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Abstract1

Birth-death stochastic processes are the foundation of many phylogenetic models and are widely used2

to make inferences about epidemiological and macroevolutionary dynamics. There are a large number3

of birth-death model variants that have been developed; these impose di�erent assumptions about the4

temporal dynamics of the parameters and about the sampling process. As each of these variants was5

individually derived, it has been di�cult to understand the relationships between them as well as their6

precise biological and mathematical assumptions. And without a common mathematical foundation,7

deriving new models is non-trivial. Here we unify these models into a single framework, prove that8

many previously developed epidemiological and macroevolutionary models are all special cases of a9

more general model, and illustrate the connections between these variants. To do so, we develop a novel10

technique for deriving likelihood functions for arbitrarily complex birth-death(-sampling) models that will11

allow researchers to explore a wider array of scenarios than was previously possible. As an illustration12

of the utility of our mathematical approach, we use our approach to derive a yet unstudied variant of the13

birth-death process in which the key rates emerge deterministically from a classic susceptible infected14

recovered (SIR) epidemiological model.15
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Introduction17

As a consequence of their rapid mutation rates and large population sizes, many viral pathogens, such as18

HIV and SARS-CoV-2, accumulate genetic diversity on the timescale of transmission. This genetic diversity19

can be used to reconstruct the evolutionary relationships between viral variants sampled from di�erent hosts,20

which in turn can help elucidate the epidemiological dynamics of a pathogen over time. The combined21

dynamics of viral diversification and the epidemiological process have been termed “phylodynamics” [1, 2].22

In the last two decades, there has been a tremendous amount of innovation in phylodynamic models, and23

the epidemiological inferences from these models increasingly complement those from more conventional24

surveillance data [2].25

Phylodynamic models can be broadly grouped into two classes. The first, based on Kingman’s coales-26

cent process [3], has been historically widely used to examine changes in the historical population size of27

pathogens [4–7]. While useful in some applications, using the coalescent process depends upon the critical28

assumption that the population size is large relative to the number of samples, such that stochastic variation29

can be ignored; thus, this approach is inaccurate for reconstructing the dynamics of well-sampled or emerging30

pathogens [8, 9]. The second class of models, based on the birth-death process [10–13], make no assumption31

about sparse sampling and fully incorporate stochasticity, and are thus become an increasingly favorable and32

popular alternative to coalescent models. These birth-death-sampling (BDS) models which are the focus of33

the present contribution, are also widely utilized in macroevolution to infer speciation and extinction rates34

over time [14–17] and to estimate divergence times from phylogenetic data [18, 19].35

In the context of phylodynamics, BDS models have the additional property that the model parameters,36

which can be estimated from viral sequence data, explicitly correspond to parameters in classic structured37

epidemiological models that are often fit to case surveillance data. As the name implies, the BDS process38

includes three types of events: birth (pathogen transmission between hosts, or speciation in a macroevolu-39

tionary context), death (host death or recovery, or extinction in macroevolution), and sampling (including40

fossil collection and macroevolution). Taken together, these dynamics can be used to describe changes in the41

basic and e�ective reproductive ratios (R0 and Re, respectively) over time [20, 21] (see Box 1). A common42

inferential goal is to describe how the frequency of these events, and other derived variables such as Re,43

change throughout the course of an epidemic. As we detail below and in the Supplementary Material, there44

has been an astounding rise in the variety and complexity of BDS model variants to allow for many di�erent45

assumptions on transmission dynamics and sampling procedures [e.g., 22–24]. While typically not explicitly46

tied to mechanistic evolutionary processes, there are a similar abundance of macroevolutionary BDS variants47

that make di�erent assumptions about the trajectory of biodiversity through time [16–19, 25–27].48

This flourishing of methods and models has facilitated critical insights into epidemics [28, 29] and the49

origins of contemporary biodiversity [16, 30]. However, this diversity of models has made it di�cult to trace50

the connections between variants and to understand the precise epidemiological, evolutionary, and sampling51

processes that are being assumed to be di�erent by each of them. Furthermore, despite their apparent simi-52

larity, these models have been derived on a case-by-case basis using di�erent notation and techniques; this53

creates a substantial barrier for researchers working to develop novel models for new situations. And criti-54

cally, it is imperative that we understand the general properties of BDS phylogenetic models and the limits of55

inferences from them [31] and this is di�cult to do without considering the full breadth of possible scenarios.56

Here we address all of these challenges by deriving the probability of observing a given phylogeny and57

series of sampling events under a general BDS model. In our derivation we do not assume anything about58

the functional form (i.e., temporal dynamics) of the various parameters including sampling, the possibility of59
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sampling ancestors (or not), or how the process was conditioned. While a more general model may be useful60

for studying the mathematical properties of sets of models [e.g., 31], it is not necessarily useful for statistical61

inference. However, in deriving a general form of the BDS likelihood, we develop a six-step procedure for62

deriving the likelihood of any sub-model. This allows us to precisely characterize the implicit and explicit63

assumptions made by existing sub-models, illustrate the connections between them, and identify their lim-64

itations (we work through many examples of this in the Supplementary Material). To further illustrate the65

advantages of deriving sub-models from the general case, we derive the likelihood of a previously uncon-66

sidered model where ⁄, µ, and Â emerge deterministically (as opposed to stochastically; see [23]) from the67

dynamics of an epidemiological compartmental SIR model, which has a close connection with the models68

discussed here (see Box 1).69

Results and Discussion70

The general birth-death-sampling model71

Model Specification: The BDS stochastic process begins with a single lineage at time tor. We note that this72

may be considerably older than the age of the most recent common ancestor of an observed sample which73

is given by tMRCA. While we focus primarily on applications to epidemiology, our approach is agnostic to74

whether the rates are interpreted as describing pathogen transmission or macroevolutionary diversification.75

In the model, transmission/speciation results in the birth of a lineage and occurs at rate ⁄(·), where ·76

(0 Æ · Æ tor) is measured in units of time before the present day, such that ⁄ can be time-dependent. We77

make the common assumption that lineages in the viral phylogeny coalesce exactly at transmission events,78

thus ignoring the pre-transmission interval inferred in a joint phylogeny of within- and between-host [32].79

Throughout, we will use · as a a general time variable and t◊ to denote a specific time of an event ◊ time80

units before the present day (see Table S1). Lineage extinction, resulting from host recovery or death in the81

epidemiological case or the death of all individuals in a population in the macroevolutionary case, occurs at82

time-dependent rate µ(·). We allow for two distinct types of sampling: lineages are either sampled according83

to a Poisson process through time Â(·) or binomially at very short intervals, which we term “concerted sam-84

pling attempts” (CSAs), where lineages at some specified time tl are sampled with probability fll (fl̨ denotes85

a vector of concerted sampling events at di�erent time points). In macroevolutionary studies based only on86

extant lineages, there is no Poissonian sampling, but a CSA at the present (i.e., fl0 > 0). In epidemiology,87

CSAs correspond to large-scale testing e�orts (relative to the background rate of testing) in a short amount88

of time (relative to the rates of viral sequence divergence); for full explanation, see Supplementary Material89

section S1.2.3. We call these attempts rather than events because if fl is small or the infection is rare in the90

population, few or no samples may be obtained. CSAs can also be incorporated into the model by including91

infinitesimally short spikes in the sampling rate Â (more precisely, appropriately scaled Dirac distributions).92

Hence, for simplicity, in the main text we focus on the seemingly simpler case of pure Poissonian sampling93

through time except at present-day, where we allow for a CSA to facilitate comparisons with macroevolu-94

tionary models; the resulting formulas can then be used to derive a likelihood formula for the case where95

past CSAs are included (Supplement S1.2.3).96

In the epidemiological case, sampling may be concurrent (or not) with host treatment or behavioural97

changes resulting in the e�ective extinction of the viral lineage. Hence, we assume that sampling results98

in the immediate extinction of the lineage with probability r(·). Similarly, in the case of past CSAs we must99

include the probability, rl, that sampled hosts are removed from the infectious pool during the CSA at time100
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tl. Poissonian sampling without the removal of lineages (r(·) < 1) can be employed in the macroevolution-101

ary case to explicitly model the collection of samples from the fossil record (e.g., the fossilized birth-death102

process [19]).103

For our derivation, we make no assumption about the temporal dynamics of ⁄, µ, Â, or r; each may be104

constant, or vary according to any arbitrary function of time given that it is biologically valid (i.e., non-105

negative and between 0 and 1 in the case of r). We make the standard assumption that at any given time any106

given lineage experiences a birth, death or sampling event independently of (and with the same probabilities107

as) all other lineages. We revisit this assumption in Box 1 where we discus how the implicit assumptions of108

the BDS process are well summarized by the diversification model’s relationship to the SIR epidemiological109

model. Our resulting general time-variable BDS process can be fully defined by the parameter set �BDS =110

{⁄(·), µ(·), Â(·), r(·), fl̨}.111

In order to make inference about the model parameters, we need to calculate the likelihood, L, that an112

observed phylogeny, T, is the result of a given BDS process. With respect to the BDS process there are113

two ways to represent the information contained in the phylogeny T, both of which have been used in the114

literature, which we call the “edge” and “critical time” representations, respectively. We begin by deriving115

the likelihood in terms of the edge representation and later demonstrate how to reformulate the likelihood116

in terms of critical times. In the edge representation, the phylogeny is summarized as a set of edges in the117

mathematical graph that makes up the phylogeny, numbered 1-11 in Figure B1, and the types of events that118

occurred at each node. We define ge(·) as the probability that the edge e which begins at time se and ends at119

time te gives rise to the subsequently observed phylogeny between time ·, (se < · < te) and the present day.120

The likelihood of the tree then, is by definition gstem(tor): the probability density the stem lineage (stem = 1121

in Figure B1) gives rise to the observed phylogeny from the origin, tor, to the present day. Although it is122

initially most intuitive to derive the likelihood in terms of the edge representation, as we show below, it is123

then straightforward to derive the critical times formulation which results in mathematical simplification.124

Deriving the Initial Value Problem (IVP) for ge(·): We derive the IVP for the likelihood density ge(·)125

using an approach first developed by [11]. For a small time �· the recursion equation for the change in the126

likelihood density is given by the following expression.127

ge(· + �·) = (1 ≠ ⁄(·)�·)(1 ≠ µ(·)�·)(1 ≠ Â(·)�·) ◊ ge(·)
¸ ˚˙ ˝

nothing happens

+ ⁄(·)�·(1 ≠ µ(·)�·)(1 ≠ Â(·)�·) ◊ 2ge(·)E(·)
¸ ˚˙ ˝

birth event

+ µ(·)�·(1 ≠ ⁄(·)�·)(1 ≠ Â(·)�·) ◊ 0
¸ ˚˙ ˝

death event

+ Â(·)�·(1 ≠ ⁄(·)�·)(1 ≠ µ(·)�·) ◊ 0
¸ ˚˙ ˝

sampling event

.

(1)128

Here, E(·) is the probability that a lineage alive at time · leaves no sampled descendants at the present day.129

We will examine this probability in more detail below. Assuming �· is small, we can approximate the above130

recursion equation as the following di�erence equation.131

�ge(·) ¥ ≠(⁄(·) + µ(·) + Â(·))�·ge(·) + 2⁄(·)ge(·)E(·)�· + O(�·2). (2)132

By the definition of the derivative we have:133

dge(·)
d·

= ≠(⁄(·) + µ(·) + Â(·))ge(·) + 2⁄(·)ge(·)E(·). (3)134
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Equation (3) is known as the Kolmogorov backward equation of the BDS process [33–35]. Beginning at135

time se, the initial condition of ge depends on which event occurred at the beginning of edge e.136

ge(se) =

Y
_____]

_____[

⁄(se)ge1(se)ge2(se) birth event giving rise to edges e1 and e2
(1 ≠ r(se))Â(se)ge1(se) ancestral sampling event
Â(se)r(se) + Â(se)(1 ≠ r(se))E(se) terminal sampling event
fl0 se = 0, extant sample

(4)137

Together Equations (3) and (4) define the initial value problem for ge(·) as a function of the probability138

E(·).139

Because the likelihood density ge is the solution to a linear di�erential equation with initial condition at140

time se, we can express its solution as follows:141

ge(·) = �(se, ·)ge(se), (5)142

where the auxiliary function, �, is given by:143

�(se, ·) = exp
5⁄

·

se

2⁄(x)E(x) ≠ (⁄(x) + µ(x) + Â(x)) dx
6

. (6)144

This function, �(s, t), maps the value of ge at time s to its value at t, and hence is known as the probability145

“flow” of the Kolmogorov backward equation [35].146

Deriving the IVP for E(·): We derive the IVP for E(·) in a similar manner as above, beginning with a147

di�erence equation.148

E(· + �·) = (1 ≠ ⁄(·)�·)(1 ≠ µ(·)�·)(1 ≠ Â(·)�·) ◊ E(·)
¸ ˚˙ ˝

nothing happens

+ ⁄(·)�·(1 ≠ µ(·)�·)(1 ≠ Â(·)�·) ◊ E(·)2
¸ ˚˙ ˝

birth event

+ µ(·)�·(1 ≠ ⁄(·)�·)(1 ≠ Â(·)�·) ◊ 1
¸ ˚˙ ˝

death event

+ Â(·)�·(1 ≠ ⁄(·)�·)(1 ≠ µ(·)�·) ◊ 0
¸ ˚˙ ˝

sampling event

.

(7)149

By the definition of a derivative we have:150

dE(·)
d·

= ≠ (⁄(·) + µ(·) + Â(·))E(·) + ⁄(·)E(·)2 + µ(·),

E(0) =1 ≠ fl0,
(8)151

where fl0 is the probability a lineage is sampled at the present day. The initial condition at time 0 is therefore152

the probability that a lineage alive at the present day is not sampled. Given an analytical or numerical general153

solution to E(·), we can find the likelihood by evaluating gstem(tor), as follows.154

Deriving the expression for gstem(tor): Given the linear nature of the di�erential equation for ge(·) and155

hence the representation in Equation (5)), the likelihood gstem(·) is given by the product over all the initial156
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conditions times the product over the probability flow for each edge.157

gstem(tor) = flN0
0¸˚˙˝

extant
tips

IŸ

i=1
⁄(xi)

¸ ˚˙ ˝
births

nŸ

j=1
[Â(yj)(1 ≠ r(yj))E(yj) + Â(yj)r(yj)]

¸ ˚˙ ˝
extinct tips

◊
mŸ

k=1
Â(zk)(1 ≠ r(zk))

¸ ˚˙ ˝
ancestral samples

Ÿ

eœT

�(se, te)
¸ ˚˙ ˝

edges

.

(9)158

Representing gstem(tor) in terms of critical times: Equation (9) can be further simplified by removing the159

need to enumerate over all the edges of the phylogeny (the last term of Equation (9)) and writing L in terms160

of the tree’s critical times (horizontal lines in figure B1). The critical times of the tree are made up of three161

vectors, x̨, y̨, and z̨, as well as the time of origin tor. The vector x̨ gives the time of each birth event in the162

phylogeny and has length I = N0 ≠n≠1 where N0 is the number of lineages sampled at the present day and163

n is the number of terminal samples. Unless noted otherwise the elements of vector x̨ are listed in decreasing164

order, such that x1 > x2 > ...xI and hence x1 is the time of the most recent common ancestor tMRCA. The165

vector y̨ gives the timing of each terminal sample and hence has length n whereas vector z̨ gives the timing166

of each ancestral sample and has length m. With respect to the BDS likelihood then the sampled tree is167

summarized by T = {x̨, y̨, z̨, tor}. We note that the critical times only contain the same information as the168

edges as a result of the assumptions of the BDS process but are not generally equivalent representations of169

T.170

As a result of the linear nature of ge(·) it is straightforward to rewrite the likelihood in Equation (9) in171

terms of the critical-time representation of the sampled tree. Defining172

�(t) = �(0, t) = exp
5⁄

·

0
2⁄(x)E(x) ≠ (⁄(x) + µ(x) + Â(x)) dx

6
, (10)173

the probability flow � can be rewritten as the following ratio:174

�(s, t) = �(0, ·)
�(0, s) = �(s)

�(t) . (11)175

This relationship allows us to rewrite the likelihood by expressing the product over the edges as two separate176

products, one over the start of each edge and the other over the end of each edge. Edges begin (value of te) at177

either: 1) the tree origin, 2) a birth event resulting to two lineages, or 3) an ancestral sampling event. Edges178

end (values of se) at either: 1) a birth event, 2) an ancestral sampling event, 3) a terminal sampling event, or179

4) the present day. Hence we have:180

gstem(tor) = �(tor)¸ ˚˙ ˝
root

◊
3

fl0

����(0)

4
N0

¸ ˚˙ ˝
extant tips

◊
IŸ

i=1
⁄(xi)

�(xi)�2

����(xi)
¸ ˚˙ ˝

births

◊
nŸ

j=1

Â(yj)
�(yj) [(1 ≠ r(yj))E(yj) + r(yj)]

¸ ˚˙ ˝
extinct tips

◊
mŸ

k=1

����(zk)

����(zk)
Â(zk)(1 ≠ r(zk))

¸ ˚˙ ˝
ancestral samples

.

(12)181

Note �(0) = 1.182
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Conditioning the likelihood: While Equation (12) is equal to the basic likelihood of the phylogeny T,183

it is often appropriate to condition the tree likelihood on the tree exhibiting some property, for example the184

condition there being at least sampled lineage. Imposing a condition on the likelihood is done by multiplying185

by a factor S. Various conditioning schemes are considered in section S1.4 and listed in Table S3. The186

resulting likelihood of the general BDS model is:187

L (x̨, y̨, z̨, N0|�BDS, S) =SflN0
0 �(tor)

IŸ

i=1
⁄(xi)�(xi)

◊
nŸ

j=1

Â(yj)
�(yj) [(1 ≠ r(yj))E(yj) + r(yj)]

mŸ

k=1
Â(zk) (1 ≠ r(zk))

(13)188

Many existing models are special cases of our general BDS189

A large variety of previously published BDS models in epidemiology and macroevolution are simply spe-190

cial cases of the general model presented here (for a summary of the models we investigated see Table S2;191

proofs in Supplemental Material). Indeed, we can obtain the likelihood of these models by adding math-192

ematical constraints (i.e., simplifying assumptions) to the terms in Equation (13). Our work thus not only193

provides a consistent notation for unifying a multitude of seemingly disparate models, it also provides a con-194

crete and numerically straightforward recipe for computing their likelihood functions. We have implemented195

the general form of the BDS framework in the R package castor [36], including routines for maximum-196

likelihood fitting of the BDS models with arbitrary functional forms of the parameters given a phylogeny and197

routines for simulating phylogenies under the general BDS models (functions fit_hbds_model_on_grid,198

fit_hbds_model_parametric and generate_tree_hbds).199

Figure 1 summarizes the simplifying assumptions that underlie common previously published BDS mod-200

els; these assumptions generally fall into four categories: 1) assumptions about the functional form of birth,201

death, and sampling rates over time, 2) assumptions pertaining to the sampling of lineages, 3) the presence202

of mass-extinction events, and 4) the nature of the tree-conditioning as given by S. Here we provide a brief203

overview of the type of previously-invoked constraints which are consistent (or not) with our generalized204

BDS; for full details on each specific case, we refer readers to the Supplementary Material.205

In regards to rate assumptions, many early BDS models [12, 13, 20] assumed that the birth, death, and206

sampling rates remained constant over time. This is mathematically and computationally convenient since an207

analytical solution can easily be obtained for E(·). In the epidemiological case, holding ⁄ constant, however,208

implies that the number of susceptible hosts is e�ectively constant throughout the epidemic and/or that the209

population does not change its behavior over time (an unrealistic assumption, e.g. in the face of seasonal210

changes or changes in response to the disease itself). As such, this assumption is only really valid for small211

time periods or the early stages of an epidemic. This is useful for estimating the basic reproductive number,212

R0, of the SIR model (Box 1) but not for the e�ective reproductive number Re at later time points [20].213

A similarly tractable, but more epidemiologically relevant, model is known as the “birth-death-skyline”214

variant [21, 24], in which rates are piecewise-constant functions through time (like the constant rate model,215

there is also an analytical way to calculate the likelihood of this model; see Supplementary Material S1.1.2).216

The BDS skyline model has been implemented under a variety of additional assumptions in the Bayesian217

phylogenetics software BEAST [37]. The BDS skyline model has also been extended by Kuhnert et al. [23]218

to infer the the parameters of an underlying stochastic SIR model. In this case the diversification model pa-219

rameters �BDS are random variables that emerge from stochastic realizations of the epidemiological model220
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Stadler 2009
[12] & S2.1

Stadler 2010
[13] & S2.2

Morlon et
al. 2011

[26] & S2.3

Stadler 2011
[27] & S2.4

Stadler et
al. 2012

[20] & S2.5

Stadler et
al. 2013

[22] & S2.6

Gavryushkina
et al. 2014
[24] & S2.6

Heath et
al. 2014

[19] & S2.7

Kuhnert et
al. 2014

[23]

deterministic
SIR

Model Rates Sampling

Mass

Extinction Conditioning

constant

constant

constant

constant

piecewise

constant

piecewise

constant

piecewise

constant

stochastic
SIR

deterministic
SIR

birth-death

birth-death

birth-death

birth-death

CSAs

CSAs

no
present-day

sampling

no
present-day

sampling

fossils

r Æ 1r Æ 1r Æ 1

fossils

r Æ 1r Æ 1r Æ 1

fossils

r Æ 1r Æ 1r Æ 1

fossils

r Æ 1r Æ 1r Æ 1

mass

extinction

◊ ◊ ◊ ◊

constant

=

constant

=

constant

=

N0N0N0 samples

N0N0N0 samples tMRCAtMRCAtMRCA

tMRCAtMRCAtMRCA

tMRCAtMRCAtMRCA

tMRCAtMRCAtMRCA

Ø 1Ø 1Ø 1 sample

Ø 1Ø 1Ø 1 sample

Ø 1Ø 1Ø 1 sample

Ø 1Ø 1Ø 1 sample

Ø 1Ø 1Ø 1 extant
sample

Ø 1Ø 1Ø 1 extant
sample

or or

or

+++ +++

+++

+++

+++

+++

+++

Figure 1: Sub-model assumptions. Rate, sampling, mass extinction, and conditioning assumptions of existing sub-
models of the general time-variable BDS process. The key points are that i) each of the previously developed models
we considered can be obtained by adding specific combinations of constraints to the various parameters of the general
BDS model; and ii) that there are many plausible, and potentially biologically informative combinations of constraints
that have not been considered by researchers in epidemiology or macroevolution.
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given by �SIR, see Equation (B1). Finally, the birth-death skyline model with piecewise constant rates can221

also be applied in the macroevolutionary case when no sampling occurs through time, Â(·) = 0 [27].222

In addition to imposing constraints on the temporal variation in the rates, previously derived sub-models223

have considered a variety of di�erent assumptions about the nature of the sampling process. Most notably,224

in macroevolutionary studies, sampling of molecular data typically occurs only at the present day [12, 26,225

27] whereas past Poissonian sampling can be introduced to include the sampling of fossil data [19]. In226

epidemiology, concerted sampling at the present day is likely biologically unrealistic (e.g., [20] and the227

deterministic SIR model considered below), though in some implementations of the models, such a sampling228

scheme has been imposed. Concerted sampling attempts prior to the present day as well as mass extinction229

events can be incorporated, as mentioned previously, via the inclusion of Dirac distributions in the sampling230

and death rates, respectively. Finally, previous models include multiplying the likelihood by a factor S in231

order to condition on a particular observation (e.g. observing at least one lineage or exactly N0 lineages),232

enumerate of indistinguishable trees [12, 24, 38], or to reflect known uncertainties. The “fossilized-birth-233

death” likelihood derived by Heath et al. [19] for example, includes a factor that reflects the uncertainty234

in the attachment and placement of fossils on the macroevolutionary tree. The Supplementary Material235

demonstrates how these sub-models can be re-derived by either imposing the necessary constraints on the236

general likelihood formula given in Equation (13) or, alternatively, by starting from the combinations of237

assumptions and using the six-step procedure outlined above (and as illustrated in the example below).238

Deriving a new BDS variant: a deterministic SIR model239

As we mentioned above and proved in the Supplementary Materials, many previously derived BDS variants240

are sub-models of a more general time-variable BDS that we derive here. Figure 1 illustrates how one can241

add (and combine) additional mathematical constraints or biological assumptions to derive a specific variant.242

However, the range of BDS models published so far is not exhaustive and there are a multitude of alterna-243

tive ways that one could constrain the functional forms of the parameters. As we emphasized before, it is244

straightforward to derive the likelihood of any of these variants using the approach we present here. As an245

illustrative example, we derive the likelihood of a novel model motivated by the close connection between246

the BDS process and SIR models in epidemiology (Box 1). As noted above, Kuhnert et al. [23] previously247

derived a model in which the rates of the BDS process are random variables that emerge stochastically from248

the dynamics of the underlying SIR model. Allowing for this stochasticity is critically important at early249

stages of an epidemic when viral population sizes are small [8, 23]; however, later in an epidemic when250

infections are widespread, it may be more tractable to fit a model where the BDS rates are deterministic. A251

detailed analysis of when a stochastic or deterministic model might be preferred are beyond the scope of the252

present contribution (see [39]) — we re-emphasize that our primary purpose is to illustrate that expanding253

the range of available models is straightforward given our general formulation.254

The Epidemiological Model: Here let t denote time measured forward in time and · as time measured255

backward from the present, with the two related via t = tor ≠ · . The epidemic originates at time t = 0 and256

· = tor and the present day is given by t = tor and · = 0. In this case we use the SIR model as defined in257

Box 1 assuming the epidemiological rates (e.g. — “, – Â and ‡ in Figure B1) are time independent. In this258
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case the deterministic compartmental model is given by the following initial value problem.259

dS(t)
dt

=bN(t)
3

1 ≠ N(t)
Ÿ

4
≠ ”S(t) ≠ —S(t)I(t) + ‡R(t) S(0) = (1 ≠ fI)N(0)

dI(t)
dt

=—S(t)I(t) ≠ (” + – + “ + Âr) I(t) I(0) = fIN(0)
dR(t)

dt
= (“ + Âr) I(t) ≠ (” + ‡) R(t) R(0) = 0

(14)260

where N(t) = S(t) + I(t) + R(t) is the total number of hosts. Here we use a model of logistic growth261

for host birth B in which the pathogen has no suppressive e�ects on reproduction. The initial conditions are262

chosen such that epidemic originates with a small fraction fI of infected hosts with no pre-existing immunity263

in the population. System (14) has no known general analytical solution but can be solved numerically. We264

denote this numerical solution for the number of hosts in each compartment with S̃(t), Ĩ(t) and R̃(t).265

Step 1: Model Specification — As discussed in box 1, SIR compartmental models can be used to constrain266

BDS rates by setting ⁄(·) = —S̃(tor ≠ ·) and µ(·) = “ + ” + –, which under the present assumptions267

is a constant. The sampling rate is also assumed constant Â(·) = Â. We will assume that all samples are268

acquired through Poissonian sampling at a constant rate, hence we include neither CSAs at in the past nor at269

the present-day. Upon sampling we will assume that all lineages are removed with a constant probability r.270

Finally, we will condition the likelihood on the observation of at least one sample since the time of the most271

recent common ancestor. To avoid extending the inference to points very early in the spread of the infection272

we will condition on observing at least one sampled lineage since the time of most recent common ancestor,273

S6.274

Step 2: IVP for ge(·) — The initial value problem for ge(·) is straightforward to derive:275

dge(·)
d·

= ≠
1
—S̃(tor ≠ ·) + “ + ” + – + Â

2
ge(·) + 2—S̃(tor ≠ ·)ge(·)E(·)

ge(se) =

Y
__]

__[

—S̃(tor ≠ se)ge1(se)ge2(se) birth event giving rise to edges e1 and e2
(1 ≠ r)Â(se)ge(se) ancestral sampling event
Âr + Â(1 ≠ r)E(se) terminal sampling event

276

Step 3: IVP for E(·) — Similarly we have:277

dE(·)
d·

= ≠
1
—S̃(tor ≠ ·) + “ + ” + – + Â

2
E(·) + —S̃(tor ≠ ·)E(·)2 + “ + ” + – where E(0) = 1278

Step 4: Expression for gstem(tor). The expression for gstem(tor) in the case of no present-day sampling can279

be obtained from 9 and setting N0 = 0.280

gstem(tor) =
nŸ

j=1
(Â(1 ≠ r)E(yj) + Âr)

¸ ˚˙ ˝
extinct tips

(Â(1 ≠ r))m

¸ ˚˙ ˝
ancestral samples

IŸ

i=1
—S̃(tor ≠ xi)

¸ ˚˙ ˝
births

Ÿ

eœT

�(se, te)
¸ ˚˙ ˝

edges

,
281

Step 5: gstem(tor) in terms of the critical times — We can then transform the solution into the critical time282
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Figure 2: Epidemiological model dynamics and corresponding diversification rates. Top panel: deterministic
epidemiological dynamics of system (14) as given by the number of susceptible S(t), infectedI(t), and recovered
R(t) hosts as a function of time t measured forward in time. Bottom Panel: Corresponding diversification model as
given by the birth ⁄(·) and death µ(·) rates as a function of time · as measured backwards in time. Parameters:
b = 1, ” = 0.25, Ÿ = 100, — = 0.05, ‡ = 0.1, – = 0.25, Â = 0.1, “ = 0.3, r = 0.5, fI = 0.02, and tor = 5.
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representation given the relation �(t, s) = �(t)/�(s).283

�(·) = exp
5⁄

·

0
—S̃(tor ≠ x)(2E(x) ≠ 1) ≠ (“ + ” + – + Â) dx

6

gstem(tor) = �(tor)¸ ˚˙ ˝
root

n+m≠1Ÿ

i=1
—S̃(tor ≠ xi)�(xi)

¸ ˚˙ ˝
births

nŸ

j=1

Â

�(yj) [(1 ≠ r)E(yj) + r]
¸ ˚˙ ˝

extinct tips

(Â(1 ≠ r))m

¸ ˚˙ ˝
ancestral samples

.284

Step 6: Conditioning the likelihood — Finally, we condition the likelihood on observing at least one lineage285

given the TMRCA, S5 = �(·x1 )
�(·or)(1≠E(x1))2 ,286

L(T|�SIR) = �(·x1)
(1 ≠ E(x1))2

n+m≠1Ÿ

i=1
—S̃(tor ≠ xi)�(xi)

nŸ

j=1

Â

�(yj) [(1 ≠ r)E(yj) + r] (Â(1 ≠ r))m

(15)287

Equation (15) can then be used to estimate the underlying parameters of the SIR model from a phylogeny.288

Again, while the relative costs and benefits of using the deterministic versus stochastic formulation [23]289

of the model are beyond our scope, this example serves mainly to illustrate that the likelihood functions of290

complex and biologically interesting new model variants are straightforward to derive using our mathematical291

framework.292

Conclusion293

Here we derive a phylogenetic birth-death-sampling model in a more general form than previously attempted,294

making as few assumptions about the processes that generated the data as possible. While drawing inferences295

from data will require making additional assumptions and applying mathematical constraints to the param-296

eters (but see [40]), a general unifying model can clarify the connections between various model variants,297

provide a framework for developing new variants tailored specifically to each situation, and provide a frame-298

work for understanding how results depend on model assumptions [31, 41, 42]. From a methodological299

perspective, our technique for deriving the likelihood of BDS models substantially lowers the barrier for de-300

veloping and exploring new types of models in a way that Maddison et al. [11] did for birth-death models301

without heterogeneous sampling. In fact, the fully general and yet numerically tractable likelihood formula302

presented here allowed us to implement computational methods for simulating and fitting BDS models with303

arbitrary functional forms for ⁄, µ, Â and r [36].304

There are also a multitude of previously developed models that we did not explore here, most notably multi-305

type models where di�erent lineages have di�erent rates; such multi-type models have become very popular306

in macroevolution and phylodynamics [8, 11, 26, 43, 44]. A natural extension to the present work would be307

to extend our approach to these cases, which in most cases we suspect is possible. Similarly, we have not308

explored whether the variants of the BDS process used to reconstruct rates with fossil occurrences [14, 45, 46]309

and think this would be worth investigating. And perhaps most importantly, given the recent discovery of310

widespread non-identifiability for models fit to extant-only time trees [31], it is critical to investigate and fully311

characterize the identifiability of the general BDS process, i.e., when all rates can in principle vary freely312

over time. The general formulation we have developed here sets the stage for such investigations.313
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Box 1: The connection between BDS and SIR models314

The general BDS model is intimately related to the SIR compartmental model used in classic theoretical315

epidemiology. This connection illustrates the explicit and implicit assumptions of the general BDS model316

and its sub models. Here we define the SIR epidemiological model, discuss how it can inform and be informed317

by these diversification models, and examine the shared assumptions of the two frameworks.318

The SIR model:319

The SIR model is host-centric, partitioning the population via infection status into susceptible (S), infected320

(I), and recovered (R) hosts. Infection of susceptible hosts occurs at a per-capita rate —I . Infected hosts may321

recover (at rate “), die of virulent cases (at rate –), or be sampled (at rate Â). The cumulative number of322

sampled hosts is represented in the SIR model shown in Figure B1 by Iú. Upon sampling, infected hosts may323

be treated and hence e�ectively recover with probability r. Hosts that have recovered from infection exhibit324

temporary immunity to future infection which wanes at rate ‡. The special case of the SIR model with no325

immunity (the SIS model) is obtained in the limit as ‡ æ Œ. In addition to these epidemiological processes,326

the SIR model includes demographic processes, such as host birth (rate B) and death from natural causes327

(rate ”). While not shown explicitly in the figure, these epidemiological and demographic rates may change328

over time as a result of host behavioural change, pharmaceutical and non-pharmaceutical interventions, or329

host/pathogen evolution. In the deterministic (infinite population size) limit, the di�erential equations for the330

resulting epidemiological dynamics are given by Equation (14).331

The BDS Model:332

The BDS model is pathogen-centric, following the number of sampled and unsampled viral lineages over333

time, analogous to the I and Iú classes of the SIR model. A key element of general BDS model is that birth334

and death rates may vary over time. This time dependence may be either continuous (e.g. [26, 47]) or discrete335

(e.g. [21, 23, 24, 27]) Although arbitrarily time-dependent, the birth, death, and sampling rates in the gen-336

eral BDS model are assumed to be diversity-independent, analogous to the assumption of density-dependent337

transmission (pseudo mass action) in the SIR model [48]. While some forms of diversity-dependence in di-338

versification rates may be incorporated implicitly [49], explicit diversity-dependence (e.g. [50]) goes beyond339

the scope of the BDS models considered here.340

The general BDS model assumes all viral lineages are exchangeable - this has several implications. First,341

only a single pathogen type exists. Multi-type models (e.g. [22, 43, 44, 51]) are not included in the GBDS342

framework. Second, transmission is independent of lineage age. In the macroevolutionary case, such age-343

dependence has been suggested to reflect niche di�erentiation in novel species [52] and in the epidemiological344

case may reflect adaptation towards increased transmissibility following a host species-jumping event. Third,345

lineage exchangeablity is reflected in the absence of an exposed (E) class in the SIR model in which hosts can,346

for example, transmit infections but not be sampled or vice versa. Finally, the general BDS model assumes all347

lineages are sampled at random and does not include sub-models with non-random representation of lineages348

(e.g. [20]).349
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Figure B1: Top: The SIR epidemiological model. Black (gray) lines and classes represent rates and variables followed
(in)directly by the BDS model. The SIR model can be used to constrain the rates of the BDS model (A.). Simulated
forward in time, the result of the BDS stochastic processes is a full tree (B.) giving the complete genealogy of the
viral population. Pruning away extinct and unsampled lineages produces the sampled tree (C.). Arising from a BDS
process, this sampled tree can be summarized in two ways. First by the set of edges (labeled 1-11) or as a set of critical
times (horizontal lines) including: 1) the time of birth events (solid, xi) 2) terminal sampling times (dashed, yj), and
3) ancestral sampling times (dotted, zk). Given the inferred rates from a reconstructed sampled tree, these rates can be
used to estimate characteristic parameters of the SIR model, for example the basic or e�ective reproductive number.
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Model Connections350

Given their shared model assumptions, the general BDS model can be constrained explicitly to reflect an un-351

derlying SIR epidemic by setting the viral birth rate equal to the per-capita transmission rate of the infectious352

class (e.g., ⁄(·) = —S(·)) and the viral death rate to the infectious recovery or removal rate µ(·) = “+”+–,353

whereas the sampling rate Â(·) is identical across models. While constraining the birth, death, and sampling354

rates in this manner can be used to parameterize compartmental models (e.g., [23]) doing so is an approxima-355

tion assuming independence between the exact timing of transmission, recovery or removal from population,356

and sampling events in the SIR model and birth, death, and sampling events in the diversification model. The357

resulting tree likelihood in terms of the compartmental model is given by:358

Pr(T|�SIR) = Pr(T|�BDS)
¸ ˚˙ ˝

BDS likelihood

P (�BDS |�SIR)
¸ ˚˙ ˝

SIR process

. (B1)359

While they are not sub-models of the general BDS process, likelihood models have been developed that360

capture the full non-independence of viral diversification and epidemiological dynamics for the SIR model361

specifically [53] and in compartmental models in general [54]. The connection between the BDS process362

and SIR epidemiological models can also be used after the diversification rates are inferred to estimate the363

basic and e�ective reproductive rates [20, 21]. Specifically, the e�ective reproductive rate at time · before364

the present day is given by Re(·) = ⁄(·)
µ(·)+r(·)Â(·) .365
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