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Short title: Quantifying biological feedback control with CoRa

Abstract Feedback control is a fundamental underpinning of life, underlying homeostasis of biological processes at
every scale of organization, from cells to ecosystems. The ability to evaluate the contribution and limitations of
feedback control mechanisms operating in cells is a critical step for understanding and ultimately designing feedback
control systems with biological molecules. Here, we introduce CoRa –or Control Ratio–, a general framework that
quantifies the contribution of a biological feedback control mechanism to adaptation using a mathematically
controlled comparison to an identical system that does not contain the feedback. CoRa provides a simple and
intuitive metric with broad applicability to biological feedback systems.

Feedback control is a mechanism by which a system can assess its own state and use this information to react
accordingly [15]. Cells and organisms make abundant use of feedback control [3], in particular negative feedback to
deploy corrective actions. Negative feedback is instrumental in the ability of biological systems to restore homeostasis
after a perturbation [5, 8–10,17], a property known in engineering as disturbance rejection and in the biological
sciences as adaptation. Despite the importance of feedback, no systematic and generalizable approaches exist to
quantify the contribution of a negative feedback loop to adaptation in biological networks. Here, we propose CoRa
–or Control Ratio–, a mathematical approach that tackles this problem. CoRa follows the classical notion of
Mathematically Controlled Comparisons [1] by assessing the performance of a biological system with feedback control
to a locally analogous system without feedback. The locally analogous system without feedback has identical
structure and parameters to those of the feedback system, except for the feedback link, and both systems rest at the
same steady-state value before the perturbation. As a result, the divergence in their behavior after they are
challenged with a perturbation isolates and quantifies the contribution of the feedback control (Fig. 1). CoRa can be
defined and computed for any biological system described by a solvable set of ordinary differential equations,
irrespective of its complexity. CoRa can also be efficiently computed across different parameter values of a system,
allowing a global view of the performance of its feedback under different conditions.

CoRa formalism. To apply CoRa, two systems are considered: the intact system that has the feedback structure,
and a locally analogous system without feedback, each of them described by a set of ordinary differential equations
with parameters Θ. The locally analogous system is designed to have exactly the same biochemical reactions as the
feedback system, with the only difference being the removal of the direct influence of the system output (Y ) over the
rest of the system, therefore generating a system without feedback. Instead, a constant input is introduced in the
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Figure 1. Explaining CoRa, Control Ratio approach. (A) Diagram of a system with feedback (left) and
its locally analogous system without feedback (right). The controlled subsystem is the biological network to which
feedback control is applied. For a given parameter set (Θ), the constant input is fixed such that the input signal (fΘ)
is the same between the feedback system and the locally analogous system without feedback. (B) Plot of the output
of the system with feedback (blue line) and the locally analogous system (black dashed line) as functions of time
after a small perturbation to a specific parameter (ρ→ ρ′, with ρ ∈ Θ). Since both systems are identical before the
perturbation, any differential output response reflects the properties of the feedback. Y is used to denote output of
system with feedback and YNF the output of locally analogous system with no feedback. (C) Definition of CoRa.
For each parameter set Θ, the CoRa value for perturbation to ρ, CoRaθ∈Θ(ρ), is defined as the ratio of the output
change of the feedback (∆log(Y )) and no-feedback locally analogous (∆log(YNF )) systems after a small perturbation
(ρ→ ρ′). Left panel gives the formula for CoRa and the right panel shows a graphical interpretation of this quantity.
(D) CoRaθ∈Θ(ρ) for perturbations in ρ can be calculated across a range of values of a chosen parameter θ ∈ Θ. This
function gives insight as to potency of control for different values of the parameters. For example, one can specify a
defined threshold (ε) for CoRa as an acceptable performance metric, and explore the parameter range for which the
control is better than ε.
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locally analogous system that mimics the direct influence of Y on the relevant chemical species in the system. This
positions both systems, the feedback and its locally analogous system with no feedback, at identical steady-state
values for the output and all internal variables under the given parameter set Θ. A step-by-step procedure for
generating such an analogous system is detailed in Supplementary Information.

Once the feedback system and locally analogous system without feedback are defined in this way, the broad idea
of CoRa is that in order to evaluate the contribution of the feedback to adaptation following a perturbation in a
specific parameter ρ ∈ Θ, one can apply a small perturbation (ρ→ ρ′) and compare the output of the two systems.
With Y defined as the output of the system with feedback and YNF that of the locally analogous system without
feedback, the contribution of the feedback to adaptation after a perturbation in parameter ρ ∈ Θ can be quantified as
the ratio of the response of the feedback system (∆log(Y )) and its locally analogous system (∆log(YNF )),

CoRaθ∈Θ(ρ) = ∆log(Y )
∆log(YNF ) (Fig. 1C, the θ ∈ Θ notation is added to indicate that CoRa can be computed for different

parameters of the system). Being locally analogous, the two compared systems possess the same nonlinearities and
saturations under the given parameter set Θ. As a result, any differences in the response to a small perturbation are
attributed to the effect of feedback (Supplementary Information).

CoRa provides an easily interpretable assessment of how a system with feedback, positioned at the parameter set
Θ, fares compared to a no-feedback system when ρ is perturbed. For instance, if CoRaθ∈Θ(ρ) ∈ [0, 1), the presence of
the feedback reduces the effect of the perturbation compared to the locally analogous system without feedback,
∆log(Y ) < ∆log(YNF ) (Fig. S1). When CoRaθ∈Θ(ρ) = 0, the feedback endows the system with perfect adaptation
(∆log(Y ) = 0), with the output returning exactly to the pre-perturbed state even in the continued presence of the
perturbation. The value of CoRaθ∈Θ(ρ) increases as the control effect decreases, and when CoRaθ∈Θ(ρ) = 1, the
feedback is ineffective as the output of the system with feedback becomes indistinguishable from that of the system
without feedback (i.e. ∆log(Y ) = ∆log(YNF )). This procedure can be repeated for any parameter set of interest.
Specifically, we can compute CoRa for a range of values of the parameter θ ∈ Θ while adjusting the constant input of
the no-feedback system (as explained above) accordingly to ensure the mathematically controlled comparison in the
sense we describe above. We therefore uniformly use the notation CoRaθ∈Θ(ρ) to designate the CoRa function
computed for a perturbation in ρ when the system is positioned at some changing value of parameter θ ∈ Θ.
CoRaθ∈Θ(ρ) is therefore a representation of the capacity of feedback to mediate adaptation of the system’s output to
perturbations to the parameter ρ for every value of θ considered. In this work, θ is limited to a change in an
individual parameter.

Using CoRa to characterize negative feedback in a system architecture capable of perfect adaptation.
We first tested CoRa on a well-established negative feedback control structure, the antithetic feedback motif, which
can exhibit perfect adaptation to step disturbance inputs when connected to an arbitrarily complex biochemical
network [2] (Fig. 2A). The antithetic motif is composed of two molecular species that annihilate each other through
their mutual binding. One of the antithetic molecular species controls the input of a biochemical network and the
other is produced by the output of the same network. If the antithetic molecules are only lost through the mutual
annihilation event without individual degradation or dilution, this strategy is expected to generate a system with
perfect adaptation to a step perturbation [2]. Using CoRa to study this feedback motif, we recapitulate this result,
showing that perfect adaptation is possible (Fig. 2). Interestingly, our analysis also reveals that relaxing the
assumption of zero dilution and adding molecular details such as explicit accounting of the transitory molecule
resulting from binding of the two antithetic molecules (complex C in Fig. 2A) is sufficient to compromise perfect
adaptation, often in non-trivial ways (Fig. 2B-C). For example, CoRaµY ∈Θ(µY ) (µY is the synthesis rate of the
output molecule Y ) deviates from perfect adaptation value of 0 if dilution of antithetic molecules is assumed to occur
individually at a small rate γ = 10−4min−1 (Fig. 2B,D). This deviation from perfect adaptation occurs at low and
high values of µY (Fig. 2B; Supplementary Information). In a further elaboration of the circuit, when we consider the
complex C as a functional molecule that can influence the synthesis of the output molecule Y until its removal from
the system [11] (Fig. 2A), the feedback undergoes a dramatic failure in its ability to produce perfect adaptation after
a specific threshold value of µY . This is evidenced by CoRaµY ∈Θ(µY ) shifting abruptly from almost zero to one
(Fig. 2B,D). This is also the case for CoRaη−∈Θ(µY ) (η− is degradation rate of complex C; Fig. 2C). These
conclusions are not unique to the particular controlled subsystem considered (Fig. S2), or the perturbation used (Fig.
S3). Exploration of this phenomenology identified by CoRa reveals that this qualitative change in the feedback
control results from saturation in the concentration of the complex C (Supplementary Information; Fig. S4), an
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insight that would have been difficult without the computational observation of this behavior.

Using CoRa to compare different feedback control mechanisms. Any feedback control system can be
analyzed using CoRa, providing a unifying framework under which different feedback mechanisms can be rigorously
compared. In fact, we were able to rapidly analyze a large number of distinct feedback control motifs proposed in the
literature [2, 4, 6, 7, 11,14,16] (Fig. 3; Supplementary Information). For comparison on equal footing, we considered
each of these different negative feedback structures controlling the same simple biochemical subsystem. These
investigations using CoRa generated a rich data-set to explore the properties of different molecular implementations
associated with the same phenomenological macroscopic function –negative auto-regulation. For example, it was clear
that specific molecular details of feedback generate distinct adaptation properties to the same perturbation. As only
one example, CoRaµY∈Θ(µY ) computed for all feedback strategies employing repression of synthesis modelled using a
standard Michaelis-Menten repression function (Fig. 3G-I) displayed a limit of CoRaθ∈Θ(µY ) ≥ 0.5. This behavior
relates to the inevitable saturation of the repression function (see Supplementary Information for an example of an
analytical treatment of this limit). A notable exception to this limit occurred for the “brink motif” feedback strategy,
a motif that combines antithetic molecular sequestration with an activation-deactivation enzymatic cycle to produce
a tuneable ultra-sensitive response [14] (Fig. 3K). These patterns that were computationally pinpointed by the CoRa
analysis prompted the hypothesis that adding ultra-sensitivity to motifs with Michaelis-Menten synthesis repression
might alleviate the limit of their adaptive behaviors. Using CoRa, we tested this hypothesis by adding a Hill
coefficient larger than 1 to the Michaelis-Menten function in different strategies. By increasing the system
ultrasensitivity with the Hill coefficient, the lower bound of the CoRa curve decreased in all cases, indicating
improved adaptation capabilities of the control loops (Fig. S5A-C). Furthermore, increasing the ultrasensitivity of the
brink motif itself by increasing the deactivation rate in its enzymatic cycle [14] improved its ability to adapt (Fig.
S5D). These results strongly suggest that feedback strategies based on Michaeliean repression of synthesis are severely
limited in their capacity for homeostasis, but can be improved using ultra-sensitive components. In this case, CoRa
was used as a computational hypothesis generator about this general principle, which was then confirmed through
further computational and analytical investigations. Finally, identification of strategies for improving feedback
performance can be automated by embedding CoRa into an optimization framework in which the parameters of the
feedback are iteratively changed to generate a desirable CoRa curve (Fig. S6). This optimization procedure can help
uncover the parameter constraints that are needed for adaptation given the specific biochemical feedback structure in
a system. It can also help in the design of de novo synthetic feedback structures in cells.

Discussion. A framework for the systematic evaluation and comparison of biochemical feedback control systems is
essential for understanding the general principles of biological homeostasis. While many methods exist for the
evaluation of technological feedback systems, understanding the principles of biological adaptation mediated through
feedback poses its unique challenges, including distinct mathematical properties of the biological substrate.
Importantly, the nature of biological organization with extensive coupling of parameters and processes makes the
extraction of engineering-centric quantities needed for traditional analyses of feedback quantities, such as setpoints
and regulation errors, challenging. Debate about whether these quantities are defined for biological systems has a long
history and no concrete resolution [13]. One advantage of CoRa is that it does not make any assumptions about the
existence of such quantities, replacing this debate with a comparison to a system that would have evolved identically
but without the feedback structure. Another advantage of CoRa is that it is agnostic to the complexity of the system.
While we have only used a simple system to illustrate the properties of CoRa, extending analysis to more complex
systems was straightforward (Fig. S2). We have also used CoRa to assess feedback-mediated adaptation for only one
perturbation as a function of one model parameter. However, it should be easy to see that a multi-dimensional CoRa
for simultaneous perturbations or many concurrent parameter changes is easily computable. We expect, however,
that new methods would be needed to analyze the resulting multi-dimensional data into coherent principles.

Finally, the concept of CoRa should be easily extendable to assessing the quantitative contribution of feedback to
important properties other than the steady-state response to perturbation. These might, for example, include the role
of feedback in the dynamic response of a system or its response to stochastic fluctuations. As such, CoRa represents
a flexible framework that is poised to catalyze fast progress in our understanding of the many roles that feedback
control plays in biological organization.
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Figure 2. Characterizing the Antithetic Feedback Motif (ATF) using CoRa. (A) The ATF motif is
composed by two molecules (W,U) that bind and inactivate each other, forming a transitory complex C which is then
degraded with rate η−; one antithetic molecule W induces Y synthesis (the controlled output, with rate µY ), and Y
feeds back by inducing the synthesis of the other antithetic molecule, U . We consider two variations of the feedback
structure. The first (ATF v1; blue continuous lines) is akin to the original ATF motif with the difference that the
binding of U and W generates a complex C that is explicitly modeled before it disappears through degradation at a
rate η−. In the second feedback structure (ATF v2; pink long-dash lines), the complex C retains biological activity
in influencing the production of Y until it is degraded. This structure is inspired by the feedback implementation
documented in Ng et al. [11]. For each case, the associated locally analogous system without feedback (bottom
box with dotted line) is shown. (B) CoRa computed following perturbations to µY , the synthesis rate of Y , as
this parameter itself is varied. (C) CoRa computed following a perturbation to µY , the synthesis rate of Y , as
the degradation rate of the complex C (η−) is varied. (D) The output response of the ATF system (output is Y ,
blue continuous lines, v1, and pink long-dash lines, v2) and associated locally analogous systems without feedback
(dark dash lines) as a function of time after a small perturbation occurs on µY (µY → µ′Y at time zero). Plots are

shown for three different Y synthesis rate values µ
(i)
Y (highlighted in panel B with gray vertical lines). The resulting

CoRa
µ

(i)
Y ∈Θ

(µY ) value is shown as the plot title for each case. See Supplementary Information for equations and

Table S1 for parameter values.
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Figure 3. CoRa provides a unifying framework to compare different feedback control architectures.
(A-K) Different feedback motifs, with different levels of complexity, can be directly compared using the CoRa function.
In each case, the diagrams of the feedback system (in box with continuous line) and its associated locally analogous
system without feedback (in box with dotted line) are shown. CoRaµY∈Θ(µY ) is computed for 7 different values of a
given parameter that is also varied in addition to µY . The identity and nominal value of the varied parameter (either
µW the W synthetic rate, or µU the U synthesis rate) is indicated on every plot, and how it is varied is shown at
the bottom of the figure with appropriate color-coding information. Different mechanisms show different signature
behaviors; particularly, for ATF-like architectures, a complex C of the two antithetic molecules that retains activity
results in an abrupt loss of control (D-F) compared to the analogous motifs with an inactive complex (A-C). The
Michaelis-Menten function describing feedback through repression of synthesis imposes a limit on the efficiency of
feedback (G-I), except in the presence of ultrasensitivity (K). ATF: Antithetic Feedback, FAD: Feedback by Active
Degradation, FDP: Feedback by Active Degradation + Positive Feedback, BNF: Buffering + Negative Feedback, FFL:
Negative Feedback + Feed-forward loop, and BMF: Brinf Motif. In all cases, the controlled subsystem parameters
are identical, and the output steady state Y ≈ 10nM for the “×1” case (black line) and µY = 1min−1. See
Supplementary Information for equations and Table S1 for parameter values.
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SUPPLEMENTARY MATERIALS

Supplementary Figures: Fig S1-S6

Supplementary Tables: Table S1-S2

Supplementary Text: Section S1-S5

Supplementary Code: https://github.com/mgschiavon/CoRa/releases/tag/v1.0

Data availability

The authors declare that all the data supporting the findings of this study are available within the article and its
Supplementary Information files.

Code availability

The computer code used to generate and analyze the data in this study is available at
https://github.com/mgschiavon/CoRa/releases/tag/v1.0.
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Figure S1. Feedback logic and
CoRa values. We abstract the
control system to a two-node net-
work where one node represents the
output to be controlled (Y ), and
the other the rest of the system in-
cluding the dependency on the pa-
rameter ρ to be perturbed (x(ρ)).
The locally analogous system can
be represented as an equivalent net-
work, with a third node (∗) that rep-
resent the new input into the x(ρ)
node. The other link from x(ρ) to
the output (YNF ; link #1) remains
the same between the two networks.
(Left column) The sign of link #1
can be determined by comparing
the output before (YNF |Θ = Y |Θ)
and after (YNF |Θ,ρ→ρ′) the pertur-
bation. For a positive perturba-
tion, link #1 is positive (#1 (+))
if and only if YNF |Θ,ρ→ρ′ > Y ,
or negative (#1 (−)) if and only
if YNF |Θ,ρ→ρ′ < Y . (Middle col-
umn) The sign of the feedback
link from the output to the x(ρ)
node (link #2) can be determined
by comparing the output after the
perturbation in the feedback sys-
tem (Y |Θ,ρ→ρ′) and in the locally
analogous system (YNF |Θ,ρ→ρ′). It
is positive (#2 (+)) if and only
if Y |Θ,ρ→ρ′ > YNF |Θ,ρ→ρ′ , or
negative (#2 (−)) if and only if
Y |Θ,ρ→ρ′ < YNF |Θ,ρ→ρ′ . (Right
column) Given the formula for
CoRa, we can see that CoRaθ∈Θ(ρ)
is bound between 0 and 1 whenever
we have a negative feedback, and
bigger than 1 in the case of a posi-
tive feedback.
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Figure S2. Antithetic feedback control performance depends on controlled subsystem. Three different
subsystems (Eqs. S38-S40) of increasing complexity (controlled subsystem highlighted in gray) controlled by the
antithetic feedback control (ATF) can be compared using the CoRa function. (A) CoRa plots for modified ATF
with inactive complex C (v1). First row shows a schematic controlled subsystem. CoRaµY∈Θ(µY ) is computed for 7
different values of a given parameter that is also varied in addition to µY . The identity and nominal value of the
varied parameter (either µW the W synthetic rate, or η+ the U : W binding rate) is indicated on every plot, and how
it is varied is shown in between the two panels of the figure with appropriate color-coding information. (B) Same as
(A) but modified ATF with active complex C (v2). See Section S4 for equations and Table S2 for parameter values.
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Figure S3. CoRa can be computed for perturbation of any parameter as a function of another
parameters. Plots are shown for the two versions of the modified antithetic feedback (ATF) control. (A) CoRa
plot as a function of U synthesis rate (µU ) as µU itself is perturbed. (B) CoRa plot as a function of Y synthesis
rate (µY ) as µU is perturbed. (C) CoRa plot as a function of Y synthesis rate (µY ) as W synthesis rate (µW ) is
perturbed. ATF v1, blue continuous lines; ATF v2, pink long-dash lines. See Section S4 for equations and Table S2
for parameter values.
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Figure S4. Effect of dilution on the modified antithetic feedback (ATF) control and system saturation.
Effect of dilution (γ; see column titles) on the ATF control performance following perturbations to µY , the synthesis
rate of Y , as this parameter itself is varied, with either inactive (v1; A) or active (v2; B) complex C. (A) For ATF
v1, as µY decreases, CoRaµY ∈Θ(µY ) increases. When W steady state concentration (Wss) saturates approaching its
limit value ( µW

γ+γW
), CoRaµY ∈Θ(µY ) approaches 1. On the other extreme, as µY increases, CoRaµY ∈Θ(µY ) increases.

When total W at steady-state (WT,ss = Wss + Css) concentration saturates (WT,ss → µW
γ+γW+η−

), U steady-state

concentration (Uss) cannot increase proportionally to µY to allow free Wss to decrease in the same proportion (given
that in steady state, Wss = Kd

Css
Uss

; see Section S2.1.1). (B) For ATF v2, CoRaµY ∈Θ(µY ) increases for both low and
high µY values as total W steady state concentration (WT,ss = Wss + Css) saturates, reaching its higher ( µW

γ+γW
)

and lower ( µW
γ+γW+η−

) limit values, respectively (see Section S2.1.2). In all plots, limits are shown as horizontal gray

lines, and gray dashed lines increasing or decreasing proportionally to µY are shown as reference. See Section S4 for
equations and Table S2 for parameter values.
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Figure S5. Negative auto-regulation affecting synthesis represented by Michaelis-Menten function
limits control performance in multiple motifs, but is alleviated by ultrasensitivity. In this figure, the

negative auto-regulation function is modeled as a negative Hill function, f�(Y ) = µ�
Kn
D

Y n+Kn
D

, where µ� is the

maximum synthesis rate, KD is the EC50, and n is the Hill coefficient. Four of the explored motifs in Fig. 3 include
negative synthesis regulation (f�(Y )): (A-B) Buffering + Negative Feedback (BNF v1 & v2; Fig. 3G-H), (C)
Feedback + Feedforward Loop (FFL; Fig. 3I), and (D) Brink Motif Feedback with repression of activator (BMF
v2; Fig. 3K). For each motif, plots show CoRa function for perturbations to the Y synthesis rate (µY ) as the Hill
coefficient n increases. (In all cases, the black line corresponds to the black line in Fig. 3). For (D) BMF v2, we
also show how the CoRa function changes while increasing the inactivation rate βI ([nM−1min−1]) from U to UP ,
which is dependent on I. We corroborate that, as shown by Samaniego & Franco [14], the BMF motif displays
high ultrasensitivity, and the ultrasensitivity increases as βI increases. In all cases, higher ultrasensitivity (either
by increasing the Hill coefficient n or βI for BMFv2) results in improved control performance for some range of µY
values (CoRaµY ∈Θ(µY ) approaching zero). See Section S4 for equations and Table S2 for parameter values.
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Figure S6. Optimizing a controller for different subsystems. (A) Diagrams for three different subsystems
(Eqs. S38-S40; gray boxes) that are controlled using the feedback by active degradation motif (FAD v1). (B) The
feedback control parameters (U synthesis rate dependent on Y , µU ; W constitutive synthesis rate, µW ; and U,W
binding rate, η+) can be optimized for each subsystem to drive CoRa below a given threshold (|CoRaµY ∈Θ(µY ) ≤
0.1|)for a large dynamic range in µY , the synthesis rate of Y . The optimization stops after 1000 iterations or
whenever CoRaµY ∈Θ(µY ) ≤ 0.1 for the whole range of µY values considered; see Section S5.1 for algorithm details.
Optimization traces (min(CoRaµY ∈Θ(µY )), gray; |CoRaµY ∈Θ(µY ) ≤ 0.1|, black), as well as the associated parameter
values ({µU , µW , η+}), are shown for each system; the CoRaµY ∈Θ(µY ) curves for some iterations are also shown. See
Section S4 for equations and Table S2 for parameter values.
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Table S1. Used parameter values in main figures.

Fig. 2B ATF v1 & v2
(Section S4.1)

γ = 1 × 10−4min−1, γU = 1 × 10−4min−1, γW = 1 × 10−4min−1,
µU = 0.125min−1, µW = 0.1nM min−1, η0 = 1 × 10−4min−1, η+ =
0.0375nM−1min−1, η− = 0.5min−1, γY = 1min−1

Fig. 2C ATF v1 & v2
(Section S4.1)

γ = 1 × 10−4min−1, γU = 1 × 10−4min−1, γW = 1 × 10−4min−1,
µU = 0.125min−1, µW = 0.1nM min−1, η0 = 1 × 10−4min−1, η+ =
0.0375nM−1min−1, µY = 0.125min−1, γY = 1min−1

Fig. 2D ATF v1 & v2
(Section S4.1)

γ = 1 × 10−4min−1, γU = 1 × 10−4min−1, γW = 1 × 10−4min−1,
µU = 0.125min−1, µW = 0.1nM min−1, η0 = 1 × 10−4min−1,

η+ = 0.0375nM−1min−1, η− = 0.5min−1, γY = 1min−1, µ
(i)
Y =

{0.3863, 3.9, 125}min−1

Fig. 3A ATF v1 (Sec-
tion S4.1)

γ = 0.01min−1, γU = 1 × 10−4min−1, γW = 1 × 10−4min−1, µU =
0.125min−1, η0 = 1×10−4min−1, η+ = 0.0375nM−1min−1, η− = 0.5min−1,
γY = 0.1min−1, µW = 1.015nM min−1 (black line; Y ≈ 10nM for
µY = 1min−1).

Fig. 3B FAD v1 (Sec-
tion S4.2)

γ = 0.01min−1, γU = 0.05min−1, γW = 1× 10−4min−1, µU = 0.125min−1,
η0 = 1 × 10−4min−1, η+ = 0.0375nM−1min−1, η− = 0.5min−1, γY =
0.1min−1, µW = 0.74nM min−1 (black line; Y ≈ 10nM for µY = 1min−1).

Fig. 3C FDP v1 (Sec-
tion S4.3)

γ = 0.01min−1, γU = 0.05min−1, γW = 1× 10−4min−1, µU = 0.125min−1,
η0 = 1 × 10−4min−1, η+ = 0.0375nM−1min−1, η− = 0.5min−1, KD =
0.02nM , γY = 0.1min−1, µW = 0.7545nM min−1 (black line; Y ≈ 10nM for
µY = 1min−1).

Fig. 3D ATF v2 (Sec-
tion S4.1)

γ = 0.01min−1, γU = 1 × 10−4min−1, γW = 1 × 10−4min−1, µU =
0.125min−1, η0 = 1×10−4min−1, η+ = 0.0375nM−1min−1, η− = 0.5min−1,
γY = 0.1min−1, µW = 0.478nM min−1 (black line; Y ≈ 10nM for
µY = 1min−1).

Fig. 3E FAD v2 (Sec-
tion S4.2)

γ = 0.01min−1, γU = 0.05min−1, γW = 1× 10−4min−1, µU = 0.125min−1,
η0 = 1 × 10−4min−1, η+ = 0.0375nM−1min−1, η− = 0.5min−1, γY =
0.1min−1, µW = 0.327nM min−1 (black line; Y ≈ 10nM for µY = 1min−1).

Fig. 3F FDP v2 (Sec-
tion S4.3)

γ = 0.01min−1, γU = 0.05min−1, γW = 1× 10−4min−1, µU = 0.125min−1,
η0 = 1 × 10−4min−1, η+ = 0.0375nM−1min−1, η− = 0.5min−1, KD =
0.02nM , γY = 0.1min−1, µW = 0.333nM min−1 (black line; Y ≈ 10nM for
µY = 1min−1).

Fig. 3G BNF v1 (Sec-
tion S4.4)

γ = 0.01min−1, γU = 1 × 10−4min−1, µU = 2min−1, KD = 1nM , γY =
0.1min−1, β = 0.1565min−1, βP = 1 × 10−4min−1 (black line; Y ≈ 10nM
for µY = 1min−1).

Fig. 3H BNF v2 (Sec-
tion S4.4)

γ = 0.01min−1, γU = 1 × 10−4min−1, µU = 2min−1, KD = 1nM , γY =
0.1min−1, β = 0.0108min−1, βP = 0.1565min−1 (black line; Y ≈ 10nM for
µY = 1min−1).

Fig. 3I FFL v1 (Sec-
tion S4.5)

γ = 0.01min−1, γU = 0.01min−1, γW = 0.01min−1, µW = 0.125min−1,
KD = 1nM , γY = 0.1min−1, and µU = 0.0334min−1 (black line; Y ≈ 10nM
for µY = 1min−1).

Fig. 3J BMF v1 (Sec-
tion S4.6)

γ = 0.01min−1, µU = 0.1nM min−1, η0 = 1 × 10−4min−1, η+ =
0.05nM−1min−1, βA = 0.5nM−1min−1, βI = 0.5nM−1min−1, γY =
0.1min−1, µA = 0.0338nM min−1, µI = 0.0125min−1 (black line; Y ≈ 10nM
for µY = 1min−1).

Fig. 3K BMF v2 (Sec-
tion S4.6)

γ = 0.01min−1, µU = 0.1nM min−1, η0 = 1 × 10−4min−1, η+ =
0.05nM−1min−1, βA = 0.5nM−1min−1, βI = 0.5nM−1min−1, γY =
0.1min−1, µA = 0.372nM min−1, KD = 1nM , µI = 0.125nM min−1 (black
line; Y ≈ 10nM for µY = 1min−1).
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Table S2. Used parameter values in supplementary figures.

Fig. S2A ATF v1 (Sec-
tion S4.1 & Sec-
tion S2.2)

γ = 0.01min−1, γU = γW = 1 × 10−4min−1, µU = 0.125min−1, µW =
0.1nM min−1, η0 = 1 × 10−4min−1, η+ = 0.0375nM−1min−1, η− =
0.5min−1, γY = 1min−1; and specifically for the double-negative subsys-
tem: KD = 1nM , µ0 = 1.25min−1, µ1 = 12.5nM min−1, K1 = 1nM , and for
the subsystem with positive feedback: µ0 = 1.25min−1, µ1 = 12.5nM min−1,
µP = 10nM min−1, KP = 1nM (black lines).

Fig. S2B ATF v2 (Sec-
tion S4.1 & Sec-
tion S2.2)

γ = 0.01min−1, γU = γW = 1 × 10−4min−1, µU = 0.125min−1, µW =
0.1nM min−1, η0 = 1 × 10−4min−1, η+ = 0.0375nM−1min−1, η− =
0.5min−1, γY = 1min−1; and specifically for the double-negative subsys-
tem: KD = 1nM , µ0 = 1.25min−1, µ1 = 12.5nM min−1, K1 = 1nM , and for
the subsystem with positive feedback: µ0 = 1.25min−1, µ1 = 12.5nM min−1,
µP = 10nM min−1, KP = 1nM (black lines).

Fig. S3 ATF v1 & v2
(Section S4.1)

γ = 1 × 10−4min−1, γU = 1 × 10−4min−1, γW = 1 × 10−4min−1,
µW = 0.1nM min−1, η0 = 1 × 10−4min−1, η+ = 0.0375nM−1min−1,
η− = 0.5min−1, γY = 1min−1, and µY = 0.125min−1, µU = 0.125min−1,
unless explicitly varied.

Fig. S4A ATF v1 (Sec-
tion S4.1)

γU = γW = 0, µU = 0.125min−1, µW = 0.1nM min−1, η0 = 1× 10−4min−1,
η+ = 0.0375nM−1min−1, η− = 0.5min−1, γY = 1min−1, γ = {0.001, 1 ×
10−5, 1× 10−7}min−1

Fig. S4B ATF v2 (Sec-
tion S4.1)

γU = γW = 0, µU = 0.125min−1, µW = 0.1nM min−1, η0 = 1× 10−4min−1,
η+ = 0.0375nM−1min−1, η− = 0.5min−1, γY = 1min−1, γ = {0.001, 1 ×
10−5, 1× 10−7}min−1

Fig. S5A BNF v1 (Sec-
tion S4.4)

γ = 0.01min−1, γU = 1 × 10−4min−1, µU = 2min−1, KD = 1nM , γY =
0.1min−1, β = 0.1565min−1, βP = 1× 10−4min−1, n = {1, 10, 100}.

Fig. S5B BNF v2 (Sec-
tion S4.4)

γ = 0.01min−1, γU = 1 × 10−4min−1, µU = 2min−1, KD = 1nM , γY =
0.1min−1, β = 0.0108min−1, βP = 0.1565min−1, n = {1, 10, 100}.

Fig. S5C FFL v1 (Sec-
tion S4.5)

γ = 0.01min−1, γU = 0.01min−1, γW = 0.01min−1, µW = 0.125min−1,
KD = 1nM , γY = 0.1min−1, and µU = 0.0334min−1, n = {1, 10, 100}.

Fig. S5D BMF v2 (Sec-
tion S4.6)

γ = 0.01min−1, µU = 0.1nM min−1, η0 = 1 × 10−4min−1, η+ =
0.05nM−1min−1, βA = 0.5nM−1min−1, γY = 0.1min−1, µA =
0.372nM min−1, KD = 1nM , µI = 0.125nM min−1, n = {1, 10, 100},
βI = {0.5, 5, 50}nM−1min−1.

Fig. S6B FAD v1 (Sec-
tion S4.2 & Sec-
tion S2.2)

γ = 0.01min−1, γU = 0.05min−1, γW = 1×10−4min−1, η0 = 1×10−4min−1,
η− = 0.5min−1, γY = 1min−1; and specifically for the double-negative subsys-
tem: KD = 1nM , µ0 = 1.25min−1, µ1 = 12.5nM min−1, K1 = 1nM , and for
the subsystem with positive feedback: µ0 = 1.25min−1, µ1 = 12.5nM min−1,
µP = 10nM min−1, KP = 1nM ; initial parameter values: µU = 0.125min−1,
µW = 0.1nM min−1, η+ = 0.0375nM−1min−1.
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Note: Across this document, capital letters (e.g. X) represent both the species and its concentration; the sub-index
Xss refers to the steady state value; and lower-case Greek letters represent parameters, which by default are
non-negative real numbers.

S1 CoRa approach

CoRa –or Control Ratio– aims to quantify the effect of feedback control on a system’s ability to reject a step
perturbation, while considering the effect and constraints of the individual biochemical events. This is done by
directly comparing the feedback system of interest to a locally analogous system without feedback under the
formalism of mathematically controlled comparisons [1]. Each locally analogous system has exactly the same
biochemical reactions and parameters as the original feedback system (i.e. internal equivalence), with the exception
of the feedback link from the controlled subsystem. For each specific parameter set Θ (i.e. the value of all parameters
describing the system of interest), the feedback link is substituted by an equivalent constant input calibrated such
that the steady-state of all common species between the two systems are identical before a perturbation is applied
(i.e. external equivalence). This equivalence allows for a direct comparison of the output change of both systems
following a specific step perturbation (e.g. step change in a parameter value), while accounting for the influence of
the nonlinearity, saturation, and other intrinsic particularities of the system, and guarantying that any differential
response of these two analogous systems represents an inherent functional difference associated with the feedback
control. The perturbation considered must not affect the constant input of the locally analogous system, as otherwise
the differential output response can no longer be uniquely associated with the feedback control.

Let Yss|Θ denote the steady-state value of the system with feedback for a parameter set Θ, and Yss,NF |Θ denote
the steady-state value of the locally analogous system without feedback. Let’s also consider a a small step
perturbation of a specific parameter ρ ∈ Θ (ρ→ ρ′). Following this perturbation, Yss|Θ,ρ→ρ′ and Yss,NF |Θ,ρ→ρ′
denote that new steady-states of the feedback system and locally analogous system without feedback, respectively.

CoRa is then defined as:

CoRaθ∈Θ(ρ) =
∆log(Yss)|Θ,ρ→ρ′

∆log(Yss,NF)|Θ,ρ→ρ′
(S1)

=
log(Yss|Θ,ρ→ρ′)− log(Yss|Θ)

log(Yss,NF |Θ,ρ→ρ′)− log(Yss,NF |Θ)

=
log
(
Yss|Θ,ρ→ρ′
Yss|Θ

)
log
(
Yss,NF |Θ,ρ→ρ′
Yss,NF |Θ

)
Note that by construction the output of the feedback system and the locally analogous system without feedback are
identical before a perturbation, i.e. Yss|Θ = Yss,NF |Θ.

Assuming that ∆ρ = ρ′ − ρ is small enough, the output of the feedback system and the locally analogous system
without feedback can be expressed as linear functions of ∆ρ. The corresponding CoRa function can then be written
as:

CoRaθ∈Θ(ρ) =
log(Yss(ρ+ ∆ρ))− log(Yss(ρ))

log(Yss,NF (ρ+ ∆ρ))− log(Yss,NF (ρ))

≈
log(Yss(ρ)) + ∆ρ d

dρ log(Yss)|ρ − log(Yss(ρ))

log(Yss,NF (ρ)) + ∆ρ d
dρ log(Yss,NF )|ρ − log(Yss,NF (ρ))

≈
d
dρ log(Yss)|ρ

d
dρ log(Yss,NF )|ρ

(S2)

Eq. S2 shows that in this regime, CoRa value is approximately independent of the perturbation size ∆ρ. In all the
analyses presented on this paper, we used ρ′ = 1.05ρ. We corroborated that this perturbation size was small enough
to reach the linear regime by confirming that identical results were obtained with ρ′ = 1.01ρ. Nevertheless, with the
smaller perturbation size (ρ′ = 1.01ρ), noise in the numerical solutions was observed for some cases. In general, like
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for any linearization exercise, the acceptable perturbation size for numerical solutions needs to be evaluated for the
specific system and conditions of interest.

The value of CoRaθ∈Θ(ρ) can be easily related to the logic of the feedback (Fig. S1). If CoRaθ∈Θ(ρ) ∈ [0, 1), the
presence of the feedback reduces the effect of the perturbation compared to the locally analogous system without
feedback, i.e. the system has an active negative feedback: either 0 ≤ ∆log(Yss)|Θ,ρ→ρ′ < ∆log(Yss,NF )|Θ,ρ→ρ′ or
0 ≥ ∆log(Yss)|Θ,ρ→ρ′ > ∆log(Yss,NF )|Θ,ρ→ρ′ . On the other hand, if CoRaθ∈Θ(ρ) > 1, the presence of the feedback
amplifies the effect of the perturbation compared to the locally analogous system without feedback, i.e. the system
has an active positive feedback: either ∆log(Yss)|Θ,ρ→ρ′ > ∆log(Yss,NF )|Θ,ρ→ρ′ > 0 or
∆log(Yss)|Θ,ρ→ρ′ < ∆log(Yss,NF )|Θ,ρ→ρ′ < 0. Finally, if CoRaθ∈Θ(ρ) = 1, the feedback is effectively inactive. As the
goal of CoRa is to quantify feedback control, which by definition requires a corrective (negative) feedback regulation,
CoRaθ∈Θ(ρ) is bounded between 0 and 1 for the cases of interest. More specifically, CoRaθ∈Θ(ρ) = 0 only if the
system displays perfect control (Yss|Θ,ρ→ρ′ = Yss|Θ), and CoRaθ∈Θ(ρ) value increases as the control effect decreases
up until CoRaθ∈Θ(ρ) = 1, when the feedback contribution is effectively zero (i.e. the system response to the
perturbation is exactly the same that the one of the system without feedback).

S1.1 Steps for CoRa implementation

1. Define a solvable set of ordinary differential equations representing the biological system of interest,
where each equation describes the dynamics of the concentration of a molecular species involved in the system.
For example (see Section S2 for the full description of the biological system associated with these equations):

d

dt
U = µUY − (γ + γU )U − η+UW + (η0 + γW )C

d

dt
W = µW − (γ + γW )W − η+UW + (η0 + γU )C

d

dt
C = η+UW − (γ + η0 + η− + γU + γW )C

d

dt
Y = µYW − (γ + γY )Y

2. Define the output of interest, representing a measurement of the controlled subsystem, over which to evaluate
the effect of the feedback control; the analysis can be repeated for diverse outputs. In the differential equations
example above, and output of interest can be Y , and we may be particularly interested in its steady-state value.

3. Determine the input functions as all functions dependent on the output defined above (e.g. Y ) through
which this output influences the other molecular species (e.g. U,W,C). Input functions are therefore the links
from the defined controlled subsystem to the rest of the system. In the example described above, the unique
input function (fθ(Y )) is the regulated synthesis function of U dependent on Y :

fΘ(Y ) = µUY

4. Build the locally analogous no-feedback system as an identical set of equations as the full,
feedback-controlled system, except that the input functions are substituted by constant inputs. These inputs are
not dependent on the output (e.g. Y ), but have identical magnitudes when evaluated in the pre-perturbation
steady-state for the given condition (i.e. Θ). We can accomplish this through two alternative strategies:

(a) Introduce some auxiliary species with constitutive expression (i.e. not regulated by any other molecule in
our system) with a pre-perturbation steady-state concentration that matches the concentration of the
regulatory species in the input functions. Then, use the auxiliary species in the input functions. Using this
strategy, the locally analogous no-feedback system for the example described above would be:

d

dt
U = µUY∗ − (γ + γU )U − η+UW + (η0 + γW )C

d

dt
W = µW − (γ + γW )W − η+UW + (η0 + γU )C
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d

dt
C = η+UW − (γ + η0 + η− + γU + γW )C

d

dt
Y = µYW − (γ + γY )

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗

where Y∗ represents the auxiliary (non-regulated) species, which is constitutively expressed with synthesis
µY ∗ = µYWss, and degradation γY ∗ = γY , such that the steady-state output of the locally analogous
system without feedback Yss,NF is equal to the steady state output of the feedback system Yss before
perturbation to both systems away from that identical steady-state.

(b) Substitute the input functions dependent on the output (e.g. fΘ(Y ) = µUY in the above example) with a
constant whose value is identical to the input function values evaluated at the pre-perturbation
steady-state. Using this strategy, the locally analogous no-feedback system for the example described
above would be:

d

dt
U = µU∗ − (γ + γU )U − η+UW + (η0 + γW )C

d

dt
W = µW − (γ + γW )W − η+UW + (η0 + γU )C

d

dt
C = η+UW − (γ + η0 + η− + γU + γW )C

d

dt
Y = µYW − (γ + γY )Y

where U is now constitutively expressed with synthesis µU∗ = µUYss, such that here again, the steady
state output of the locally analogous system without feedback Yss,NF is equal to the steady state output
of the feedback system Yss.

The goal here is that both systems (the original feedback system and its locally analogous system without
feedback) have not only identical steady-state values for all species in the condition being evaluated, but if a
perturbation occurs, both systems would respond initially in an identical manner, as all the links (regulatory
functions) transmit exactly the same information (e.g. with identical levels of non-linearity and saturation),
with the clear and intended exception that the “controlled species” in the locally analogous system cannot
transmit any feedback information. In general, for this interpretation to be valid, the breaking point (where a
regulatory function is substituted by a constant value) must be upstream of where the perturbation occurs; this
can be ensured for all types of perturbations if the feedback is broken right where the input function occurs (as
proposed here).

If the system has multiple feedback loops, and hence multiple input functions need to be defined, we can either
evaluate the contribution of each one individually or any combination of them. In either case, the process
proceeds exactly as detailed above.

5. Calculate the output steady-state values for both systems before and after a perturbation of interest, and
obtain the associated CoRa value. For the example described above, for each specific parameter θ ∈ Θ:

(a) Calculate the output steady state Yss|Θ for the original system.

(b) Calculate the output steady state Yss,NF |Θ for the locally analogous system without feedback system.
Confirm that Yss = Yss,NF .

(c) Perturb the desired specific parameter ρ ∈ Θ by a small amount, ρ→ ρ′ (e.g. µY → 1.05 · µY ).

(d) Re-calculate the output steady state Yss|Θ,ρ→ρ′ for the original system.

(e) Re-calculate the output steady state Yss,NF |Θ,ρ→ρ′ for the locally analogous system without feedback.
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(f) Calculate the CoRa value:

CoRaθ∈Θ(ρ) =
log
(
Yss|Θ,ρ→ρ′
Yss|Θ

)
log
(
Yss,NF |Θ,ρ→ρ′
Yss,NF |Θ

)
6. Once the system of interest and its locally analogous no-feedback system have been defined, the CoRa analysis

can be easily applied over again to any parameter set and perturbation of interest:

(a) Update the specific value of the auxiliary species (e.g. µY ∗ = µYWss) or the constant parameter (e.g.
µU∗ = µUYss) such that the constant input values in the no-feedback system are identical once again to
the input functions values in the feedback system (as described on step #4), keeping the no-feedback
system locally-analogous to the feedback system before the perturbation to be evaluated occurs.

(b) Re-calculate the steady-state output responses to the perturbation of interest (step #5).

S2 Analysis of a modified antithetic feedback control strategy using
CoRa

We consider a modified antithetic feedback motif (ATF; based on Briat et al. [2]) with a simple controlled subsystem
consisting of a single molecule Y . The ATF motif consists of two molecules U and W that bind to each other forming
a transitory complex C. C is then degraded leading to the disappearance of both U and W . Y is produced at a rate
that depends on the concentration of W , while U synthesis is induced by Y . The equations of the full system with
feedback are then given by:

d

dt
U = µUY − (γ + γU )U − η+UW + (η0 + γW )C (S3)

d

dt
W = µW − (γ + γW )W − η+UW + (η0 + γU )C (S4)

d

dt
C = η+UW − (γ + η0 + η− + γU + γW )C (S5)

For Y dynamics, two alternative scenarios can be easily foreseen: W can be either inactivated as a transcription
factor once it binds U (ATF v1; Fig. 2A,3A),

d

dt
Y = µYW − (γ + γY )Y (S6)

or W retains its transcription factor activity until degraded (ATF v2; Fig. 2A,3D),

d

dt
Y = µY (W + C)− (γ + γY )Y (S7)

Here all species are subject to loss by dilution (γ), in addition of their own individual degradation rates (γ�), µ�

represents the synthesis rate for each molecule (either constitutive, µW , or dependent of a transcription factor, µU and
µY ), and η− is the co-degradation rate of U,W in the complex form C; η+ is the binding rate of U and W (forming
the complex C); and η0 is the spontaneous unbinding rate of these two molecules (dissociating the complex C).

Choosing Y as the system’s output, the corresponding locally analogous system without feedback maintains the
same ODE equations (Eqs. S4-S5, and either Eq. S6 or Eq. S7), with the exception of dU

dt ,

d

dt
U = µUY∗ − (γ + γU )U − η+UW + (η0 + γW )C (S8)

where U synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗ (S9)
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such that Y∗ is constitutively expressed with synthesis µY ∗. If γY ∗ = γY , then the steady state output of the locally
analogous system without feedback Yss,NF is equal to the steady state output of the feedback system Yss if either
µY ∗ = µYWss or µY ∗ = µY (Wss + Css), depending on the feedback system being considered (ATF v1 or ATF v2).

In this case, since Y∗ in the locally analogous system without feedback does not depend on any other molecule in
the system, its concentration will remain constant after any type of perturbation. As mentioned above, this is an
important requirement for the mathematically controlled comparison: if a perturbation also affects Y∗ value (e.g.
experimental perturbations on dilution, γ), the feedback system and the locally analogous system differ in more than
just the feedback information (Fig. S1D), and the CoRa value cannot be interpreted as simply the feedback
contribution.

As described by Briat et al. [2], assuming there is no dilution (γ = 0) as well as no individual degradation of U
and W (i.e. independent of the complex formation C; γU , γW = 0), this system (Eqs. S4-S5) is expected to display
perfect step disturbance rejection (integral control or perfect adaptation):

d

dt
U = µUY − η+UW + η0C

d

dt
W = µW − η+UW + η0C

then
d

dt
(U −W ) = µUY − µW

and if
d

dt
Uss =

d

dt
Wss = 0 then Yss =

µW
µU

(S10)

In other words, Yss is controlled to a reference value µW
µU

, to which it returns exactly after any step perturbation to

the system, provided that the steady-state exists and it is stable (see Olsman et al. [12] for further discussion). This
conclusion is independent of the particular subsystem being controlled, W being inactive (Eq. S6) or active (Eq. S7)
in the complex form, as well the active degradation rate (η−), and complex formation dynamics ( ddtC).

S2.1 Understanding effect of saturation on modified antithetic feedback control

S2.1.1 ATF control limits with inactive complex

In this section we prove that for the system described in Eqs. S3-S6, if (γ + γW ) > 0, as Y -synthesis rate (µY ) value
decreases, CoRaµY ∈Θ(µY )→ 1. Similarly, if (γ + γU ) > 0, as µY increases, CoRa saturates with
CoRaµY ∈Θ(µY )→ 0.5. These analytically argued results are corroborated by computational demonstrations in
Figure S4A.

Proposition 1. For the system described in Eqs. S3-S6, as µY → µ′Y , ∆log(Yss) = ∆log(µY ) + ∆log(Wss). Here,
for brevity, we denote Yss|Θ,µY by Yss, and Yss|Θ,µ′Y by Y ′ss, and similarly for Wss. Therefore
∆log(Yss) = log(Y ′ss)− log(Yss), ∆log(Wss) = log(W ′ss)− log(Wss), and ∆log(µY ) = log(µ′Y )− log(µY ).

Proof. Given Eq. S6, the output steady state for the system is

Yss =
( µY
γ + γY

)
Wss (S11)

After a perturbation µY → µ′Y , the new output steady state can be written as

Y ′ss =
( µ′Y
γ + γY

)
W ′ss (S12)

Then, the effect of the perturbation on the system can be quantified as

∆log(Yss) = log(Y ′ss)− log(Yss) = log
(Y ′ss
Yss

)
= log

(( µ′Y
γ+γY

)
W ′ss(

µY
γ+γY

)
Wss

)
= log

((µ′Y
µY

)(W ′ss
Wss

))
= ∆log(µY ) + ∆log(Wss) (S13)
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where the effect of the feedback is introduced by the ∆log(Wss) component.

Consequence 1. In the absence of feedback (i.e. when U and the W do not depend on Y ), Wss should remain
constant after a µY -perturbation, i.e. ∆log(Wss) = 0. Then, for this system, the effect of the step µY perturbation is
simply equal to the size of the perturbation, i.e. ∆log(Yss) = ∆log(µY ).

Consequence 2. By definition, a system has feedback control if the presence of feedback reduces the effect of the
perturbation over the output change, i.e. |∆log(Yss)| < |∆log(µY )|. Then, in order to have feedback control,
∆log(Wss) < 0 if ∆log(µY ) > 0 (and vice versa). It follows that in a range of µY values with effective feedback
control, Wss must decrease monotonically as µY value increases.

Proposition 2. For the system described in Eqs. S3-S6, if (γ + γW ) > 0, the total W steady state
(WT,ss = Wss +Css) has an upper limit and lower limit that is independent of µY . Additionally, WT,ss approaches its
upper limit when Wss ≈WT,ss, and its lower limit when Css ≈WT,ss.

Proof. Let’s define total W as the sum of free molecule W and the complex molecule C, i.e. WT = W + C. Then,
the equation of change of WT corresponds to the sum of Eq. S4 and Eq. S5:

d

dt
WT =

d

dt
W +

d

dt
C

= µW − (γ + γW )(W + C)− η−C (S14)

Without loss of generality, we represent C as a fraction of the total W , αWT with α ∈ [0, 1]:

d

dt
WT = µW − (γ + γW + αη−)WT (S15)

Then, in steady state:

WT,ss =
µW

γ + γW + αη−
(S16)

Given that all involved parameters are non-negative, and α ∈ [0, 1]:

µW
γ + γW + η−

≤ µW
γ+γW+αη−

≤ µW
γ + γW

µW
γ + γW + η−

≤ WT,ss ≤ µW
γ + γW

(S17)

Notice that the upper limit exists only if (γ + γW ) > 0. Moreover, it is clear that WT,ss approaches its upper limit
when α→ 0, i.e. WT,ss ≈Wss, while WT,ss approaches its lower limit when α→ 1, i.e. WT,ss ≈ Css.

Proposition 3. For the system described in Eqs. S3-S6, and within the range of µY for which the feedback is
effective (i.e. |∆log(Yss)| < |∆log(µY )| for all µY values within the range), CoRaµY ∈Θ(µY )→ 1 as µY decreases,
provided that (γ + γW ) > 0.

Proof. As WT,ss = Wss + Css is upper bounded (Eq. S17), Wss must have an upper limit as well (i.e. its
supremum, supµY (Wss) ≤ µW

γ+γW
). By Consequence 2 above, within the µY range where feedback control is effective,

Wss value increases as the µY value (before a perturbation is applied) decreases. Therefore, as µY decreases, Wss

approaches its supremum, supµY (Wss). As this occurs, the increment to its concentration (∆log(Wss)) after an
additional perturbation that decreases the µY value even further (i.e. ∆log(µY ) < 0) is constrained by the Wss

proximity to its limit. With some abuse of notation, we use the symbol ≈ to denote the situation in which this limit
is taken as Wss approaches its upper bound. As a result, in this regime, Wss ≈ supµY (Wss) and ∆log(Wss) ≈ 0.
Now, using Eq. S13 and Consequence 1,

CoRaµY ∈Θ(µY ) =
∆log(Yss)

∆log(Yss,NF)
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=
∆log(µY) + ∆log(Wss)

∆log(µY)

≈ ∆log(µY)

∆log(µY)
(S18)

≈ 1 (S19)

Proposition 4. For the system described in Eqs. S3-S6, and within the range of µY for which the feedback is
effective (i.e. |∆log(Yss)| < |∆log(µY )| for all µY values within the range), CoRaµY ∈Θ(µY )→ 0.5 as µY increases,
provided that (γ + γU ) > 0.

Proof. By Consequence 2 above, in a range of µY values with feedback control, Wss value decreases as the µY
value (before a perturbation is applied) increases. As WT,ss = Wss + Css is lower bounded (Eq. S17), and WT,ss is
minimal when Css approaches WT,ss, Css must have an lower limit as well (i.e. its infimum, infµY (Css) ≥ µW

γ+γW+η−
),

and Css → infµY (Css) as µY increases.
Let’s define total U as the sum of free molecule U and the complex molecule C, i.e. UT = U + C. Then, the

equation of change of UT corresponds to the sum of Eq. S3 and Eq. S5:

d

dt
UT =

d

dt
U +

d

dt
C

= µUY − (γ + γU )(U + C)− η−C (S20)

= µUY − (γ + γU )UT − η−C (S21)

Let’s assume that µY is large enough such that Css approaches its lower bound, which is given by c = infµY (Css).
With some abuse of notation, we use the symbol ≈ to denote the situation in which this limit is taken as Css
approaches its lower bound.

UT,ss ≈ µUYss − η−c
γ + γU

(S22)

and

Uss ≈ UT,ss − c

=
µUYss − (η− + γ + γU )c

γ + γU
(S23)

Solving Eq. S5 in steady state, and substituting Css, Uss,

0 = η+UssWss − (γ + η0 + η− + γU + γW )Css

Wss =
(γ + η0 + η− + γU + γW

η+

)(Css
Uss

)
= Kd

(Css
Uss

)
≈ Kd

( (γ + γU )c

µUYss − (η− + γ + γU )c

)
(S24)

with Kd := γ+η0+η−+γU+γW
η+

. Then, solving Eq. S6 in steady state, and substituting Wss,

0 = µYWss − (γ + γY )Yss

Yss =
µY

γ + γY
Wss

Yss ≈
( µY
γ + γY

)( Kd(γ + γU )c

µUYss − (η− + γ + γU )c

)
0 ≈ Y 2

ss −
( (η− + γ + γU )c

µU

)
Yss −

(µYKd(γ + γU )c

µU (γ + γY )

)
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Yss ≈
(1

2

)(( (η− + γ + γU )c

µU

)
+

√( (η− + γ + γU )c

µU

)2

+ 4
(µYKd(γ + γU )c

µU (γ + γY )

))
=

( (η− + γ + γU )c

2µU

)(
1 +

√
1 + 4

( µY µUKd(γ + γU )

(γ + γY )(η− + γ + γU )2c

))
=

( (η− + γ + γU )c

2µU

)(
1 +

√
1 + a · µY

)
(S25)

with a := 4
(

µUKd(γ+γU )
(γ+γY )(η−+γ+γU )2c

)
. As a result, the change of the steady-state output Yss after a small perturbation on

µY (µY → µ′Y , used to compute CoRa),

∆log(Yss) = log
(( (η−+γ+γU )c

2µU

)(
1 +

√
1 + a · µ′Y

)( (η−+γ+γU )c
2µU

)(
1 +
√

1 + a · µY
) )

= log
((1 +

√
1 + a · µ′Y

)(
1 +
√

1 + a · µY
) ) (S26)

On the other hand, given Consequence 1, the no-feedback system has ∆log(Yss,NF ) = ∆log(µY ) = log(
µ′Y
µY

), and the
associated CoRa value is given by:

CoRa =
log
(

1+
√

1+a·µ′Y
1+
√

1+a·µY

)
log(

µ′Y
µY

)
(S27)

As µY increases, with (a · µY )� 1, such that (1 +
√

1 + a · µY ) ≈ √a · µY , then

CoRa ≈
log
(

(a·µ′Y )0.5

(a·µY )0.5

)
log(

µ′Y
µY

)

≈
0.5 log(

µ′Y
µY

)

log(
µ′Y
µY

)

≈ 0.5 (S28)

S2.1.2 ATF control limits with active complex

In this section, we demonstate that for the system described in Eqs. S3-S5,S7, if (γ + γW ) > 0, as Y -synthesis rate
(µY ) value decreases, CoRaµY ∈Θ(µY )→ 1. Similarly, as µY increases, CoRa saturates with CoRaµY ∈Θ(µY )→ 1,
regardless of γ, γW , γU = 0. These analytically argued results are corroborated by computational demonstrations in
Figure S4B.

Proposition 5. For the system described on Eqs. S3-S5,S7, as µY → µ′Y , ∆log(Yss) = ∆log(µY ) + ∆log(WT,ss).
Here, for brevity, we denote Yss|Θ,µY by Yss, and Yss|Θ,µ′Y by Y ′ss, and similarly for WT,ss. Therefore
∆log(Yss) = log(Y ′ss)− log(Yss), ∆log(WT,ss) = log(W ′T,ss)− log(WT,ss), and ∆log(µY ) = log(µ′Y )− log(µY ).

Proof. Given Eq. S7, the output steady state for the system is

Yss =
( µY
γ + γY

)
(Wss + Css)

=
( µY
γ + γY

)
WT,ss (S29)

After a perturbation µY → µ′Y , the new output steady state can be written as

Y ′ss =
( µ′Y
γ + γY

)
W ′T,ss (S30)
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Then, the effect of the perturbation on the system can be quantified as

∆log(Yss) = log(Y ′ss)− log(Yss) = log
(Y ′ss
Yss

)
= log

(( µ′Y
γ+γY

)
W ′T,ss(

µY
γ+γY

)
WT,ss

)
= log

((µ′Y
µY

)(W ′T,ss
WT,ss

))
= ∆log(µY ) + ∆log(WT,ss) (S31)

where the effect of the feedback is introduced by the ∆log(WT,ss) component.

Consequence 3. In the absence of feedback (i.e. when U and W do not depend on Y ), WT,ss should remain
constant after a µY -perturbation, i.e. ∆log(WT,ss) = 0. As a result, the effect of the perturbation on the system is
simply equal to the size of the perturbation, i.e. ∆log(Yss) = ∆log(µY ).

Consequence 4. By definition, a system has feedback control if the presence of feedback reduces the effect of the
perturbation over the output change, i.e. |∆log(Yss)| < |∆log(µY )|. Then, in order to have feedback control,
∆log(WT,ss) < 0 if ∆log(µY ) > 0 (and vice versa). It follows that in range of µY values with effective feedback
control, WT,ss must decrease monotonically as µY value increases.

Proposition 6. For the system described in Eqs. S3-S5,S7, if (γ + γW ) > 0, the total W steady state
(WT,ss = Wss +Css) has an upper limit and lower limit, independent of µY . Additionally, WT,ss approaches its upper
limit when Wss ≈WT,ss, and its lower limit when Css ≈WT,ss.

Proof. Let’s define total W as the sum of free molecule W and the complex molecule C, i.e. WT = W + C. Then,
the equation of change of WT corresponds to the sum of Eq. S4 and Eq. S5:

d

dt
WT =

d

dt
W +

d

dt
C

= µW − (γ + γW )(W + C)− η−C (S32)

Without loss of generality, we represent C as a fraction of the total W , αWT with α ∈ [0, 1]:

d

dt
WT = µW − (γ + γW + αη−)WT (S33)

Then, at steady state:

WT,ss =
µW

γ + γW + αη−
(S34)

Given that all involved parameters are non-negative, and α ∈ [0, 1]:

µW
γ + γW + η−

≤ µW
γ+γW+αη−

≤ µW
γ + γW

µW
γ + γW + η−

≤ WT,ss ≤ µW
γ + γW

(S35)

Notice that the upper limit exists only if (γ + γW ) > 0. Moreover, it is clear that WT,ss approaches its upper limit
when α→ 0, i.e. WT,ss ≈Wss, while WT,ss approaches its lower limit when α→ 1, i.e. WT,ss ≈ Css.

Proposition 7. For the system described in Eqs. S3-S5,S7 and within the range of µY for which the feedback is
effective (i.e. |∆log(Yss)| < |∆log(µY )|), CoRaµY ∈Θ(µY )→ 1 as µY decreases, provided that (γ + γW ) > 0.

Proof. By Consequence 4, in the range of effective feedback control, WT,ss value increases as the µY value (before
a perturbation is applied) decreases. Therefore, as the µY value decreases, WT,ss approaches its limit, µW

γ+γW

(Eq. S35). Therefore, the potential increment to its concentration (∆log(WT,ss)) after a perturbation that decreases
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µY value even further (i.e. ∆log(µY ) < 0) is constrained by the WT,ss proximity to the limit. With some abuse of
notation, we use the symbol ≈ to denote the situation in which the limit is taken as Wss approaches its upper bound.
In this regime, WT,ss ≈ µW

γ+γW
and ∆log(Wss) ≈ 0. Using Eq. S31 and Consequence 3,

CoRaµY ∈Θ(µY ) =
∆log(Yss)

∆log(Yss,NF)

=
∆log(µY) + ∆log(WT,ss)

∆log(µY)

≈ ∆log(µY)

∆log(µY)

≈ 1 (S36)

Proposition 8. For the system described in Eqs. S3-S5,S7, and within a range in which the feedback is effective
(i.e. |∆log(Yss)| < |∆log(µY )| for all µY values within the range), CoRaµY ∈Θ(µY )→ 1 as µY increases.

Proof. By Consequence 4 above, in a range of µY values with effective feedback control, WT,ss value decreases as
the µY value (before a perturbation is applied) increases. Therefore, as the µY value increases, WT,ss approaches its
limit, µW

γ+γW+η−
(Eq. S35). Then the potential reduction on its concentration (∆log(WT,ss)) after a perturbation that

increases µY value even further (i.e. ∆log(µY ) > 0) is constrained by the WT,ss proximity to the limit. Then as the
µY value (before a perturbation is applied) increases, such that WT,ss ≈ µW

γ+γW+η−
and ∆log(Wss) ≈ 0 (with the

same abuse of notation highlighted above as to limits), using Eq. S31 and Consequence 3,

CoRaµY ∈Θ(µY ) =
∆log(Yss)

∆log(Yss,NF)

=
∆log(µY) + ∆log(WT,ss)

∆log(µY)

≈ ∆log(µY)

∆log(µY)

≈ 1 (S37)

Notice this limit exists even if W and U are lost only through their mutual annihilation (i.e. γ, γW , γU = 0), as the
active degradation is not spontaneous (i.e. 0 < η− <∞).

S2.2 Limits and the controlled system

It must be emphasized that the control limits described above depend directly on the specific subsystem being
controlled, and that analytical intuitive expressions might not always be feasible. CoRa has the advantage of not
having to rely on this knowledge. In this paper, we also analyze three different controlled subsystems with the
antithetic feedback control (ATF), for which no clear analytical derivations are possible :

1. One-step subsystem:

d

dt
Y = µYW − (γ + γY )Y (S38)

2. Double-negative subsystem:

d

dt
Y0 = µ0W − (γ + γY )Y0

d

dt
Y1 = µ1

K1

Y0 +K1
− (γ + γY )Y1

d

dt
Y = µY

KD

Y1 +KD
− (γ + γY )Y (S39)
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3. Subsystem with positive feedback:

d

dt
Y0 = µ0W − (γ + γY )Y0

d

dt
Y1 = µ1Y0 + µP

Y1

Y1 +KP
− (γ + γY )Y1

d

dt
Y = µY Y1 − (γ + γY )Y (S40)

In all cases, W induces the synthesis of the subsystem, and Y is the output of interest (Eqs. S3-S5; Fig. S2).
Choosing Y as the system’s output, the corresponding locally analogous system without feedback maintains the same
ODE equations except for the input to the control subsystem (U synthesis induction for the ATF examples), where Y
is substituted by a new molecule Y∗, which is constitutively expressed such that the steady state output of the locally
analogous system without feedback Yss,NF is equal to the steady state output of the feedback system Yss (i.e. Y∗
degradation rate γY ∗ = γY , and Y∗ synthesis rate, µY ∗ = µYWss, µY ∗ = µY

KD
Y1,ss+KD

, or µY ∗ = µY Y1,ss, depending

on the subsystem being considered).
Even with these simple examples, we observed that depending on the subsystem being controlled, the exact same

control motif has not only different performance, but qualitatively different responses to the tuning of the control
parameters (Fig. S2).

S3 Understanding effect of saturation on buffering + negative
feedback control strategy

System proposed in Hancock et al. (2017) Hancock et al. (2017) explored a simple model proposed to
display perfect adaptation. This system consisted of only two species, one working as a buffer of the other while
inhibiting its own synthesis (i.e. negative feedback). The equations of this control strategy with a the simple
controlled subsystem used in this paper are:

d

dt
Y = (µY − kY )− βY + βPUP − γY Y (S41)

d

dt
UP = βY − βPUP − γUPUP (S42)

where µY is the maximum synthesis rate of Y , β and βP are inactivation and activation rates respectively, UP
represents the inactive form of Y , γY and γUP are the degradation rates of Y and UP , respectively, and k is
inhibition rate of Y over its own synthesis.

At steady state,

UP,ss =
βYss

βP + γUP
(S43)

Yss =
µY

k + β − β βP
βP+γUP

+ γY
(S44)

Then, assuming βP � γUP , Yss is controlled with a reference value µY
k+γY

.

We consider a modified implementation of this buffering + negative feedback (BNF v1) control motif where the
feedback has an additional intermediate step:

d

dt
Y = µY U − (γ + γY )Y (S45)

d

dt
U = f(Y )− (γ + γU )U − βU + βPUP (S46)

d

dt
UP = −(γ + γUP )UP + βU − βPUP (S47)

28/37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2021. ; https://doi.org/10.1101/2020.10.09.334078doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.09.334078
http://creativecommons.org/licenses/by-nc-nd/4.0/


The steady state solution for U and UP is:

Uss = Yss

(γ + γY
µY

)
(S48)

UP,ss =
βUss

γ + γUP + βP
(S49)

For Y , in the case where f(Y ) = µU − kY is a linear function:

Yss = µU
µY

µY k + (γ + γU + β)(γ + γY )− β(γ + γY ) βP
γ+γUP +βP

(S50)

If we assume that γ + γUP ≈ 0, then Eq. S50 is reduced to:

Yss = µU
µY

µY k + (γ + γU )(γ + γY )
(S51)

The system has perfect adaptation only if µY k � (γ + γU )(γ + γY ), in which case the reference value is µU
k .

In the case where f(Y ) = µU
KD

KD+Y is a Michaelis-Menten function, steady state solution for Y is:

Yss =

−KD +

√
K2
D + 4KD

(
µY
γ+γY

)(
µU
γ+γU

)(
γ+γU+βP

β+γ+γU+βP

)
2

=
(KD

2

)
(−1 +

√
1 + a · µY ) (S52)

with a :=
(

4
KD

)(
1

γ+γY

)(
µU
γ+γU

)(
γ+γU+βP

β+γ+γU+βP

)
. This steady state expression already suggests that perturbations to

µY cannot be perfectly controlled anymore. Moreover, we show below that regardless of the parameter values, BNF
v1 with a Michaelis-Menten function describing the negative regulation has CoRaθ∈Θ(µY ) > 0.5.

The corresponding locally analogous system without feedback maintains the same ODE equations (Eq. S45 and
Eq. S47), with the exception of dU

dt ,

d

dt
U = f(Y∗)− (γ + γU )U − βU + βPUP (S53)

where U synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY ∗ − (γ + γY ∗)Y∗ (S54)

such that, for each parameter set Θ, Y∗ is constitutively expressed with synthesis µY ∗ equal to Y synthesis rate in the
pre-perturbation steady state solution (i.e. µY ∗ = µY U), and degradation rate γY ∗ = γY . Then, with
f(Y∗) = µY

KD
KD+Y∗

, the output steady state solution Yss,NF for this locally analogous system without feedback is:

Yss,NF =
( KD

( µY ∗
γ+γY ∗

) +KD

)( µY
γ + γY

)( µU
γ + γU

)( γ + γU + βP
β + γ + γU + βP

)
=

( KD(γ + γY ∗)

µY ∗ +KD(γ + γY ∗)

)(KD

4

)
· a · µY (S55)

Control limits Using Eq. S52 and Eq. S55, the CoRa value for a small perturbation on µY (µY → µ′Y ) is
calculated as,

CoRaµY ∈Θ(µY ) =
log
(

(
KD

2 )(−1+
√

1+a·µ′Y )

(
KD

2 )(−1+
√

1+a·µY )

)
log
(

(
KD(γ+γY ∗)

µY ∗+KD(γ+γY ∗)
)(
KD

4 )a·µ′Y
(

KD(γ+γY ∗)
µY ∗+KD(γ+γY ∗)

)(
KD

4 )a·µY

)

=
log
(
−1+
√

1+a·µ′Y
−1+

√
1+a·µY

)
log(

µ′Y
µY

)
(S56)
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First, we show that CoRaµY ∈Θ(µY ) decreases monotonically as the µY value (before the perturbation) increases
(i.e. dCoRaµY ∈Θ(µY )/dµY < 0). In order to evaluate the derivative of CoRa, we first need to derive the continuous

form of the CoRa function (CoRaC), which corresponds to CoRa evaluated in the limit as the perturbation size
(∆µY , with µ′Y = µY + ∆µY ) approaches zero,

CoRaCµY ∈Θ(µY ) = lim∆µY→0(CoRaµY ∈Θ(µY ))

=
log
(
−1+
√

1+a·(µY +∆µY )

−1+
√

1+a·µY

)
log( (µY +∆µY )

µY
)

|lim∆µY→0

=
log(−1 +

√
1 + a · (µY + ∆µY ))− log(−1 +

√
1 + a · µY )

log((µY + ∆µY ))− log(µY )
|lim∆µY→0

=

log(−1+
√

1+a·(µY +∆µY ))−log(−1+
√

1+a·µY )

∆µY
log((µY +∆µY ))−log(µY )

∆µY

|lim∆µY→0

=

d
dµY

log(−1 +
√

1 + a · µY )
d

dµY
log(µY )

=
1

2

(
1 +

1√
1 + a · µY

)
(S57)

Then,

d

dµY
CoRaCµY ∈Θ(µY ) =

d

dµY

(1

2

(
1 +

1√
1 + a · µY

)
= − a

4(1 + a · µY )
3
2

< 0 (S58)

As all parameters are positive (i.e. a > 0 and µY > 0), this derivative is always negative.
From Eq. S56, it is easy to see that as the µY value (before the perturbation) increases, with (a · µY )� 1, such

that (−1 +
√

1 + a · µY ) ≈ √a · µY , then

CoRaµY ∈Θ(µY ) ≈
log
(

(a·µ′Y )0.5

(a·µY )0.5

)
log(

µ′Y
µY

)

≈
0.5 log(

µ′Y
µY

)

log(
µ′Y
µY

)

≈ 0.5 (S59)

It follows that regardless of the parameter values, BNF v1 with a Michaelis-Menten function describing the
negative synthesis regulation has CoRaµY ∈Θ(µY ) > 0.5.

S4 Comparing Feedback Control Morifs with CoRa

For all systems below, Y represents the system output.

S4.1 Antithetic Feedback

We consider a simple version of the Antithetic Feedback motif (ATF) proposed by Briat et al. [2], where Y is being
produced at a rate that depends on the concentration of W , while U synthesis is induced by Y , which then binds W ,
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forming a transitory complex C, which eventually leads to the mutual degradation of U and W :

d

dt
U = µUY − (γ + γU )U − η+UW + (η0 + γW )C (S60)

d

dt
W = µW − (γ + γW )W − η+UW + (η0 + γU )C (S61)

d

dt
C = η+UW − (γ + η0 + η− + γU + γW )C (S62)

For Y dynamics, two alternative scenarios can be easily foreseen: W can be either inactivated as a transcription
factor once it binds U (ATF v1; Fig. 3A),

d

dt
Y = µYW − (γ + γY )Y (S63)

or W retains its transcription factor activity until degraded (ATF v2; Fig. 3D),

d

dt
Y = µY (W + C)− (γ + γY )Y (S64)

Here all species are subject to loss by dilution (γ), in addition of their own individual degradation rates (γ�), µ�

represents the synthesis rate for each molecule (either constitutive, µW , or dependent of the associated transcription
factor, µU and µY ), and η− is the co-degradation rate of U,W in the complex form C; η+ is the binding rate of U
and W (forming the complex C); and η0 is the spontaneous unbinding rate of these two molecules (dissociating the
complex C).

The corresponding locally analogous system without feedback maintains the same ODE equations (Eq. S61-S62,
and either Eq. S63 or Eq. S64), with the exception of dU

dt ,

d

dt
U = µUY∗ − (γ + γU )U − η+UW + (η0 + γW )C (S65)

where U synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗ (S66)

For each parameter set Θ, Y∗ is constitutively expressed with synthesis µY ∗ equal to Y synthesis rate in the
pre-perturbation steady state solution (i.e. either µY ∗ = µYWss or µY ∗ = µY (Wss +Css), depending on the feedback
system being considered), and degradation rate γY ∗ = γY .

S4.2 Feedback by Active Degradation

We consider a simple version of the Feedback by Active Degradation motif (FAD; [11,16]), where Y is being produced
at a rate that depends on the concentration of W , while U synthesis is induced by Y . Y then binds W , forming a
transitory complex C, which eventually leads to the degradation of only W while freeing U :

d

dt
U = µUY − (γ + γU )U − η+UW + (η0 + γW + η−)C (S67)

d

dt
W = µW − (γ + γW )W − η+UW + (η0 + γU )C (S68)

d

dt
C = η+UW − (γ + η0 + η− + γU + γW )C (S69)

For Y dynamics, two alternative scenarios can be easily foreseen: W can be either inactivated as a transcription
factor once it binds U (FAD v1; Fig. 3B),

d

dt
Y = µYW − (γ + γY )Y (S70)
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or W retains its transcription factor activity until degraded (FAD v2; Fig. 3E),

d

dt
Y = µY (W + C)− (γ + γY )Y (S71)

Here all species are subject to loss by dilution (γ), in addition of their own individual degradation rates (γ�), µ�

represents the synthesis rate for each molecule (either constitutive, µW , or dependent of the associated transcription
factor, µU and µY ), and η− is the active degradation rate of W in the complex form C; η+ is the binding rate of U
and W (forming the complex C); and η0 is the spontaneous unbinding rate of these two molecules (dissociating the
complex C).

The corresponding locally analogous system without feedback maintains the same ODE equations (Eq. S68-S69,
and either Eq. S70 or Eq. S71), with the exception of dU

dt ,

d

dt
U = µUY∗ − (γ + γU )U − η+UW + (η0 + γW + η−)C (S72)

where U synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗ (S73)

For each parameter set Θ, Y∗ is constitutively expressed with synthesis µY ∗ equal to Y synthesis rate in the
pre-perturbation steady state solution (i.e. either µY ∗ = µYWss or µY ∗ = µY (Wss +Css), depending on the feedback
system being considered), and degradation rate γY ∗ = γY .

S4.3 Feedback by Active Degradation + Positive Feedback with inactive complex

We consider the FAD motif with the addition of a positive feedback (FDP; [4, 16]), i.e. W induces its own synthesis.
Once again, two alternative scenarios can be easily foreseen: W can be either inactivated as a transcription factor
once it binds U (FDP v1; Fig. 3C),

d

dt
U = µUY − (γ + γU )U − η+UW + (η0 + γW + η−)C (S74)

d

dt
W = µW

( W

W +KD

)
− (γ + γW )W − η+UW + (η0 + γU )C (S75)

d

dt
C = η+UW − (γ + η0 + η− + γU + γW )C (S76)

d

dt
Y = µYW − (γ + γY )Y (S77)

or W retains its transcription factor activity until degraded (FDP v2; Fig. 3F),

d

dt
U = µUY − (γ + γU )U − η+UW + (η0 + γW + η−)C (S78)

d

dt
W = µW

( (W + C)

(W + C) +KD

)
− (γ + γW )W − η+UW + (η0 + γU )C (S79)

d

dt
C = η+UW − (γ + η0 + η− + γU + γW )C (S80)

d

dt
Y = µY (W + C)− (γ + γY )Y (S81)

Here all species are subject to loss by dilution (γ), in addition of their own individual degradation rates (γ�), µ�

represents the synthesis rate for each molecule, KD is the Michaelis-Menten constant for W auto-regulation, and η−
is the active degradation rate of W in the complex form C; η+ is the binding rate of U and W (forming the complex
C); and η0 is the spontaneous unbinding rate of these two molecules (dissociating the complex C).
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The corresponding locally analogous system without feedback maintains the same ODE equations (either
Eq. S75-S77, or Eq. S79-S81), with the exception of dU

dt ,

d

dt
U = µUY∗ − (γ + γU )U − η+UW + (η0 + γW + η−)C (S82)

where U synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗ (S83)

For each parameter set Θ, Y∗ is constitutively expressed with synthesis µY ∗ equal to Y synthesis rate in the
pre-perturbation steady state solution (i.e. either µY ∗ = µYWss or µY ∗ = µY (Wss +Css), depending on the feedback
system being considered), and degradation rate γY ∗ = γY .

S4.4 Buffering + Negative Feedback

We consider a motif with negative feedback and a buffering loop (BNF v1 & v2; Fig. 3G-H), similar to the one
proposed in Hancock et al. [6], where Y represses the synthesis of U , and U transitions to an alternative state UP
and vice versa:

d

dt
U = µU

( KD

Y +KD

)
− (γ + γU )U − βU + βPUP (S84)

d

dt
UP = −(γ + γU )UP + βU − βPUP (S85)

closing the feedback with either U inducing Y synthesis (BNF v1; Fig. 3G),

d

dt
Y = µY U − (γ + γY )Y (S86)

or UP inducing Y synthesis (BNF v2; Fig. 3H):

d

dt
Y = µY UP − (γ + γY )Y (S87)

Here all species are subject to loss by dilution (γ), in addition of their own individual degradation rates (γY for Y ,
and γU for both U and UP ), µU is the maximum synthesis rate of U (in absence of Y ), µY is the synthesis rate of Y
(depending either on U , Eq. S86, or UP , Eq. S87), and β, βP are the transition rates from U to UP , and viceversa.

The corresponding locally analogous system without feedback maintains the same ODE equations (Eq. S85, and
either Eq. S86 or Eq. S87), with the exception of dU

dt ,

d

dt
U = µU

( KD

Y∗ +KD

)
− (γ + γU )U − βU + βPUP (S88)

where U synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗ (S89)

For each parameter set Θ, Y∗ is constitutively expressed with synthesis µY ∗ equal to Y synthesis rate in the
pre-perturbation steady state solution (i.e. either (i.e. either µY ∗ = µY Uss or µY ∗ = µY UP,ss, depending on the
feedback system being considered), and degradation rate γY ∗ = γY .

33/37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2021. ; https://doi.org/10.1101/2020.10.09.334078doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.09.334078
http://creativecommons.org/licenses/by-nc-nd/4.0/


S4.5 Feedback + Feedforward Loop

We consider a motif with negative feedback and a coherent feed-forward loop (FFL; Fig. 3H), similar to the one
proposed in Harris et al. [7], where Y represses the synthesis of U , and U induces the synthesis of both Y and W ,
which in turns also induces Y synthesis:

d

dt
U = µU

( KD

Y +KD

)
− (γ + γU )U (S90)

d

dt
W = µWU − (γ + γW )W (S91)

d

dt
Y = µY (U +W )− (γ + γY )Y (S92)

Here all species are subject to loss by dilution (γ), in addition of their own individual degradation rates (γ�), and µ�

represents the synthesis rate for each molecule.
The corresponding locally analogous system without feedback maintains the same ODE equations (Eq. S91-S92),

with the exception of dU
dt ,

d

dt
U = µU

( KD

Y∗ +KD

)
− (γ + γU )U (S93)

where U synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗ (S94)

For each parameter set Θ, Y∗ is constitutively expressed with synthesis µY ∗ equal to Y synthesis rate in the
pre-perturbation steady state solution (i.e. µY ∗ = µY (Uss +Wss)), and degradation rate γY ∗ = γY .

S4.6 Brink Motif Feedback

We consider a simple version of the Brink motif (BMF) proposed by Samaniego & Franco [14], where A and I bind
and annihilate each other (by creating the complex C), A induces the activation of U (UP to U), while I induces its
inactivation (U to UP ), and U induces the synthesis of Y :

d

dt
C = −γC + η+AI − η0C + βAAUP (S95)

d

dt
U = µU − γU + βAAUP − βIIU (S96)

d

dt
UP = −γUP − βAAUP + βIIU (S97)

d

dt
Y = µY U − (γ + γY )Y (S98)

With Y either inducing the synthesis of I (BMF v1; Fig. 3I),

d

dt
A = µA − γA− η+AI + η0C − βAAUP (S99)

d

dt
I = µIY − γB − η+AI + η0C − βIIU (S100)

or Y repressing the synthesis of A (BMF v2; Fig. 3J),

d

dt
A = µA

( KD

Y +KD

)
− γA− η+AI + η0C − βAAUP (S101)

d

dt
I = µI − γB − η+AI + η0C − βIIU (S102)
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Here all species are subject to loss by dilution (γ), µ� represents the synthesis rate for each molecule (except UP ,
which is only created by the inactivation of U), η+ is the binding rate of A and I (forming the complex C), η0 is the
spontaneous unbinding rate of these two molecules (dissociating the complex C); and βA, βI are the activation and
inactivation rates of U , respectively. Finally, KD is the Michaelis-Menten constant for the transcriptional repression
by Y on Eq. S102.

The corresponding locally analogous system without feedback maintains the same ODE equations (Eq. S95-S97,
and either Eq. S99 or Eq. S102), with the exception of dI

dt for BMF v1,

d

dt
I = µIY∗ − γB − η+AI + η0C − βIIU (S103)

or dA
dt for BMF v2,

d

dt
A = µA

( KD

Y∗ +KD

)
− γA− η+AI + η0C − βAAUP (S104)

where I, A synthesis rate, respectively, now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗ (S105)

such that Y∗ is constitutively expressed with synthesis µY ∗ equal to Y synthesis rate in the steady state solution for
each parameter set Θ (i.e. either µY ∗ = µY Uss), and degradation rate γY ∗ = γY , before the perturbation.

S5 Using CoRa to design biomolecular feedback control mechanisms

Below, we present the details of the optimization of the CoRa function over control parameters. For this, we
implemented a simple algorithm with two optimization phases: choosing for parameter values that (1) reduce the
CoRa value up until min(CoRa) ≤ ε (with ε being a threshold picked by the user), and then (2) expand the range of
parameter set values θ (e.g. range of µY values) with min(CoRa) ≤ ε. Multiple parameter sets might result in
equivalent efficient control for a given feedback control system. This can be explored computationally by running the
optimization algorithm for multiple initial conditions and/or random number chains. Iterations of the optimization
process allow to determine the region of the parameter space and relationship between parameters associated to the
optimal performance for the case of interest.

S5.1 Optimizing feedback control designs

The goal is to maximize the range of values of a specific parameter θ ∈ Θ where CoRaθ∈Θ(ρ) ≤ ε. For this, we
consider two phases of the optimization: first minimizing the min(CoRaθ∈Θ(ρ)) up until it is less or equal ε; then
maximizing the magnitude of |CoRaθ∈Θ(ρ) ≤ ε| in the explored range (in the logarithmic scale).

Error function, χ2

Minimizing min(CoRaθ∈Θ(ρ))

We define our error function (sum of square errors) by assuming the optimal point D = 0, and considering the
expected variance of uniform distribution ∼ U [0, 1] (σ2 = 0.083). Then our error function in the initial phase of the
optimization is:

χ2 =
(0−min(CoRaθ∈Θ(ρ)))2

2σ2
(S106)

=
min(CoRaθ∈Θ(ρ))2

2σ2
(S107)
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Maximizing |CoRaθ∈Θ(ρ) ≤ ε|

We assume the optimal point D = 1 for all values of θ ∈ Θ in the range of interest, then∫
Ddθ = θ| = θmax − θmin = r (S108)

And for each data point θi, yi is 1 if CoRaθi∈Θ(ρ) ≤ ε, 0 otherwise. Then (Di − yi)2 = 0 for the range where
CoRaθ∈Θ(ρ) ≤ ε, 1 otherwise. Finally,∫

(Di − yi)2 = r − |CoRaθi∈Θ(ρ) ≤ ε| (S109)

And the range of interest is maximized as this value is minimized. Then, our error function in this phase of the
optimization is:

χ2 =
r − |CoRaθi∈Θ(ρ) ≤ ε|

2σ2
(S110)

We initially tried using the variance of a uniform function ∼ U [0, r] (σ2 = 0.083r2) for the error function, but it
resulted in very noisy simulations. So we opted for the same variance than when minimizing min(CoRaθ∈Θ(ρ))
(σ2 = 0.083).

Metropolis Random Walk algorithm

For each phase, an error function is defined, and a Metropolis Random Walk algorithm implemented as follows:

1. Choose some initial parameters Θ1 and calculate the corresponding likelihood.

2. Iterate over t = {1, 2, ..., tMAX} as follows:

(a) Draw a random proposal φ ∼ Θ(t) × 10N||Θ||(0,Σ) where N||Θ||(0,Σ) is a Multivariate Normal distribution
with the same dimension as Θ(t), mean zero and covariance matrix Σ = 0.1.

(b) We construct a likelihood function using a Gaussian function:

P (D|Θ) = exp(−χ2) (S111)

where Θ is the set of parameter to be optimized, D is the optimal data, and χ2 is the error function
(which depends on the optimization phase). Note the likelihood is maximal when the error is minimal.
Then we calculate the likelihood ratio:

L∗
L(t)

=
P (D|φ)

P (D|Θ(t))
= exp(−χ2

∗ + χ2
(t)) (S112)

Accept the proposed φ if the ratio is larger than a random number ∼ U [0, 1]. The proposed value is always
accepted if the error is smaller (i.e. it’s better).

(c) Update parameters Θ(t+1) ← φ with probability min(1, L∗L(t)
); otherwise, Θ(t+1) ← Θ(t).
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