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Abstract:  

Cognitive trajectories vary greatly across older individuals, and the neural mechanisms underlying 

these differences remain poorly understood. Here, we propose a mechanistic framework of cognitive 

variability in older adults, linking the influence of white matter microstructure on fast and effective 

communications between brain regions. Using diffusion tensor imaging and electroencephalography, we 

show that individual differences in white matter network organization are associated with network clustering 

and efficiency in the alpha and high-gamma bands, and that functional network dynamics partly explain 

individual cognitive control performance in older adults. We show that older individuals with high versus 

low structural network clustering differ in task-related network dynamics and cognitive performance. These 

findings were corroborated by investigating magnetoencephalography networks in an independent dataset. 

This multimodal brain connectivity framework of individual differences provides a holistic account of how 

differences in white matter microstructure underlie age-related variability in dynamic network organization 

and cognitive performance. 
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Introduction  

As information and events in our daily lives are moving increasingly faster, the ability to control the 

influence of distractions and switch between different cognitive tasks has never been more important. Aging 

especially impacts these control processes1. However, there are significant inter-individual differences in 

cognition among older adults, with some individuals showing strong cognitive decline with age, while others 

maintain similar cognitive performance to that of younger adults2,3. Largely understudied so far, the 

influence of age-related structural brain changes on the temporal dynamics of brain networks, and how this 

impacts cognitive performance, could provide important insights into the neural basis of individual 

differences in older adults. This is important as increasing evidence suggests that the best strategy to prevent 

dementia is to maintain cognitive abilities during aging, which requires identifying the determinants of 

preserved cognition in older age. In this study, we investigate the interactions between whole-brain 

microstructural network measures and dynamic functional network organization as a potential source of 

cognitive variability in healthy aging, in an attempt to provide clues on what network properties are 

responsible for better cognition in older adults.  

Among the different methods used to assess the structural and functional properties of brain networks, graph 

theory has proven to be a comprehensive approach that is able to characterize the topological organization of 

areas over the entire brain4,5. A graph consists of a series of nodes (e.g., brain regions) connected by edges 

(e.g., brain connections). Graph analyses can provide useful information regarding the presence of direct 

connections between brain areas (i.e., the network’s efficiency), or the presence of functionally segregated 

clusters of brain regions (i.e., the network clustering). Efficiency and clustering are thus central features of 

brain networks and have been shown to become critically altered during aging in studies using functional 

magnetic resonance imaging (fMRI), which, although useful, are constrained by the temporal resolution of 

fMRI6,7. Compared to fMRI, magnetoencephalography and electroencephalography (M/EEG) have a higher 

temporal resolution, allowing assessment of the dynamics of functional networks in greater detail at shorter 

timescales. However, most studies have averaged network measures over time, instead of assessing how 

these measures vary as a function of time (but see8,9). Averaging network measures could reduce the 
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sensitivity to discover age-related differences, which may potentially depend on critical differences in task-

related temporal dynamics10. The influence of structural network characteristics on dynamic M/EEG 

networks might also reveal crucial factors to understand and predict the individual variability of age-related 

changes in cognitive performance.  

Here, we present the results of our investigation regarding the influence of white matter microstructure on 

the task-related functional communication among multiple brain regions, and whether fast and effective 

communication can help explain the cognitive variability across older adults. To test this hypothesis, we 

applied graph theory analyses to both whole-brain EEG synchrony over time and structural integrity 

measures derived from diffusion tensor imaging (DTI). Our analyses reveal that network dynamics can help 

explain individual cognitive performance and that both behavioral and task-related functional measures are 

associated with the preservation of structural network clustering in patterns similar to those observed in 

young adults. In addition, we replicate our network stability findings and the influence of individual 

structural network clustering levels in an independent resting-state dataset from the Cambridge Centre for 

Ageing and Neuroscience dataset (Cam-CAN11,12). By combining different neuroimaging modalities with 

cognitive measures, our study reveals that the underlying structural white matter connections influence 

dynamic functional connectivity and cognitive performance, providing a mechanistic explanation for the 

neural basis of the variability in cognitive performance across older adults. 

Results 

Inhibitory deficit in older adults following working memory updating. In this study, 40 young adults 

and 40 older adults performed an arithmetic verification task while EEG was recorded. In this task (Figure 

1A), participants indicated via a gamepad whether the proposed answer for arithmetic equations (e.g., 8 x 4 

= 28) was correct given the currently relevant operation (i.e., addition or multiplication) maintained in 

working memory (WM). Before this verification phase, participants first saw an operation cue i.e. a “+” for 

addition problems and an “x” for multiplication problems) indicating the relevant arithmetic operation to be 

maintained in WM. After a pseudo-randomly jittered delay period, a WM cue (“Hold” or “Flip”) was 

displayed, followed by a second delay period before the presentation of the equation and its proposed 
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solution. The “Hold” cue instructed participants to maintain the cued operation. The “Flip” cue instructed an 

update to the other, non-cued operation. The operation sign was not displayed with the three numbers during 

the verification period, to assess the effectiveness of WM maintenance or updating of the cued operation 

type. Furthermore, “false-related” problems were included to assess inhibitory performance. In these 

problems the presented, incorrect answer was the correct answer of the other, irrelevant operation type (i.e. 

correct sum when multiplication was the relevant rule or vice versa; e.g. 8 x 4 = 12). Arithmetic interference 

refers to longer reaction time for false-related relative to false-unrelated problems (i.e., the proposed solution 

is false regardless of the currently relevant rule). We summarize the results of the cognitive task briefly here 

(see details in13). In young adults, arithmetic interference was reduced following operation updating (“Flip 

trials) relative to when the arithmetic operation was actively maintained throughout the trial (“Hold” trials; 

Table 1). Older adults differed from young adults in that they showed no reduction of arithmetic interference 

following operation updating (Age x Cue x Problem interaction, p < .001). These results were interpreted as 

reflecting a facilitation of inhibition of irrelevant arithmetic facts following WM updating in young adults 

that is less effective in older adults. Because the main difference between age groups was the effect of the 

WM cue (Flip vs. Hold) on behavioral performance, we specifically investigated the time period 

immediately following the WM cue onset in EEG data.  

Age-related changes in dynamic oscillatory networks. In line with previous findings,13,14 differences in 

functional network metrics between young and older adults were investigated in the alpha and high-gamma 

bands before and after the onset of the WM cue (Figure 1B, 1C; see videos in supplementary information). 

To test the hypothesis that network dynamics can help explain individual cognitive performance in older 

adults, we calculated brain networks’ clustering and efficiency. Clustering reflects the prevalence of clusters 

of brain regions that are strongly connected to each other (but weakly connected to regions in other clusters). 

Efficiency reflects the direct connections between brain regions (i.e., networks with more direct connections 

are considered to be more efficient). The graph measures in this study were calculated based on the phase-

locking value (PLV) matrix of 200ms sliding time windows before and after the display of the WM cue (19 

time windows from -500ms to 1500ms after the onset of the WM cue) for each cortical region of the 

Desikan atlas15, paired with every other region. Interactions among factors of interest (Age, WM cue, Time 
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window) were observed in both alpha and high-gamma bands (Figure 2A). In the alpha band, this interaction 

involved the network clustering coefficient (F(18,1404)=1.924, p=.03). Clustering differences were 

observed between Flip and Hold trials from 200 to 400ms following cue onset in young adults (less 

clustering for Flip than Hold) and the opposite Cue effect (greater clustering for Flip than Hold) in the 900 

to 1100ms time window in older adults. In the high-gamma band, the interaction was observed in network 

efficiency rather than clustering (F(18,1404)=1.794, p=.021). Network efficiency was lower for Flip than 

Hold trials in young adults, between 500 and 700ms following cue onset, but there was no cue-related 

difference in efficiency in older adults. No main effects were observed. All results were corrected for 

multiple comparisons using the False Discovery Rate (FDR). 

Network clustering in the alpha band and network efficiency in the high-gamma band both showed 

significantly larger variability across time windows, not time-locked to any task event, in older adults than in 

young adults (p=0.031, p=0.016, respectively). This larger variability indicates lower network stability (see 

also16). In addition to these global network metrics, consistent results were observed at the nodal (region of 

interest) level: alpha clustering and high-gamma efficiency effects were observed specifically in edges 

involving the right IFG (Figure 2B), which has previously been implicated in inhibitory control17–19. No 

effects involving other metrics or brain regions were observed following FDR corrections. 

Within the time windows that showed a significant difference between Flip and Hold in either the older or 

younger groups, we examined correlations between individual differences in the magnitude of that effect 

and inhibitory control. Among the older adults, the average magnitude of the difference was correlated with 

behavioral interference for both alpha clustering and high-gamma efficiency in the time windows showing a 

difference in young adults (r=0.407, p=0.009; and r=0.413, p=0.008, respectively). The results (Figure 3A), 

therefore, indicate that greater Flip - Hold modulations (the opposite of young adults) of alpha clustering and 

high-gamma efficiency are associated with larger interference effects (i.e. worse cognitive control). In other 

words, young-like update-related modulations of functional network organization appears to be necessary 

for optimal task performance. In order to better understand the relationship between functional network 

metrics and cognitive performance, least-square linear regressions were performed separately for young and 
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older adults, and separately for alpha clustering and high-gamma efficiency metrics, testing for correlations 

with behavioral interference. Results revealed that high-gamma efficiency (in the time window showing 

significant differences between Flip and Hold WM cue within that group) explained a significant amount of 

the behavioral interference variance in both young (R-2=.359, p=.027) and older adults (R-2=.407, p=.009). 

In older adults but not young adults, alpha clustering was also found to explain a significant amount of the 

variance in behavioral interference (R-2=.413, p=.008).  

Structural network metrics decrease in older adults. Individual structural connectivity matrices from DTI 

data were defined based on the average fractional anisotropy (FA) values of tracts connecting cortical 

regions of the Desikan atlas to investigate differences in structural network integrity (Figure 2C). 

Comparison of DTI network metrics reveal that young and older participants differ in clustering coefficient 

levels and efficiency (ps<0.001), with both lower clustering and lower efficiency in older adults relative to 

young adults. No effect of age on any other metric was observed (Fs<1.5). In contrast with functional 

network metrics, regression analyses did not reveal a significant amount of variance in behavioral 

performance that could be explained by a linear relationship with structural network metrics. However, in 

older adults but not in young adults, structural clustering was positively correlated with larger alpha 

clustering difference between Flip and Hold (.441, p<0.004). In other words, preserved structural network 

clustering was associated with more young-like update-related modulations of alpha network clustering.  

Data-driven subgroup definition. Given the larger variance in both cognitive and brain measures among 

older adults compared to young adults20,21 and our previous findings on the association between functional 

and structural connectivity8,13, we considered whether there might exist distinct subgroups of older adults 

driven by white matter microstructural network organization. Such a finding could be important if it 

indicates a potential biomarker of distinct dynamic network activity and cognitive trajectories with 

advancing age. To this end, data-driven subgroup definition analyses were conducted based on structural 

network clustering and efficiency. No viable subgroups for statistical analyses were observed in young 

adults (32 and 8 individuals in each subgroup for clustering, 38 and 2 individuals in each subgroup for 
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efficiency), which could partially reflect the lower within-group functional variability relative to older adults 

(ps<0.03). 

In the older adults group, using the structural clustering metric, two subgroups were identified (19 

individuals with higher clustering and 21 individuals with lower clustering; see Table 2, Figure 3B). While 

the subgroups were similar in age, grey matter volume, cardiovascular fitness, level of education, and high-

gamma efficiency, significant differences were observed in behavioral interference and alpha clustering. The 

subgroup with lower structural clustering showed larger behavioral interference and alpha clustering 

coefficient in the time window showing significant task-related modulation, compared to the subgroup with 

higher structural clustering. The variability of alpha network clustering over time is also larger in the 

subgroup showing lower structural clustering coefficient. Relative to young adults, the older adults’ 

subgroup with low structural clustering shows larger behavioral interference following updating (p<0.001) 

while the subgroup with higher structural clustering shows no difference (p>0.24), suggesting preserved 

facilitation of inhibition abilities. These subgroup results suggest that older individuals in one subgroup 

show more young-like structural network clustering, task-related modulations of functional network 

clustering, stability of functional clustering, and behavioral interference control, relative to the other 

subgroup that shows greater differences from young adults.  

When analyses were applied to assess structural efficiency in the older adults, two subgroups of similar size 

were identified (23 and 17 individuals in each subgroup, see Table 2). However, aside from the structural 

network measures, these subgroups differed only in age and grey matter volume. Participants in the lower 

structural efficiency subgroup were older and showed greater grey matter atrophy. No significant differences 

in behavioral performance or functional network metrics were observed. Adopting a reversed approach, we 

then assessed whether data-driven subgroup definition analyses applied to EEG network metrics would 

reveal differences in behavioral performance or structural network metrics. No viable cluster was observed 

with alpha clustering (34 and 6 individuals in each subgroup) or high-gamma efficiency (37 and 3 

individuals in each subgroup) metrics, consistent with the interpretation of a specific influence of structural 

clustering on dynamic networks and cognitive performance. 
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In summary, the investigation of multimodal network characteristics in putatively healthy older adults 

revealed changes in network clustering and efficiency across modalities, which were related to cognitive 

performance. In addition to altered clustering and efficiency of the structural and task-related functional 

networks, a larger variability across time windows was also observed in older adults relative to young adults, 

indicating lower functional network stability. A data-driven subgroup definition analysis based on individual 

structural network clustering levels in the older adults revealed that it could account for individual 

differences in functional network clustering properties and behavioral performance. Importantly, the same 

procedure applied to individual structural efficiency revealed only differences of age and grey matter 

atrophy, and no clearly distinct subgroups were observed when applying the same procedure to EEG 

network metrics, suggesting a critical role for the preservation of structural clustering in the maintenance of 

young-like functional network activity and cognitive performance.  

Confirmation from an independent dataset. In order to determine the generalizability of our findings, we 

analyzed the behavioral, DTI and resting state MEG data from the publicly available Cam-CAN dataset11,12. 

Young and older participants were randomly selected from the Cam-CAN database to match our EEG 

groups in age and gender balance (see Table 3). Analysis of the DTI data showed that young and older 

participants differed in efficiency (p<0.001) and clustering coefficient (p<0.003) metrics. When analyzing 

resting state MEG data, significant differences between age groups were observed in the variability across 

time of alpha clustering and high-gamma network efficiency (Table 3, Figure 3C). No main effect of age, or 

interaction involving any other frequency or metric was observed. Also consistent with findings observed in 

the EEG dataset, regression analyses revealed that the variability of alpha clustering across time explained a 

significant amount of the working memory performance variance in older adults (R-2=.139, p=.01), but not 

in young adults. This result was not observed with high-gamma efficiency or with structural network 

metrics, or with other cognitive measures.  

Similarly to the EEG dataset, data-driven subgroup identification based on structural clustering revealed two 

subgroups in older adults (17 and 30 participants; see subgroups’ characteristics in Table 3). While 

subgroups showed similar age, grey matter volume, MMSE score and level of education, significant 
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differences were observed in the variability of both alpha clustering (as in our EEG subgroup data) and high-

gamma efficiency. No viable subgroup for statistical analyses was observed in young adults (43 and 4 

individuals in the subgroups) or when using MEG metrics (41 and 6 individuals in the subgroups). This 

replicates our findings with our own data set that older individuals with lower structural network clustering 

coefficient show less stable functional network clustering. In addition, the Cam-CAN dataset also showed 

that lower structural clustering was associated with less stable functional network efficiency. 

Discussion  

The present study demonstrates the critical importance of considering dynamic M/EEG network 

characteristics and their associations with other imaging modalities to understand cognitive variability in 

older adults. We investigated whether task-related dynamic network activity might be critically influenced 

by individual structural network properties, and might partly explain cognitive performance in older adults 

with no known clinically significant neuropathology. To this end, we adopted a multimodal approach (EEG, 

MEG, and DTI data; see supplementary information for fMRI and biological markers’ results) and we 

applied graph theory analyses to quantify individual structural network clustering levels and their 

relationship to dynamic functional networks observed during the completion of a task specifically designed 

to engage cognitive control processes. Results revealed that in older adults, lower structural clustering is 

associated with changes in clustering and efficiency of functional network task-related dynamics, and lower 

stability of network metrics across time windows, relative to individuals with structural network 

characteristics more similar to younger individuals. These differences were also associated with individual 

differences in cognitive performance. Furthermore, cross-validation of our results in an independent sample 

with the Cam-CAN dataset provides important confirmation regarding the reliability of these conclusions. 

Dynamic networks and cognitive performance. We focused on the systems underlying cognitive control, 

and thus investigated dynamic connectivity following WM updating cue onset. Previous studies found that 

healthy older adults do not generally show facilitation of inhibition following WM updating, in contrast to 

young adults8,13. Recent work highlights the crucial role of alpha activity in the prioritization or de-

prioritization of working memory representations22,23.  This process of WM de-prioritization appears to 
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prime subsequent inhibitory control in young adults. Results in the current study revealed that following 

WM updating cue onset, relative to the maintenance cue, both alpha clustering and high-gamma efficiency 

are decreased in young adults. This result suggests an interruption of the previously established functional 

clustering and the engagement of new, distant pathways and brain regions across clusters during updating. In 

older adults, these modulations of alpha clustering are delayed and reversed, resulting in increased clustering 

following the updating cue relative to the maintenance cue, and no modulation of high-gamma efficiency. 

The inability to quickly and efficiently interrupt the currently engaged sub-network to engage new network 

regions associated with the other arithmetic operation likely results in lower WM updating ability, and thus 

was predictive of individual differences in behavioral interference. Nodal analyses also furthered our 

understanding of the main regions engaged during task performance. Our previous work13 reported 

significant differences between young and older adults in IFG-occipital lobe coupling. The current analyses 

support and extend those previous results by revealing that edges involving the right IFG are the part of the 

whole-brain network that is most influenced following the WM cue. These results support the idea that areas 

in the right IFG play a role not only in inhibiting motor action, but also in interpreting stimuli in the context 

of current task rules and in rapidly directing multiple changes in functional connectivity24.  

Age-related DTI network changes and effects on dynamic functional networks. Age-related 

modulations of network clustering and efficiency were also observed when investigating DTI structural 

networks. This suggests a strong relationship between the whole-brain dynamics and the underlying white 

matter network across the lifespan. In the opposite direction than what has been reported from childhood to 

adulthood25, we observe an overall spatiotemporal connectivity reorganization with aging consisting of 

reduced clustering (i.e., differentiation into highly connected subnetworks relative to the rest of the network) 

and efficiency (i.e., highly connected network “hubs” able to reach distant regions6,26 ) of task-engaged 

networks at both functional and structural levels. Findings also replicate the previously reported association 

between functional variability and reduced structural integrity in older adults27. This suggests that reduced 

structural connectivity impairs the stability of communications between brain regions.  
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Structural network properties underlie functional network organization and cognitive performance. 

With aging, an overall reduction of integrity of white matter tracts has previously been reported28, with long 

white matter connections being more vulnerable to age-related alterations29. These age-related changes lead 

to decreased structural network efficiency and clustering into subnetworks. The variation of such evolution 

of structural network clustering and efficiency between individuals appears to be a major determinant of 

dynamic network activity and cognitive performance with aging. Data-driven subgroup definition analyses 

reveal that structural network clustering is critically associated with EEG network activity and cognitive 

performance. This pattern is not observed when defining subgroups based on structural efficiency or 

functional network measures, suggesting that the preservation of structural network clustering specifically is 

crucial for the maintenance of functional connectivity dynamics and the ability to suppress interference as 

effectively as young adults. Results are consistent with our previous studies in showing how structural-

functional couplings can account for individual differences in cognitive performance during healthy 

aging8,13, and they further show how whole-brain dynamics can provide data-driven elements to distinguish 

different cognitive performance patterns within older adults. Interestingly, while only structural network 

metrics led to the identification of subgroups in older adults that differ in functional network metrics and 

behavioral performance, only functional network metrics were found to explain a significant amount of the 

variance associated with behavioral interference resolution. This pattern of result suggests that individual 

differences in structural network metrics can be used to identify different subgroups varying on both 

functional network metrics and behavioral performance, while functional network metrics appear to be the 

more proximal cause of impairments in cognitive performance.  

Corroborating findings in an independent dataset. Additional analyses were performed using the Cam-

CAN dataset to determine the degree of generalization of results and the subgroup identification method. 

Similar to our EEG dataset, differences in structural network clustering were observed between young and 

older participants, and were then used to identify two subgroups within the older adults that differed in MEG 

resting state dynamic networks. Consistent with our EEG dataset, older adults in the Cam-CAN dataset with 

lower structural network clustering showed lower high-gamma network efficiency and larger variability of 

both alpha clustering and high-gamma clustering relative to the other subgroup. Interestingly, unlike in our 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2020. ; https://doi.org/10.1101/2020.10.09.333567doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.09.333567
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

EEG dataset, no difference in cognitive performance was observed between the subgroups. This could 

reflect the lower sensitivity or specificity of the cognitive tests used, as none of the tests in the Cam-CAN 

dataset specifically targets working memory updating or inhibitory processes. The results confirm the 

findings from our EEG dataset in highlighting the influence of structural network properties on dynamic 

network activities.  

Theoretical considerations. Our results differ from the disconnection hypothesis of cognitive aging, 

proposed to account for cognitive alterations following brain alterations that might “disconnect” brain 

regions30,31.  Here, subgroups of older adults do not differ in degree or path length of either structural or 

functional networks, suggesting that the interruption of network activity along specific pathways is not the 

primary determinant of the cognitive variability and the typical evolution of functional networks with aging. 

Rather, results show that the decreased structural, clustered organization of white matter architecture leads to 

changes in functional network efficiency, clustering, and stability over time, resulting in reduced cognitive 

performance. This result is in line with the tendency toward more random network architecture and activity 

with age6,32.  Our findings point to a possible mechanistic account for the individual variability in cognition 

associated with aging and suggest that the frameworks of cognitive reserve and reduced speed of processing 

with aging33–35 should include dynamic network activity. The present results highlight that fast and effective, 

task-relevant modulations of communications between brain regions are crucial for cognitive performance. 

The current research does not directly establish causation, but the results suggest that preserved structural 

integrity is necessary for preservation of cognitive performance, because changes in structural integrity lead 

to less stable functional network organization, and changes in the brain areas recruited for cognitive control, 

and the organization of their functional connections. The results suggest that this change in functional 

network dynamics then results in diminished cognitive performance. At the clinical level, the results suggest 

there might be new ways of identifying individuals at risk of cognitive decline based on structural network 

organization and functional synchrony. Functional couplings could also be targeted by cognitive training 

programs or oscillatory neural stimulation (e.g., TMS, tACS) protocols to try to specifically influence the 

dynamic synchrony between brain regions.  
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Methods 

Participants. Data is the same as in our previously published report13, and includes 40 young adults (18-35 

years) and 40 older adults. All participants are right-handed and reported normal or corrected-to-normal 

vision. Age groups were matched by years of education, gender, and arithmetic fluency. All older adults 

performed within normal range (i.e., score > 26) on the Montreal Cognitive Assessment (MoCA36). No 

participant reported a history of neurological or cognitive disorders, traumatic brain injury, or major 

psychiatric disorders. Participants were not on any neurologically/psychiatrically active medication at the 

time of testing. See13 for additional information regarding exclusion criteria and participants’ characteristics.  

MRI acquisition. Individuals were scanned with a 3T Phillips Achieva MRI scanner with a 32-channel head 

coil. Total scanning time was 25 minutes. Following localizer scans, T1-weighted images were acquired 

with a 3D MP-RAGE sequence: Field of view: 212 × 212 × 172 mm, sagittal orientation, 1 × 1 × 1 mm 

voxel size, repetition time (TR): 3000ms, echo time (TE): 2ms, flip angle: 8°. Diffusion whole brain images 

were acquired with the following parameters: 70 axial slices, slice thickness = 2.2 mm, voxel size = 2.21 x 

2.21 x 2.2 mm, TR = 2000ms, TE = 71ms, FOV = 212 x 212 x 154 mm, SENSE factor: 2.5, BW/pixel: 

3124.9. Diffusion gradients were applied along 64 noncollinear directions (b = 1000 s/mm²). See 

supplementary information, for acquisition and analyses of resting-state fMRI data.  

Electroencephalography recording and analyses. EEG activity was recorded inside a Faraday cage with 

128 electrodes covering the whole scalp (ActiCHamp, Brain Products, Munich, Germany). Artifact and 

channel rejection (on continuous data), filtering (0.3-100 Hz bandpass, on unepoched data), re-referencing 

(i.e., using the algebraic average of the left and right mastoid electrodes), time segmentation into epochs, 

averaging, and source estimation were performed using Brainstorm37. In addition, physiological artifacts 

(e.g., blinks, saccades) were identified and removed through signal-space projection. The CapTrack camera 

system was used to record the spatial positions of the electrodes on the cap. These positions were co-

registered to that of the individual’s anatomy using fiducial points and were used to improve the source 

reconstruction accuracy. Age-related brain atrophy can introduce changes in the amplitude of event-related 

activations38. Therefore, FreeSurfer39 was used to generate cortical surfaces and automatically segment 
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cortical structures from each participant’s T1-weighted anatomical MRI, to account for individual brain 

atrophy levels during source reconstruction. The EEG forward model was obtained from a symmetric 

boundary element method (BEM model; OpenMEEG40), fitted to the spatial positions of all electrodes. A 

cortically constrained, sLORETA procedure was applied to estimate the cortical origin of scalp EEG signals, 

weighted by a sample estimate of sensor noise covariance matrix obtained from the baseline periods (i.e., 

fixation period before the display of the WM cue), in each of the participants, and used to improve data 

modelling. This method was selected because of reduced localization error and false positive connectivity 

relative to other source localization methods41,42. The estimated sources were then smoothed (i.e., full width 

at half maximum: 3mm) and projected into a standard space (i.e., ICBM152 template) for comparisons 

between groups and individuals, while controlling for differences in native anatomy. This procedure was 

applied to activity from 500ms before to 1500ms after the onset of the WM cue. 

Time resolved phase-locking value. Phase-locking analyses43 were used to determine the functional 

coupling between regions of interest. PLV estimates the variability of phase differences between two regions 

across trials. If the phase difference varies little across trials, PLV is close to 1 (i.e., high synchrony between 

regions) while, with large variability in the phase difference, PLV is close to zero. The range of each 

frequency band was adjusted based on the individual alpha-peak frequency (IAF) observed at posterior sites 

(i.e., bilateral parietal, parieto-occipital, and occipital sites). Following previous literature44 and based on 

previous results using this task13, the following frequency bands were then considered: Alpha (IAF-

2/IAF+2), low-gamma (IAF+15/IAF+30), and high-gamma (IAF+31/IAF+80). To preserve timing 

information while reducing the dimensionality of the data, PLV was estimated at the subject level, across 

trials. To further reduce the dimensionality of the data, the first mode of the principal component analysis 

(PCA) decomposition of the activation time course in each region of interest (ROI) from the Desikan atlas 

brain parcellation15 was used. The first component, rather than mean activity, was selected to reduce signal 

leakage45 . The averages of 200ms sliding time windows (50% overlap) were then extracted across the 

epochs of interest. In order to avoid arbitrary threshold and unconnected nodes, weighted undirected 

network analyses were used46. See our previous publication13 for PLV results for separate pairs of regions. 

The current report instead uses PLV to quantify whole-brain functional network organization. Similar results 
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were obtained when investigating graph measures derived from lagged coherence matrices, suggesting 

results are not influenced by common source or volume conduction46. 

DTI analyses. Preprocessing of diffusion data was done using ExploreDTI47 and included the following 

steps: (a) Images were corrected for eddy current distortion and participant motion; (b) a non-linear least 

square method was applied for diffusion tensor estimation, and (c) whole brain DTI deterministic 

tractography was estimated using the following parameters, for each participant: uniform 2 mm resolution, 

FA threshold of 0.2 (limit: 1), angle threshold of 45°, and fiber length range of 50 – 500mm. The “network 

analysis” tools in ExploreDTI were used to quantify the FA value of tracts connecting regions of the 

Desikan atlas, using the individual cortical parcellation from Freesurfer (Figure 2C). The individual 

connectivity matrix included all groups of traced fibers identifying a putative tract passing through or ending 

at two ROIs of the atlas, or null values when no fiber was successfully traced.  

Graph theory analyses. Graph analyses were performed with the Braph toolbox48. For EEG data, graph 

measures were calculated based on the average PLV matrix of 200ms sliding time windows (50% overlap) 

across the epochs of interest and in each frequency band. For each time window, matrices were defined 

based on the average PLV synchrony between each region of the Desikan atlas and all other regions (i.e., 68 

x 68 matrices, see supplementary information). For DTI data, matrices were defined based on the average 

FA value of tracts connecting each region of the Desikan atlas with all other regions. Weighted network 

analyses were used.  

Clustering and efficiency were selected as the nodal (i.e., specific to each region) and global (i.e., overall 

network properties) measures to characterize brain network dynamics and structure based on previous 

work49 and reports of reproducibility50: The clustering coefficient is the fraction of triangles (i.e., neighbors 

of a node that are also neighbors of each other) present around a node and measures the degree to which 

nodes in a graph tend to cluster together in segregated subnetworks; global efficiency is the average of the 

inverse shortest path length from a node to all other nodes, representing the network integration and 

processing capacity. In addition, to ensure that reported effects are not global effects affecting every network 

parameter, we also examined the average degree (i.e., total number of edges connected to each node, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2020. ; https://doi.org/10.1101/2020.10.09.333567doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.09.333567
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

averaged across all nodes) and characteristic path length (i.e., average of the path lengths of all nodes). In 

addition to Age x Time window and Age x WM cue x Time window mixed-design ANOVAs, the standard 

deviation of the individual variations of graph measures across time windows was calculated to determine 

the stability of network activity over time, and corrections for multiple comparisons were performed using 

False Discovery Rate (FDR) corrections. Participants’ age and mean grey matter volume (from the 

Freesurfer cortical parcellation) were included as covariates in the analyses. Network analyses were 

conducted at the nodal level for the clustering coefficient and efficiency measures. Whole-brain analyses 

were conducted with permutation tests (10,000 permutations), comparing young and older adults on the 

difference between Flip and Hold trials (Flip minus Hold) in the alpha and high-gamma bands. Corrections 

for multiple comparisons were performed using false discovery rate (FDR) corrections51. 

Data-driven subgroup definition. Hierarchical clustering analyses were performed to determine whether 

subgroups of older adults with different behavioral and functional network patterns could be identified. 

Hierarchical clustering using the between-groups linkage method was applied on the DTI and EEG graph 

metrics. Variables were standardized into z-scores before cluster creation. The range of number of clusters 

started at 2 and stopped at 4, only clusters that would divide the group in subgroups with sufficient number 

of subjects per subgroup (N>15) were selected for statistical analyses.  

Cambridge Centre for Ageing and Neuroscience database. The Cam-CAN dataset11,12; available at 

http://www.mrc-cbu.cam.ac.uk/datasets/camcan/) was used to determine whether the time-varying 

connectivity and structural network results of the EEG dataset could be replicated in an independent dataset. 

To match the age and gender characteristics of the EEG groups, data from 47 young adults (20-30 years) and 

47 older adults (65-75 years), in participants that completed both structural and functional neuroimaging 

sessions, were selected for analyses. Details on the demographic and behavioral data can be found at: 

https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/. The selected MRI data included T1-weighted, and 

diffusion images (see supplementary information). Regarding MEG data, approximately 9 minutes of eyes-

closed resting-state data were acquired. Digitization of anatomical landmarks (i.e., fiducial points; nasion 

and left/right preauricular point, as well as additional points on the scalp) was performed for registration of 
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MEG and MRI coordinate systems. Electro-occulogram and electrocardiogram were recorded to capture eye 

movements and heartbeats, respectively. Preprocessing involved temporal signal space separation (tSSS): 

0.98 correlation, 10s window; bad channel correction: ON; motion correction: OFF; 50Hz+harmonics 

(mains) notch. The same preprocessing steps as EEG data were followed for MEG data. For MEG data, the 

selected IAF was the average of the alpha peak observed with gradiometers and magnetometers averaged at 

posterior sites. In addition to blinks, cardiac artifacts were identified and removed through signal-space 

projection. No noise modeling was used, as no empty-room recording was available. PLV values averaged 

across 30s sliding time windows during the resting state period were used to define matrices for graph 

theory analyses.  
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Tables 

Table 1. Participants’ characteristics by age group.  

Variables Young adults Older adults F P 
N 40 40 - - 
Females:males 27:13 27:13 - - 
Age in years 23 (4.4) 71 (5.8) - - 
Years of Education 16 (1.4) 16 (2.0) 0.02 0.899 
Montréal Cognitive Assessment (MOCA) - 28.6 (1.2) - - 
Behavioral interference (overall) 19.88 (87.4) 43.03 (88.4) 1.398 0.241 
Behavioral interference (following maintenance) 76.65 (111.3) 37.83 (127.9) 2.140 0.148 
Behavioral interference (following updating) -36.94 (107.0) 48.22 (124.2) 10.792 0.002 
DTI: clustering coefficient 0.042 (0.01) 0.030 (0.01) 45.653 <0.001 
DTI: average degree 54.72 (0.8) 54.45 (0.9) 1.928 0.169 
DTI: efficiency 0.31 (0.04) 0.28 (0.02) 23.326 <0.001 
EEG Alpha clustering variability  0.01 (0.01) 0.02 (0.02) 4.833 0.031 
EEG High-gamma efficiency variability  0.01 (0.01) 0.02 (0.01) 6.045 0.016 
Grey matter volume (mm3) 618355 (61140) 516195 (36503) 8.233 <0.001 

Notes: Average and standard deviations (SD). Behavioral interference refers the difference in reaction time 
between false-related relative trials and false-unrelated trials in milliseconds. See Hinault et al., 2020, for 
additional information. 
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Table 2. Differences between subgroups of older adults with different structural network metrics based on 
hierarchical clustering analyses (standard deviation). The McAuley equation was used to assess 
cardiorespiratory fitness (McAuley et al., 2012). The equation is based on age, sex, body mass index, resting 
heart rate, and self-reported physical activity level. 

Variables Subgroup1 Subgroup2 F p 
 Clustering coefficient 

N 19 21 - - 
Females:males 13:6 14:7 1.567 0.218 
Age in years 71 (5.7) 70 (5.9) 0.045 0.832 
Years of education 15 (1.9) 16 (2.0) 3.288 0.078 
Montréal Cognitive Assessment (MOCA) 28.58 (1.2) 28.67 (1.2) 0.055 0.816 
Behavioral interference (overall) 13.52 (86.3) 69.72 (83.5) 4.375 0.043 
Behavioral interference (following maintenance) 28.91 (143.3) 45.91 (115.2) 0.172 0.680 
Behavioral interference (following updating) -1.87 (98.3) 93.53 (129.8) 6.754 0.013 
DTI: clustering coefficient 0.032 (0.01) 0.027 (0.01) 7.959 0.008 
DTI: average degree 54.45 (0.9) 54.46 (0.8) 0.001 0.974 
DTI: efficiency 0.29 (0.1) 0.28 (0.1) 3.650 0.064 
EEG Alpha clustering variability 0.01 (0.1) 0.02 (0.1) 5.316 0.027 
EEG Alpha_clustering coefficient (Flip-Hold, 500-700ms) -0.01 (0.1) 0.01 (0.1) 7.470 0.009 
EEG High-gamma efficiency variability 0.01 (0.1) 0.01 (0.1) 0.684 0.518 
Grey matter volume (mm3) 527338 

(35269) 
506114 
(35414) 

3.597 0.066 

Body mass index 26.62 (5.5) 27.13 (5.5) 0.085 0.772 
Macauley score 9.04 (1.7) 8.26 (1.7) 2.073 0.158 

Efficiency 
N 17 23 - - 
Females:males  11:6 16:7 0.876 0.355 
Age in years 68 (4.3) 73 (5.8) 9.288 0.004 
Year of education 15 (1.8) 15 (2.2) 0.001 0.976 
Montréal Cognitive Assessment (MOCA) 28.53 (1.1) 28.70 (1.2) 0.193 0.663 
Behavioral interference (overall) 32.45 (105.6) 50.84 (74.9) 0.416 0.523 
Behavioral interference (following maintenance) 24.35 (126.7) 47.80 (130.7) 0.323 0.573 
Behavioral interference (following updating) 40.54 (128.2) 53.88 (123.7) 0.110 0.742 
DTI: clustering coefficient 0.032 (0.1) 0.028 (0.1) 7.852 0.008 
DTI: average degree 54.57 (1.1) 54.36 (0.7) 0.601 0.443 
DTI: efficiency 0.29 (0.2) 0.27 (0.1) 25.388 <0.001 
EEG Alpha clustering variability 0.02 (0.01) 0.02 (0.2) 1.415 0.242 
EEG Alpha clustering coefficient (Flip-Hold, 500-700ms) 0.01 (0.03) 0.01 (0.02) 0.017 0.898 
EEG High-Gamma efficiency variability 0.01 (0.1) 0.01 (0.1) 0.111 0.833 
Grey matter volume (mm3) 532702 

(34904) 
503994 
(33315) 

6.971 0.012 

Body mass index 26.00 (4.9) 27.54 (5.8) 0.670 0.383 
Macauley score 9.11 (1.7) 8.27 (1.7) 0.099 0.134 
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Table 3. Characteristics of the participants from the Cam-CAN dataset, and subgroups of older adults 
defined through hierarchical clustering analyses based on individual levels of structural network clustering 
coefficient (standard deviation). 

Variables Young adults Older adults F p 
N 47 47 - - 
Females:males  30:17 30:17 - - 
Age in years 26 (2.0) 73 (2.7) - - 
Years of Education 16 (2.8) 13 (4.5) 12.455 0.001 
Mini Mental State Evaluation (MMSE) 29.51 (0.9) 28.43 (1.2) 25.653 <0.001 
Visual short term memory (accuracy) 0.49 (0.1) 0.42 (0.1) 21.192 <0.001 
Hotel task (seconds) 223.24 (122.1) 346.43 (174.8) 15.232 <0.001 
Cattell score 37.81 (3.6) 26.09 (5.5) 150.152 <0.001 
DTI: clustering coefficient 0.06 (0.1) 0.04 (0.1) 9.154 0.003 
DTI: average degree 55.60 (0.9) 53.76 (5.3) 5.485 0.021 
DTI: efficiency 0.35 (0.1) 0.31 (0.1) 30.712 <0.001 
MEG alpha clustering variability 0.14 (0.1) 0.20 (0.1) 14.231 <0.001 
MEG High-gamma efficiency variability 0.003 (0.01) 0.006 (0.01) 26.257 <0.001 
Grey matter volume (mm3) 700319 (64069) 588960 (49434) 89.002 <0.001 

Older adults’ subgroups (DTI clustering coefficient) 
Variables Subgroup1 Subgroup2 F p 
N 30 17 - - 
Females:males 21:9 9:8 1.349 0.252 
Age in years 73 (2.4) 73 (3.0) 0.986 0.326 
Years of Education 13 (4.9) 13 (3.9) 0.314 0.578 
Mini Mental State Evaluation (MMSE) 28.37 (0.2) 28.53 (0.3) 0.198 0.658 
Visual short term memory 0.43 (0.1) 0.41 (0.1) 1.489 0.229 
Hotel task (seconds) 324.24 (31.7) 385.59 (42.5) 1.347 0.252 
Cattell score 25.97 (1.1) 26.29 (1.0) 0.038 0.846 
DTI: clustering coefficient 0.043 (0.01) 0.023(0.01) 28.511 <0.001 
DTI: average degree 54.92 (1.1) 51.71 (8.5) 4.273 0.044 
DTI: efficiency 0.328 (0.01) 0.276 (0.07) 15.515 <0.001 
MEG alpha clustering variability 0.017 (0.01) 0.024 (0.01) 8.668 0.005 
MEG High-gamma efficiency variability 0.041 (0.01) 0.066 (0.01) 7.665 0.008 
Grey matter volume (mm3) 594751 (44057) 578741 (57738) 1.142 0.291 
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Figures 

Figure 1. [A] The experimental paradigm was identical to our previous studies (see Hinault et al., 2019, for 
detailed information regarding the task parameters and the list of stimuli). The red bar indicates the 
beginning (-500ms before the WM cue onset) and end (1500ms after the WM cue onset) of the sliding 
windows for the dynamic connectivity analysis. [B] Alpha clustering and high-gamma efficiency metrics for 
young and older adults following either the maintenance (Hold) or the updating (Flip) cue. Significant 
differences between age groups are highlighted with red boxes. [C] Difference in alpha clustering and high-
gamma efficiency metrics (with standard error) for young and older adults following between the updating 
(Flip) and the maintenance (Hold) cues. Significant between-condition differences in each group are 
highlighted with red boxes.  
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Figure 2. [A] Difference in alpha clustering coefficient and high-gamma efficiency, at each node, between 
Flip and Hold cues for young and older adults. Size and color indicate nodal values, showing the update-
related reduction (blue, Flip < Hold) of alpha clustering and high-gamma efficiency, primarily in young 
adults, and the update-related increase (red, Flip > Hold) of alpha clustering and high-gamma efficiency, 
primarily in older adults. [B] Differences in alpha and high-gamma network couplings originating from the 
right IFG and occipital lobe for Flip vs. Hold cues in young and older adults. Flip > Hold shown in red and 
Flip < Hold shown in blue. [C] Structural connectivity matrices in young and older adults, average FA value 
of tracts connecting each ROIs of regions for the Desikan atlas. 
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Figure 3. [A] Correlation of alpha clustering and high-gamma efficiency task-related effects with behavioral 
performance in older adults. Increased Flip – Hold differences (opposite relative to young adults) in the time 
windows showing significant update-related modulations are associated with larger behavioral interference. 
[B] DTI clustering subgroup differences in the EEG dataset following data-driven subgroup definition based 
on structural network clustering. [C] Subgroup differences in the MEG dataset following data-driven 
subgroup definition based on structural network clustering. Significant differences are highlighted, *p<0.5, 
**p<0.1, ***p<0.001 
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