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Abstract  45 

Stomata are adjustable pores on leaf surfaces that regulate the trade-off of CO2 uptake 46 

with water vapor loss, thus having critical roles in controlling photosynthetic carbon 47 

gain and plant water use. The lack of easy, rapid methods for phenotyping epidermal 48 

cell traits have limited the use of quantitative, forward and reverse genetics to 49 

discover the genetic basis of stomatal patterning. A new high-throughput epidermal 50 

cell phenotyping pipeline is presented here and used for quantitative trait loci (QTL) 51 

mapping in field-grown maize. The locations and sizes of stomatal complexes and 52 

pavement cells on images acquired by an optical topometer from mature leaves were 53 

automatically determined. Computer estimated stomatal complex density (SCD; R2 = 54 

0.97) and stomatal complex area (SCA; R2 = 0.71) were strongly correlated with 55 

human measurements. Leaf gas exchange traits correlated with the dimensions and 56 

proportion of stomatal complexes but, unexpectedly, did not correlate with SCD. 57 

Genetic variation in epidermal traits were consistent across two field seasons. Out of 58 

143 QTLs in total, 36 QTLs were consistently identified for a given trait in both years. 59 

24 hotspots of overlapping QTLs for multiple traits were identified. Orthologs of 60 

genes known to regulate stomatal patterning in Arabidopsis were located within some, 61 

but not all, of these regions. This study demonstrates how discovery of the genetic 62 

basis for stomatal patterning can be accelerated in maize, a model for C4 species 63 

where these processes are poorly understood. 64 

 65 

INTRODUCTION 66 

Stomata are the adjustable pores on leaf surfaces that regulate gas exchange, most 67 

notably CO2 uptake and water vapor loss. The ratio of carbon gained to water lost is 68 

defined as water use efficiency (WUE), and represents arguably the most fundamental 69 

trade-off faced by land plants (Leakey et al., 2019). The pattern of stomata on the 70 

epidermis, and the dynamics of stomatal opening and closing, influence many 71 

important processes from food and energy production to global carbon and water 72 

cycling (Hetherington and Woodward, 2003). The accessibility of stomata on the plant 73 

exterior surface has also made them a model system for studying developmental and 74 

signaling processes (Blatt, 2000; Schroeder et al., 2001; Bergmann, 2004; Lawson et 75 

al., 2014; Torii, 2015). Consequently, there is significant potential for fundamental 76 

scientific discoveries about stomata to be leveraged for improvement of crop 77 

performance and sustainability through breeding or biotechnology (Yoo et al., 2010; 78 

Franks et al., 2015; Hughes et al., 2017; Caine et al., 2019; Lawson and Vialet‐79 

Chabrand, 2019; Harrison et al., 2020; McKown and Bergmann, 2020). 80 

Despite the accessibility and importance of stomata, assessing the patterning of 81 

epidermal cells has remained a laborious and time-consuming task for many decades. 82 

Most studies of stomatal patterning still rely on methods of imprinting or peeling the 83 

epidermis from live tissue, followed by light microscopy, and manual identification 84 

and measurement of cells in images (e.g. Biscoe, 1872; Caine et al., 2019; Vőfély et 85 

al., 2019). This limits the application of quantitative, forward and reverse genetics to 86 

understand the genes and processes that regulate stomatal patterning. And, it means 87 
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samples cannot be analyzed with sufficient throughput for stomatal patterning to be a 88 

target trait in modern crop breeding programs.  89 

Optical topometry (OT) is a rare example of a new methodology proposed to 90 

accelerate the acquisition of epidermal patterning data through rapid image 91 

acquisition. OT is a non-destructive method for use on fresh or frozen leaf samples, 92 

which requires no sample preparation beyond sticking a piece of leaf to a microscope 93 

slide with double-sided sticky tape (Haus et al., 2015). It gathers focused pixels across 94 

plains of the leaf surface in less than one minute per field of view. OT images have 95 

been manually counted to assess stomatal density responses to elevated [CO2] in 96 

Arabidopsis (Haus et al., 2018). But, an automated analysis pipeline is still needed to 97 

robustly capture within-species genetic variation in epidermal patterning from OT 98 

images with the fidelity required for genetic analysis. 99 

 There have been many attempts to address the phenotyping bottleneck for 100 

stomatal patterning through computer-aided image analysis. Classical image 101 

processing methods (Omasa and Onoe, 1984; Liu et al., 2016; Duarte et al., 2017) and 102 

machine learning models have been applied (Vialet-Chabrand and Brendel, 2014; 103 

Higaki et al., 2015; Jayakody et al., 2017; Saponaro et al., 2017;  Dittberner et al., 104 

2018; Toda et al., 2018; Bhugra et al., 2019; Sakoda et al., 2019; Aono et al., 2019; 105 

Fetter et al., 2019; Li et al., 2019). While a number of these methods have been 106 

demonstrated to work within constrained image sets, none of them have been widely 107 

adopted, even within a single species. Some of these tools require scanning electron 108 

microscopy (SEM), adding to the sample preparation and image acquisition burden 109 

(Aono et al., 2019; Bhugra et al., 2019; Fetter et al., 2019). Most existing tools are 110 

limited to identifying and phenotyping stomatal complexes. Adding the ability to 111 

measure pavement cells is valuable in its own right and also allows calculation of 112 

stomatal index (SI; i.e. the ratio of stomata number to all epidermal cell number given 113 

in unit leaf area). SI is a key trait because it is directly influenced by mechanisms that 114 

regulate epidermal cell fate and it is less sensitive to environmental influences than 115 

stomatal density (Royer, 2001). Therefore, developing an end-to-end pipeline for 116 

rapid acquisition and comprehensive analysis of epidermal cell patterning, and 117 

demonstrating its application in investigation of genetic variation in stomatal 118 

patterning, remains an important but elusive goal. 119 

In recent years, important progress has been made in studying the degree to 120 

which orthologs of stomatal patterning genes in Arabidopsis (Pillitteri and Torii, 2012) 121 

have conserved or novel functions in C3 grass species (Raissig et al., 2016; Hughes et 122 

al., 2017; Raissig et al., 2017; Yin et al., 2017; Hepworth et al., 2018; McKown and 123 

Bergmann, 2020). But, very little is known about the trait relationships and genetic 124 

control of stomatal patterning and iWUE in C4 species (Leakey et al., 2019). And, apart 125 

from a few notable examples (Cartwright et al., 2009; Campitelli et al., 2016; Raissig 126 

et al., 2017) quantitative genetics and forward genetic screens to identify putative 127 

regulators of stomatal patterning still have generally not met their potential to drive 128 

discovery of genotype-to-phenotype relationships. 129 
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Linkage mapping in barley, wheat, and rice has discovered QTLs that are 130 

associated with stomatal patterning traits (Patto et al., 2003; Laza et al., 2010; Liu et 131 

al., 2014; Liu et al., 2017; Sumathi et al., 2018), including some that co-localize with 132 

yield QTL (Shahinnia et al., 2016). But, the only reports of similar experiments in 133 

maize predate statistical techniques such as QTL mapping (Heichel, 1971). Maize is 134 

the most important crop in the world in terms of total production (USDA, 2019), with 135 

the Midwest U.S. producing approximately 27% of the global harvest (USDA-FAS, 136 

2020). Maize yield is limited by water availability, and increasingly sensitive to 137 

drought as a side effect of productivity increases resulting from improved breeding 138 

and management (Lobell et al., 2014). Conversely, increased maize production over 139 

recent decades has led to faster water cycling and regional cooling in Midwest U.S. 140 

(Alter et al., 2018). Therefore, improved understanding of the genetic basis for 141 

variation in stomatal traits in maize has implications for agricultural productivity, 142 

resilience and sustainability. And, maize is a highly tractable, model experimental 143 

system for crop genetics (Buckler et al., 2009).   144 

 In summary, the current study was motivated by the need for a tool to accelerate 145 

phenotyping of epidermal cell patterning, which could then be demonstrated by 146 

applying it to investigate the genetic architecture of stomatal patterning traits in maize. 147 

The desired characteristics of an end-to-end phenotyping pipeline are: (1) little to no 148 

sample preparation and quick image acquisition; (2) fast, accurate and robust 149 

detection of epidermal cells; and (3) the ability to extract the number, size and 150 

position of pavement cells as well as stomatal complexes. OT was tested as a data 151 

acquisition method from leaves that were stored frozen after being grown in the field. 152 

For epidermal cell detection, the recently developed Mask R-CNN model for object 153 

instance detection (He et al., 2017) was tested to treat stomata and pavement cells as 154 

two object classes, so that their position and size could be extracted simultaneously. A 155 

RIL population resulting from a B73 x MS71 cross was grown in two years in the 156 

field. Stomatal patterning was phenotyped along with leaf photosynthetic gas 157 

exchange and specific leaf area to investigate the genetic architecture of these 158 

important traits in a major crop and model C4 species. 159 

 160 

  161 
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RESULTS 162 

High throughput phenotyping pipeline for epidermal cells of maize 163 

A high throughput epidermal cell detection pipeline requires both efficient image 164 

acquisition and automatic cell detection (Fig. 1). Optical topometry (OT) allowed 165 

rapid, nondestructive imaging of leaf samples. Less than 1 minute was required from 166 

locating the portion of epidermis to be scanned to outputting a 3D topography surface 167 

layer with dimensions of 0.8mm x 0.8mm (e.g. Fig. 2A). Overall, 7033 fields of view 168 

were sampled from 1569 leaf samples collected over two field seasons, with scanning 169 

being completed in approximately 24 person days. The Mask-RCNN model 170 

automatically detected stomatal complexes as well as pavement cells, even though the 171 

latter varied greatly in their physical shape and size (Fig. 2). Analysis of a full image 172 

set for QTL mapping (~4000 images) was completed in approximately 120 h (Table 173 

1).  174 

 175 

Human validation of MASK R-CNN cell counts and stomatal complex size  176 

Variation among 6 trained human evaluators contributed a small portion of the 177 

variance within the dataset for both SCD (2%) and pavement cell density (PD; 6%) 178 

(Fig. S3). Variation among evaluators contributed a greater proportion of variance for 179 

stomatal complex width (56 %), stomatal complex length (23 %) and stomatal 180 

complex area (15 %). Nonetheless, uncertainty around the mean value of human 181 

measurements was low (expressed as standard error around plotted data in Fig. 3, A 182 

and B). There was no variance in estimates of cell density from Mask R-CNN when 183 

the same image was repeatedly submitted to the analysis pipeline, so no measure of 184 

technical variation could be expressed.  185 

The mean density of cells estimated by the group of human evaluators was very 186 

strongly correlated with computer estimation of both SCD (R2 = 0.97, p<0.0001; Fig. 187 

3A) and PD (R2 = 0.96, p<0.0001; Fig. 3B) and displayed very low bias from the 1:1 188 

line. The mean data from human evaluators were also highly significantly correlated 189 

with computer measurements for stomatal complex length (SCL; R2 = 0.81, p<0.0001; 190 

Fig. 4A), stomatal complex width (SCW; R2 = 0.54, p<0.0001; Fig. 4B) and stomatal 191 

complex area (SCA; R2 = 0.71, p<0.0001; Fig. 4C). All three traits were slightly 192 

underestimated by machine measurements relative to human measurements, with the 193 

absolute bias being greater for larger cells than small cells.  194 

To further evaluate sources of variation in stomatal patterning traits, six RILs 195 

were chosen that represented the range of SCD observed across the full mapping 196 

population in the 2016 growing season. All the images for those six RILs were then 197 

manually counted by five human beings as well as by machine. Variation around the 198 

genotype means derived from machine counts was similar or smaller than the 199 

variation resulting from using the mean of five expert evaluators as the input 200 

(expressed as standard error around plotted data in Fig. 3, C and D). Genotype mean 201 

values based on machine counts were very strongly correlated with best-estimates 202 
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from human evaluators for both stomatal complex density (R2 = 0.999, p<0.0001; Fig. 203 

3C) and pavement cell density (R2 = 0.998, p<0.0001; Fig. 3D), and had very little 204 

bias from the 1:1 line.  205 

 206 

Genotypic variation in traits within and across years 207 

Genotypic variation in stomatal patterning traits displayed good repeatability 208 

across growing seasons (Fig. 5). Genotype means were significantly correlated across 209 

the two years for all traits assessed with goodness-of-fit (R2) ranked from highest to 210 

lowest of: 0.70 for SCTA; 0.69 for SPI, 0.68 for SI, 0.64 for SCD; 0.64 PA; 0.60 for 211 

PD; 0.56 for SCL; 0.52 for SCLWR; 0.50 for SCA; 0.46 for SCW; 0.43 for PTA; and 212 

0.13 for SLA. 213 

Among the 198 RILs assessed over the two years, the relative range of stomatal 214 

patterning traits varied from more than 2-fold, i.e., 127% for SCD (59 to 134 mm-2) 215 

down to 29% for SCW (18.8 to 24.3 μm; Fig. S4). Specific leaf area (SLA) was 216 

significantly greater in 2017 (205 to 299 cm2g-1) compared to 2016 (139 to 220 217 

cm2g-1). In 2017, leaf photosynthetic gas exchange traits varied 2-4 fold among the 218 

192 RILs for the rate of CO2 assimilation (A), stomatal conductance (gs); the ratio of 219 

intercellular [CO2] to atmospheric [CO2] (ci/ca); and intrinsic water use efficiency 220 

(iWUE). The ranges of all trait values significantly exceeded the trait variation 221 

between the parent lines B73 and MS71 (Fig. S4). As expected, SCD and SI were 222 

significant lower in MS71 than B73. This corresponded with greater stomatal 223 

complex size in MS71 compared to B73 in terms of SCW, SCL and SCA. SCLWR 224 

was greater in MS71 than B73. In terms of leaf gas exchange, MS71 had lower gs, 225 

lower A, lower ci/ca and greater iWUE than B73 (Fig. S4). 226 

 227 

Trait relationships 228 

Correlation matrices for genotype means of stomatal patterning traits were very 229 

similar for data collected in 2016 (Fig. S5) and 2017 (Fig. 6). Therefore, the 230 

presentation of results here will focus on data from 2017, when anatomical traits were 231 

assessed alongside leaf photosynthetic gas exchange.  232 

There were numerous significant trait associations among anatomical stomatal 233 

patterning traits and also among leaf photosynthetic gas exchange traits. Genotypes 234 

with larger stomatal complexes tended to have larger pavement cells (SCA vs PA, r = 235 

0.45), which resulted in a positive correlation between SCD and PD as well (r = 0.66). 236 

SCD was negatively correlated with measures of stomatal complex size, including 237 

SCW (r = -0.2), SCL (r = -0.56) and SCA (r = -0.57). As SCD increased it was 238 

associated with a significant decrease in SCLWR (i.e., rounder or less elongated 239 

stomatal complexes, r = -0.31). But, PD was not significantly correlated with the 240 

shape of stomatal complexes, SCLWR (p = 0.16). With the majority of the epidermis 241 

occupied by pavement cells, the trade-off between density (PD) and size (PA) was 242 
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even stronger than for stomatal complexes (r = -0.91). After aggregating across the 243 

epidermis, SCTA was positively correlated with SCD (r = 0.82) and SI (r = 0.69) but 244 

was influenced in a mixed and weaker manner by stomatal complex size or 245 

proportions in terms of SCW (r = 0.19), SCL (r = -0.16), SCA (p = 0.88) or SCLWR (r 246 

= -0.24). Considering just cell identity, SI was more strongly correlated with variation 247 

in SCD (r = 0.62) than PD (r = -0.19). Meanwhile, there were strong positive 248 

correlations of gs with A (r = 0.83) and gs with ci/ca (r = 0.88). And a correspondingly 249 

strong negative correlation of gs with iWUE and (r = -0.91). There were weaker, but 250 

significant correlations between A and ci/ca (r = 0.59) and A and iWUE (r = -0.59). 251 

SLA was positively correlated with iWUE (r = 0.30) while being negatively correlated 252 

with A (r = -0.23), gs (r = -0.29) and ci/ca (r = -0.31). 253 

Examining structure-function relationships across trait categories, A, gs, ci/ca and 254 

iWUE were not significantly correlated with measures linked to the number or overall 255 

size of stomatal complexes (i.e. SCD, SCA or SCTA). However, traits including the 256 

component dimensions of stomatal complexes (i.e. SCL, SCLWR, and SPI) were 257 

negatively correlated with A, gs, and ci/ca and positively correlated with iWUE. And, 258 

SCW was positively correlated with A, gs, and ci/ca and negatively correlated with 259 

iWUE.  260 

 261 

Linkage mapping 262 

143 individual QTL were identified (Fig. 7, Table S1) in total for the 16 traits 263 

tested in 2016 (60 QTL) and 2017 (83 QTL). Almost half of these QTL were 264 

independently identified for the same trait in both years, providing greater confidence 265 

for significant genotype to phenotyping associations at 36 loci spread across every 266 

chromosome except chromosome 4. The percentage of phenotypic variance explained 267 

(PVE) by individual QTL was 8.2 % on average, with a maximum of 18.3 % for PA at 268 

Chr9A (Fig. 7, Table S1). For the anatomical stomatal patterning traits tested in both 269 

years, the number of QTL identified varied from five QTL for SCL and six QTL for 270 

SPI to 18 QTL for SI and 20 QTL for SCD (Fig. 7, Table S1). In comparison, one to 271 

three QTL were identified for each of the functional leaf photosynthetic gas exchange 272 

traits, which were only tested in 2017. Correspondingly, the total PVE by all the QTL 273 

for a given trait was greater for the anatomical stomatal patterning traits (51 % on 274 

average in 2017) than for the photosynthetic gas exchange traits (17 % on average in 275 

2017; Fig. S6). In addition, for the anatomical stomatal patterning traits, the total PVE 276 

was generally equivalent or greater in 2017 (51 % on average) than in 2016 (45 % on 277 

average, Fig. S6). The traits with the greatest total PVE (i.e. > 50%) were SI, SCA, 278 

SCD, SCTA and PA, although total PVE was >35 % for all anatomical traits. 279 

Many of the QTL for both anatomical and functional traits were located in 280 

clusters. 24 clusters were identified and named in sequence order (Fig. 7; Table S1; 281 

e.g. Chr1A – Chr1D for clusters on chromosome 1 based on their genetic position). 282 

The number of QTL in a cluster varied from two (Chr4A, Chr5C, Chr6C, Chr7C, 283 

Chr9C, Chr10B) to twelve (Chr6B). There are many examples of QTL co-localizing 284 
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for traits that are closely related. For example, SCL, SCLWR and SCA in cluster 285 

Chr2A or SCD, SCTA, SI and SPI in cluster Chr1B. Interestingly, only two clusters 286 

are limited to QTL from a single trait category of stomatal complex size traits, 287 

pavement cell traits, stomatal density and index traits or gas exchange traits. Cluster 288 

Chr4A contained QTL only for stomatal size traits and cluster Chr9C contained QTL 289 

only for pavement cell traits. The other 22 QTL clusters span at least two trait 290 

categories (Fig. 7; Table S1). The clusters Chr1C, Chr6A, Chr10A and Chr10B are 291 

notable for including overlapping QTL for both epidermal anatomy traits and 292 

photosynthetic gas exchange traits.  293 

When QTL were independently identified for the same trait in both years, the 294 

direction of the allelic effect was always consistent (Fig. 7; Table S1). Allelic effects 295 

were also generally consistent with the trait correlations previously reported. As 296 

examples, all allelic effects for QTL at a given locus had opposing directions for SCD 297 

versus SCA, or PA versus PD. However, the direction of allelic effects at any 298 

individual locus was generally, but not universally, predictable from the trait means of 299 

the parental lines. For example, the MS71 allele resulted in lower SCD at 10 of the 17 300 

loci where QTL for SCD were identified, as would be consistent with the lower trait 301 

mean for the MS71 inbred line versus B73 (Fig. 7; Table S1). And, the MS71 allele 302 

resulted in greater SCA at 7 of the 12 loci where QTL for SCA were identified, as 303 

would be consistent with the greater trait mean for the MS71 inbred line versus B73. 304 

Consistent with trait values for the parental lines, all of the statistically significant 305 

MS71 alleles resulted in lower gs relative to B73 alleles. In contrast to other QTL, 306 

MS71 alleles in cluster Chr1C were associated with lower gs and greater SD, 307 

highlighting the complexity of genetic control of these traits. 308 

 309 

  310 
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DISCUSSION 311 

Deep-learning has been proposed as a solution for a wide variety of applications 312 

in plant phenotyping (Ubbens and Stavness, 2017; Mochida et al., 2018; Singh et al., 313 

2018; Jiang and Li, 2020). Despite this promise and publication of a number of tools, 314 

no solution has been widely adopted to assess stomatal patterning. This study 315 

successfully met the goals of building, testing, and demonstrating the use of a 316 

high-throughput phenotyping pipeline, including automated image analysis by use of 317 

machine learning for stomatal patterning traits in a model C4 species. This was 318 

applied to two-years of samples taken from a field-grown RIL population to advance 319 

understanding of the genetic architecture and trait relationships of stomatal patterning 320 

and leaf photosynthetic gas exchange in maize. Understanding of genetic variation in 321 

stomatal development and function is particularly poor in C4 species. As such, the 322 

study addresses both technical and biological knowledge gaps that have been 323 

long-standing despite the considerable advances in understanding stomatal biology 324 

that have been made in recent years (Lawson and Vialet‐Chabrand, 2019; Harrison et 325 

al., 2020; McKown and Bergmann, 2020). 326 

 327 

High-throughput phenotyping pipeline for stomatal patterning traits  328 

Data Acquisition 329 

Optical tomography (OT) was an effective method for imaging the leaf epidermis 330 

of diverse maize lines (Fig. 2; Fig. S3). This proof-of-concept built upon previous 331 

applications in individual genotypes of Arabidopsis (Haus et al., 2018), tobacco 332 

(Głowacka et al., 2018) and other dicot species (Haus et al., 2015). Each field of view 333 

could be acquired in less than 1 minute, so sampling four or five fields of view per 334 

leaf allowed 60 leaves to be comfortably screened with a single microscope in a 335 

standard 8-hr work day. This was more efficient and less arduous than our experience 336 

of taking leaf impressions or epidermal peels.  337 

Data describing 11 different traits related to stomatal patterning were all 338 

significantly correlated across the two growing seasons, despite variation in the 339 

growing environment in the field (Fig. 5; Fig. S2). And, this led to consistent findings 340 

on trait relationships and the genetic architecture of stomatal traits across the years 341 

(Figs. 6, 7, S6).  342 

Image Analysis 343 

The Mask R-CNN machine learning tool was successfully trained to 344 

automatically locate cells, identify cell classes, segment boundary coordinates and 345 

extract density and size traits for stomata as well as pavement cells of maize leaf 346 

epidermis. Automatic image analysis was more than 100 times faster than manual 347 

measurement of all traits (Table 1). Correlations between the number of stomata and 348 

pavement cells identified and counted by the computer versus expert humans were very 349 

strong (r2 > 0.96) and showed little bias (Fig. 3A,B). This reflected robust predictions 350 
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across a range of cell morphologies and image qualities, including for partial cells on 351 

image edges, and pavement cells above veins (Fig. S7). A second validation step that 352 

analyzed all available images for six genotypes that represented the range of SCD and 353 

PD in the RIL population suggests the variance is mainly coming from biological 354 

replicates, instead of technical errors (Fig. 3C,D). So, the pipeline produced equivalent 355 

or higher quality data much more rapidly.  356 

Correlations between computer generated estimates and human assessment of 357 

traits describing stomatal complex size were also highly significant (Fig. 4). This 358 

aided detection of consistent results across seasons (Fig. 5), and was achieved despite 359 

the additional challenge of stomatal size varying less across the RIL population 360 

(~50%) than SCD (>100%). Nonetheless, accurate and precise estimation of stomatal 361 

size, and SCW in particular, pushed the limits of image resolution when data were 362 

collected with the 20X objective lens used in this study. While this approach did allow 363 

many QTL and trait relationships to be identified, additional imaging using higher 364 

magnification lenses to deliver greater resolution from the OT will likely deliver 365 

further gains in phenotyping of these traits.  366 

The pipeline represents a valuable technical advance because previously published 367 

automatic stomatal detection and counting algorithms: (1) used data that was collected 368 

by slow and laborious methods (e.g. Aono et al., 2019; Bhugra et al., 2019; Sakoda et 369 

al., 2019); (2) were limited to detecting stomata and not pavement cells (e.g. Dittberner 370 

et al., 2018; Fetter et al., 2019; Li et al., 2019; Sakoda et al., 2019); (3) did not achieve 371 

the same accuracy (e.g. Duarte et al., 2017; Saponaro et al., 2017; Bourdais et al., 372 

2019); or (4) were demonstrated to work only within the constrained variation of a 373 

limited sample set, which did not include demonstrated applicability for quantitative 374 

genetics (e.g. Aono et al., 2019; Fetter et al., 2019; Li et al., 2019). While previous 375 

studies achieved these goals individually, combining these features resulted in a tool 376 

that could be applied to addressing knowledge gaps about the genetic architecture of 377 

SCD and SI in maize.  378 

The independent application of the same tool to stomatal counting in grain 379 

sorghum suggests that, with the appropriate training, it has the flexibility and power to 380 

be widely applicable (Bheemanahalli et al., in review). But, as with all machine 381 

learning solutions to image analysis, there are significant questions about the context 382 

specificity of the model used. In the current study, the focus was on development of a 383 

method that was robust across a RIL population of a model C4 grass species, which 384 

included significant variation in many patterning traits but was also subtle relative to 385 

large datasets that span many species (Sack et al., 2003). Additional work will be 386 

needed to test if new models need to be trained for each individual mapping 387 

population or species of interest. One option may be transfer learning methods (Singh 388 

et al., 2018) to accelerate the development of machine learning models for new 389 

species or even a generic model. Even if this is not possible, training the Mask 390 

R-CNN tool required relatively few training instances (33 images containing roughly 391 

2000 cells for stomatal traits and 9000 cells for pavement cell traits). So, building new 392 

models for different applications should be a tractable goal.  393 
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 394 

Trait variation across the RIL population and years 395 

SCD of maize B72 x MS71 RILs showed a similar range to intraspecific variation 396 

in faba bean (Khazaei et al., 2014), wheat (Schoppach et al., 2016;  Shahinnia et al., 397 

2016), Arabidopsis (Dittberner et al., 2018) and rice (Kulya et al., 2018; Laza et al., 398 

2010). Mean SCD and SCL of the RIL population were very similar to the abaxial 399 

trait values for maize and in the mid-range of a diverse set of species previously 400 

reported by (McAusland et al., 2016). Therefore, maize does not represent an unusual 401 

extreme in terms of epidermal phenotype. Thus, the methods and biological 402 

discoveries here may relate to other species. Although, further comparative work is 403 

needed as grass epidermal patterning is distinct from that of dicots, and C4 species 404 

may be expected to differ from C3 relatives as a result of broader differences in leaf 405 

development and function associated with Kranz anatomy and associated biochemical 406 

specialization (Larkin et al., 1997).  407 

The temperature of the 2017 growing season was similar to 2016, but there was 408 

~43 % less precipitation (Fig S2). While this would normally be expected to drive 409 

plasticity in stomatal patterning traits, irrigation was applied to avoid plant drought 410 

stress in 2017. Consistent genetic variation in stomatal patterning traits between the 411 

two years suggests that these traits are, at least, moderately heritable (Fig. 5). SLA 412 

differed between years, probably as a result of harvesting material directly from the 413 

field in 2016 (low SLA due to high non-structural carbohydrate content) versus after 414 

leaves had been held in the lab for photosynthetic gas exchange measurements in 415 

2017 (higher SLA after starch reserves were respired under low light conditions in the 416 

laboratory). Nonetheless, genetic variation in SLA was correlated across years and 417 

relationships between SLA and other traits were similar across years. Therefore, the 418 

resulting data for all traits should be highly amenable for studying trait relationships 419 

and QTL mapping. Getting such information under mesic conditions without 420 

significant drought stress is valuable because it reduces the likelihood of complex 421 

plant-environment interactions that can complicate investigation of genetic variation 422 

in iWUE and associated traits (Leakey et al., 2019).  423 

 424 

Trait relationships 425 

For the maize B73 x MS71 RIL population, leaf photosynthetic traits and 426 

stomatal patterning traits clustered into largely separate groups within which many 427 

traits were correlated (Fig. 6). But, there were relatively few correlations between 428 

stomatal patterning traits and leaf photosynthetic traits. Most notably, while the 429 

classic trade-off between SCD and SCA was observed, there was no significant 430 

correlation between SCD or SCA and gs or any other gas exchange trait. This 431 

contrasts with the widely held expectation that greater gs will be associated with larger 432 

numbers of smaller stomata (Dow et al., 2014; Faralli et al., 2019). This expectation is 433 

strongly grounded in theory and data from broad fossil-based comparisons over 434 
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phylogenetic space and geological time (Franks and Beerling, 2009). Significant 435 

relationships between SCD and water fluxes have also been observed in experiments 436 

on intraspecific variation in sorghum (Muchow and Sinclair, 1989), rice (Panda et al., 437 

2018), and barley (Miskin et al., 1972). But, there are also a number of studies where 438 

SCD was not correlated with gs in wheat (Liao et al., 2005), rice (Ohsumi et al., 2007), 439 

and barley (Jones, 1977). This discordance among studies, and the relatively weak 440 

nature of the relationship between SCD and gs that is observed when it does occur 441 

within species, indicates how incompletely these structure-function relationships are 442 

understood. Therefore, the high-throughput phenotyping methods presented here, 443 

which can allow analysis across more and different types of genetic variation, will be 444 

valuable. One benefit of testing trait relationships within a RIL population is that the 445 

recombination of parental alleles resulting from making crosses breaks up gene 446 

linkage that can result from selection and underlie trait relationships, providing a 447 

more direct test of the biophysical basis for trait relationships (Des Marais et al., 448 

2013). 449 

It was assumed that the dimensions of stomatal complexes provided information 450 

about the maximum size of stomatal pores, based on previous reports for C4 grasses 451 

(Taylor et al., 2012) and tomato (Fanourakis et al., 2015). Significant correlations 452 

were observed between leaf gas exchange traits and SCL, SCW and SCLWR (Fig. 6). 453 

Even though there was no relationship between gs and overall SCA, greater gs was 454 

associated with stomatal complexes being wider and shorter. This would be consistent 455 

with the morphology of the stomatal pore and/or the guard cells and subsidiary cells 456 

that surround it playing an important role in determining steady-state gas fluxes 457 

(Harrison et al., 2020). And, it suggests that the structure-function relationships of 458 

stomatal size-WUE in C4 species may parallel those previously reported in 459 

Arabidopsis (Des Marais et al., 2014; Dittberner et al., 2018). But, the influence of 460 

these traits on steady-state gas exchange is much less well understood than its 461 

influence on the dynamics of stomatal opening and closing (McAusland et al., 2016). 462 

It is also possible that trade-offs between stomatal density, stomatal size and the 463 

extent of stomatal opening mean that accurate predictions of gs are possible only 464 

when all three of these traits are accounted for. It is also possible that variation in 465 

stomatal patterning between abaxial and adaxial leaf surfaces influenced gs in a way 466 

that was not captured in the dataset on abaxial traits reported here. But, there are 467 

approximately 50% more stomata on the abaxial surface, so it should exert more 468 

influence. And, SI of the two leaf surfaces are correlated across diverse maize inbred 469 

lines (Michael Mickelbart, pers. comm.).  470 

Understanding the basis for genetic variation in iWUE is important because of the 471 

benefits to crop productivity, sustainability and resilience that result from improving 472 

this key resource use efficiency (Leakey et al., 2019). Greater iWUE was strongly 473 

associated with lower gs and more weakly associated with lower A (Fig. 6). This was 474 

consistent with studies on sorghum (Kapanigowda et al., 2013; Fergsuson et al., in 475 

review) and switchgrass (Taylor et al., 2016), although the strength of the correlations 476 

in maize were significantly stronger. And, it supports the notion that selection for low 477 
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gs without equivalently large decreases in A may be an approach to improving iWUE 478 

(Leakey et al., 2019). Of all the stomatal patterning traits, SCLWR had the strongest 479 

correlation with iWUE (r = 0.28). It meant that longer, narrower stomatal complexes 480 

were associated with lower gs and greater iWUE (Fig. 6). While this explained only a 481 

modest proportion of variation in iWUE, it was equivalent to the strength of the 482 

relationship between each of the leaf gas exchange traits and SLA, which is widely 483 

recognized as a key component of the leaf economic spectrum across broad 484 

phylogenetic space (Wright et al., 2004) as well as for C4 grasses (Atkinson et al., 485 

2016). SCLWR was not associated with variation in PD, PA or PTA (Fig. 6). This 486 

opens up the possibility that this apparently important trait might be manipulated by 487 

breeding or biotechnology with minimal unpredictable side effects on epidermal 488 

patterning in general. However, the detailed information on epidermal cell allometry 489 

provided by the OT images and machine learning algorithm used in this study does 490 

also reveal complex relationships among cell types on the leaf surface. For example, 491 

PA and SCA are positively correlated, as are SCD and PD (Fig. 6). And, this is 492 

consistent with genetic variation in cell size being general in nature across the two 493 

major classes of epidermal cells types. However, this occurs at the same time as the 494 

tradeoff between SCD and SCA. So, a decrease in SCD appears to coincide with a 495 

compensatory increase in PA to fill the available space rather than an increase in PD. 496 

And, while SCL and SCW both drive variation in SCA, they are not correlated with 497 

each other, and they have opposing relationships with SI, SPI, SLA and the gas 498 

exchange traits (Fig. 6). Evaluating how stomatal complex size and proportion varies 499 

when SCD is manipulated transgenically may help reveal the key interdependencies 500 

between traits. 501 

 502 

QTL mapping 503 

Of 60 QTL identified in 2016 and 83 QTL identified in 2017, 36 were 504 

consistently observed in both years (Fig. 7). Additionally, 24 hotspots of overlapping 505 

QTLs for multiple traits were identified. The number and strength of QTL identified 506 

for leaf gas exchange traits (1-3 QTL per trait in a single experiment) were similar to 507 

previous studies of those traits (Hervé et al., 2001; Teng et al., 2004; Pelleschi et al., 508 

2006). In contrast, a greater number of QTL were identified for many of the stomatal 509 

patterning traits (e.g. PD – 7, SI - 10, SCA – 10, SCD – 12, SCTA – 7 QTL in a single 510 

experiment) than in previous studies (Vaz Patto et al. 2003, Hall et al. 2005, Laza et al. 511 

2010, Schoppach et al. 2016, Shahinnia et al. 2016, Liu et al. 2017, Sumanthi et al. 512 

2018, Delgado et al. 2019; Prakash 2020). This larger number of significant QTL was 513 

linked to more small effect QTL (PVE < 10%) being successfully identified. This was 514 

unlikely to be the result of false positives because of the consistency in results across 515 

the two years of experimentation. This is valuable given the broad evidence 516 

suggesting that these stomatal patterning traits are likely to be polygenic, with 517 

multiple small effect alleles combining to drive phenotypic variation (Schoppach et al., 518 

2016; Shahinnia et al., 2016; Dittberner et al., 2018; Bheemanahalli et al., in review; 519 

Ferguson et al., in review). 520 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.10.09.333880doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.09.333880


 

 14

 Many genes have been implicated in the network regulating cell fate during the 521 

differentiation of the epidermis, and therefore stomatal patterning (Pillitteri and Torii, 522 

2012; McKown and Bergmann, 2020). While QTL intervals are too large to allow the 523 

causal genes underlying the genotype-phenotype association to be identified, it was 524 

possible to determine whether QTL did or did not overlap with the locations of known 525 

stomatal developmental genes in maize or orthologs of known stomatal patterning 526 

genes in Arabidopsis (Table S1). Focusing on the genomic locations where genotype 527 

to phenotype associations were identified with greatest overall confidence reveals that 528 

orthologs of known stomatal patterning genes were found within the genomic regions 529 

of 16 of the 24 QTL clusters identified in this study. For example, an ortholog of 530 

EPIDERMAL PATTERNING FACTOR 2 (EPF2, GRMZM2G051168) and Pangloss1 531 

(PAN1, GRMZM5G836190) were co-located within 1 cM of the most significant 532 

markers for SCD, PA, ci/ca and gs in cluster Chr1C (Table S1). PAN1 regulates 533 

subsidiary mother cell divisions (Cartwright et al., 2009), while EPF2 is a negative 534 

regulator of the number of stomata (Hara et al., 2009). QTL cluster Chr10A 535 

co-localized with the maize ortholog of Arabidopsis A2-type cyclin CYCA2;1 536 

(GRMZM5G879536). RNAi knock-down of OsCYCA2;1 in rice led to significantly 537 

reduced stomatal production, but did not disrupt guard mother cell division, as was 538 

the case in Arabidopsis (Vanneste et al., 2011; Qu et al., 2018). If confirmed, the 539 

involvement of these genes, and others in Table S1, in regulating stomatal patterning 540 

in maize would be consistent with the notion that the same set of genes regulates cell 541 

fate to control stomatal patterning in dicots and monocots, but the roles of individual 542 

genes within the network have been modified over the course of evolutionary time 543 

(Raissig et al., 2016; Raissig et al., 2017; Wu et al., 2019). At the same time, the 544 

identification of multiple high confidence QTL that do not overlap with existing 545 

candidate genes also suggests the possibility that additional genes regulating stomatal 546 

patterning remain to be discovered and high-throughput phenotyping of stomatal 547 

patterning could aid in their discovery.  548 

 The discovery of multiple QTL for many stomatal patterning traits suggests that 549 

the goal of reducing gs and improving iWUE by reducing SCD or increasing SWLCR 550 

could be achieved through breeding to combine alleles that would result in more 551 

extreme trait values than were found in either of the parental inbred lines. This is 552 

particularly the case when not all MS71 alleles were associated with, for example, 553 

lower SD. Further work is needed to test that possibility and also to determine 554 

whether overlapping QTL within clusters are multiple loci in linkage versus the 555 

pleiotropic effects of a single locus.  556 

Conclusion 557 

This study presents an end-to-end pipeline for high-throughput phenotyping of 558 

stomatal patterning. New insights were generated on trait relationships within and 559 

between stomatal anatomical features and leaf photosynthetic gas exchange. And, the 560 

genetic architecture of stomatal patterning and leaf gas exchange traits was 561 

characterized in detail. These insights lay the ground work to: (1) apply the 562 

high-throughput phenotyping pipeline to other experiments taking quantitative 563 
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genetics, reverse genetics or forward genetics approaches; and (2) further investigate 564 

the physiological and genetic basis for variation in stomatal development, stomatal 565 

conductance and iWUE in C4 species, which is poorly understood despite the 566 

agricultural and economic significance of these crops.  567 

 568 

MATERIALS AND METHODS 569 

Plant material and sampling  570 

Field experiments were done on the University of Illinois at Urbana-Champaign 571 

South Farms in Savoy, IL (40°02′N, 88°14′W). Seeds were planted on May 24th in 572 

2016 and May 17th in 2017 with a planting density of 8 plants/m and row spacing of 573 

0.76 m. The crop was grown in rotation with soybean and received 200 kg/ha of 574 

nitrogen fertilizer. A population of recombinant inbred lines (RILs) derived from a 575 

B73 × MS71 cross was grown, with 197 RILs planted in 2016 and 192 RILs plus the 576 

parental lines planted in 2017. This population is a subset of the maize Nested 577 

Association Mapping (NAM) population (Yu et al., 2008) and was selected as a result 578 

of the parent lines having low (MS71) and moderate (B73) SCD compared to the other 579 

inbred founder lines in an initial screen performed at the same field site (Fig. S1). Seeds 580 

were obtained from the Maize Genetics Cooperation Stock center (University of 581 

Illinois Urbana-Champaign). In 2016, four replicate plants were sampled at random 582 

from within the middle portion of nursery rows, which were also self-fertilized for 583 

seed production. In 2017, a randomized complete block design was used with two 584 

blocks, each containing a replicate plot for each RIL and 6 replicate plots for each 585 

parental line. Two sub-samples were collected from separate plants in all replicate 586 

rows. In 2017 the field was equipped with drip tape and irrigation was applied 587 

uniformly across all genotypes whenever early signs of drought stress were observed. 588 

Temperature and precipitation were recorded by the Water and Atmospheric 589 

Resources Monitoring Program (Fig. S2). (Illinois Climate Network. 2019. Illinois 590 

State Water Survey, 2204 Griffith Drive, Champaign, IL 61820-7495. 591 

http://dx.doi.org/10.13012/J8MW2F2Q.)  592 

In both years, measurements were taken on the second leaf beneath the flag leaf 593 

following anthesis. In 2016, collection of leaf samples for phenotyping epidermal cell 594 

patterning and specific leaf area (SLA) was done in the field. In 2017, tissue sampling 595 

was performed after photosynthetic gas exchange measurements were done on the 596 

leaves. To allow for this, leaves were cut early in the morning at the base of the leaf 597 

blade distally adjacent to the ligule. Cut ends were then submerged in buckets of 598 

water and transported to the laboratory. The leaves were then re-cut under water and 599 

remained in 50 ml tubes of water during measurements of gas exchange and tissue 600 

sampling.  601 

 602 

Epidermal Image acquisition 603 
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To phenotype epidermal cell patterning, ~0.5 cm-wide strips were excised from 604 

the margin to the mid-rib at a point halfway along the length of a leaf using scissors. 605 

Samples were immediately stored in a 2 ml tube, flash frozen in liquid nitrogen, and 606 

stored at -20 ˚C. Leaves were flattened and stabilized onto glass slides with 607 

double-sided tape immediately prior to imaging. Abaxial surfaces were imaged with a 608 

Nanofocus μsurf Explorer Optical Topometer (Oberhausen, Germany) at 20X 609 

magnification with 0.6 numerical aperture. The topography layer was constructed by 610 

stacking all the focused pixels across planes of the Z axis. Output images were 0.8mm 611 

x 0.8mm on x and y axes (512 x 512 pixels). Five fields of view were scanned on each 612 

leaf sample in 2016 and four fields of view were scanned on each leaf sample in 2017. 613 

Fields of view were arranged equidistantly along a latitudinal transect from the leaf 614 

edge to mid-rib. Sample loss or poor sample quality resulted in incomplete replication 615 

for 22 RILs in 2016 and 2 RILs in 2017. Therefore, in total, 3785 images were in the 616 

2016 dataset and 3248 images were in the 2017 dataset (Fig. 1A). 617 

The 3D topographic layer (Fig. 2A) was input into Nanofocus μsurf analysis 618 

extended software (Oberhausen, Germany) for image processing as follows: first, 619 

non-measured points were filled by a smooth shape calculated from neighboring 620 

points. A Robust Gaussian filter with cut-offs of 200μm, 100μm and 100μm were 621 

applied in sequence (Fig. 2B). Then, a Laplacian filter with a 13x9 pixel kernel size 622 

was implemented (Fig. 2C) before applying another Robust Gaussian filter with a 623 

cut-off of 80μm. The final 3D layer was then flattened to 2D in grey scale with auto 624 

optimization for luminosity and contrast enhancement.  625 

 626 

Mask R-CNN Model training  627 

Twenty four images were initially randomly selected for training the mask 628 

R-CNN model for object instance segmentation. Subsequently, nine additional images 629 

of pavement cells that overlie minor veins were added to the training set to improve 630 

the detection accuracy for these cells. Each stomatal complex and pavement cell was 631 

traced as an object instance using VGG Image Annotator (VIA) (Dutta and Zisserman, 632 

2019). A JavaScript Object Notation (.json) file was generated for each image to 633 

record the coordinates for all instance masks within that image. Json files of 26 634 

randomly selected images were pooled to form the training set, and 7 images were 635 

pooled into a validation set (i.e. approximately 11,000 unique cells used for model 636 

training; Fig. 1A). A Mask R-CNN repository built by Matterport Inc. on GitHub 637 

(Waleed, 2017) was used for training on a customized PC with a GeForce GTX 1080 638 

Ti graphics processing unit and 32G of RAM. Model training was based on the 639 

ResNet-101 backbone with pretrained weights from the COCO dataset (Lin et al., 640 

2014) with 50 epochs of 100 steps. The learning rate, learning momentum, and weight 641 

decay was 0.001, 0.9, and 0.0001, respectively. All images were flipped horizontally 642 

and vertically for augmentation. The process taken by Mask R-CNN to make 643 

predictions on the instances, size and shape of pavement and stomatal cells is 644 

summarized in Fig. 1B. 645 
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 646 

Epidermal cell detection, trait extraction and evaluation 647 

The model built during the training process was applied to the detection of cells 648 

in the entire image dataset, using the same software and hardware configurations. 649 

Instance coordinates and cell type predictions saved by Mask R-CNN model as 650 

individual csv files were inputted into R for epidermal trait extraction. The number of 651 

stomatal complex and pavement cells within each image were derived as the number 652 

of instances detected for these two separate classes and they were standardized by 653 

image area to get stomatal complex density (SCD) as well as pavement cell density 654 

(PD). The areas of complete, individual stomatal complexes and pavement cells were 655 

calculated based on the boundary coordinates using the splancs package (version 656 

2.01-40). To derive the stomata complex length (SCL) and width (SCW), an ellipse 657 

was first fitted to each stomatal complex using MyEllipsefit package (version 0.0.4.2). 658 

Stomatal complex width and length were calculated as doubling the radius along the 659 

minor and major axis, respectively (Fig. 2G). Total stomatal pore area index (SPI; 660 

Sack et al., 2003) is the product of stomatal complex density (SCD) and stomatal 661 

complex length (SCL) squared. Stomata index (SI) is the number of stomata divided 662 

by the total number of epidermal cells. The Imager package (version 0.41.2) and 663 

magick package (version 2.0) were used to label cells and cell boundaries on detection 664 

output images for better visualization.  665 

For validation of SCD and PD, a group of people received training on stomata 666 

and pavement cell recognition and reached consensus on the criteria. Two sets of 667 

images that were not part of the training dataset were then manually assessed (Fig. 668 

1A). First, six people each manually measured 100 images selected at random from 669 

the 2016 and 2017 data. Second, five people each manually measured all images for 670 

six genotypes, chosen to represent the range of observed epidermal cell densities, 671 

selected from the 2016 dataset. Manual counting was done in Image J 1.8.0 672 

(Schneider et al., 2012) using the multi-point tool. To validate predictions of stomatal 673 

size traits by Mask R-CNN, 6 humans each manually measured the same 5 stomatal 674 

complexes in each of 42 randomly selected images that were not part of the training 675 

dataset (Fig. 1A 676 

Leaf photosynthetic gas exchange and SLA 677 

In 2017, photosynthesis and stomata conductance were measured using four 678 

LI-6400 portable photosynthesis systems incorporating an infrared gas analyser 679 

(IRGA) (LI-COR, Lincoln, NE, USA) that were run simultaneously using the protocol 680 

of Choquette et al. (2019). 4 leaf disks were sampled using a leaf punch from the 681 

same leaf sampled for stomata scanning. Leaf disks were dried in an oven at 60 ˚C 682 

before being weighed on a precision balance (Mettler Toledo XS205, OH, USA). SLA 683 

(cm2g-1) was calculated as the area for leaf punch divided by the mean leaf disk 684 

weight.  685 

 686 
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Statistical analysis 687 

All statistical analysis was performed in R (version 3.6.0, 688 

https://www.r-project.org). Pearson correlations were performed and visualized using 689 

corrplot package (version 0.84).  690 

The genetic map for B73 x MS71 population consists of 1478 SNPs distributed 691 

across all 10 chromosomes of maize (McMullen et al., 2009). SNP data were 692 

available as part of the Maize Diversity Project (https://www.panzea.org). Markers 693 

were phased and imputed to a density of 1 centiMorgan (cM) resolution. Quantitative 694 

trait loci (QTL) mapping for two years was done separately and performed in R for 695 

each individual trait using the stepwiseqtl function with Haley-Knott algorithm from 696 

package qtl (Broman et al., 2003) to create a multiple QTL model. A multi-locus 697 

model was generated using the stepwise forward selection and backward elimination. 698 

The Logarithm of the odds (LOD) penalties for QTL selection were calculated using 699 

the scantwo function with 1000 permutations for each trait at significance level of 700 

0.05. Following Dupuis and Siegmund (1999) and Banan et al. (2018), 1.5-LOD 701 

support intervals were used for each QTL hit. Co-localized QTL were grouped into 702 

“clusters” based on their mapping to same or neighboring markers where confidence 703 

intervals overlapped. The few QTL with very large confidence intervals (>50 cM), 704 

were excluded from clusters. Clusters were named in sequence order (Fig. 7; Table S1; 705 

e.g. Chr1A – Chr1D for clusters on chromosome 1 based on their genetic position). 706 

Maize 5b gene model coordinates and annotations were both downloaded from 707 

MaizeGDB (https://www.maizegdb.org).  708 
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Table 1. Time investment approximations for epidermal cell detection and trait 

extractions comparing manual measurements versus automated detections.  

    SCD, Stomatal complex density; SCA, stomatal complex area; PD, pavement 

cell density; PCA, pavement cell area; h, hours. Estimations were done on 20X 

magnification maize abaxial images (0.8mm x 0.8mm) for a mapping population 

with 200 lines, 4 replications and 5 leaf level sub-samples (4000 images). 

Asterisk designates time estimation for all traits combined. 

Trait 
Manual measurement 

for each image 

Manual measurement 

for mapping 

population with 200 

lines 

Automated phenotyping 

for mapping population 

with 200 lines 

SCD 2 min 133 h 

120 h
*
 

SCA 1 h 4,000 h 

PD 8 min 533 h 

PA 3 h 12,000 h 

 724 

 725 

 726 

 727 

 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

Figure Legends 742 
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FIGURE 1. Workflow of data collection, model training, model prediction, human 743 

validation and experimental data analysis used to phenotype epidermal cell patterning 744 

traits (A). Summary of pipeline used by Mask R-CNN to analyze images captured by 745 

optical tomography for stomata and pavement cell detection. Image example was 746 

truncated from standard image. 747 

FIGURE 2. Example steps in the process of analyzing an optical tomography image 748 

for epidermal cell patterning, including: the 3D topography image layer extracted 749 

from raw filers output by the optical topometer (A); flattening by use of Robust 750 

Gaussian filters (B); contrast enhancement by use of a Laplacian filter (C); prediction 751 

of cell instances by Mask R-CNN (D, E, F, G). Cell related traits were calculated and 752 

extracted based on cell boundary coordinates, with boundary and centroid labeled for 753 

better visualization (E). Zooming in shows stomata were labeled with white centroids 754 

while pavement cells were labeled with black centroids (F). Cells that were cut off on 755 

image edges were tagged with triangles and were excluded in estimation of average 756 

cell size. Ellipses were fit to stomatal complexes, with width and length calculated as 757 

the lengths of minor and major axis of the ellipse (red lines; G).  758 

FIGURE 3. Scatterplots of stomatal patterning traits comparing data measured by 759 

humans versus data measured by the computer using MASK R-CNN: stomatal 760 

complex density (A,C); and pavement cell density (B,D). Plotted data describe 100 761 

randomly selected optical tomography images from the B73 x MS71 maize RIL 762 

population with error bars showing the standard error of technical variation among six 763 

expert human evaluators on each individual image (A,B) or genotype means for 6 764 

RILs selected to represent the range of observed trait values in the population with 765 

error bars showing the standard error of biological variation among replicates based 766 

on the mean of predictions from six expert human evaluators or computer predictions 767 

using MASK R-CNN (C,D). There is no variance among predictions by MASK 768 

R-CNN when it is presented with a given image multiple times. The line of best fit 769 

(red line) and 1:1 line (black dashed line) are shown along with the correlation 770 

coefficient (r2).  771 

FIGURE 4. Scatterplots of stomatal complex length (A), stomatal complex width (B)  772 

and stomatal complex area (C) comparing data measured by humans versus data 773 

measured by the computer using MASK R-CNN: Plotted data describe 210 stomatal 774 

complexes (5 each from 42 images) randomly selected from the B73 x MS71 maize 775 

RIL population with error bars showing the standard error of technical variation 776 

among six expert human evaluators on each individual image. There is no variance 777 

among predictions by MASK R-CNN when it is presented with a given image 778 

multiple times. The line of best fit (red line) and 1:1 line (black dashed line) are 779 

shown along with the correlation coefficient (r2).  780 

FIGURE 5. Scatterplots of stomatal complex density (SCD, A), stomatal complex 781 

width (SCW, B), stomatal complex length (SCL, C), stomatal complex area (SCA, D), 782 

stomatal complex total area (SCTA, E), stomatal complex length to width ratio 783 

(SCLWR, F), pavement cell density (PD, G), pavement cell area (PA, H), pavement 784 
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cell total area (PTA, I), stomatal index (SI, J), stomatal pore area index (SPI, K), 785 

specific leaf area (SLA, L) comparing genotype means for 191 maize B73 x MS71 786 

RILs grown during the 2016 versus 2017 field seasons. The line of best fit (black line), 787 

correlation coefficient (r2) and associated p-value are shown.  788 

FIGURE 6. Correlation matrix for stomatal complex density (SCD), stomatal complex 789 

width (SCW), stomatal complex length (SCL), stomatal complex area (SCA), 790 

stomatal complex total area (SCTA), stomatal complex length to width ratio 791 

(SCLWR), pavement cell density (PD), pavement cell area (PA), pavement cell total 792 

area (PTA), stomatal index (SI), stomatal pore area index (SPI), specific leaf area 793 

(SLA), rate of photosynthetic CO2 assimilation (A), stomatal conductance (gs), ratio of 794 

leaf intercellular to atmospheric CO2 concentration (ci/ca) and intrinsic water use 795 

efficiency (iWUE), based on genotype means of the maize B73 x MS71 RIL 796 

population grown in 2017 (n = 194). Statistically significant correlations (p<0.05) are 797 

highlighted with colored cells that reflect the strength of the correlation by the size of 798 

the shaded area and are colored from red (positive correlation, coefficient = 1) to blue 799 

(negative correlation, coefficient = -1).  800 

FIGURE 7. QTL mapping for stomatal complex density (SCD), stomatal complex 801 

width (SCW), stomatal complex length (SCL), stomatal complex area (SCA), 802 

stomatal complex total area (SCTA), stomatal complex length to width ratio 803 

(SCLWR), pavement cell density (PD), pavement cell area (PA), pavement cell total 804 

area (PTA), stomatal index (SI), stomatal pore area index (SPI), specific leaf area 805 

(SLA), rate of photosynthetic CO2 assimilation (A), stomatal conductance (gs), ratio of 806 

leaf intercellular to atmospheric CO2 concentration (ci/ca) and intrinsic water use 807 

efficiency (iWUE) from the B73 x MS71 RIL population. Each panel corresponds to 808 

an individual chromosome, where the values on the x-axis are chromosome position 809 

(cM). Numbers in parentheses following abbreviated trait names on the y-axis 810 

indicate the total number of QTL for that trait detected across the two growing 811 

seasons and the number of QTL for that trait that were detected consistently across 812 

both growing seasons. Each triangle represents a single QTL detected, with the 813 

direction of the arrow corresponding to the directional effect of the MS71 allele. 814 

Triangles are colored to indicate QTLs that were significant in 2016 (red), 2017 (blue), 815 

or overlapping across both years (purple). Error bars indicate the 1.5 LOD support 816 

intervals. Grey shaded areas indicate clusters of co-located QTL. The location of 817 

orthologs of known stomatal patterning genes in Arabidopsis are indicated with grey 818 

dots.  819 
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 825 

FIGURE S1. Initial screening of stomatal complex density (SCD; A), pavement cell 826 

density (PD; B) and stomatal index (SI; C) for maize NAM founder lines grown in 827 

year 2014 (n = 4). Error bars indicate standard errors. 828 

FIGURE S2. Daily mean temperature (red line; ˚C) and water inputs to field trials 829 

(blue bars = total daily precipitation, red bars = irrigation; mm) in Savoy, Illinois for 830 

each day of year (DOY) in the 2016 (A) and 2017 (B) growing seasons.   831 

FIGURE S3. Scatterplots of variation among six expert human evaluators in manual 832 

measurements of stomatal patterning traits from 100 randomly selected optical 833 

tomography images from the B73 x MS71 maize RIL population: stomatal complex 834 

density (A), pavement cell density (B), stomatal complex width (C), stomatal complex 835 

length (D) and stomatal complex area (E). Data are sorted on the x-axis by rank of the 836 

mean trait value for each genotype. The color of a data point corresponds to the 837 

human evaluator.  838 

FIGURE S4. Frequency distributions of stomatal complex density (SCD), stomatal 839 

complex width (SCW), stomatal complex length (SCL), stomatal complex area (SCA), 840 

stomatal complex total area (SCTA), stomatal complex length to width ratio 841 

(SCLWR), pavement cell density (PD), pavement cell area (PA), pavement cell total 842 

area (PTA), stomatal index (SI), stomatal pore area index (SPI), specific leaf area 843 

(SLA), rate of photosynthetic CO2 assimilation (A), stomatal conductance (gs), ratio of 844 

leaf intercellular to atmospheric CO2 concentration (ci/ca) and intrinsic water use 845 

efficiency (iWUE) for the maize B73 x MS71 RIL population in grown in 2016 (grey) 846 

and 2017 (yellow). The mean trait values from 2017 for the parent lines MS71 847 

(orange) and B73 (blue) are plotted.  848 

FIGURE S5. Correlation matrix for stomatal complex density (SCD), stomatal 849 

complex width (SCW), stomatal complex length (SCL), stomatal complex area (SCA), 850 

stomatal complex total area (SCTA), stomatal complex length to width ratio 851 

(SCLWR), pavement cell density (PD), pavement cell area (PA), pavement cell total 852 

area (PTA), stomatal index (SI), stomatal pore area index (SPI), specific leaf area 853 

(SLA), based on genotype means of the maize B73 x MS71 RIL population grown in 854 

2016 (n = 197). Statistically significant correlations (p<0.05) are highlighted with 855 

colored cells that reflect the strength of the correlation by the size of the shaded area 856 

and are colored from red (positive correlation, coefficient = 1) to blue (negative 857 

correlation, coefficient = -1).  858 

FIGURE S6. Sum of percentage of variance explained (PVE) for all QTLs identified 859 

for each trait in 2016 (grey bars) and 2017 (yellow bars). Traits are presented in rank 860 

order from greatest to least sum PVE: stomatal index (SI), stomatal complex area 861 

(SCA), stomatal complex density (SCD), stomatal complex total area (SCTA), 862 

pavement cell area (PA), pavement cell density (PD), stomatal complex width (SCW), 863 

stomatal pore area index (SPI), stomatal complex length to width ratio (SCLWR), 864 

pavement cell total area (PTA), specific leaf area (SLA), stomatal complex length 865 
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(SCL), stomatal conductance (gs), ratio of leaf intercellular to atmospheric CO2 866 

concentration (ci/ca), intrinsic water use efficiency (iWUE), rate of photosynthetic 867 

CO2 assimilation (A). Gas exchange traits were only assessed in 2017. 868 

FIGURE S7. Examples of input images and the predictions of cell instances made for 869 

them across a range of epidermis morphology and image qualities, including:  870 

pavement cells above veins (where veins are highlighted with arrows; A, B); lower 871 

quality images (C, D), and a darker image (E).  872 
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FIGURE 1. Workflow of data collection, model training, model prediction, human validation and

experimental data analysis used to phenotype epidermal cell patterning traits (A). Summary of

pipeline used by Mask R-CNN to analyze images captured by optical tomography for stomata and

pavement cell detection. Image example was truncated from standard image.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.10.09.333880doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.09.333880


B CA D

E F

G

FIGURE 2. Example steps in the process of analyzing an optical tomography image for epidermal cell

patterning, including: the 3D topography image layer extracted from raw filers output by the optical

topometer (A); flattening by use of Robust Gaussian filters (B); contrast enhancement by use of a

Laplacian filter (C); prediction of cell instances by Mask R-CNN (D, E, F, G). Cell related traits were

calculated and extracted based on cell boundary coordinates, with boundary and centroid labeled for

better visualization (E). Zooming in shows stomata were labeled with white centroids while pavement

cells were labeled with black centroids (F). Cells that were cut off on image edges were tagged with

triangles and were excluded in estimation of average cell size. Ellipses were fit to stomatal complexes,

with width and length calculated as the lengths of minor and major axis of the ellipse (red lines; G).
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FIGURE 3. Scatterplots of stomatal patterning traits comparing data measured by humans versus data

measured by the computer using MASK R-CNN: stomatal complex density (A,C); and pavement cell

density (B,D). Plotted data describe 100 randomly selected optical tomography images from the B73 x

MS71 maize RIL population with error bars showing the standard error of technical variation among

six expert human evaluators on each individual image (A,B) or genotype means for 6 RILs selected to

represent the range of observed trait values in the population with error bars showing the standard

error of biological variation among replicates based on the mean of predictions from six expert human

evaluators or computer predictions using MASK R-CNN (C,D). There is no variance among

predictions by MASK R-CNN when it is presented with a given image multiple times. The line of best

fit (red line) and 1:1 line (black dashed line) are shown along with the correlation coefficient (r2).
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FIGURE 4. Scatterplots of stomatal complex length

(A), stomatal complex width (B) and stomatal

complex area (C) comparing data measured by

humans versus data measured by the computer

using MASK R-CNN: Plotted data describe 210

stomatal complexes (5 each from 42 images)

randomly selected from the B73 x MS71 maize RIL

population with error bars showing the standard

error of technical variation among six expert human

evaluators on each individual image. There is no

variance among predictions by MASK R-CNN

when it is presented with a given image multiple

times. The line of best fit (red line) and 1:1 line

(black dashed line) are shown along with the

correlation coefficient (r2).
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FIGURE 5. Scatterplots of stomatal complex density (SCD, A), stomatal complex width (SCW, B),

stomatal complex length (SCL, C), stomatal complex area (SCA, D), stomatal complex total area

(SCTA, E), stomatal complex length to width ratio (SCLWR, F), pavement cell density (PD, G),

pavement cell area (PA, H), pavement cell total area (PTA, I), stomatal index (SI, J), stomatal pore

area index (SPI, K), specific leaf area (SLA, L) comparing genotype means for 191 maize B73 x

MS71 RILs grown during the 2016 versus 2017 field seasons. The line of best fit (black line),

correlation coefficient (r2) and associated p-value are shown.

A B C D

E F G H

I J K L
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FIGURE 6. Correlation matrix for stomatal complex density (SCD), stomatal complex width (SCW), 

stomatal complex length (SCL), stomatal complex area (SCA), stomatal complex total area (SCTA), 

stomatal complex length to width ratio (SCLWR), pavement cell density (PD), pavement cell area 

(PA), pavement cell total area (PTA), stomatal index (SI), stomatal pore area index (SPI), specific leaf 

area (SLA), rate of photosynthetic CO2 assimilation (A), stomatal conductance (gs), ratio of leaf 

intercellular to atmospheric CO2 concentration (ci/ca) and intrinsic water use efficiency (iWUE), based 

on genotype means of the maize B73 x MS71 RIL population grown in 2017 (n = 194). Statistically 

significant correlations (p<0.05) are highlighted with colored cells that reflect the strength of the 

correlation by the size of the shaded area and are colored from red (positive correlation, coefficient = 

1) to blue (negative correlation, coefficient = -1).
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FIGURE 7. QTL mapping for stomatal complex density (SCD), stomatal complex width (SCW), stomatal

complex length (SCL), stomatal complex area (SCA), stomatal complex total area (SCTA), stomatal complex

length to width ratio (SCLWR), pavement cell density (PD), pavement cell area (PA), pavement cell total area

(PTA), stomatal index (SI), stomatal pore area index (SPI), specific leaf area (SLA), rate of photosynthetic

CO2 assimilation (A), stomatal conductance (gs), ratio of leaf intercellular to atmospheric CO2 concentration

(ci/ca) and intrinsic water use efficiency (iWUE) from the B73 x MS71 RIL population. Each panel

corresponds to an individual chromosome, where the values on the x-axis are chromosome position (cM).

Numbers in parentheses following abbreviated trait names on the y-axis indicate the total number of QTL for

that trait detected across the two growing seasons and the number of QTL for that trait that were detected

consistently across both growing season. Each triangle represents a single QTL detected, with the direction of

the arrow corresponding to the directional effect of the MS71 allele. Triangles are colored to indicate QTLs

that were significant in 2016 (red), 2017 (blue), or overlapping across both years (purple). Error bars indicate

the 1.5 LOD support intervals. Grey shaded areas indicate clusters of co-located QTL. The location of

orthologs of known stomatal patterning genes in Arabidopsis are indicated with grey dots.
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