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Abstract 

Chromosome Conformation Capture (3C) technologies measure the interaction 

frequency between pairs of chromatin regions within the nucleus in a cell or a 

population of cells. Some of these 3C technologies retrieve interactions involving non-

contiguous sets of loci, resulting in sparse interaction matrices. One of such 3C 

technologies is Promoter Capture Hi-C (pcHi-C) that is tailored to probe only 

interactions involving gene promoters. As such, pcHi-C provides sparse interaction 

matrices that are suitable to characterise short- and long-range enhancer-promoter 

interactions. Here, we introduce a new method to reconstruct the chromatin structural 

(3D) organisation from sparse 3C-based datasets such as pcHi-C. Our method allows 

for data normalisation, detection of significant interactions, and reconstruction of the 

full 3D organisation of the genomic region despite of the data sparseness. Specifically, 

it produces reliable reconstructions, in line with the ones obtained from dense 

interaction matrices, with as low as the 2-3% of the data from the matrix. Furthermore, 

the method is sensitive enough to detect cell-type-specific 3D organisational features 

such as the formation of different networks of active gene communities. 
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Introduction 

Chromatin within the nucleus is organised into higher order structures that emerge at 

different genomic scales, from chromosome territories (at tens of megabases scale), 

active and inactive chromatin domains (at few megabases scale) [1], self-interacting 

domains or TADs (at hundreds of kilobases scale) [2-4], and long-range chromatin 

loops between regulatory elements (at tens of kilobases scale). This multi-scale 

organization has a direct impact on many biological processes such as gene 

regulation, DNA replication, and cell differentiation [5-7]. Indeed, genome structure 

typically reflects cell-type-specific differences in the transcription pattern, and it is 

frequently rewired upon cell state changes and disease onset [8]. Thus, investigating 

the principles shaping chromosome three-dimensional (3D) structure is pivotal to shed 

light into the relationship between genome structure and function. 

Several experimental techniques are available to examine chromatin organisation [9]. 

Among them, molecular biology methods such as Chromatin Conformation Capture 

(3C) and its derivatives are widely used [10]. These experiments retrieve information 

about the frequency of interaction between loci in single [11-13] or in populations of 

thousands to millions of cells and have been designed to analyse the chromatin 

landscape at different genomic scales [1, 14-16]. For example, some cell population-

based experiments allow the retrieval of unspecified interactions in the whole genome 

(e.g., Hi-C [1], Micro-C [14], GAM [15], and SPRITE [16]). Complementarily, other 3C-

based experiments are tailored to capture interactions centred on a specific locus with 

the rest of the genome (e.g., 4C [17] and multi-contact 4C (MC-4C) [18]) or on sets of 

dispersed loci in the genome, such as loci enriched for a specific protein (HiChIP) [19] 

or loci harbouring gene promoters (pcHi-C) [20]. Each class of 3C-based experiments 

provide different but complementary insights on particular aspects of the genome 

organization, and their analysis is dependent on the experimental genomic resolution 

and on the inherent technical biases of each experimental procedures. 

A variety of physics- and data-driven approaches for genome 3D reconstruction have 

been developed to expose the principles shaping chromosome 3D structure [21-24]. 

For instance, data-driven (restraint-based) modelling approaches as PSG [25, 26], 

TADbit [27], 4Cin [28], and TADdyn [29] have been implemented to reconstruct 

ensembles of chromatin 3D models from cell population-based datasets. Others are 

focused on the 3D modelling of chromatin based on single-cell Hi-C data, like manifold 

based optimization [30] and NucDynamics [31]. However, the majority of the data-

driven methods are based on interaction experiments that have been designed to 

retrieve dense contact information from a continuous set of loci or the whole genome, 
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while other interaction experiments are characterised by data sparseness (e.g., HiChIP 

or pcHi-C). As such, data-driven methods for sparse data modelling are needed.  

Generally, the interaction profiles of sparse 3C-based datasets have specific 

properties that set them apart from other 3C-like techniques characterised by a dense 

interaction profile. Indeed, protein or promoter capture-based interaction profiles are 

heavily biased on interactions between captured fragments and devoid of interactions 

between non-captured fragments. This fact poses the question of whether this lack of 

information prevents the 3D reconstruction of the whole loci of interest and its analysis, 

or whether it is sufficient to allow for accurate 3D modelling. To answer this question, 

we have implemented a new method, which is tailored to integrative modelling and 

analysis of sparse 3C-based datasets. We have also validated the procedure 

comparing the resulting reconstructed models with available dense experimental 

datasets, unveiling that the 3D chromatin organisation can be well recovered by 

interrogating only a small percentage of loci. Additionally, we have designed new tools 

to facilitate a robust differential analysis of the resulting models and showcased their 

usability in comparative analyses using the β-globin locus as a test case. Interestingly, 

comparing different cell-types, we unveiled that the β-globin locus in cord-blood 

Erythroblasts (cb-Ery), where its foetal and adult β-globin genes are highly expressed, 

is hierarchically organised in a 3D network of active gene communities that follows an 

expression gradient. 
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Results 

Overall modelling strategy for sparse 3C data 

Sparse 3C datasets provide information of interactions that involve a limited number 

of specific loci in the genome. pcHi-C, for example, provides a promoter-centred view 

of chromatin interactions, helping to assign distal regulatory regions to their target 

genes, thus providing insights on how gene expression might be controlled [32-34] and 

how disease-associated genomic variation could affect gene regulation [35]. The main 

limitation of these sparse technologies, however, is the scarcity of specialized tools for 

their analysis. Here we have developed an integrative 3D modelling method capable 

of dealing with data sparsity, enabling the analysis and interpretation of pcHi-C data, 

and tested it on 12 distinct loci (Benchmarking datasets; Methods and 

Supplementary Table 1). Our method follows an integrative modelling procedure 

comprising five steps [36]: (i) gather experimental data and process them to obtain the 

input interaction matrix for the modelling approach, (ii) represent the selected 

chromatin regions using a bead-spring polymer model with a particle size proportional 

to the genomic resolution of the experimental data, (iii) transform the frequency of 

interactions into spatial retrains, (iv) sample the conformational space by steered 

molecular dynamics, and (v) analyse and validate the obtained ensemble of 3D models 

(Methods and Figure 1A).  

In this work, we gathered pcHi-C interaction data (Methods), whose processing step 

is pivotal to minimize the experimental biases from the capture protocol. To this end, 

we designed a multi-stage normalisation procedure named PRoportion of INTeraction 

approach (PRINT, Methods). PRINT weighs each interaction by dividing it by the 

cumulative whole-genome interaction frequencies of both of the interacting bins, 

regularising the interaction patterns for the fact that captured loci are highly enriched 

in contacts. It also removes the pcHi-C unspecific interactions between non-probed 

bins. To test quantitatively the performance of our normalisation procedure, we 

compared each of the normalisation stages of the pcHi-C matrices with the respective 

Hi-C matrices normalised with OneD in each of the selected loci [37]. The median 

correlation between bins with interaction data in both matrices was 0.27 (+/- 0.025 

Median Absolute Deviation (MAD)) for raw pcHi-C matrices (pcHi-C-raw), increasing 

to 0.44 (+/- 0.032 MAD) with the pcHi-C pre-normalisation step (pcHi-C-pre), and 

reaching 0.60 (+/- 0.056 MAD) for fully normalised pcHi-C matrices (pcHi-C-norm) 

(Supplementary Figure 1A), suggesting that PRINT reduced successfully the target 

biases. Then, we represented the selected loci as a bead-spring polymer model with 

a particle size set to 5 kb, taking into account the restriction fragment lengths 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 11, 2020. ; https://doi.org/10.1101/2020.10.11.334847doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.11.334847
http://creativecommons.org/licenses/by/4.0/


	 6	

distribution in the benchmarking datasets (Supplementary Figure 1B). Similarly to 

TADbit [27] and TADdyn [29], to simulate the structural conformation of genomic loci, 

we then transformed the interaction frequencies associated with each bin pair into 

spatial restraints (Methods). The latter were then imposed on the model using steered 

molecular dynamics as sampling method in which the spring constant associated to 

each restraint was ramped up as a function of simulation time from zero to the value 

computed from the interaction data. Lastly, we implemented new means for a robust 

quantitative spatial differential analysis of genomic loci. 

Comparison between sparse and dense 3C-derived models 

Dense Chromatin Conformation Capture data has been extensively used to 

reconstruct the 3D organisation of genomic loci [25, 27, 29, 30]. Here, to test the 

reliability of our modelling approach, we used sparse and dense datasets to build 

ensembles of models of the same loci. Specifically, we applied our integrative method 

for sparse data modelling to previously published pcHi-C datasets of GM12878 cells 

[32] to reconstruct 3D model ensembles of 12 distinct loci (Figure 1B and 

Supplementary Table 1) at a 5kb resolution and compared them with the 

corresponding ones reconstructed using Hi-C [6] at the same genomic resolution. 

Additionally, to quantify the effect of sparsity in the comparison independently of the 

experimental protocol biases, we generated virtual pcHi-C (pcHi-Cvirt) interaction 

matrices from the normalised Hi-C datasets extracting the rows and columns probed 

in the pcHi-C experiment (Methods). These virtual sparse matrices were then used to 

reconstruct 3D model ensembles of the selected loci.  

The comparison between the sparse and dense derived 3D model ensembles revealed 

that it is possible to recover most of the 3D organisation of the dense dataset in spite 

of the data sparsity (Figure 1C). Indeed, the all-vs-all particle-to-particle median 

distance correlation (ppMdC) between the sparse and dense derived 3D model 

ensembles was 0.81 (+/- 0.019 MAD) and 0.93 (+/- 0.024 MAD) for both pcHi-C and 

pcHi-Cvirt. Additionally, when comparing distances between particles that have both 

been captured in the pcHi-C experiment (capture-capture), the ppMdC was higher, 

reaching 0.91 (+/- 0.054 MAD) for pcHi-C and 0.96 (+/- 0.019 MAD) for pcHi-Cvirt. 

Consistently, when comparing distances between non-captured particles with 

captured particles (capture-other) or between non-captured particles (other-other), the 

ppMdC indicated good agreement with values of 0.84 (+/- 0.03 MAD) and 0.95 (+/- 

0.02 MAD), and 0.81 (+/- 0.02 MAD) and 0.93 (+/- 0.02 MAD) respectively for pcHi-C 

and pcHi-Cvirt in both comparisons (Figure 1C). The results indicate that the sparse 

derived ensembles of 3D models are a good representation of the dense experiment 
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and that the intrinsic experimental biases of the capture experiment only minorly affect 

the 3D reconstruction. Indeed, comparing the whole contact map computed from the 

3D model ensembles derived from sparse data directly with the whole experimental 

Hi-C interaction matrices revealed that the reconstructed ensembles of models are in 

good agreement with the dense experimental data having an element-wise 

Spearman’s rank correlation coefficient of 0.73 (+/- 0.02 MAD) and 0.86 (+/- 0.02 

MAD), for pcHi-C and pcHi-Cvirt derived ensembles of models, respectively (Figure 
1D). Overall, this suggest that the ensembles of models reconstructed by our approach 

represent well the 3D organisation of the selected genomic regions and, more 

importantly, recover the spatial arrangements of loci that are not interrogated by the 

sparse experiment. 

Reconstruction efficiency and data sparsity  

To investigate the relationship between the reconstruction efficiency and data sparsity, 

we simulated ‘synthetic’ capture data. Briefly, we generated 10 different sets of 

‘synthetic’ capture matrices that represent generic capture-like experiments. We 

started from the contact matrix derived from a 3D toy-genome models ensemble that 

simulates roughly a one Mb length genome (comprising more than 600 particles) with 

a TAD-like architecture, a high level of interaction noise, and low variability between 

models [38] (Methods and Figure 2A).  To build each of the 10 ‘synthetic’ sets, we 

randomly selected 22 captured loci and constructed 6 additional datasets of different 

sparsity down-sampling each set considering 2, 4, 6, 10, 14, and 18 loci at a time, 

which mimics the distribution of captured probes per Mb present in a typical genome-

wide pcHi-C experiment (Figure 2B). The constructed 70 capture-like matrices thus 

aim to represent typical pcHi-C experimental design. Using our integrative modelling 

method for sparse datasets, we reconstructed, from each of the ‘synthetic’ capture 

matrices in the dataset and their down-sampled counterparts, ensembles of 100 

models, and compared them with the reference toy-genome ensemble (Figure 2A). 

Independently of the sets, the ppMdC between the sparse and dense model 

ensembles increased with the number of captured particles used in the modelling 

procedure reaching a median correlation between sets of 0.82 (+/- 0.02 MAD with just 

10 captures per Mb (Figure 2C). Notably, also with 4 and 6 captures per Mb the 

ppMdC reached 0.69 (+/- 0.04 MAD) and 0.79 (+/-0.05 MAD) for 4 and 6 captures, 

respectively, although with greater variation within sets. This suggests that with 10 

captured loci per Mb the uncertainty in the input information is smaller, leading to more 

precisely reconstructed models. Nevertheless, it is possible to reconstruct good 

models also with fewer as 4 captured loci per Mb although with a higher degree of 
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variability. To quantify the effect of data sparseness on model reconstruction, we next 

measured the amount of input information used during the modelling as the percentage 

of all possible interaction pairs in the contact matrix (dense data input) and then 

assessed it with the ppMdC. The results indicate that it was possible for the majority 

of the sets (8/10) to reliably reconstruct the reference toy genome (ppMdC > 0.8) with 

just 2-3% of all the interaction pairs in the contact matrix used as restrains (Figure 
2D). Taken together, this analysis shows that it is possible to consistently recover most 

of the 3D organisation of a region of interest with 10 captured loci per Mb and with just 

2-3% of all possible interactions within a region captured. 

Cell-type specific organisation of the β-globin locus 

To illustrate the utility of our integrative approach in unveiling the differential 

organisation of loci, we applied it to the genomic region surrounding the β-globin locus 

in 3 different cell types for which pcHi-C data are available [33], namely cord-blood 

derived Erythroblasts (cb-Ery), naive CD4+ T-cells (nCD4), and Monocytes (Mon). The 

selected genomic region contains five coding genes (HBB, HBD, HBG1, HBG2, and 

HBE1) with developmental-stage-dependent expression [39], which is finely regulated 

by a set of upstream enhancers known as the Locus Control Region (LCR) [40]. This 

locus is known to be in an active conformation in cb-Ery, where the LCR is interacting 

mainly with expressed genes as HBB and HBD, but not in nCD4 and Mon cells [33]. 

First, we defined the optimal region to be modelled based on the interaction networks 

(in all cell types) of the embryonic (HBG1 and HBG2) and adult (HBB and HBD) globin 

genes with the rest of the genome at 5 kb resolution (Methods). The defined region 

spanned 4.7 Mb of chr11 (chr11:3,795,000-8,505,000 base-pairs (bp)) comprising 

several neighbouring genes and multiple long-range regulatory elements. By applying 

our integrative approach, we generated an ensemble of 1,000 3D models for each cell 

type. The packing of the genomic region was significantly different in each cell types 

with median radius of gyration of 248+/-3, 242+/-2, and 237+/-2 nm for cb-Ery, nCD4 

and Mon, respectively (p-values < 9.1e-163 in each of the pairwise comparisons using 

two-samples Kolmogorov-Smirnov statistics) (Supplementary Figure 3A), with the 

topology of the region in cb-Ery being less tightly packed than in nCD4 and Mon. Each 

ensemble was then clustered by structural similarity [27] and the models from the most 

populated cluster were selected for the comparative analysis between cell-types. 

Clustering by distance root-mean-square deviation (dRMSD), confirmed that the 

topology of the region was markedly different in the three cell types, with nCD4 and 

Mon folds being more similar between each other than with cb-Ery (Figure 3A). 

Particularly interesting is how the topology of the β-globin locus (chr11:5,201,270-
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5,302,470) varied in the three cell types. Indeed, in Erythroblasts the β-globin locus 

appeared to be located further from the main core of the region as compared with 

naïve CD4+ T-cells and Monocytes, with median distances between the centre of mass 

of the β-globin locus of 286, 243, and 207 nm in cb-Ery, nCD4, and Mon, respectively 

(p-values < 3.46e-101 in all the pairwise cell-type comparisons; two-samples 

Kolmogorov-Smirnov statistic) (Supplementary Figure 3B).  

To characterise this further, we focused specifically on the β-globin locus and 

quantified its spatial organisation with respect to hypersensitive site 3 (HS3) in the 

LCR, which is forming an intricate network of interaction with the β-globin genes [41] 

and is required for their activation [42]. In line with this evidence, in the 3D ensemble 

of models representing cb-Ery cells, HS3 was significantly closer to HBB, HBD, HBG1, 

HBG2, and HBE1 genes than in the 3D ensemble of models representing nCD4 and 

Mon (p-values < 0.007, two-samples Kolmogorov-Smirnov test). In the latter two cell-

types HS3 had a similar distance distribution with HBB, HBD, HBG1, and HBG2 genes 

(p-values > 0.01, two-samples Kolmogorov-Smirnov test) (Figure 3B). 

Performing 3D enrichment analysis of varied epigenetic features and expression levels 

around HS3 (Methods), we unveiled a stark enrichment of active chromatin marks 

(H3K27ac, H3K36me, H3K4me1, and H3K4me3) and expression levels, and a clear 

depletion of inactive marks (H3K9me3 and H3K27me3) in cb-Ery. This 3D functional 

signature was absent in nCD4 and Mon, where active chromatin marks and transcript 

levels were depleted (Figure 3C). Overall, our models recapitulated the different 3D 

organisation of the β-globin locus and highlight the existence of a specific 3D functional 

signature enriched in active chromatin features that characterised the active β-globin 

locus in cb-Ery. 

Active gene communities in cb-Ery: a cell-type specific 3D signature 

To examine whether the specific 3D functional signature of the active β-globin locus 

influence its genomic neighbourhood, we investigated its long-range interaction 

patterns. Comparative analysis of the distance profile between HBG2 (the most 

expressed gene in cb-Ery) and each of the selected loci (chr11: 3,795,000-8,505,000 

bp), revealed the existence of an intricate cell-type specific network of spatially 

proximal expressed genes (Figure 4A), in line with previous observations of 

transcribed genes co-localizing in space [24, 43-46]. This network comprised distal 

transcribed sites (even located at 1.4 Mb away as STIM1) that showed cell-type 

specific spatial proximity. Indeed, HBG2 in cb-Ery was in closer proximity with all other 

expressed loci of the genomic neighbourhood than in nCD4 and Mon (Figure 4B). 
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To further characterise the cell-type specific spatial distribution of these transcribed 

loci, we clustered their relative distances within the ensembles of 3D models and 

identified communities of expressed genomic loci (Figure 4C-E and Methods). Then, 

we quantified the amount of times a given community of expressed genomic loci 

occurred within the ensembles of 3D models (i.e., the co-occurrence score, Methods) 
and used this quantification as a proxy to define the “community stability”. This analysis 

revealed the existence of highly variable communities of expressed genomic loci that 

followed a cell-type specific segregation in the 3D space. Interestingly, the organization 

of these communities was overall more stable in cb-Ery than in nCD4 and Mon, where 

less defined communities were identified. Indeed, as assessed by the mean inter-

community co-occurrence scores (Methods), the cb-Ery network was characterised 

by the presence of four stable communities (Methods and Table 1). While, the nCD4 

network was formed by three communities with overall low co-occurrence (although 

community 2 in this network showed a stability in line with the communities in the cb-

Ery network), and the Mon network formed by only two unstable communities 

(Methods and Table 1). Overall, the results highlight the presence of more defined 3D 

communities of expressed genes in cb-Ery as compared to nCD4 and Mon, suggesting 

that the co-occurrence of these segregated communities within an ensemble of 

possible folds is part of the cell-type specific 3D signature. 

Next, we investigated whether the stability of the 3D communities of expressed genes 

in cb-Ery could be related to the high levels of expression of the β-globin genes 

(highest as HBG2 with 10.86 FPKM, while the mean expression of all the other 

expressed genes in nCD4 and Mon was 2.45 and 2.10 FPKM respectively). Clustering 

the distance distribution between the centres of mass of each community in cb-Ery 

(Figure 4F) revealed a clear hierarchical organisation with the most expressed 

community, which included the highly expressed β-globin locus (Supplementary 
Table 2), located in the centre, and the least expressed community in the periphery. 

This pattern was not present in nCD4, and impossible to address in Mon with just two 

communities (Supplementary Figure 4A-B). This suggests a hierarchical 

organisation in cb-Ery, in which the location in space of each of the communities and 

their levels of expression are related. Surprisingly, this hierarchy was also overall 

present at the community level in cb-Ery, where the distance between each gene to 

the centre of mass of the community and its expression were negatively correlated 

(CC: -0.55, p-value=0.002; Figure 4G). This suggests the formation in cb-Ery of a 

gradient of expression within the community were the most expressed genes are 

located in the centre of their communities and the less expressed ones are 
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preferentially located in the periphery in line with the organisation previously observed 

for the alpha-globin locus [24]. This overall community organisation was not evident in 

nCD4 and Mon (Supplementary Figure 4C-D), thus suggesting that the high 

expression of the β-globin loci in cb-Ery could be associated with the establishment of 

a hierarchical organisation in the loci.  
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Discussion 

Here, we have introduced an integrative modelling method for the 3D reconstruction, 

analysis, and interpretation of sparse 3C-based datasets such as pcHi-C. We also 

demonstrate its usability in the comparative 3D analysis of genomic regions using the 

β-globin locus as an example, showing that our method can detect cell-type-specific 

3D organisational features within genomic regions that can lead to several important 

implications on the relationship between genomic function and spatial genome 

organisation, such as the expression dependent organisation of active loci. 

Generally, the analysis and interpretation of sparse 3C-datasets is not trivial and 

specialised analytical tools are required. In the case of pcHi-C, the available tools 

(ChiCMaxima, Chicago, Gothic, Chicdiff, HiCapTools [47-51]) are mainly focused on 

the implementation of normalization strategies to reduce the impact of non-biological 

biases and on strategies to detect interaction between captured loci. Conversely, the 

integrative modelling method presented in this study has been designed for the 

analysis and interpretation of sparse 3C-datasets in their third dimension, allowing for 

data normalisation, detection of significative interaction, and most importantly, the 

recovery of the full structural organization of a genomic region despite of the data 

sparseness. 

Indeed, here we extensively tested our procedure by comparing models reconstructed 

directly from sparse and dense datasets, showing that 3D models reconstructed by the 

integrative modelling method for sparse data modelling are a good representation of 

the dense experiment. In fact, model reconstruction is only minorly effected by the 

intrinsic experimental biases of the capture experiment. Additionally, and most 

importantly, our model procedure reproduces remarkably well the whole 3D 

organisation of the selected genomic regions even recovering the organisation of loci 

that are not included as input restrains and are not readily observable in the sparse 

experiment.  

Next, to assess whether the 3D reconstructed models were not only a bona fide 

representation of models based on Hi-C datasets, we used a ‘synthetic’ toy genome 

with known 3D organisation [38] and proved that we can efficiently model sparse pcHi-

C-like datasets using as few as 2-3% of all possible interaction data. Importantly, this 

quantification highlights how the degree of sparseness of the data is related to the 

efficiency of the 3D reconstruction process and provide a general guideline for sparse 

data modelling. In light of this, we speculate that our integrative approach could easily 

be applied to different type of 3C datasets with similar sparseness. For example, 
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protein-centric chromatin conformation method such as HiChIP [19] could be used as 

input experiment to reconstruct the chromatin folding, assuming that the protein-

capture biases of this type of experiments are similar to the promoter-capture biases 

observed in the pcHiC experiments.  

Finally, to illustrate the utility of our integrative approach, we applied it to the β-globin 

locus, whose 3D organisation has been extensively studied [39, 41, 52-54]. We 

investigated this locus in three different cell types (cb-Ery, nCD4, and Mon) and 

performed a comparative analysis between them. In agreement with previous studies 

[33], our models show that the topology of the β-globin locus varies in the three cell 

types owing to their differential expression. Interestingly, our models also unveil that 

the globin HBG2 gene is embedded in an epigenetically active and highly transcribed 

neighbourhood in cb-Ery giving rise to a locus-specific 3D functional signature. This 

functional signature is absent in the models of other cell-types (nCD4 and Mon), where 

the locus is not expressed. We also show that this cell-specific organisation, not only 

occurs proximally to the β-globin genes but also involves loci located at longer genomic 

distances (more than 1 Mb away). Indeed, our 3D comparative analysis unveiled the 

existence of an intricate cell-type specific network of spatially-proximal expressed 

genes that forms gene communities that are segregated in the 3D space in a cell-type 

specific fashion. The identified communities are compatible with the formation of 

chromatin foci in which transcribed genes co-localize as a general mechanism to 

organise gene transcription [24, 43-46, 55]. Interestingly, we observed that the co-

occurrence within the ensemble of models of the identified cell-type specific 

communities is cell-type dependent, with the cb-Ery communities network formed by 

more persistent communities than the nCD4 and Mon community networks. This 

suggests that also the degree of co-occurrence of the communities within the 

ensemble is an important feature for the identification of a cell-type specific 3D 

signature. Additionally, we observed that in cb-Ery, where the β-globin genes are 

highly expressed, the communities present an overall hierarchical spatial organisation, 

both between and within communities. This topology is dependent on the level of 

transcription with highly expressed entities (entire community or specific gene within a 

community) located in the core of the hierarchical 3D organisation and low expressed 

entities found at the periphery. We hypothesise that the observed communities could 

represent cell-type specific transcription factories [24, 55-57] or phase-separated foci 

[58-60] organised following a gradient of transcription with high concentration of 

nascent transcripts and transcription machinery in the core of the assemblies that 

create a “sticky” environment to the less expressed peripheral loci. This hierarchical 
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organisation is only marginally present in nCD4 and Mon, suggesting that it also 

contributes to the cell-type specific 3D signature characterising the β-globin region in 

cb-Ery. 

In summary, we have shown that sparse datasets like pcHi-C can be effectively used 

to model in 3D the spatial conformation of genomic domains. The resulting models 

retain most of the genomic region organization and recover also the organisation of 

loci that are not readily observable in the sparse experiment. Importantly, this is 

achievable with a very small percentage (~2-3%) of all possible interaction data in the 

genomic region. Additionally, our study not only provides a novel approach for sparse-

data 3D modelling but also introduces new tools for the comparative analysis of 

genomic regions. Thus, it will aid the discovery of cell-type specific 3D signatures and 

help deciphering complex mechanism underlying the cell-type specific 3D genome 

organization. 
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Methods  

Experimental datasets 

Structural data were obtained from publicly available 3C-based chromatin interaction 

experiments of GM12878 cells (Hi-C GEO: GSE63525 and pcHi-C ArrayExpress: E-

MTAB-2323) [6, 32], and cb-Ery, nCD4, and Mon cells (pcHi-C EGA: 

EGAS00001001911) [33]. 

Hi-C datasets processing.  The reads for each replicate were mapped onto the 

GRCh38 reference genome, filtered, and merged using TADbit with default parameters 

[27]. Then, starting from the merged filtered fragments, the genome-wide raw 

interaction maps were binned at 5 kilo-base (kb) and normalized using OneD [37] as 

implemented in TADbit [27]. 

pcHi-C datasets processing. For each experiment, the reads were mapped onto the 

GRCh38 reference genome using TADbit [27] and were filtered applying the following 

filters: (i) self-circles, (ii) dangling-ends, (iii) errors, (iv) extra dangling-ends, (v) 

duplicated reads, and (vi) random breaks. Next, we computed the reproducibility score 

to measure the similarity between replicates from each pcHi-C dataset [61]. Then, for 

each cell-type, the different replicates from the same experiment were merged into one 

dataset for further analysis, making an exception with replicate ERR436029 from the 

GM12878 pcHi-C dataset (E-MTAB-2323), which was discarded due to a clearly low 

reproducibility score when compared with the rest of the replicates (average of 0.24 

with the other replicates as compared to the average of 0.84 obtained between the 

other replicates). Using the merged filtered fragments, the genome-wide raw 

interaction maps of each cell-type were binned at 5 kb and normalised using the 

PRoportion of INTeraction approach (PRINT, next section).  

Sparse data normalization: PRoportion of INTeraction approach (PRINT). PRINT, a 

multi-stage normalisation procedure, weighs each pair of interacting bins with the 

same philosophy as the visibility approach for Hi-C [62]. Starting from a raw interaction 

matrix as input, PRINT first transforms the raw interaction between two bins (i and j) 

into a percentage of interaction with respect to the rest of the genome as: 

𝑣𝑎𝑙𝑢𝑒!" =
𝑏𝑖𝑛!"

∑	𝑟𝑜𝑤! + ∑	𝑟𝑜𝑤" −	𝑏𝑖𝑛!"
 

where (binij) represent the number of times in which bin i and j interact, and årowi and 

årowj are the sum of all the interactions of bins i and j respectively with all the genome 
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(self-interactions included). Then, the non-baited interactions (that is, those bins 

containing only pcHi-C off-target reads) are filtered out. 

PRINT assessment. Using the benchmarking datasets described above, each stage 

of PRINT normalisation (pcHi-C-raw, pcHi-C-pre and pcHi-C-norm) was assessed in 

comparison with the dense Hi-C interaction matrix by calculating the Spearman’s rank 

correlation coefficient between interactions (binij) present in both interaction matrices.  

Reconstructed 3D genomic regions 

Benchmarking datasets. We selected 12 genomic regions of interest (Supplementary 

Table 1) as defined by Rao and colleagues [6]. This set of genomic regions were 

predicted to result in reliable 3D models based on their > 0.7 MMP scores [38] 

(Supplementary Table 3). Briefly, MMP score takes into account the interaction matrix 

size, the contribution of significant eigenvectors in the matrix, and the skewness and 

kurtosis of the z-scores distribution of the matrix to assess their potential for being 

modelled [38]. 

Comparative analysis datasets. We selected a genomic region around a locus of 

interest (here the β-globin) defining it in a semi-automatic manner in each cell type. 

Briefly, a viewpoint, which may be constituted by a bin or a set of bins of interest, is 

selected. Here, as viewpoint we used bins enclosing the active haemoglobin genes in 

cb-Ery (HBB, HBD, HBG1, and HBG2). Then, all the other bins that interacted with the 

viewpoint bins in the normalised genome-wide interaction matrix were selected. Each 

of these bins were then scored by their cumulative normalised interaction frequency 

values with the viewpoint bins. From this set only the top intra-chromosomal 200 bins 

were selected since, by visual inspection, they were the bins spanning the genomic 

region that best enclosed the viewpoint. Then an unweighted interaction network was 

generated with the nodes corresponding to the top 200 bins and the viewpoint bins. 

Edges between nodes were added if their pairwise cumulative normalised interaction 

frequency value was in the top 200 interacting bins. Then, a series of transformations 

were applied to the unweighted interaction network: (i)  nodes that are highly proximal 

in 1D genomic resolution (closer than 25 kb) were merged into one node; and (ii) poorly 

connected nodes in the network that had less than 5 edges were filtered out (average 

number of edges per node in Mon, nCD4, and cb-Ery were 200, 214, and 214, 

respectively). The extreme nodes in terms of genomic coordinates were selected from 

the final unweighted interaction network to represent the optimal genomic region 

around the viewpoint. Here, to perform comparative analysis, we defined the optimal 
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genomic region around the viewpoint as the broader genomic region that enclosed all 

of the genomic coordinates identified in each cell-type.   

3D chromosome ensemble reconstruction from sparse datasets 

Model representation. Each genomic region was described with a beads-on-string 

model based-on the previously implemented protocols [29, 63] without bending rigidity 

potential. Thus, a chromosome was represented with N spherical beads with 

diameter σ = 50 nm that contain 5 kb of chromatin which determined the genomic unit 

length of each model. 

System set up for molecular dynamics. All simulations were done using TADdyn [29]. 

A generic random self-avoiding walk algorithm was used to define the initial 

conformation of each model. The potential energy of each system comprised the terms 

of the Kremer-and-Grest polymer model [64] including chain-connectivity (Finitely 

Extensible Nonlinear Elastic, FENE) [65] and excluded volume (purely repulsive 

Lennard-Jones) interactions. The initial conformation was placed randomly inside a 

cubic simulation box of size 1,000 σ centred at the origin of the Cartesian axis O = 

(0.0, 0.0, 0.0), tethered at the centre of the box using a harmonic (Kt=50.0 kBT/σ# and 

deq=0.0 σ) to avoid any border effect and energy minimized using a short run of the 

Polak-Ribiere version of the conjugate gradient algorithm [66] to favour smooth 

adaptations of the implementations of the excluded volume and chain connectivity 

interaction. 

Encoding sparse data into TADdyn restraints. TADdyn [29] empirically identifies the 

three optimal parameters to be used for modelling based on a grid search approach. 

This are: (1) maximal distance between two non-interacting particles (maxdist); (2) a 

lower-bound cut-off to define particles that do not frequently interact (lowfreq); and (3) 

an upper-bound cut-off to define particles that frequently interact (upfreq). All possible 

combinations of the parameters were explored in the intervals lowfreq = (-1.0,-0.5, 0, 

0.5), upfreq = (-1, -0.5, 0, 0.5), maxdist = (200, 300, 400, 500) nm, and assessing each 

combination using distance thresholds to determine if two particles are in contact 

(dcutoff) at 100,150, 200, 250, 300, 350, 450, 500 nm. For each of the combinations 

an ensemble of 100 3D models was generated and the Spearman correlation 

coefficient between the contact map derived from each ensemble and the experimental 

input interaction matrix was calculated. The top set of parameters for each region in 

each cell-type were set for those resulting in the highest Spearman correlation 

coefficient between the models contact map and the input interaction matrix. To allow 

for a robust comparative analysis (Methods) the optimal maxdist and the dcutoff 
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parameters were selected based on the consensus within the top optimal values for 

each region in each cell-type. Optimal maxdist and the dcutoff were set at 300 nm and 

200 nm, respectively for the ensembles of models reconstructed from the GM12878, 

cb-Ery, nCD4, and Mon pcHi-C datasets. Once the three optimal parameters were 

defined, the type of restraints between each pair of particles was set considering an 

inverse relationship between the frequencies of interactions of the contact map and 

the corresponding spatial distances. Non-consecutive particles with contact 

frequencies above the upper-bound cut-off were restrained by a harmonic oscillator at 

an equilibrium distance, while those below the lower-bound cut-off were maintained 

further apart than an equilibrium distance by a lower-bound harmonic oscillator. To 

identify 3D models that best satisfy all the imposed restraints, the optimization 

procedure was then performed using a steered molecular dynamic protocol. A total of 

1,000 replicate trajectories were generated for each genomic region and dataset. Per 

each of the 1,000 replicate trajectories, the conformation at the end of the steering 

protocol (when the target spring constant and equilibrium distance are reached) was 

retained to form the final ensemble of 1,000 3D models. For the cb-Ery, nCD4, and 

Mon datasets, to account for possible mirrored 3D models within the final ensemble of 

3D models, each ensemble was then clustered based on structural similarity score as 

implemented in TADbit [27] and only the models from the most populated cluster were 

retained for further analysis. 

Steered Molecular Dynamics protocol. A steered molecular dynamics protocol was 

used to progressively favour the imposition of the defined set of restrains between non-

consecutive particles. For each restraint, the equilibrium distance was set to 1 particle 

diameter (σ). The spring constant k(L,t) was weighted with the sequence-separation 

L between the constrained beads as in TADdyn [29] to ensure that the steering 

process was not dominated by the target pairs at the largest sequence separation. 

However, here the k(L,t) was smoothly ramped during the steering phase from zero 

to its maximum value. 

3D chromosome ensemble reconstruction from dense datasets 

The reconstruction of 3D models of genomic regions from dense data followed the 

modelling protocol described above. That is, a grid search approach was used to select 

for the optimal parameters to be used for modelling. The optimal maxdist and the 

dcutoff parameters were selected based on the consensus within the top optimal 

values for each region in the GM12878 pcHi-C dataset and set at 300 and 200 nm, 

respectively. Using these parameters, the final ensemble of 1,000 3D models was 

obtained starting from the computed 1,000 steered molecular dynamics trajectories. 
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3D chromosome ensemble reconstruction from Virtual pcHi-C derived from 
dense datasets 

A dataset of Virtual pcHi-C interaction matrices was produced starting from the 

normalised Hi-C interaction matrices at 5kb resolution (GM12878 cells GEO: 

GSE63525; Methods) and from the liftover (https://genome.ucsc.edu/cgi-

bin/hgLiftOver) list of captured fragments in pcHi-C GM12878 experiment [32]. The 

obtained Virtual pcHi-C interaction matrices comprised only interactions (binij) in which 

either i or j enclose the coordinates of a captured fragment. These interaction matrices 

were used as input for the reconstruction of 3D models of genomic regions following 

the modelling protocol described above. The optimal maxdist and the dcutoff 

parameters were set at 300 and 200 based on their consensus with the parameters 

used in the GM12878 pcHi-C dataset. A total of 1,000 steered molecular dynamics 

trajectories were computed, and for each trajectory the conformations satisfying the 

majority of the imposed constraints within a radius of 2 σ were retained.  

3D chromosome ensemble reconstruction from ‘synthetic’ sparse dataset 

We used a previously published “toy genome” [38] (that is, the ensemble of models 

accounting for the formation of TAD-like architecture with low structural variability and 

high noise levels that comprises a total of 626 particles at the highest genomic 

resolution) to randomly select 10 sets of 22 loci from the toy genome contact map (or 

synthetic interaction maps). These loci mimic pcHi-C to generate reliable sparse 

interaction matrices comprising only interactions (binij) in which either i or j have been 

selected as random captured loci. Each of these sets was then randomly subsampled 

to generate ‘synthetic’ capture matrices with 2, 4, 6, 10, 14, and 18 selected captured 

loci. The obtained ‘synthetic’ capture matrices (70 in total) were next used as input for 

the reconstruction of 3D models of genomic regions following the modelling protocol 

described above. The optimal maxdist and the dcutoff parameters were set at 500 and 

200 nm. Using these parameters, a final ensemble of 100 3D models was 

reconstructed for each ‘synthetic’ capture matrices comprising the conformations that 

best satisfied the imposed restraints in each of the computed 100 steered molecular 

dynamics trajectories. 

Analysis of the ensemble of 3D models   

Contact map generation. For each ensemble of 3D models, a contact map was 

calculated at 5kb resolution to visualize the frequencies of contacts in the ensemble. 

Two beads were considered to constitute a contact when their Euclidean distance was 

below 200 nm cut-off. 
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Matrix Comparison. The degree of similarity between two matrices was computed by 

comparing each cell from the matrices, or a subset of them, using the Spearman’s rank 

correlation coefficient (rs) as implemented in the Python library SciPy [67, 68]:  

𝑟$ = 1 −
64 (𝑟%&'!" − 𝑟%&'#")

#
(

!)*
𝑛(𝑛# − 1)

 

where 𝑟%&'!"  is the rank of the ith observation in one matrix, 𝑟%&'#" 	is the rank of the ith 
observation in the other matrix, and n states for the number of pairs of observations. 

Particle-to-particle median distance correlation (ppMdC). For each ensemble of 3D 

models, we differentiated 3 sets comprising particles enclosing the coordinates of: (i) 

captured loci (capture), (ii) non-captured loci (other), and (iii) all the loci (all). For each 

of the pairs of particles in a given set we calculated the particle-to-particle median 

distance. Then, the degree of similarity between two given sets was computed using 

the Spearman’s rank correlation coefficient between their particle-to-particle median 

distances. The ppMdC measure varies between −1.0 and 1.0 for comparisons where 

the particle-to-particle median distances perfectly anti-correlate or correlate, 

respectively.  

Hierarchical clustering of ensembles of 3D models. Multiple ensembles of 3D models 

were merged in a unique set and the models were structurally superpose using pair-

wise rigid-body superposition. Next, the all-vs-all distance root mean square deviation 

(dRMSD) was calculated and the resulting dRMSD matrix was hierarchically clustered 

using Ward’s sum of squares method [69] as implemented in the Python library SciPy 

[67]. 

Cell-specific expression profile. Publicly available [33] expression matrix containing the 

expression values (log(FPKM)) of each gene in cb-Ery, nCD4, and Mon cell types was 

downloaded (GeneExpressionMatrix.txt.gz at https://osf.io/u8tzp/). The 3 datasets had 

two or more replicates each (2 cb-Ery, 5 Mac, and 8 nCD4, respectively), thus the 

average expression value of each gene from all replicates was used. Then, a cell-

specific per-bin cumulative expression profile of the chr11:3,795,000-8,505,000 

genomic region at 5kb resolution was obtained assigning the mean expression value 

of each gene (with log(FPKM)>0) to bins enclosing for the coordinates of its 

transcription start site (coordinates retrieved from bioMart [70]).  

3D enrichment analysis. To study the spatial co-localization of different regulatory 

elements and the local levels of transcription (based on genome-wide ChIP- and RNA-

seq data) around a selected locus (central viewpoint) we implement a 3D enrichment 
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analysis tool (named ‘radial-plot’) that allows the comparison of heterogeneous sets of 

data from multiple data sources. Per each cell type a per-particle binarized chromatin 

marks profile in the genomic region was generated starting from the ChIP-seq signal 

of H3K27ac, H3K36me3, H3K4me1, H3K4me3, H3K9me3, and H3K27me3 in cb-Ery, 

nCD4, and Mon cell types [33]. A particle was considered enclosing for a chromatin 

mark if a peak was present. Similarly, we also constructed, for each cell type, a per-

particle binarized transcription profile starting from the cell-specific expression profile 

(Methods). Then the 3D spatial distribution of the 3D enrichment based on the per-

particle binarized profile around the chosen central viewpoint was calculated as follow:  

(i) starting from the central viewpoint an initial sphere with a radius of 200 nm was 

constructed; (ii) a series of spherical shells, that occupied a volume equal the initial 

sphere, were added; (iii) per each model in the ensemble of 3D models a particle of 

the binarized profile was assigned to a spherical shell based on its relative distance to 

the central viewpoint; (iv) per each spherical shell we performed Fisher's exact tests 

for 2 × 2 contingency tables comparing the amount of particles with or without signal 

in the spherical shell with the outside ones, and the log of the odd ratios was assigned 

to the shell if the p-value < 0.01. The obtained 3D enrichment was then visualised as 

a 2D radial plot. 

Defining gene communities: co-occurrence of expressed genes. For each ensemble 

of 3D models, based on their cell-specific expression profile (Methods), we defined 

the set of expressed particles (log(FPKM) > 0). Then, considering this set of particles, 

an all-vs-all pairwise distances matrix was calculated in each model and hierarchically 

clustered using Ward’s sum of squares method [69] as implemented in the Python 

library SciPy [67]. Then the Calinski-Harabasz index [71], as implemented in the 

Python library Scikit-learn [72], was used to determinate the optimal number of clusters 

in each dendrogram. Then, for each ensemble, a co-occurrence matrix was generated 

considering the percentage of models in which a pair of particles belonged to the same 

cluster. The co-occurrence measure varies between 0 and 100, where 0 indicates 

absence of co-occurrence and 100 indicates a stable co-occurrence within the 

ensemble of 3D models. The co-occurrence matrix was next hierarchically clustered 

using Ward’s sum of squares method [69] and communities of co-occurrent active 

genes were identified using the Calinski-Harabasz index analysis in the dendrogram. 

Communities stability within the ensemble of models. To assess the stability of each 

community within the ensemble we introduced the inter-community co-occurrence 

score that defines the degree of unstable compositions of a community. It is computed 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 11, 2020. ; https://doi.org/10.1101/2020.10.11.334847doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.11.334847
http://creativecommons.org/licenses/by/4.0/


	 22	

as the mean co-occurrence values between each gene in a community and the rest of 

the communities.  

Distance between communities and within community. To describe the spatial 

arrangement of each community for a given ensemble of 3D models, we treated each 

community as a rigid body and calculated its centre of mass (COM) in each 3D model 

of the ensemble.  Per each model the all-vs-all pairwise distances between the COMs 

of each communities were computed and the mean distance values assigned as the 

typical distance between communities. Similarly, per each model, we also calculated 

the distance of each particle in a given community and the COM of its community. The 

within community distance of a given particle was defined by its mean value in the 

ensemble of 3D models.  
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FIGURES  

 

Figure 1. Integrative modelling for sparse datasets efficiently reconstructs the 
3D organisation of genomic loci. (A) Workflow of the integrative modelling approach 

followed to build ensembles of chromatin 3D models from pcHi-C: i) gathering the input 

interaction matrices with subsequent normalisation and filtering; ii) representation of 

the chromatin fibre as a polymer with the particle size proportional to the resolution of 

the experiment; iii) definition of the scoring function used in the modelling procedure. 
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Here, the scoring function comprises spatial restrains derived directly from the input 

interaction data and from properties of the chromatin fibre (Method); iv) sampling the 

conformational space by steered molecular dynamics (Method); and v) validation of 

the obtained ensemble of models and further analysis. Model images in all panels were 

created with Chimera [73]. (B) Representation of the input and output data from region 

2 (Supplementary table 1). The upper half of the panel refer to the dense dataset (Hi-

C), whereas the lower half refer to the sparse-datasets (pcHi-C). From left to right, the 

matrices of normalised interaction frequency (Methods) between each pair of bins, the 

contact matrix obtained from the ensemble of models of region 2 displays the 

percentage of models in which two bins are found bellow the defined distance cut-off 

for the contact (Methods), and the best model from the ensemble as assesses by the 

scoring function. The colour bar shows the colour coding from low (blue) to high 

(yellow) interaction or contact frequencies signal. (C) Comparison between models 

ensembles derived from sparse (pcHi-Cvirt and pcHi-C in grey and blue, respectively) 

and dense (Hi-C) datasets assessed by the particle-to-particle median distance 

correlation (ppMdC; Methods). Three subsets of particles have been compared given 

the enclosed loci: (i) captured loci (capture), (ii) non-captured loci (other), and (iii) all 

the loci (all). The grey dashed line indicates the median ppMdC in the 12 analysed 

regions. (D) Element-wise Spearman correlation coefficients between the 

experimental Hi-C interaction matrices and the contact maps derived from the model 

ensembles reconstructed from sparse data (pcHi-Cvirt and pcHi-C in grey and blue, 

respectively). The grey dashed line indicates the median element-wise Spearman 

correlation coefficients in the 12 regions analysed. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 11, 2020. ; https://doi.org/10.1101/2020.10.11.334847doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.11.334847
http://creativecommons.org/licenses/by/4.0/


	 32	

 

Figure 2. A low percentage of the interaction data is needed to produce reliable 
3D reconstructions. (A) Workflow for the generation of 3D model ensembles from 

‘synthetic’ sparse datasets and comparison with the toy genome. A total of 70 

‘synthetic’ captured map were generated representing 10 different capture 

experiments with different level of data sparsity (Methods). Model images were 

created with Chimera [73]. (B) Distribution of pcHi-C probes per megabase windows 

in the genome [32]. (C) Distribution of the ppMdC between the ‘synthetic’ models and 

the toy genome grouped by subsets of captures per megabase. Box boundaries 

represent 1st and 3rd quartiles, middle line represents median, and whiskers extend 

to 1.5 times the interquartile range. The ten sets of captured positions are displayed 
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with the colour code shown in the insert. (D) Relationship between the ppMdC and the 

percentage of cells in the matrix used as restrains in each set represented with an 

exponential fit.  The used colour code is the same as in C, the grey line represents the 

mean fit of all the datasets in analysis.   
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Figure 3. Cell-type specific organisation patterns of the β-globin locus. (A) β-

globin locus in cb-Ery, nCD4, and Mon cell-types. From left to right: representation of 

the contact matrix derived from each of the model ensembles colour coded from low 

(blue) to high (yellow) contact frequency (columns filtered due to low interaction data 

are coloured grey); best model from ensemble as assesses by the scoring function; 

zoom up of the β-globin locus in the model. Models are represented as a tube with 
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thickness proportional to the cell-type expression profile (Methods), the regulatory 

elements and genes in the β-globin locus are coloured as follow: HBB and HBD in red, 

HBG1 and HBG2 in green, HBE1 in yellow, LCR in blue and 3’HS1 and HS5 in orange. 
Model images were created with Chimera [73]. (B) Clustering tree (see Hierarchical 

clustering of ensembles of 3D models in Chromatin ensemble 3D analysis) of cb-Ery 

(purple), nCD4 (orange) and Mon (pink) model ensembles. (C) Cell-type specific 

distance distributions between the particle containing HS3 site of the LCR and the β-

globin genes (HBB, HBD, HBG1, HBG2, and HBE1, colour coded as in (A)) as 

observed in the ensemble of models. Box boundaries represent 1st and 3rd quartiles, 

middle line represents median, and whiskers extend to 1.5 times the interquartile range 

(two-samples Kolmogorov-Smirnov test, asterisk indicate p < 0.007). (D) Radial plot 

showing the 3D enrichment around HS3 (Method). Each circumference shows the 

enrichment or depletion of features around HS3 on layers (up to 560 nm away from 

HS3) of non-overlapping volumes equal to the one of the initial sphere with radius of 

200 nm. The colour bar shows the colour coding from highly depleted (blue) to highly 

enriched (red) features.  
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Figure 4. Communities of active genes as a cell-type specific 3D signature in cb-
Ery. (A) Line plot of the mean distances between the TSS of HBG2 (focus point, blue 

vertical line) and all other particles in the genomic region (chr11:3,795,000-8,504,999 

bp) for cb-Ery (purple), nCD4 (orange), and Mon (pink) as calculated in each model 

ensembles. Error bar, indicating one standard deviation, is displayed for particles 

enclosing a transcribed gene (in at least one cell). The grey dashed line indicates 200 

nm cut-off used in the analysis (Methods). (B) Cell-type specific distance distribution 

between particles enclosing the HBG2 gene and all transcribed genes in the genomic 

region (chr11:3,795,000-8,504,999 bp) for cb-Ery (purple), nCD4 (orange), and Mon 

(pink) as calculated in each model ensembles. Box boundaries represent 1st and 3rd 

quartiles, middle line represents median, and whiskers extend to 1.5 times the 

interquartile range (two-samples Kolmogorov-Smirnov test, asterisk indicate p-values 
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< 7.5e-6). (C-E) Hierarchical clustering of each genes based on the co-occurrence 

analysis (Methods) in cb-Ery (C), nCD4 (D) and Mon (E). Co- occurrence value range 

from 0 (low, dark blue) to 100 (high, bright yellow). In each hierarchical tree the 

communities are labelled at their root branch. Per each gene the relative expression 

(log(FPKM) is shown in a scale of reds from 0 to 5. (F) Hierarchical clustering of the 

distances between the communities defined in cb-Ery (Methods). Distance values are 

coloured in the matrix from dark blue to bright yellow and the average expression in 

log(FPKM) per community is coloured by ranking from lowest (lightest) to highest 

(darkest) in 3 different shades of red. (G) Relationship between gene expression in 

log(FPKM) and the median distance of the gene particles to the centre of mass of its 

own community in cb-Ery ensemble of models (Methods). Purple line denotes the 

linear regression fit, the shading around the regression line represents the confidence 

interval, each community is represented with different symbols (circle community 1; 

inverse triangle community 2; square community 3; and ex community 4).  
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Tables 

Table 1. Communities stability assessment 

Cell Community 
Mean  inter-

community co-
occurrence 

Average inter-
community co-

occurrence per cell 

cb-Ery 

1 2.96 

3.06 
2 4.90 

3 0.54 

4 3.85 

nCD4 

1 11.49 

9.16 2 3.83 

3 12.17 

Mon 
1 10.33 

10.33 
2 10.33 

 
Description: Cell, the cell-type data used to reconstruct the chromatin; Community, 
the defined communities by Ward’s clustering; Mean inter-community co-
occurrence, Communities stability score as defined in Methods; and Average inter-
community co-occurrence per cell, average Mean inter-community co-occurrence 
value of all the communities in each of the cells. 
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