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Abstract: The mesh-based Monte Carlo (MMC) technique has grown tremendously since
its initial publication nearly a decade ago. It is now recognized as one of the most accurate
Monte Carlo (MC) methods, providing accurate reference solutions for the development of novel
biophotonics techniques. In this work, we aim to further advance MMC to address a major
challenge in biophotonics modeling, i.e. light transport within highly complex tissues, such
as dense microvascular networks, porous media and multi-scale tissue structures. Although
the current MMC framework is capable of simulating light propagation in such media given
its generality, the run-time and memory usage grow rapidly with increasing media complexity
and size. This greatly limits our capability to explore complex and multi-scale tissue structures.
Here, we propose a highly efficient implicit mesh-based Monte Carlo (iMMC) method that
incorporates both mesh- and shape-based tissue representations to create highly complex yet
memory efficient light transport simulations. We demonstrate that iMMC is capable of providing
accurate solutions for dense vessel networks and porous tissues while reducing memory usage by
greater than a hundred- or even thousand-fold. In a sample network of microvasculature, the
reduced shape complexity results in nearly 3x speed acceleration. The proposed algorithm is
now available in our open-source MMC software at http://mcx.space/#mmc.

1. Introduction

The Monte Carlo (MC) method is widely used as the gold standard for modeling light propagation
in complex media such as human tissues [1, 2]. Due to great efforts in accelerating MC methods
using emerging parallel hardware, such as graphics processing units (GPUs), in the past decade,
MC methods have thrived in the field of biomedical optics [3–6], benefiting a broad range of
applications such as functional brain imaging [7], photobiomodulation treatment planning [8, 9],
new instrument prototyping [10], food and agriculture [11], and marine science [12], among
others. Earlier MC simulation methods [1] can handle relatively simple geometries, such as
layered media. The added capability to model 3-D voxel-based heterogeneous domains [3,13–15]
represents a major milestone towards broader utilities. However, using voxels to represent shapes
with curved boundaries leads to expensive memory and computational costs because high voxel
densities are usually needed to retain boundary accuracy.
About 10 years ago, we published one of the first mesh-based MC (MMC) algorithms in the

inaugural issue of this journal [16]. The MMC method is designed to overcome the limitations
of voxel-based MC by performing ray-tracing computations in tetrahedral meshes. Because
tetrahedral meshes present greater flexibility in representing arbitrary shapes, MMC can model
light propagation in complex anatomical structures with high accuracy and memory efficiency.
Noticeable improvements in simulation accuracy over voxel-based MC have been reported in
various studies [16–18].

Since the initial proposal of the MMC algorithm, there has been tremendous growth in
developing refined and accelerated MMC methods to address various challenges in the field. A
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number of works were targeted towards accelerating MMC by utilizing parallel architectures,
including the extensions to single-instruction multiple-data (SIMD) [19] and advanced vector
extensions (AVX) SIMD instructions [20] on the CPU, as well as the use of NVIDIA CUDA [5]
and OpenCL [6, 21] to gain substantial acceleration through modern GPUs. New efforts have
also led to the generalization of MMC to support wide-field illumination and camera-based
detection [22,23], as well as a dual-gridMMC (DMMC) approach combining a coarsely tessellated
mesh for ray-tracing with a fine voxelated domain for storage [17]. Other new MMC-based
approaches have been proposed to address challenges in ease-of-use [24], modeling anisotropic
tissues [21], studying new imaging techniques [25], and solving inverse problems [26, 27].
Despite exciting advances thus far, the standard for MC light modeling is constantly being

challenged as biophotonic techniques continue their endeavors towards probing deeper and
increasingly complex and multi-scaled tissues. In order to facilitate the rapid growth in emerging
optical imaging techniques and offer a better understanding of tissue physiology at all length-
scales, increasingly higher demands have been placed upon efficient computational methods
and light-tissue interaction modeling. For example, in fluorescence laminar optical tomography
(FLOT) – a mesoscopic imaging technique, MC method was found for characterizing light-tissue
interaction in brain cortex [28]. In optical coherence tomography (OCT) – a modality with a
resolution of a few micrometers – MC methods have been used for computing the angiography
images [29]. On the microscopic scales, multi-photon microscopy continues pushing limits
in high spatial resolution and researchers have been using MC for improving the penetration
depth [30,31]. Aside from numerous studies using MC for processing functional near-infrared
spectroscopy (fNIRS) data [18] – a macroscopic imaging technique for neural imaging, a recent
study has attempted to build connections between fNIRS hemodynamic signals using MC
simulations with a simplified mesh-based vessel network [32]. From these recent studies, it is
strongly evident that an accurate, fast and versatile MC model could offer widespread impact
towards pushing frontiers in biophotonics research.
We want to point out that, compared to layer- and voxel-based MCs, MMC is already a

significant step forward in versatility and accuracy, and is capable of modeling arbitrarily complex
domains. However, creating accurate mesh models from such domains often leads to extremely
dense meshes with large node and element numbers. This could have a profound impact on
simulation speed, maximum domain volumes, as well as output resolution. Using increasingly
sophisticated mesh models can quickly become a bottleneck on memory-limited devices such as
GPUs [6]. While implicit shape-based MC techniques have previously been explored [33–36],
their utilities have largely been limited to domains with simple geometries, lacking the complexity
necessary to meet the needs of multi-scaled tissue simulations, such as dense vessel networks
derived from microscopic imaging [37]. Therefore, further extensions that enable MMC to
produce more efficient and robust simulations in such scenarios are highly desirable.
Here, we propose a highly memory-efficient and versatile MMC algorithm – implicit MMC

or iMMC – that combines shape-based modeling with mesh-based MC, permitting efficient
simulations in large-scale complex tissue structures. In this approach, only a coarse “skeletal”
tetrahedral mesh is needed to represent essential shapes, such as the center-lines of blood vessels
or centroids of pores or cavities, while detailed tissue structures are represented via implicitly
defined shapes associated with the selected edges, faces and vertices of the skeletal mesh.
Because of this hybrid shape representation, iMMC is capable of modeling extremely complex
and multi-scaled tissues, such as dense networks of microvasculature or microporous alveolar
lung tissue, using only fractional nodes/elements when compared to conventional MMC.
In the remainder of this paper, the hybrid shape-mesh modeling and the corresponding mesh

generation procedures are introduced in Section 2. In Section 3, we validate the iMMC algorithm
by comparing it with conventional MMC [16] and dual-grid MMC [17] methods in several
benchmarks. A real-world example, in which iMMC is applied to model a highly complex
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microvascular network, is also reported in Section 3. Finally, in Section 4, we quantify the
improvement in memory utility and simulation speed, and discuss future directions.

2. Methods

Unlike the traditional MMC approach which relies on tetrahedral meshes to explicitly represent
structures, the iMMC algorithm implicitly defines complex tissue domains by attaching parameter-
based shapes onto the edges, nodes and faces of a tetrahedral mesh. In the following subsections,
we will separately describe our processing pipelines for 1) edge-based iMMC (e-iMMC), where
implicitly defined cylindrical domains are associatedwith selected edges to represent vessel/airway
networks, 2) node-based iMMC (n-iMMC), where implicitly defined cavities are associated with
vertices for modeling porous media, and 3) face-based iMMC (f-iMMC), where a thin membrane
is associated with the selected triangular faces of tetrahedral elements to model ultra-thin tissue
layers such as human epidermis.

2.1. Edge-based iMMC

Let us first consider a complex vessel network [37] (also applicable to other tree-like tubular
tissue structures, including airways in the lung, milk-ducts in the breast or collecting ducts in
the kidney). To capture the overall shapes of such structures, we can separate the geometric
information into two parts: the branch-like center-lines of the vessel network and the associated
radius for each segment or branch of the center-line. To avoid creating high node densities
when meshing thin-tube structures, as is the case in standard MMC, we only need to create a
coarse “skeletal” mesh in iMMC, made from the Delauney tessellation of center-line nodes and
those along the exterior boundaries while suppressing the addition of Steiner nodes [38]. Once
the skeletal mesh is created, the center-line segments, now edges in a subset of tetrahedra, are
subsequently labeled and attached with the corresponding radii of vessels, as obtained from
image processing/segmentation tools. We want to note here that vessel segmentation is not the
focus of this work and one should consider using appropriate pre-processing tools for obtaining
vessel information before performing iMMC simulations.

To handle branching, more than one local edge of a tetrahedron can be labeled as vessels in an
e-iMMC simulation. To simplify the computation in our current implementation, we support
up to two edges per element for vessel modeling; higher order junctions involving more than
2 branches can be handled by refining the element next to the bifurcation until each element
contains two or fewer branches. In Fig. 1(a), we illustrate a vessel-bearing element, where edge
−−−→P0P1 is associated with a vessel of radius A .
The ray-tracing process in an e-iMMC simulation is largely similar to those in standard

MMC or DMMC – a photon packet traverses between tetrahedra by performing ray-tetrahedron
intersection testing and accumulates energy losses along its path [6, 16]. The only difference is
that when a packet enters a vessel-bearing element, intersections between its trajectories and
implicitly-defined tubular vessel surfaces must be computed for each propagation step. As a
result, an additional state (() is recorded for each simulated packet to denote whether it is located
inside a vessel (( = 1) or outside (( = 0), and is updated for each step. Using the ( flag, one can
then select the corresponding optical properties for scattering or absorption calculations.
Determining whether a photon’s path segment intersects with the cylindrical vessel surface

is an essential part of the e-iMMC computation. For a given packet path segment within a
vessel-bearing element, denoted as −−−→?0?1 in Fig. 1, where edge 4 =

−−−→P0P1 is designated as a vessel
center-line with radius A , we first compute the distance between the starting point ®?0 and vessel
center-line 4 as 30 and between the end point ®?1 and 4 as 31.
As illustrated in Fig. 1(b), in the e-iMMC algorithm, we can perform a rigorous ray-cylinder

intersection computation along each propagation step of the packet and determine 1) whether the
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Fig. 1. Illustrations of edge-based implicit mesh-based Monte Carlo (e-iMMC)
algorithm. Here we show (a) the photon packet ray-tracing in a tetrahedral element
with a labeled edge as the center line of a vessel segment (red), and (b) the ray-cylinder
intersection testing along the orthogonal plane of the vessel. The dashed line boxes in
(b) show examples of intersecting and non-intersecting rays.

path segment intersects with the cylinder, and 2) the entry and exit positions along the cylinder if
an intersection occurs. Specifically, this can be done by solving the quadratic line-circle equation
along the 2-D plane orthogonal to the vessel edge 4. When an intersection is detected, the
intersection points can be computed in the 2-D plane, denoted as ®ℎ′ in Fig. 1(b), first and then
mapped to the 3-D space, denoted as ®ℎ in Fig. 1(a).
We want to note that the above per-step testing provides good accuracy, but requires solving

a quadratic equation at every step. To accelerate the computation, our current implementation
utilizes a necessary but insufficient condition for the path segment to intersect with the cylinder:{

intersecting (31 > A and 30 < A) or (31 < A and 30 > A)
non-intersecting otherwise.

(1)

As shown in the projection view, Fig. 1(b), along the orthogonal plane to the vessel 4, the above
condition correctly determines the top two cases (dash-line boxes), but misses the bottom case (a
false negative), where both ®?0 and ®?1 are located outside of the vessel. As demonstrated in our
benchmarks in the Results section, the errors due to these false-negative tests are negligible for
the tested domain shapes and optical properties. We want to point out that the false-negative cases
may become more frequent when the average path lengths (related to both the mean-free-path
and the average edge-length of the tetrahedron) of the packet is comparable or much larger than
the vessel’s diameter. In such a case, one may choose to perform the rigorous ray-cylinder
intersection testing or, alternatively, inflate the vessel radius to approximately compensate for the
missing intersections. The inflation factor should be determined analytically or numerically.
When an intersection is detected, the packet is moved from ®?0 to the intersection point ®ℎ.

Whether a packet reflects from or transmits through the surface is then determined according
to Fresnel’s law using the refractive indices of the vessel and the background tissue, similar to
the reflection computation that occurs at triangular faces denoting tissue boundaries. The flag
( is toggled after every transmission across the cylindrical boundary. The handling of energy
deposition in iMMC is identical to that of the DMMC method [17], i.e. saving along a fine
voxelated grid.
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To handle the junction between two adjacent vessel segments, we add a sphere at each node
along the vessel center-line, and apply the node-based iMMC method, detailed in the below
section, to improve vessel continuity. The radius of the sphere is determined by max(A1, A2)
where A1 and A2 are the radii of the two vessel segments.
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Fig. 2. Illustrations explaining (a) the node-based implicit mesh-based Monte Carlo
(n-iMMC) method and (b) face-based implicit mesh-based Monte Carlo (f-iMMC)
method. The orange boxes highlight photon rays that either intersect or pass by the
feature object.

2.2. Node-based iMMC and face-based iMMC

Sophisticated photon migration simulations may also arise when studying porous media, such
as lung tissues, trabecular bones, fat emulsions, solutions with micro-bubbles, etc, as well as
multi-scaled tissues, such as human epidermis, brain meninges, or cell membranes. Extending
this hybrid shape and mesh based anatomical modeling to handle these types of complex media
may foster a greater understanding of these complex systems by enabling more realistic and
large-volume simulations. For these purposes, we have developed a node-based iMMC (n-iMMC)
algorithm suitable for simulating porous domains by associating a spherical inclusion at mesh
vertices and a face-based iMMC (f-iMMC) algorithm suitable for simulating thin membranes in
a complex domain.

To demonstrate the basic utility of n-iMMC, in Fig. 2(a), we show one of the simplest porous
domain simulations by defining spherical inclusions at a selected subset of mesh nodes. When
simulating a porous domain with spherical inclusions (or cavities), the centroid and radius
of each previously segmented inclusion (or generated synthetic data) are first extracted and
recorded. Instead of creating spherical surface meshes for each inclusion, in n-iMMC, we create
a very coarse tetrahedral mesh by simply tessellating the centroid positions along with other
non-inclusion boundary nodes within the background media. We label each centroid node with
the corresponding radius and tissue type. The radii may be uniform or follow a distribution. Any
tetrahedral element that shares a centroid node is labeled as an “inclusion-bearing” element.
Similar to the e-iMMC case discussed above, a photon packet that traverses a non-inclusion-

bearing element follows steps identical to a standard MMC or DMMC simulation. However,
when a packet traverses through an inclusion-bearing element, we have to perform an extra
computation to determine whether the path segment intersects with the inclusion. For a path
segment −−−→?0?1 intersecting with a tetrahedral element that contains a spherical inclusion centered
at %0 with radius A, the distances from the start point ?0 and end-point ?1 to the centroid node
%0 are computed, denoted as 30 and 31, respectively.
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Also similar to the aforementioned e-iMMC, one may choose to either perform a more rigorous
ray-sphere intersection testing after each propagation step or apply Condition 1 to approximate
and simplify the computation. When an intersection is detected, the intersection position ®ℎ is
then computed by solving the quadratic equations for line-sphere intersection. The photon is then
moved to the point of intersection to evaluate for reflection versus transmission. When more than
one inclusions are associated with an element, the intersection calculations should loop over each
inclusion-containing vertex and the packet should be moved to the closest intersection position.

The face-based iMMC, or f-iMMC, allows to model thin-wall materials by defining a thickness,
also denoted as A for simplicity, for each selected triangular face designated as part of a membrane.
Modeling such a thin-membrane structure in a traditional MMC simulation often requires a very
high number of elements because of the drastic difference in length scales between the membrane
and background tissue. However, for f-iMMC, we only need to discretize the membrane outer
surface, without considering its thickness, and will subsequently incorporate the thickness of the
structure as an implicit parameter. This allows us to model arbitrarily thin membranes accurately
without the worry of mesh density restrictions.

When a photon packet traverses inside a membrane-bearing element, the distances between the
packet and the membrane faces will be computed during each propagation step to test whether it
enters or exits the thin layer. Because the layer is flat, Condition 1 described above becomes both
necessary and sufficient and does not result in any false tests. However, special scenarios must be
considered when a photon is near the edges or corners of the element. See the following section
for details.

Labeled elem.
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(a)

Labeled elem.

(b)

Missed layer
Labeled face

Labeled elem.

Missed elem.

r

(c)

Fig. 3. Illustrations of mesh generation and labeling for (a) edge-based iMMC, (b)
node-based iMMC and (c) face-based iMMC. The labeled edge, node and face are
indicated by red color and the feature-bearing elements are marked in blue. In (c),
the red dashed circles indicate feature regions that are located inside the immediately
neighboring elements (light green). The feature-bearing elements (blue) are “referred”
by the neighboring elements when a photon traverses the latter.

2.3. Mesh generation and labeling

From the aforementioned subsections, one can see that one of the major differences between
iMMC and conventional MMC is in mesh generation. An iMMC mesh is only a “skeletal”
mesh that contains a coarse Delaunay tessellation of the essential geometric data – vessel
center-lines, inclusion centroids, or face patches; the detailed structure shapes are now converted
as implicit parameters and precisely tested in the photon ray-tracing calculations without needing
to discretize. This not only results in dramatic reductions in mesh complexity and node/element
counts, but also enhances accuracy by reinforcing shape boundaries as implicit parameters.

The creation of the coarsely tessellated tetrahedral mesh for iMMC is similar to the steps used
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for creating the coarse DMMC meshes [17], with the exception that the input data is not the
triangular surfaces of the tissues, but the vessel center-lines (for e-iMMC), the pore centroids
(for n-iMMC) or the membrane surface (for f-iMMC); these can be combined with triangular
surface meshes representing non-multi-scale features, including bounding box or other tissue
boundaries, similar to those used in standard MMC or DMMC. The feature edges, nodes, and
triangular patches are recorded in a polyhedral file as the input for the open-source "TetGen”
mesh generator [38]. To suppress the addition of Steiner points for mesh refinement, we used the
“-Y” flag with TetGen. This results in tetrahedral meshes of the least element number without
losing input geometric accuracy.
Subsequent data analysis is performed in MATLAB (MathWorks, Natick, MA, USA). Once

the mesh has been generated, we find each of the feature line segments, nodes, or faces and create
a new set of mesh input files in which the feature edges/nodes/faces are labeled with parameters
to represent their cylindrical radii, spherical radii or layer thicknesses, respectively.

For illustration purposes, in Fig. 3, we show 3 simple mesh examples for edge-, node- and face-
based iMMC, respectively. The vessel-mimicking edge in Fig. 3(a), inclusion-mimicking node in
Fig. 3(b) and membrane-mimicking face in Fig. 3(c) are marked in red, and the feature-bearing
tetrahedral elements are marked in light blue.
We want to particularly mention that to properly account for all regions within the features

(vessels or membranes) in e-iMMC and f-iMMC, we need to label not only those elements that
directly contain edge/face features, but also those in their immediate vicinity. For example, in
Fig. 3(c), a small part of the virtual layer (red dashed circles) are not included in the feature-bearing
elements (light blue), but rather in the first-level neighboring elements that share nodes with
the feature surface (light green). Labeling both types of elements allows f-iMMC to correctly
compute light distributions among all regions. Similarly, as shown in light-green in Fig. 4(c), a
small portion of the implicit vessel domain near one of the ends is inside neighboring elements
and outside of the added spherical junctions. Therefore, labeling these adjacent elements and
perform e-iMMC tests may lead to improved accuracy.

3. Results

In this section, we first show a few simple benchmarks to demonstrate the essential features for
the edge-, node- and face-based iMMC. Using these simple domains, we also validate iMMC
by comparing it with conventional MMC and DMMC. Then, we show one real-world example
by applying iMMC towards modeling photon transport within a highly complex microvascular
network containing thousands of vessel branches.

3.1. Validation of iMMC methods

In Fig. 4, we show three benchmarks (referred to as B1, B2 and B3) to validate e-iMMC, n-iMMC
and f-iMMC, respectively. The domain sizes for all three benchmarks are 1 × 1 × 1mm3. A
cylindrical vessel [Figs. 4(a)-4(c)], a spherical inclusion [Figs. 4(d)-4(f)] and a skin-like layered
medium [Figs. 4(g)-4(i)] with a radius/thickness of 0.1 mm are placed in the domain. Three sets
of meshes generated using either MMC, DMMC or iMMC are shown in the left, middle and
right columns, respectively. Note that in Fig. 4(c), one sphere with the same radius of 0.1 mm is
added at one end of the cylinder to mitigate the under-representation in e-iMMC caused by the
tetrahedron geometry. The background medium has absorption coefficient `0 = 0.0458 /mm,
scattering coefficient `B = 35.65 /mm, anisotropy 6 = 0.9, and refractive index = = 1.37; those
for the inclusions are `0 = 23.0543 /mm, `B = 9.3985 /mm, 6 = 0.9, and = = 1.37, mimicking
absorbers [14]. A downward-pointing pencil beam source is positioned at (0.5, 0.5, 1) mm. A
total of 109 photons are simulated in all cases. All simulations are executed on an AMD Ryzen
Threadripper 3990x 64-Core CPU processor.

To quantify the memory-efficiency of iMMC, we list the numbers of nodes and elements for
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Fig. 4. The meshes generated for three benchmarks and three Monte Carlo methods.
Benchmarks (a-c) B1, (d-f) B2 and (g-i) B3 are built to validate the edge-based,
node-based and and face-based iMMC algorithms, respectively. Each column, from
left to right, shows the meshes created for standard mesh-based Monte Carlo (MMC),
dual-grid mesh-based Monte Carlo (DMMC) and iMMC, respectively. The green shade
in (c) indicates vessel regions within the elements adjacent to a vessel-bearing element.

MMC, DMMC and iMMC for each benchmark in Table. 1. The simulation speeds (photons/ms)
for each domain are also provided in the same table. All speeds and run-times in the paper are
averaged from three repeated simulations.
To validate the accuracy of iMMC, in Fig. 5, we show cross-sectional plots of log-scaled

fluence (J ·mm−2) along the source planes to compare solutions derived from MMC, DMMC,
and iMMC for the B1, B2, and B3 benchmark domains, respectively.
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Table 1. Comparisons between mesh-based Monte Carlo (MMC), dual-grid mesh-
based Monte Carlo (DMMC) and implicit mesh-based Monte Carlo (iMMC) for three
benchmarks – B1, B2 and B3. The numbers of nodes (node #) and elements (elem. #)
are compared below. The speeds (photons/ms) are also summarized.

Method
B1 B2 B3

Node # Elem. # Speed Node # Elem. # Speed Node # Elem. # Speed

MMC 53,103 313,344 918 201,089 34,412 947 32,714 190,038 920

DMMC 2,746 15,656 4,349 238 1,196 4,320 13 18 4,590

iMMC 10 12 4,659 9 12 4,628 8 6 5,018

(a) (b) (c)

Fig. 5. Log-scaled fluence (J ·mm−2) cross-sectional plots comparing threemesh-based
Monte Carlo methods in three benchmarks (a) B1, (b) B2 and (c) B3.

3.2. Application of iMMC in complex vessel networks

To show that iMMC simulations can be easily scaled to model life-sized complex tissue structures,
we compare simulations performed using iMMC, voxel-based MC [3] and DMMC [17] within a
3-D synthetic microvascular network, shown in Fig. 6(a), created from data published in [39]. In
Figs. 6(b)-6(d), we show zoomed-in views of three different domain representations created for 1)
iMMC: a skeletal coarse mesh made of vessel center-lines with implicit parameters representing
cylindrical vessels (red shade), 2) voxel-based MC: a rasterized microvascular network volume
derived from the center-lines in 1), resulting in a volume of 326× 305× 611 voxels with isotropic
1 × 1 × 1 `m3 voxels, and 3) DMMC: a tetrahedral mesh generated by first extracting a triangular
surface from the above rasterized domain using the Iso2Mesh toolbox [40] and then creating
a coarse tessellation [17] using TetGen [38]. In all three domain settings, a pencil beam light
source is placed on the top at (150.5, 150.5, 611) `m pointing downwards. The blue circles in
Figs. 6(b)-6(d) highlight some of the subtle differences between three discretization methods.
In Figs. 7(a-c), to highlight the vessel geometry, we show the 3D cross-sectional plots of

energy deposition per voxel (J) ranging from 0 to 2.5 × 10−7 J without log-scale at H = 150 `m
for iMMC, voxel-based MC using Monte Carlo eXtreme (MCX [3], http://mcx.space) and MMC,
respectively. The red rectangle in Figs. 7(a-c) are further compared in Fig. 7(d) as contour plots
(in log-10 scales).

In Table 2, we summarize the numbers of nodes and elements for a side-by-side comparison
between iMMC and DMMC. The mesh generation run-times (second) and the simulation speeds
(photons/ms) are also reported in Table 2. Specifically, the mesh generation run-time for iMMC
includes both the time for mesh generation using TetGen given the center-line information and
that for labeling process using MATLAB.
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Fig. 6. (a) The example domain (326 ×305 ×611 `m3) of microvascular networks
used in Monte Carlo modeling . A 100×100×100 `m3 cubic region at the bottom right
corner of the domain is magnified on the right for (b) implicit mesh-based Monte Carlo
(iMMC), (c) voxel-based MC and (d) dual-grid mesh-based Monte Carlo. The black
line in (a) and (b) represents the center-line of the vessels. The blue circles in (b)-(d)
highlight a 1-voxel-wide vessel that is missing from the DMMC mesh due to limited
meshing resolution.

Table 2. The performance comparison between implicit mesh-based Monte Carlo
(iMMC) and dual-grid mesh-based Monte Carlo (DMMC) for a highly complex
microvascular network. The run-time (second) for mesh generation and the simulation
speed (photons/ms) are reported. For iMMC, the mesh generation run-time includes
both tessellation using TetGen and edge-labeling process in MATLAB.

Method Node # Element # Meshing time (s) Speed

DMMC 1,463,924 9,074,036 258.61 333

iMMC 6,850 44,209 26.20 966

4. Discussions and Conclusion

The meshes shown in Fig. 4 demonstrate not only a drastic reduction in element numbers from
MMC to DMMC, as previously shown [17], but also that the hybrid shape representation used in
iMMC achieves an additional reduction in mesh density and complexity in all 3 benchmarks.
These results are further confirmed in Table 1: the number of elements in the iMMC mesh
generated for benchmark B1 is 26,112× and 1,305× coarser than those of MMC and DMMC,
respectively. For benchmarks B2 and B3, the element numbers for iMMC are 100-fold and
3-fold less, respectively, when compared to DMMC meshes, and an impressive over 2,500-fold
reduction when compared to MMC. We want to mention that our current implement of e-iMMC
has not yet supported feature-handling in adjacent elements, as shown in green in Fig 4(c). The
development of a more rigorous simulation is underway.
The dramatically simplified mesh data results in improved simulation speed – from Table 1,
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a 4.8× to 5.4× speedup is achieved when comparing iMMC to MMC in all three benchmarks;
when compared to DMMC, speed improvements of 7.1%, 7.1% and 9.3% are observed for B1,
B2 and B3, respectively. The relatively small speedup over DMMC is due to the fact that both
of them utilize coarse meshes; the computational overhead related to dense elements becomes
relatively small compared to the necessary ray-tracing computation moving photons across tissue
interfaces.

(a) (b)

(c) (d)

Fig. 7. Three-dimensional plots of energy deposition per voxel (J) within a highly
complex microvascular network using (a) implicit mesh-based Monte Carlo (iMMC),
also shown in Visualization 1, (b) voxel-based Monte Carlo (simulated using MCX) and
(c) dual-grid mesh-based Monte Carlo method (DMMC). The red circle in (a) indicates
an artifact caused by approximations without considering adjacent elements next to a
vessel element (see Fig. 4(c)). The contour plots of the fluence produced by iMMC,
MMC and MCX are shown in (d). The contour plot is limited to regions of the domain
within 3 mm depth from the source due to higher stochastic noise in lower regions.
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In Fig. 5, an excellent match can be observed between iMMC and DMMC simulation results
for all benchmarks. The MMC results show minor mismatches when compared to those of
iMMC and DMMC, especially near the light source. This has been previously reported in [17] as
a result of insufficient output resolution in MMC. Fig. 5 provides strong evidence that iMMC
is capable of achieving a similar level of accuracy as DMMC and MMC despite using only
a fractional memory footprint for the mesh data. We want to point out that although iMMC
eliminates the discretization errors associated with representing a curved surface feature with
triangles, the accuracy of this approach relies on how closely the tissue structures resemble the
assumed tubular, spherical or uniform layer feature shapes; when the actual anatomy deviates
from these assumptions, the use of DMMC and MMC remains valid options; alternatively,
introducing additional implicit parameters to support more complex shapes – for example, using
a truncated cone instead of a cylinder to model vessels, or using spherical harmonics to represent
non-spherical inclusions - could again make iMMC an effective and accurate solution.
The examples shown in Fig. 6 represent a highly sophisticated microvascular network in

comparison to the benchmarks in Fig. 4 or other tissue models explored in earlier research [32].
In Figs. 6(c) and 6(d), we can visually observe that a considerable amount of voxels and
tetrahedral elements are used to delineate the vessel boundaries in MCX and DMMC domain
models. In comparison, the iMMC method in Fig. 6(b) significantly simplifies the domain
complexity. As shown in Table 2, iMMC achieves over 213× and 205× reduction in node and
element numbers, respectively, when compared to DMMC. Although DMMC does not introduce
additional overhead by suppressing the refinement of tetrahedral elements within the same tissue
region, it does require the creation of a triangular surface to discretize the complex shapes of
dense networks of vessels with small radii; as a result, DMMC meshes contains nearly 1.5
million nodes – almost 99% of those nodes belong to vessel surfaces. The missing 1-voxel-with
vessel branch in the DMMC mesh, indicated by the blue circle in Fig. 6(d), suggests that even
higher surface mesh density may be necessary to accurately discretize such a complex domain
using a tetrahedral/surface mesh representation. Unlike MMC/DMMC, the vessels in iMMC are
represented by edges, which avoids dense tessellations at each vascular surface. The reduction in
mesh density brings a significant speedup in mesh generation. In Table 2, a nearly 10× reduction
in mesh generation run-time is achieved when comparing iMMC to DMMC. For iMMC, the
actual run-time for mesh generation using TetGen is only 0.033s. Further acceleration of the
labeling process is one of the further steps for iMMC code development.

Furthermore, due to the dramatic mesh simplification, iMMC improves the overall simulation
speed (photons/ms) by 2.9-fold when compared to DMMC. The disproportionate relation between
run-time reduction and reduction in mesh density can be attributed to the fact that standard
scattering/absorption and boundary reflection – computations that are common for both iMMC
and DMMC – become dominant as the mesh density reduces. Nevertheless, a 2.9-fold speedup
for such a large-scale simulation is still quite impressive. We want to mention that we are currently
working on implementing iMMC on the GPU [6] where high-speed memory is extremely limited
and the host-device data transfer is expensive. In such cases, we anticipate higher speed gains
when using iMMC on the GPU as a result of much fewer memory reading operations and better
data caching.
In Fig. 7(d), an excellent match can be found between all three methods. Only in a small set

of ultra-thin vessels, subtle differences can be observed due to the slight differences between
rasterization approaches of these methods. The vessel structure in the iMMC result is nearly
completely determined by vessel center-lines and radii input data, and does not have a dependency
to rasterization resolution, which is the case when using tetrahedral and voxelated representations.
However, as we highlighted in the red-circle region in Fig. 7(a), the lack of the ability to consider
vessel shapes in the adjacent elements to a vessel-bearing element in our current implementation
results in small artifacts in some large-diameter vessels. With further improvement of our
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software, we anticipate that such small errors will be removed in the future.
In summary, we have developed a significantly enhanced MMC algorithm that is tailored

towards modeling extremely complex tissue structures – a highly challenging but increasingly
important direction for biophotonic imaging. By using a hybrid approach that combines a coarse
skeletal mesh and implicit shape parameters, iMMC reduces total memory usage by several
hundred- to thousand-fold; this greatly simplified shape representation also results in about 5-fold
speed improvement over conventional MMC in benchmark testing. In our three benchmarks,
we also showed that edge-, node- and face-based iMMC simulations produced nearly identical
solutions compared to standard MMC and DMMC. In addition, we have also successfully applied
iMMC to model light transport in highly sophisticated microvascular networks. The node and
element numbers are reduced by over 200-fold, which greatly reduces the memory usage when
compared to the state-of-the-art DMMC method. The speed is also improved by 2.9-fold over
DMMC due to the reduced overhead associated with simpler meshes. In the future, we will focus
on implementing iMMC in our GPU-accelerated code [6] and supporting more advanced shape
parameters, such as using truncated cones for vessel modeling. In addition, we will also explore
further applications of iMMC in studying complex tissues, such as those of the lung and brain.
The iMMC algorithm has been incorporated into our open-source MMC software and is freely
available to the community at http://mcx.space/#mmc.
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