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Abstract 23 

Dance interventions are more effective at improving gait and balance outcomes than other 24 

rehabilitation interventions. Repeated training may culminate in superior motor performance 25 

compared to other interventions without synchronization. This technical note will describe a novel 26 

method using a deep learning-based 2D pose estimator: OpenPose, alongside beat analysis of 27 

music to quantify movement-music synchrony during salsa dancing. This method has four 28 

components: i) camera setup and recording, ii) tempo/downbeat analysis and waveform cleanup, 29 

iii) OpenPose estimation and data extraction, and iv) synchronization analysis. Two trials were 30 

recorded: one in which the dancer danced synchronously to the music and one where they did not. 31 

The salsa dancer performed a solo basic salsa step continuously for 90 seconds to a salsa track 32 

while their movements and the music were recorded with a webcam. This data was then extracted 33 

from OpenPose and analyzed. The mean synchronization value for both feet was significantly 34 

lower in the synchronous condition than the asynchronous condition, indicating that this is an 35 

effective means to track and quantify a dancer’s movement and synchrony while performing a 36 

basic salsa step. 37 

Keywords: synchronization, dancing, OpenPose, human pose tracking algorithm, motion analysis  38 
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Introduction 39 

 Dance is a universal human activity that confers many benefits including aerobic fitness, 40 

better balance, emotional and social well-being, and stress reduction.1,2 Anyone can benefit from 41 

dance including trained dancers, recreational dancers, older adults, and people with neurological 42 

conditions including Parkinson’s disease and stroke.3–10 As an adjunct to rehabilitation, dance 43 

interventions are more effective at improving gait and balance outcomes than other rehabilitation 44 

interventions.11  45 

 The advantages of dance over conventional exercise interventions may be derived from the 46 

synchronized movement to the rhythmic cues embedded in music.  The extensive connectivity 47 

between the auditory and motor systems forms the basis for entrainment between rhythmic 48 

auditory signals and motor responses such as tapping your foot along to the beat in music.12–18 49 

These spontaneous synchronized movements may result from the processing of perceived rhythms 50 

by motor areas in the brain including the basal ganglia, supplementary motor area.16,19,20 Thus, 51 

during dance, the rhythmic cues embedded in music, combined with the goal of synchronizing 52 

movement to those cues, may drive motor output. Repeated training may culminate in superior 53 

motor performance (such as better balance control) compared to other interventions without 54 

synchronization. This proposed mechanism is supported by the fact that music enhances motor 55 

performance and reduces metabolic costs of exercise in healthy adults12,21–23 and rhythmic auditory 56 

cueing during rehabilitation sessions improves gait performance24 and brain activation patterns25 57 

post-stroke. 58 

 To investigate this potential mechanism, it will be necessary to measure the movement of 59 

people while they are dancing and quantify how well they synchronize their movement to the 60 

music. The accuracy of this type of measurement depends heavily on the device used as well as 61 
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the location of that device on the body.20,26 Quantitative movement analysis often requires costly 62 

devices such as 3D capture systems, accelerometers, gyroscopes, or force plates27,28. However, 63 

vision-based tracking systems are less expensive and less cumbersome alternatives.29 With this in 64 

mind, our group used OpenPose,30,31 a deep learning-based 2D keypoint estimator, to track dancer 65 

movements and subsequently compare the timing of their footfall events to the timing of the beat 66 

of the music to quantify movement synchronization. OpenPose30,31 has been used for many 67 

different objectives including 3D pose estimation,32 3D model generation,33 and analyzing features 68 

of gait.34 This open-source software automatically obtains joint coordinates of the individuals in 69 

the image or video, enabling the calculation of parameters of interest. In this technical note, we 70 

will describe our novel method using OpenPose 30,31 alongside beat analysis of music to quantify 71 

movement-music synchrony during salsa dancing. 72 

Methods 73 

 Our method quantifies how well a dancer’s steps synchronize with the downbeat of the 74 

music to which they are dancing. We used 1 webcam (Logitech Meetup35, 1920x1080 pixels, 30 75 

fps) 1 desktop computer (Windows PC), and computer speakers in this process.  A recreational 76 

salsa dancer (5 years experience) performed a solo basic salsa step continuously for 90 seconds to 77 

a salsa track while her movements and the salsa track (1411 Kbps) were recorded with the webcam. 78 

The method and analysis have four components: i) camera setup and video recording of salsa 79 

dancing, ii) tempo/downbeat analysis and waveform cleanup, iii) OpenPose estimation and data 80 

extraction, and iv) synchronization analysis. Figure 1 provides a visual summary of the data flow 81 

and interaction between these components. 82 

 83 
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Figure 1: 84 

 85 

Figure 1 – Workflow for salsa synchrony measure. Abbreviations: FL = Fruity loops; X = x coordinates, Y = y coordinates, C = 86 
confidence values. 87 
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Camera Setup and Video Recording of Salsa Dancing:  88 

 The webcam was positioned to capture the dancer’s whole body in a sagittal view and to 89 

avoided filming at an angle to reduce image distortion (dance video). This is important to avoid 90 

parallax error in lateral views.36 We also reduced visual background clutter and ensured the 91 

participant was well lit to avoid further information inaccuracies during OpenPose analysis. We 92 

placed the speaker playing the salsa track next to the microphone of the webcam to ensure 93 

consistency between audio waveforms of the salsa track and the dance video. We recorded audio 94 

on the same device as the video. Our participant performed a basic salsa step (Figure 2), 95 

continuously for 90 seconds under two conditions. In the synchronous condition, she danced on in 96 

time with the music. In the asynchronous condition, she intentionally danced out of time with the 97 

music. 98 

Figure 2: 99 

 100 

Figure 2 – Salsa Step Pattern. The positioning (represented by shoe prints) and direction (represented by arrows) of steps for the 101 
basic salsa step. The music counts on which each step occurs are listed above.  102 

Tempo/Downbeat Analysis and Waveform Cleanup: 103 

 Separate from the video recording of the salsa dancing, we analyzed the tempo of the salsa 104 

track with the free version of Fruity Loops (FL) Studio (Edition 20.6, Image Line Software, Ghent, 105 

Belgium) digital audio workstation (DAW) and its built-in tempo analysis. From this analysis, we 106 
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created a new audio track of audible beats matched to the salsa song (downbeat track). We used a 107 

tone for the audible beats with limited distortion to ensure a clean audio waveform for later 108 

analysis. We visually and aurally evaluated the downbeat track to ensure it aligned with the salsa 109 

track and exported the track as a .WAV file. 110 

 To clean up the audio waveforms recorded in the dance video as well as the song track for 111 

later analysis, we used FL Studio. We used the equalizer tool to cut all frequencies below 40Hz in 112 

both recordings to reduce background noise. We then used the multiband compressor tool to 113 

highlight high and low frequencies in the recordings to make the peaks and troughs of the 114 

waveforms more differentiable. We used a second equalizer tool to further boost relevant 115 

frequencies, followed by a limiter to prevent clipping the audio on the high end and distorting the 116 

waveform. Finally, we exported the mastered audio files as .WAV files for analysis. 117 

OpenPose Estimation and Data Extraction: 118 

  A public release of OpenPose (Version 1.5.0) was run on a Windows machine and used to 119 

analyze the dance video. Each frame of the dance video was processed to output a .JSON file 120 

containing the X and Y coordinates and confidence values for each of the 25 estimated keypoints 121 

(Figure 2). These files were then zipped into a single folder. To avoid working with many small 122 

files, the data from the .JSON files were extracted to a .CSV file using a Python script and ordered 123 

as a function of frame number. 124 

Footfall & Salsa Synchrony Analysis: 125 

The .CSV file created in Python was imported to MATLAB (Version 9.7, Mathworks, 126 

Natick, MA, USA) where the keypoints defined by OpenPose, and corresponding to the big toe of 127 

the left and right feet (keypoints 19 and 22 respectively37) were used to create a new table. All 128 

frames with confidence values under 20% were dropped and data was interpolated using 129 
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MATLAB’s interp138 function, then NaN values were interpolated using the inpaint_NaNs 130 

function39 with a plate equation and an interpolating operator of delta cubed. Data was then filtered 131 

with a lowpass filter (2nd order Butterworth with a cut-off frequency at 4 Hz) using the zero-phase 132 

filtering operation: filtfilt40 and normalized to -1,1 coordinates.  The time of each frame was 133 

derived from the frame number over the recording device’s frames per second rate. 134 

 The audio waveforms from the dance video, salsa track, and downbeat track were also 135 

imported into MATLAB and lowpass filtered (2nd order Butterworth with a cut-off frequency of 136 

0.707 Hz). Then, using MATLAB’s alignsignals41 function, the salsa track waveform was synced 137 

up to the video waveform. Based on the time difference between the two waveforms, the downbeat 138 

track waveform was aligned to match up to the video waveform. Utilizing MATLAB’s findpeaks42 139 

function, each peak of the downbeat track waveform was marked to represent the music’s 140 

downbeats. 141 

 Since the participant was recorded in a sagittal view most of the movement or interest was 142 

captured by the x-values. The peaks or troughs of the keypoint of interest’s X-value position were 143 

used to indicate foot strikes. Using MATLAB’s findpeaks42 function again, these peaks were 144 

found. We then overlaid the downbeat points onto the foot position data for a visual representation 145 

of movement synchrony as seen in Figure 3. Time, foot strike, and beats were combined into a 146 

single table and exported as an .XLS file for further analysis. Synchronization of the participant’s 147 

steps to the music was quantified by calculating the difference in time (seconds) between the 148 

occurrence of beats 1 and 5 of the music to the occurrence of the nearest right backward and left 149 

forward footfall events respectively (as described in Figure 2). These values were averaged for 150 

each foot over each of the two conditions (synchronous and asynchronous). 151 
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Figure 3 152 

 153 

Figure 3a/b – Plot of Estimated Synchronized & Asynchronized Left Foot Strikes against Downbeat 5. Black circles indicate 154 
downbeats, red stars indicate foot strikes, and blue lines indicate keypoint position. 155 
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Data Analysis: 156 

 The mean synchronization values for the right and left feet were each compared between 157 

the synchronous and asynchronous conditions using a two-sample t-test assuming unequal 158 

variances using Microsoft Excel.43 Statistical significance was set to 0.05.  159 

Results 160 

For the synchronous condition, 23.3% and 15% of the frames for keypoint 22 and 19 161 

respectively were removed due to low OpenPose confidence values and interpolated. For the 162 

asynchronous condition, 15.3% and 12.7% of the frames for keypoint 22 and 19 respectively were 163 

removed and interpolated. 164 

 Figure 3 illustrates the detected foot strikes and downbeats for the left and right feet in the 165 

synchronous and asynchronous conditions. The mean (standard deviation) synchronization value 166 

for the right foot was significantly lower in the synchronous condition (0.25(0.12) sec) than the 167 

asynchronous condition (0.86 (0.56) sec) (t(28) = -5.6418, p<0.001). Similarly, the mean 168 

synchronization value for the left foot was significantly lower in the synchronous condition (0.13 169 

(0.08) sec) than the asynchronous condition (0.91 (0.57) (t(27) = -7.0508, p < 0.001) 170 

Discussion 171 

 Using the OpenPose library alongside Python, MATLAB, and some basic audio production 172 

knowledge, we have developed a cost-efficient method for quantifying movement synchrony with 173 

music during salsa dancing. We were able to track and quantify a dancer’s movements while 174 

performing a basic salsa step. We then compared this information to the downbeats of the salsa 175 

song to which the dancer performed the movement to determine how close the timing of the salsa 176 

steps was to the downbeat of the song.  Being able to quantify movement synchrony while dancing 177 
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is useful for future work that will explore the relationship between the physical and psychosocial 178 

benefits of dance and the capacity for movement synchronization to music.  179 

 Potential problems that occur with our methods include background noise and low 180 

OpenPose keypoint confidence values. Due to this fact, our method uses audio waveforms to sync 181 

up the audio and video information, however, background noise can interfere with waveform 182 

analysis. We attempted to address this by positioning the speaker playing the salsa track as close 183 

as possible to the webcam recoding the dance video. Another concern is that confidence values for 184 

some keypoints can be very low depending on angles and the type of movement recorded. For 185 

example, these low confidence values can indicate a dropped frame or OpenPose confusing body 186 

parts. We attempted to address this by removing visual clutter in the frame, properly lighting the 187 

participant during trials, removing points with low confidence, and interpolating between the 188 

points with higher confidence.  189 

 OpenPose has already been used in gait analysis research.34,44,45 We believe that our work 190 

here adds to the research on using accessible and affordable deep-learning-based keypoint 191 

estimators in the analysis of complex movements such as dance.  192 
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