf 

Day 158  
Bottom half of the raceme inflorescence (pre-

anthesis) 
D158-RacemeBottomHalf 

Day159 (1DAF)  Flowers from 1 day after flowering (Anthesis) D159-Flowers 

Day 164 (5DAF) Flowers from 5 days after flowering (Anthesis) D164-Flowers 

 594 
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Table 2: Differentially expressed (DE) transcripts across various developmental stages 596 

Tissue type Total DE Tissue specific Upregulated 
(log2 FC ≥ 2) 

Downregulated 
(log2 FC ≤ 2) 

Seed 28,641 13,450 6,284 13,429 

D3-Cotyledon 7,377 1,781 2,632 1,746 

D3-Shoot 3,415 495 970 1,161 

D12-Shoot 2,136 270 52 1,521 

D12-P1 8,795 2,038 770 3,976 

D69-P1-P2 3,511 633 288 2,185 

D69-P3-P4 3,019 556 479 1,701 

D69-P5-P6-P7 14,140 3,504 1,884 6,637 

D69-Internode 9,260 2,152 1,390 5,163 

D158-RacemeTopHalf 5,591 1,183 770 2,865 

D158-RacemeBottomHalf 3,614 804 852 1,860 

D159-Flowers 6,047 1,136 1,274 2,883 

D164-Flowers 6,134 879 969 3,353 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

 604 

 605 

 606 
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Table 3: Transcripts annotated as fatty acid desaturase 608 

Fatty acid desaturases  Transcripts 

FAD2 

Sh_Salba_v2_49454 

Sh_Salba_v2_49451 

Sh_Salba_v2_66763 

FAD3 

Sh_Salba_v2_74023 

Sh_Salba_v2_93044 

Sh_Salba_v2_93043 

Sh_Salba_v2_74025 

Sh_Salba_v2_93046 

Sh_Salba_v2_74024 

Sh_Salba_v2_74022 

Sh_Salba_v2_93047 

Sh_Salba_v2_93045 

FAD6 

Sh_Salba_v2_05727 

Sh_Salba_v2_05731 

Sh_Salba_v2_05730 

Sh_Salba_v2_05725 

Sh_Salba_v2_05728 

Sh_Salba_v2_05721 

Sh_Salba_v2_05724 

FAD7 Sh_Salba_v2_69172 

FAD8 

Sh_Salba_v2_69173 

Sh_Salba_v2_90850 

Sh_Salba_v2_52578 

Sh_Salba_v2_69162 

Sh_Salba_v2_52570 

Sh_Salba_v2_52575 

Sh_Salba_v2_52576 

Sh_Salba_v2_69169 

Sh_Salba_v2_69166 

Sh_Salba_v2_52573 

Sh_Salba_v2_69174 

Sh_Salba_v2_69171 
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Supplementary Material 609 

Supplementary file S1: A summary of the raw and clean reads obtained after the sequencing 610 

and preprocessing, respectively, and reads aligned to the reference transcriptome. 611 

Supplementary file S2: Quality assessment of merged (column 2), CD-HIT-EST (column 3) 612 

and TransRate (column 4) assemblies using QUAST  613 

Supplementary file S3: Workflow of Chia transcriptome sequencing and downstream analysis  614 

Supplementary file S4: Functional annotation of chia peptides using InterProScan  615 

Supplementary file S5: Gene Ontology annotations of chia peptides  616 

Supplementary file S6: k-means clustering of transcripts depicting tissue�specific gene 617 

expression across different developmental stages. The Y-axis in each cluster denotes the mean-618 

centered log2 transformed FPKM values ranging from +17 to -17.  619 

Supplementary file S7: Transcripts clustered in 20 clusters  620 

Supplementary file S8: Transcripts mapped to KEGG pathways 621 

Supplementary file S9: Differentially expressed transcription factors across various 622 

developmental stages 623 

Supplementary file S10: Frequency distribution of SSRs types in chia transcripts 624 

Supplementary file S11: SSR motifs in chia transcripts 625 

Supplementary file S12: SSRs identified in transcripts involved in metabolic pathways 626 
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