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a 4.8x to 5.4% speedup is achieved when comparing iMMC to MMC in all three benchmarks;
when compared to DMMC, speed improvements of 7.1%, 7.1% and 9.3% are observed for B1,
B2 and B3, respectively. The relatively small speedup over DMMC is due to the fact that both
of them utilize coarse meshes; the computational overhead related to dense elements becomes
relatively small compared to the necessary ray-tracing computation moving photons across tissue
interfaces.
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Fig. 7. Three-dimensional plots of energy deposition per voxel (J) within a highly
complex microvascular network using (a) implicit mesh-based Monte Carlo (iMMC),
also shown in Visualization 1, (b) voxel-based Monte Carlo (simulated using MCX) and
(c) dual-grid mesh-based Monte Carlo method (DMMC). The red circle in (a) indicates
an artifact caused by approximations without considering adjacent elements next to a
vessel element (see Fig. 4(c)). The contour plots of the fluence produced by iMMC,
MMC and MCX are shown in (d). The contour plot is limited to regions of the domain
within 3 mm depth from the source due to higher stochastic noise in lower regions.
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In Fig. 5, an excellent match can be observed between iMMC and DMMC simulation results
for all benchmarks. The MMC results show minor mismatches when compared to those of
iMMC and DMMC, especially near the light source. This has been previously reported in [17] as
a result of insufficient output resolution in MMC. Fig. 5 provides strong evidence that iMMC
is capable of achieving a similar level of accuracy as DMMC and MMC despite using only
a fractional memory footprint for the mesh data. We want to point out that although iMMC
eliminates the discretization errors associated with representing a curved surface feature with
triangles, the accuracy of this approach relies on how closely the tissue structures resemble the
assumed tubular, spherical or uniform layer feature shapes; when the actual anatomy deviates
from these assumptions, the use of DMMC and MMC remains valid options; alternatively,
introducing additional implicit parameters to support more complex shapes — for example, using
a truncated cone instead of a cylinder to model vessels, or using spherical harmonics to represent
non-spherical inclusions - could again make iMMC an effective and accurate solution.

The examples shown in Fig. 6 represent a highly sophisticated microvascular network in
comparison to the benchmarks in Fig. 4 or other tissue models explored in earlier research [32].
In Figs. 6(c) and 6(d), we can visually observe that a considerable amount of voxels and
tetrahedral elements are used to delineate the vessel boundaries in MCX and DMMC domain
models. In comparison, the iMMC method in Fig. 6(b) significantly simplifies the domain
complexity. As shown in Table 2, iMMC achieves over 213x and 205x reduction in node and
element numbers, respectively, when compared to DMMC. Although DMMC does not introduce
additional overhead by suppressing the refinement of tetrahedral elements within the same tissue
region, it does require the creation of a triangular surface to discretize the complex shapes of
dense networks of vessels with small radii; as a result, DMMC meshes contains nearly 1.5
million nodes — almost 99% of those nodes belong to vessel surfaces. The missing 1-voxel-with
vessel branch in the DMMC mesh, indicated by the blue circle in Fig. 6(d), suggests that even
higher surface mesh density may be necessary to accurately discretize such a complex domain
using a tetrahedral/surface mesh representation. Unlike MMC/DMMC, the vessels in iMMC are
represented by edges, which avoids dense tessellations at each vascular surface. The reduction in
mesh density brings a significant speedup in mesh generation. In Table 2, a nearly 10x reduction
in mesh generation run-time is achieved when comparing iMMC to DMMC. For iMMC, the
actual run-time for mesh generation using TetGen is only 0.033s. Further acceleration of the
labeling process is one of the further steps for IMMC code development.

Furthermore, due to the dramatic mesh simplification, iMMC improves the overall simulation
speed (photons/ms) by 2.9-fold when compared to DMMC. The disproportionate relation between
run-time reduction and reduction in mesh density can be attributed to the fact that standard
scattering/absorption and boundary reflection — computations that are common for both iMMC
and DMMC - become dominant as the mesh density reduces. Nevertheless, a 2.9-fold speedup
for such a large-scale simulation is still quite impressive. We want to mention that we are currently
working on implementing iMMC on the GPU [6] where high-speed memory is extremely limited
and the host-device data transfer is expensive. In such cases, we anticipate higher speed gains
when using iMMC on the GPU as a result of much fewer memory reading operations and better
data caching.

In Fig. 7(d), an excellent match can be found between all three methods. Only in a small set
of ultra-thin vessels, subtle differences can be observed due to the slight differences between
rasterization approaches of these methods. The vessel structure in the iMMC result is nearly
completely determined by vessel center-lines and radii input data, and does not have a dependency
to rasterization resolution, which is the case when using tetrahedral and voxelated representations.
However, as we highlighted in the red-circle region in Fig. 7(a), the lack of the ability to consider
vessel shapes in the adjacent elements to a vessel-bearing element in our current implementation
results in small artifacts in some large-diameter vessels. With further improvement of our
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software, we anticipate that such small errors will be removed in the future.

In summary, we have developed a significantly enhanced MMC algorithm that is tailored
towards modeling extremely complex tissue structures — a highly challenging but increasingly
important direction for biophotonic imaging. By using a hybrid approach that combines a coarse
skeletal mesh and implicit shape parameters, iMMC reduces total memory usage by several
hundred- to thousand-fold; this greatly simplified shape representation also results in about 5-fold
speed improvement over conventional MMC in benchmark testing. In our three benchmarks,
we also showed that edge-, node- and face-based iMMC simulations produced nearly identical
solutions compared to standard MMC and DMMC. In addition, we have also successfully applied
iMMC to model light transport in highly sophisticated microvascular networks. The node and
element numbers are reduced by over 200-fold, which greatly reduces the memory usage when
compared to the state-of-the-art DMMC method. The speed is also improved by 2.9-fold over
DMMC due to the reduced overhead associated with simpler meshes. In the future, we will focus
on implementing iMMC in our GPU-accelerated code [6] and supporting more advanced shape
parameters, such as using truncated cones for vessel modeling. In addition, we will also explore
further applications of iMMC in studying complex tissues, such as those of the lung and brain.
The iMMC algorithm has been incorporated into our open-source MMC software and is freely
available to the community at http://mcx.space/#mmc.
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