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Abstract 

Introduction: Low voltage-activated T-type calcium channels (T-type ICa), CaV3.1, CaV3.2, 

and CaV3.3 are opened by small depolarizations from the resting membrane potential in many 

cells and have been associated with neurological disorders including absence epilepsy and 

pain. Δ9-tetrahydrocannabinol (THC) is the principal psychoactive compound in Cannabis 

and also directly modulates T-type ICa , however, there is no information about functional 

activity of most phytocannabinoids on T-type calcium channels, including Δ9-

tetrahydrocannabinol acid (THCA), the natural non-psychoactive precursor of THC. The aim 

of this work was to characterize THCA effects on T-type calcium channels. 

Materials and Methods:We used HEK293 Flp-In-TREx cells stably expressing CaV3.1, 3.2 

or 3.3. Whole-cell patch clamp recordings were made to investigate cannabinoid modulation 

of ICa.  

Results:THCA and THC inhibited the peak current amplitude CaV3.1 with a pEC50s of 6.0 ± 

0.7 and 5.6 ± 0.4, respectively. 1µM THCA or THC produced a significant negative shift in 

half activation and inactivation of CaV3.1 and both drugs prolonged CaV3.1 deactivation 

kinetics. THCA (10 µM) inhibited CaV3.2 by 53% ± 4 and both THCA and THC produced a 

substantial negative shift in the voltage for half inactivation and modest negative shift in half 

activation of CaV3.2. THC prolonged the deactivation time of CaV3.2 while THCA did not. 

THCA inhibited the peak current of CaV3.3 by 43% ± 2 (10µM) but did not notably affect 

CaV3.3 channel activation or inactivation, however, THC caused significant hyperpolarizing 

shift in CaV3.3 steady state inactivation. 

Discussion: 

THCA modulated T-type ICa currents in vitro, with significant modulation of kinetics and 

voltage dependence at low µM concentrations. This study suggests that THCA may have 
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potential for therapeutic use in pain and epilepsy via T-type channel modulation without the 

unwanted psychoactive effects associated with THC. 
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ICa                               Voltage gated calcium channel current 

THC   Δ9-tetrahydrocannabinol  

THCA                         Δ9- tetrahydrocannabinolic acid  

CBD   Cannabidiol 

TRP    Transient Receptor Potential 
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Introduction 
Cannabis sativa has been used for thousands of years as a medicinal plant for the relief of pain 

and seizures1-3. There is a growing body of evidence suggesting cannabinoids are beneficial for 

a range of clinical conditions including pain4 inflammation 5 epilepsy 6-8, sleep disorders9, 

symptoms of multiple sclerosis10, and other conditions 11,12. Phytocannabinoids, derived from 

diterpenes in Cannabis, have a range of distinct pharmacological actions 13. The best 

characterised phytocannabinoid is Δ9-tetrahydrocannabinol (THC), well known for its 

psychoactive effects 14, mediated by its activation of the cannabinoid receptor CB1 15. The next 

most abundant phytocannabinoid is cannabidiol (CBD), which is non-psychotomimetic and 

proposed to have potential therapeutic effects in a broad range of neurological disorders 16-18 

and which has been shown to inhibit signalling via at both CB1 and CB2 receptors 16,19,20 

Cannabinoids can also interact with a wide variety of ion channels including Transient 

Receptor Potential (TRP) channels, ligand gated channels and voltage dependent channels 21. 

THC was identified as a prototypic agonist of TRPA1 and subsequently it and other 

phytocannabinoids have been reported to activate or inhibit many other TRP channels 22. THC 

and CBD inhibit evoked currents through recombinant 5-HT3 receptors independently of 

cannabinoid receptors 23; and THC caused significant inhibition of native receptor in 

mammalian neurons 24. THC and CBD also potentiate glycine receptor function through an 

allosteric mechanism25.  

Voltage gated ion channels also modulated by phytocannabinoids. CBD and cannabigerol 

(CBG) are able to inhibit voltage-gated Na (NaV) channels in vitro 26,27 which has been 

suggested to contribute to anti-epileptic effects. A wide range of cannabinoids have been shown 

to modulate T type ICa channels, including endogenous cannabinoids anandamide and N-

arachidonoyl dopamine 28, endogenous lipoamino acids such as N-arachidonoyl 5-HT and N-

arachidonoyl glycine, as well as the  phytocannabinoids THC and CBD 29-31. These effects are 
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thought to be mediated by direct interaction of the ligands with channels, as the experiments 

were done in cells do not express cannabinoid receptors.  

Voltage-dependent Ca2+ channels are categorized into three families: L-type channels (CaV1), 

the neuronal N-, P/Q- and R-type channels (CaV2) and the T-type channels (CaV3) 32. T-type 

Ca2+ channels (CaV3), can activate upon small depolarizations of the plasma membrane and are 

present in many excitable cells 33 where they are critical for neuronal firing and 

neurotransmitter release and physiological processes such as slow wave sleep 34-36. Cells 

expressing T-type calcium channels are involved in epilepsy, pain and other diseases and there 

is substantial evidence supporting the idea that modulating T type calcium channels is a 

potential therapeutic option in these conditions 37-39. T-type calcium are encoded by three CaV3 

subunits (CaV3.1, CaV3.2, and CaV3.3). Much smaller membrane depolarizations are required 

for opening, and at typical neuronal resting membrane potentials a significant number of T-

type channels are inactivated. They markedly differ in some of their electrophysiological 

properties 40,41. The most notable of these are that CaV3.1 and CaV3.2 have much faster 

activation and inactivation kinetics, than CaV3.3 42,43. 

Δ9-tetrahydrocannabinolic acid (THCA) is the precursor of THC in Cannabis. THCA is acutely 

decarboxylated to form THC by heating44. Importantly, THCA has low affinity at CB1 receptor 

45 but interestingly, THCA has been reported to have neuroprotective, anti-inflammatory, and 

immunomodulatory effects 44, raising the possibility of therapeutic activity without unwanted 

psychotropic effects.  

Previous work from our lab have shown that THC and CBD modulate T-type calcium channels 

46, however, there is no information surrounding the effects of other phytocannabinoids 

including THCA on these channels. The aim of this work was to characterize THCA 

modulatory effects on the T-type calcium channels and compare its effects with THC. If THCA 

could also modulate CaV3 channels, this may provide potential therapeutic activity in pain and 
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other disorders involving the peripheral nervous system without having psychoactive 

properties.  

Methods 

Transfection and Cell culture 

Flp-In T-REx 293 HEK cells (ThermoFisher) were stably transfected with pcDNA5/FRT/TO 

vector encoding human CaV3.1 (NM 018896.4), CaV3.2 (NM 021098.2), or CaV3.3 (NM 

021096.3) (GenScript). The integration of this vector to the Flp-In site was mediated by 

pOG44, Flp-recombinase expression vector pOG44, which was co-transfected as per 

manufacturer’s recommendation (ratio 9:1). Transfections were done using Fugene HD 

transfection agent (Promega) at ratio 1:4 (w/v) total DNA: Fugene HD. Selection of stably 

expressing cells were performed using 150µg/mL Hygromycin B Gold (InvivoGen) as per kill 

curve (data not shown). Flp-In T-Rex 293 HEK cells (expressing CaV3.1, CaV3.2, or CaV3.3) 

do not express CB1 or CB2 receptors47. Cells were cultivated in Dulbecco's modified Eagle's 

medium (DMEM) supplemented with 10% FBS, and 1% penicillin-streptomycin. HEK-

CaV3.1, CaV3.2, and CaV3.3 were passaged in media with 15µg/ml Blasticidin (InvivoGen) and 

100µg/ml Hygromycin. Cells were maintained in 5% CO2 at 37°C in a humidified atmosphere. 

Channel expression was induced by adding 2µg/mL tetracycline.  

Electrophysiology 

Currents in Flp-In T-REx 293 HEK cells expressing CaV3.1, CaV3.2, or CaV3.3 channels were 

recorded in the whole-cell configuration of the patch clamp method at room temperature. 

Dishes were constantly perfused with external recording solution containing (in mM) (1MgCl2, 

HEPES, 10 Glucose, 114 CsCl, 5 BaCl2) (pH to 7.4 with CsOH, osmolarity =330). 2-4 MΩ 

recording electrodes were filled with internal solutions containing (in mM) :126.5 CsMeSO4,11 

EGTA, 10 HEPES adjusted to pH 7.3 with CsOH. Immediately before use, internal solution 

was added to a concentrated aliquot of GTP and ATP to yield final concentrations of 0.6 mM 
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and 2mM, respectively. All recordings were measured using an Axopatch 200B amplifier in 

combination with Clampex 9.2 software (Molecular Devices, Sunnyvale, CA). All data were 

sampled at 5-10 kHz and filtered at 1 kHz. All currents were leak subtracted using P/N4 

protocol. 

THC and THCA were prepared daily from concentrated DMSO stocks and diluted in external 

solution to appropriate concentrations and applied locally to cells via a custom-built gravity 

driven micro perfusion system. Before running drugs in test of activation and inactivation of 

CaV3 channels, external control solution was applied about 5 minutes in each experiment to 

observe in the absence of drugs, vehicle controls itself have no effects on CaV3 channel 

kinetics. All solutions did not exceed 0.1% DMSO and this concentration of vehicle had no 

effect on current amplitude or on half activation and half-inactivation potentials (Table1). 

This voltage step was repeated at 12 second intervals (1 sweep) for at least 3 mins to achieve a 

stable peak ICa. Perfusion was then switched to 10µM drugs until maximum inhibition was 

attained (determined when no more ICa inhibition was observed after 3 successive sweeps). 

Finally, drug was “washed out” by switching perfusion back to control solution consisting of 

external buffer with vehicle control.  

In order to test whether THCA used contained an appreciable amount of THC, we examined 

the activity of THCA in a fluorescent assay of CB1-dependent activation of inwardly rectifying 

K channels (described in detail in 48). In these experiments, THC (1µM) produced a change in 

fluorescence of 12.8 ± 1.2 %. In parallel experiments, THCA (1µM) did not significantly alter 

the fluorescence (1.0 ± 0.6%). pEC50 for THC in this assay is about 300nM 48 and 100nM THC 

produces a robust change in fluorescence 49, the lack of effect of THCA at 1µM suggests that 

there was no significant contamination of THCA with THC. 

Drugs and reagents  
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The THC and THCA used in this study were a kind gift from University of Sydney’s Lambert 

Institute for Cannabinoid Therapeutics. Drugs (30 mM) were aliquoted and stored as 

concentrated stocks in DMSO and stored at -30 C. Daily dilutions were made fresh before each 

use in external recording solution to give a final vehicle concentration of 0.1%.  

 

Statistics 

Data are reported as the mean and standard error of at least 6 independent experiments. 

Concentration response curves, steady state inactivation and activation were generated by 

fitting data to a Boltzmann sigmoidal equation in Graph Pad Prism 8. Statistical significance 

for comparing the V0.5 values of activation and inactivation were determined using one-way 

ANOVA comparing values of V0.5 calculated for individual experiments. In order to compare 

the changes in the time to peak and decay time of deactivation, unpaired t-test was used. All 

values are reported as mean ± standard errors and were fitted with a modified Boltzmann 

equation: I = [Gmax*(Vm-Erev)]/[1+exp((V0.5 act-Vm)/ka)], where Vm is the test potential, 

V0.5 act is the half-activation potential, Erev is the reversal potential and Gmax is the maximum 

slope conductance. Steady-state inactivation curves were fitted using Boltzmann equation: I 

=1/ (1 + exp ((Vm - Vh)/k)), where Vh is the half-inactivation potential and k is the slope 

factor. 
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Results 
Superfusion of THCA and THC on CaV3 inhibited the peak of the ICa evoked by a step from 

−100mV to −30 mV (Fig 1). At a concentration of 10 µM, THC or THCA blocked the current 

amplitude of CaV3.1 almost completely, and inhibited CaV3.2 by 56 ± 2% and 53 ± 4 % 

respectively (n=6). 10µM THC did not affect CaV3.3 ICa while 10µM THCA inhibited CaV3.3 

by 43% ± 2 (Fig 1A). CaV3.1 was inhibited by THC and THCA with pEC50 6 ± 0.7 and 5.6 ± 

0.4 respectively (Fig1B). The effects of THCA and THC on CaV3.1, 3.2 and 3.3 currents are 

illustrated in Fig 2 (THCA) and Fig 3 (THC), the drug effects did not readily reverse on 

washout.  

THC and THCA effects on activation and inactivation kinetics 

We examined the voltage-dependence of activation CaV3 channels by repetitively stepping 

cells from -75mV to 50mV from a holding potential of -100mV. After a control I/V relationship 

was generated, it was repeated after 5 min perfusion of THCA (Fig 4A). The voltage-

dependence of activation for CaV3.1 was affected by THCA, notably it increased current 

amplitudes for depolarisations between -75mV to -45mV and inhibited current amplitude for 

depolarisations between -35 and 50mV (Fig 4B). THCA produced a significant hyperpolarizing 

shift in the half activation potential of CaV3.1; these shifts were not seen with time-matched 

vehicle controls (Table 1). Steady-state inactivation, where cells were voltage clamped at 

potentials between (-110 mV and -20 mV) for 2s before current were evoked  by stepping them 

to test potentials of -30mV, showed that THCA also caused large shifts in steady-state 

inactivation of CaV3.1 (Fig 4C). Activation and inactivation changes for cells exposed to 

vehicle alone for 5 min were less than -1mV (Table1). Using the same protocols, it was found 

that THCA also shifted CaV3.2 half activation to negative potentials and caused a larger shift 

in half inactivation of CaV3.2 (Fig 4D). THCA caused small positive shift and significant 

negative shift in half activation and inactivation of CaV3.3 (Fig 4E). 
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1µM THC also affected steady state inactivation and activation of CaV3.1. THC shifted half 

activation and inactivation of CaV3.1 to more negative voltages (Fig 5C). THC shifted half 

activation of CaV3.2 to negative potentials and caused significant negative shift in inactivation 

of CaV3.2 (Fig 5D). THC at 10µM had no effect on the half activation of CaV3.3 however THC 

negatively shifted the half inactivation of CaV3.3 significantly (Fig 5E). 

Effects of THC and THCA on time to peak and kinetics of current deactivation of CaV3 

channels 

THC and THCA caused no significant changes on time to peak on any of the T-type channels 

at any voltage (Fig 6A-F). The effects of THC and THCA on deactivation of currents elicited 

during the standard I/V protocol, were measured by fitting a monophasic exponential to the 

inward “tail” currents that resulted immediately following the voltage step. 1µM THCA slowed 

deactivation of CaV3.1 (Fig. 7A, C), however, the deactivation of both CaV3.2 (Fig 7E) and 

CaV3.3 (not shown) were unaffected by THCA at 10µM. THC slowed deactivation of CaV3.1 

(1 µM, Figure 7B, D) and CaV3.2 (10 µM, Figure 7F) but THC did not change deactivation of 

CaV3.3 (not shown).  
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Discussion 
 
The major finding of this study is that THCA inhibited T-type calcium channels with most 

potent effects on CaV3.1. THC also most potently affected CaV3.1, and CaV3.2 was moderately 

inhibited by both drugs at 10µM with less inhibition of CaV3.3. THCA shifted the half 

activation and inactivation voltages of CaV3.1 and CaV3.2 to more negative potentials, THC 

behaved in a similar fashion. THCA and THC also slowed the time constant deactivation of 

CaV3.1 however at 10µM only THC slowed the deactivation of CaV3.2. Both THCA and THC 

produced modest shifts in CaV3.3 inactivation without any effects on the deactivation kinetics.  

The presence of the carboxylic acid moiety in THCA does not result in substantial differences 

in modulation of T type calcium channel compared with THC.  

 

THC has higher affinity to cannabinoid receptors CB1 and CB2 15 and causes a distinctive 

intoxication via activation of the CB1 50 receptors, however, studies of affinity of THCA for 

the CB1 receptor have produced different results, but studies where THCA was tested for THC 

produced by THCA degradation, there was little activity attributable to THCA51,52. Verhoeckx 

et al examined THC and THCA affinity using radioligand binding assay and determined that 

THC had greater affinity compared to THCA at CB144. However, Ahmed et al reported no 

affinity of THCA on CB153 while Husni et al., found some activity on CB1 54, while the one 

study that reported THC and THCA had similar affinity for CB1, did not examine the potential 

contamination of THCA with THC51. We tested the activity of our THCA in a membrane 

potential assay in AtT20 cells expressing CB1 receptors. THC (1 µM) produced a significant 

hyperpolarization of the cells, as reported many times previously, while THCA did not produce 

changes in fluorescence, suggesting that in our experiments, THC contamination of the THCA 

was insignificant. 
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In current study, THCA like THC shifted steady sate inactivation of the CaV3.1 and CaV3.2 

channels to more negative potentials, reducing the number of channels that can open when the 

cell is depolarised, preventing their transition to an inactivated state. THCA had the same effect 

as THC on CaV3.1 steady state activation, causing a hyperpolarising shift so that when the cells 

are depolarised, more channels are available for activation. THCA effects on CaV3.2 kinetics 

were less pronounced than THC, causing a more negative shift in both activation and 

inactivation of CaV3.2. The effects of THCA and THC on in half activation of CaV3.3 was not 

significant. Conversely, THCA and THC caused a significant shift in steady state inactivation 

of CaV3.3. Interestingly, THCA and THC potentiated CaV3.1 current evoked by modest 

depolarization and then inhibited current amplitudes following stronger depolarisation. These 

data suggest that THCA and THC may increase the initial depolarizing drive produced by 

CaV3.1 in some circumstances, despite the overall inhibitory effects on the channels.  

 

The results with THC are in good agreement with previous studies from our lab. In general, 

THC showed modestly higher potency to inhibit CaV3.2 and CaV3.3 in the study of Ross et al, 

this can be attributed to the subtle different recording conditions where potency was determined 

in cells voltage clamped at slightly more depolarized potentials (-100mV vs -86mV)28.   

 

Both THC and THCA have been reported to activate TRPA1 and TRPV2 channels and showed 

the similar antagonist activity on TRPV1 and TRPM821,22,55. Together with the results of our 

study, these data show that THCA and THC generally behave in a similar manner for ion 

channel modulation, but they have very different activity on cannabinoid GPCR. The very 

limited permeability of THCA to cross the blood brain barrier suggests a potential role as a 

drug for treatment of pain and inflammation in the periphery, and THCA has been shown to 
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reduce inflammation in the gut 57. While the mechanism(s) underlying this are still unknown, 

inhibition of T-Type ICa is a possible contributor. 58,59 
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Table 1. The effects of THCA and THC on the parameters of steady state activation and 
inactivation of CaV3 channels 
 
 

Drug CaV3 Change in V0.5 
  Activation Inactivation 

THCA 3.1 -7 ±2**** -8 ±3**** 

THCA 3.2 -4.8 ±2** -6 ±2*** 
THCA 3.3 3 ±1 -4 ±1* 
THC 3.1 -7±2**** -8 ±1**** 
THC 3.2 -5 ±1*** -9 ±2**** 
THC 3.3 -1 ±0.7 -8 ±1**** 

No drug 3.1 0.7 ±0.2 -1 ±0.2 
No drug 3.2 -1 ±0.4 -0.6 ±0.2 
No drug 3.3 -0.5 ±0.2 -1±0.5 

 

Cells expressing recombinant CaV3 channels were voltage-clamped at -100mV then stepped to 

potential above -75mV(activation) stepped every 5mV. The results of peak currents were fitted 

to a Boltzmann sigmoidal equation. Changes in the voltage for half activation/inactivation 

(V0.5) of the curve are reported in Table 1. No drug represents time dependent changes under 

our recording conditions. One-way ANOVA **** indicates p value <0.0001, *** indicates p 

value<0.001, **indicates p value < 0.01 and *indicates p value < 0.02.  
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Figure Legends 

Figure 1. Effects of 10µM THCA and THC on T-type calcium channel current and 

concentration response curve for THCA and THC effects on CaV3. (A) Peak ICa was elicited 

by a step from -100 mV to -30 mV; CaV3.1 current was almost completely inhibited by10 µM 

application of THC and THCA. 10 µM THC and THCA blocked CaV3.2 calcium current about 

52% ±3. CaV3.3 current was not affected by10 µM THC but THCA decreased CaV3.3 calcium 

current by 43% ± 4. (B) Concentration response curves was created to determine the potency 

of these compounds at CaV3.1. Each point represents the mean ± SEM of 6 cells. 

 

Figure 2. THCA effects on CaV3 current amplitude. Each trace represents the current 

elicited by a voltage step from -100 mV to -30 mV. (A) 1µM THCA inhibited calcium current 

of CaV3.1. (B) Time course of inhibition and degree of reversibility THCA inhibition of CaV3.1 

is illustrated. (C) THCA 10µM inhibited calcium current of CaV3.2. (D) Time course of 

inhibition and degree of reversibility THCA inhibition of CaV3.2 is illustrated. (E) THCA at 

10 µM inhibited current amplitude of CaV3.3. (F) The inhibition of CaV3.3 by 10 µM THCA 

was not washed out shown in time course inhibition of CaV3.3. 

 

Figure 3. THC effects on CaV3 current amplitude. Recording of CaV3 channel was made as 

outlined under experimental procedures. Each trace represents the current elicited by a voltage 

step from -100mV to -30mV. (A) 1 µM THC inhibited CaV3.1 calcium current. (B) inhibitory 

effects of THC on CaV3.1 was not washed out by using external solution. (C) THC inhibited 

CaV3.2 calcium current at 10 µM. (D) A reversal of THC (10 µM) inhibition of CaV3.2 was 

not seen by washing. (E) THC at 10 µM had little effect on calcium current of CaV3.3. (F) 

Inhibition by THC at 10 µM was not reversible.  
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Figure 4. THCA effects on the activation and inactivation of CaV3 channels. (A) Current- 

Voltage (I-V) relationship showing the activation of CaV3.1 from a holding membrane potential 

of -100mV in the absence and presence of 1µM THCA. The peak current amplitude is plotted, 

(B) example traces of this experiment illustrating the effects of 1µM THCA at testing 

membrane potential of -51mVand -22mV: current is enhanced at lower test potentials then 

inhibited at more depolarized potentials. (C) 1 µM THCA affected half activation and 

inactivation of CaV3.1 expressed in HEK293 to negative potentials. (D) Steady state activation 

and inactivation of CaV3.2 expressed in HEK293 in the presence and absence of THCA showed 

a significant shift in inactivation of CaV3.2 however 10 µM THCA created slight shift in 

activation of CaV3.2. (E) THCA caused a small positive shift in activation kinetics of CaV3.3 

and a small negative shift in inactivation of CaV3.3. Each data points represent the mean ± 

SEM of 6 cells. 

 

Figure 5. Effects of THC on the voltage-dependence of CaV3 activation and Inactivation. 

(A) Current- Voltage (I-V) relationship showing the activation of CaV3.1 from a holding 

membrane potential of -100mV in the absence and presence of 1 µM THC.(B) The peak current 

amplitude is plotted at testing membrane potential of -51mV and -22mV. Example traces of 

this experiment illustrating the effects of 1µM THC: current is enhanced at lower test potentials 

then inhibited at more depolarized potentials.(C) THC effect on CaV3 channels kinetics when 

HEK293 cells were voltage clamped at -100mV, depolarized to 50mV from -75mV showed 

that 1 µM THC shifted activation and inactivation of CaV3.1 to negative potentials 

significantly.(D) 10 µM THC effects on activation and inactivation kinetics of CaV3.2 indicated 

steady state inactivation was shifted to negative potentials significantly however THC caused 

-5mV shift in activation kinetics of CaV3.2.(E) 10 µM THC effects on activation and 

inactivation kinetics of CaV3.3; THC had no effects on steady state activation however THC 
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caused significant shift in inactivation kinetics of CaV3.3. Each data point represent the mean 

± SEM of six cells. 

 

Figure 6.  THCA and THC effects on time to peak of CaV3 channels. The plots illustrate 

the time to peak of current CaV3 before and after 5min superfusion of THC and THCA. THCA 

had no significant effects on time to peak of (A) CaV3.1, (B) CaV3.2 and (C) CaV3.3. No shift 

was seen to those in parallel THC experiments where solvent alone was super fused for (D) 

CaV3.1, (E) CaV3.2 and (F) CaV3.3. Each point represents the mean ± SEM of at least six cells 

(Unpaired t-test P>0.05). 

 

Figure 7. THCA and THC effects on CaV3 time constant of deactivation. Cells 

expressing CaV3 channels were stepped repetitively from a holoing potential of -100 mV to 

test potentials between -75 and 50 mV. (A) THCA produced a significant change in time 

constant deactivation of CaV3.1(ANOVA, P < 0.0001) across a range of potential membrane. 

(B) THC produced significant changes in time constant deactivation of CaV3.1 across a range 

of membrane potential (ANOVA, P < 0.0001). (C) 1µM THCA prolonged deactivation of 

CaV3.1 showing in example trace of tail current from I-V current relationships. (D) Example 

traces of tail current for CaV3.1 showed that 1µM THC slowed deactivation of CaV3.1. (E) 

Representative traces illustrated that THCA at 10µM did not affect CaV3.2 and (F) 10µM of 

THC slowed deactivation of CaV3.2. 
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