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Abstract

Cell and circadian cycles control a large fraction of cell and organismal physiology by
regulating large periodic transcriptional programs that encompass anywhere from
15-80% of the genome. The gene-regulatory networks (GRNs) controlling these
programs were largely identified by genetics and chromosome mapping approaches in
model systems, yet it is unlikely that we have identified all of the core GRN
components. Moreover, large periodic transcriptional programs controlling a variety of
processes certainly exist in important non-model organisms where genetic approaches to
identifying networks are expensive, time-consuming or intractable. Ideally, the core
network components could be identified using data-driven approaches on the
transcriptome dynamics data already available. Previous work used dynamic gene
expression features to identify sets of genes with periodic behavior; our work goes
further to distinguish genes by role: core versus their non-regulatory outputs. Here we
present a quantitative approach that can identify nodes of GRNs controlling cell or
circadian cycles across taxa. There are practical applications of the approach for
network biologists, but our findings reveal something unexpected—that there are
quantifiable and fundamental shared features of these unrelated GRNs controlling
disparate periodic phenotypes.

Author summary

Circadian rhythms, cellular division, and the developmental cycles of a multitude of
living creatures, including those responsible for infectious diseases, are among the many
dynamic phenomena in the natural world that are known to be the eventual output of
gene regulatory networks. Identifying the small number of specialized genes that control
these dynamic behaviors is of fundamental importance to our understanding of life, and
our treatment of disease, but is difficult because of the sheer size of the genomes. We
show that the core genes in organisms separated by millions of years of evolution have
remarkable similarities that can be used to identify them.
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Introduction 1

Periodic phenotypes span nearly the entire tree of life and include such fundamental 2

processes as the cell-division cycle, circadian rhythms, and developmental cycles. 3

Probing the genetic mechanisms that give rise to these dynamic activities is not only 4

crucial to our fundamental understanding of life and its evolution, it will also add to the 5

current collection of synthetic biology components and principles of design, and may 6

reveal novel treatments for disease and infection. A vast body of experimental evidence, 7

gathered over years of targeted experimentation (e.g. gene knock-outs) has uncovered 8

the existence of endogenous circadian clocks: complex GRNs—comprised mostly of 9

interacting transcription factors (TFs)—within cyanobacteria, fungi, plants and 10

mammals [1–3]. Moreover, a GRN also appears to control the timing of cell-cycle events 11

in budding yeast [4–8]. To understand the complex dynamic functions of these GRNs, 12

experimentalists and computational scientists have developed a variety of approaches to 13

infer the structure of GRNs. An essential first step is to identify, from among an 14

expansive set of candidate genes, those core gene products controlling the dynamics of 15

the associated program of gene expression. We conceptualize core nodes as interacting 16

in a strongly connected subnetwork of mutual activation and repression. The core then 17

drives the dynamics of “output” or “effector” nodes that do not feed back into the core 18

but rather transmit the dynamic expression pattern to downstream target genes (Fig. 19

1). 20

Identifying core nodes is especially daunting for organisms where genetic 21

experiments are largely intractable. Moreover, functional redundancy, and complex 22

GRN mechanisms, such as accessory feedback loops, can complicate the discovery of 23

core nodes. Here we identify distinguishing characteristics of the dynamics of gene 24

expression that are conserved across organisms that are separated by hundreds of 25

millions of years of evolution, in vastly different biological processes, and across 26

data-collection modalities. We discover that a combination of dynamic features provides 27

a rank ordering of all genes such that core nodes are generally highly-ranked, even 28

among the many genes which exhibit these features. Moreover, we find that, in general, 29

a combination of dynamic features more accurately distinguishes core transcriptional 30

regulators than individual features on their own. Our findings support the use of 31

quantified dynamic characteristics of gene expression to identify core regulatory 32

elements and show that there are common features in the dynamic gene expression of 33

core regulatory variables that drive very different biological processes. 34

Materials and Methods 35

Dynamic Curve Features 36

We utilize quantified measures of 1) periodicity at a specified period, and 2) regulatory 37

strength associated to each time series transcript abundance profile across a 38

transcriptome. The metrics used in this study are summarized in Table 1. Detailed 39

descriptions of the algorithms used to compute these metrics are available in the 40

Supplementary Materials. 41

Performance of Gene Ranking Metrics 42

The problem of identifying the core regulatory elements within an organism’s genome is 43

fundamentally a question of binary classification of gene function: is a gene core or not? 44

In practice, this decision task amounts to ranking all genes by some quantitative metric 45

or “score” in the hope that the ranking is enriched with core genes, so as to reduce the 46
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Fig 1. Conceptual Model of Core Regulatory Elements. (A) Conceptual model
of a transcriptional regulatory network with core nodes (squares) operating in a
strongly-connected subnetwork of mutual activation (arrows) and repression (short
bars), together with outputs of the core (circles). Output nodes transmit the
transcriptional signal that is generated by the core, but which diminishes as it moves
away from core nodes. (B) Illustrations of transcript abundance profiles exhibited by
the core and its output nodes, with core nodes having oscillations that have a precise
match to a specified period (shaded region) and large variations in expression.

expected effort required to gather additional experimental evidence of gene function 47

through, for example, knock-out experiments. 48

To assess the capacity of each ranking metric given in Table 1 to distinguish core 49

from non-core genes, we compute the precision-recall (PR) curves of the gene rankings. 50

PR curves track the precision (the fraction of true core genes among all genes ranked 51

above some score threshold) across all levels of recall (the fraction of true core genes 52

appearing above the chosen threshold). From each PR curve we compute the average 53

precision (AP), which summarizes with a single number a ranking’s performance across 54

all recall levels. See the Supplementary Materials for a more complete description of PR 55

curves, precision, recall and AP. 56

For us, a perfect ranking of genes is one in which all core genes are ranked higher 57
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Table 1. Quantitative metrics of periodicity and regulation strength used
in this study to rank genes. ∗Refer to the Supplementary Materials for equation
definitions.

Name Function Type Description

DL Per Score Per(G) periodicity A measure of abundance profile periodicity
as defined by Eq. 3∗.

DL Per p-val pper(G) periodicity An empirical p-value measuring the
probability that a random abundance
profile will exhibit a DL Per Score larger
than the actual gene’s expression pattern.

JTK Per p-val pjtk(G) periodicity An analytic p-value introduced in [9]
measuring the correlation in the discrete
up-down patterns of expression between a
gene and a sinusoidal template.

DL Reg Score Reg(G) regulation A measure of the variability of transcript
abundance about its mean expression level
as defined by Eq. 2∗

DL Reg p-val preg(G) regulation An empirical p-value measuring the
probability that a random abundance
profile will exhibit a DL Reg Score larger
than the actual gene’s.

PerReg combined The product of DL Per and DL Reg Scores.
DL combined The original periodicity measure introduced

in [10] and defined according to Eq. 1∗.
DL×JTK combined A modified version of the original

periodicity measure introduced by [10],
defined according to Eq. 1∗ with pper(G)
replaced by pjtk(G).

than all non-core genes. In this way, an experimentalist prioritizing hypotheses using 58

the gene ranking would encounter all core genes before testing any non-core. The AP of 59

a perfect ranking will be 1. At the other extreme is an uninformative ranking which 60

assigns scores to genes at random. The average precision achieved for a random 61

classifier is C/N [11], where C is the number of core genes and N is the number of all 62

genes. Moreover, the expected PR curve for such an algorithm is a horizontal line at 63

precision level C/N across all recall levels, as seen in Figs. S1–S6. Thus, performance of 64

each classifier, as measured by its PR curve and its AP, should be compared against the 65

(non-universal) baseline performance of a random classifier. In other words, 66

precision-recall points above the baseline reflect the skill of a metric, over the random 67

classifier, to rank genes in a way which enriches the top of a list with core genes. 68

Gene Expression Datasets 69

Data Processing 70

The normalized transcriptomic datasets used in this analysis were taken from the 71

references presented in Table 2. Before deriving dynamic features, transcript 72

abundances were preprocessed to remove unreliable data. For the M. musculus and S. 73

cerevisiae RNAseq datasets, genes whose normalized transcript levels were less than 1 74

FPKM for more than half of their time points were dropped from the dataset and not 75

considered in any part of this analysis. 76
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Table 2. Time series transcript abundance datasets used in this study.

Organism S. cerevisiae M. musculus (liver) A. thaliana (whole leaf)

Synch. in Cell Cycle Cell Cycle Circadian Circadian Diurnal Circadian
Technology RNASeq Microarray Microarray RNASeq Microarray Microarray

Period 75 min* 94 min* 24 hr 24 hr 24 hr 24 hr
Duration 245 min 254 min 48 42 48 48

Frequency 5 min 16 min 2 hr 6 hr 4 hr 4 hr
Timepoints/Cycle 15 5.875 12 4 6 6

Reference [6] [12] [13] [13] [14] (LL LDHC) [14] (LDHC)

No. of Genes† 5910 5718 19750 18388 22484 22484
No. of TFs† 304 307 1373 1118 1415 1415
No. of Core 17 17 15 14 11 11

LL LDHC: Constant light and temperature; LDHC: 24 hour cycling light and temperature
* Cell-cycle period length was taken from the respective publication, which estimated period length
using the CLOCCS algorithm [15].
† Counts are based on post-processed datasets (see Materials and Methods)

Authors of [6] produced the S. cerevisiae microarray dataset from S. cerevisiae cells 77

that were synchronized via centrifugal elutriation. It is known that elutriation impacts 78

the transcription of many genes and that a brief recovery period is needed after 79

elutriation. The resulting transcript abundance dynamics early in the time series, which 80

are not related to cell-cycle transcript abundance dynamics, can impact periodicity 81

analyses [15]. Therefore, prior to any analysis, [6] eliminated data determined to be 82

associated with the elutriation recovery period. We adopted the same method of 83

eliminating the first two time points from the S. cerevisiae microarray dataset. 84

In the S. cerevisiae mircoarray dataset and both A. thaliana datasets, some genes 85

were associated with multiple probes, causing some genes to have more than one 86

transcript abundance profile. The A. thaliana core gene, RVE8, was one such gene. 87

Having two transcript abundance profiles for RVE8 resulted in inaccurate performance 88

metrics. To remedy this issue, we applied a filtering step to the S. cerevisiae mircoarray 89

dataset and both A. thaliana datasets after quantifying dynamic features using the 90

methods in Table 1. For genes with multiple abundance profiles, we kept the profile 91

with the highest average abundance, resulting in the elimination of 96 and 326 profiles 92

from the S. cerevisiae mircoarray dataset and both A. thaliana datasets, respectively. 93

All time series data can be found in Dataset S1. 94

Curation of Core Regulatory Elements 95

In order to evaluate the ability of each method given in Table 1 to identify core TFs 96

driving a periodic program of gene expression, we consider data derived from 97

well-studied organisms for which there is significant experimental evidence of gene 98

function. Core cell-cycle TFs in yeast are described as genes functioning in an 99

autoregulatory transcriptional network that robustly maintains a large program of 100

periodic gene expression [4–6,8]. A list of yeast core cell-cycle TFs based on this 101

definition was compiled in [16] for evaluating the transcriptonal oscillator underlying the 102

yeast cell cycle. Therefore, the core TF list defined in [16] was used in this study as the 103

ground truth for S. cerevisiae (Dataset S2). Similarly, core circadian clock TFs are 104

described as genes functioning in an autoregulatory transcriptional feedback loop, 105

maintaining circadian-like transcript abundances under constant light or dark conditions 106

and are necessary components for generation and regulation of circadian 107

rhythms [1, 17,18]. The literature evidence supporting our labeling of plant and 108

mammalian genes as core are listed in Dataset S2. Although the core networks are 109
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known to include non-TF regulatory elements that control functional activity, such as 110

kinases and ubiquitin ligases [1, 18,19], we limit our definition of core to TFs since these 111

are more reliably annotated in the genomes we consider. This ensures our conclusions 112

are conservative by not unfairly inflating the core list with known core 113

post-transcriptional modifiers while not simultaneously including all non-core members 114

of these gene categories. 115

Curation of Transcription Factors 116

In this study, we define a TF as a gene that has the ability for sequence-specific DNA 117

binding alone or in a complex and is capable of activating and/or repressing gene 118

expression. This definition excludes genes that are also known to affect gene expression, 119

such as chromatin-related genes like chromatin remodeling factors, histone 120

demethylases, and histone acetyltransferases. To ensure the lists of TFs are consistent 121

across strains, we used curated TF databases that use the given TF definition. In 122

particular, TFs used in this study (Dataset S3) were retrieved from Animal TF 123

Database 3.0 [20], Plant TF Database 4.0 [21], and YEASTRACT [22] for M. musculus, 124

A. thaliana, and S. cerevisiae, respectively. Each species list of TFs was inspected for 125

presence of the respective species core regulatory elements. Upon inspection of the A. 126

thaliana TF list, it was discovered that the core regulatory elements from the 127

pseudo-response regulator (PRR) family were not present. Therefore, we added PRR5, 128

PRR7, PRR9, and PRR1 (TOC1 ) to A. thaliana list of TFs, which are known as core 129

regulatory elements of the plant circadian clock [23–25]. 130

Results and Discussion 131

Understanding the function of GRNs requires a specification of the control variables and 132

their interactions. Accurate inferences have generally required substantial genetic 133

perturbation and physical localization studies and thus has been confined to 134

experimentally tractable model systems. However, previous work has indicated that 135

interactions between GRN nodes can be inferred directly from transcriptome dynamics 136

data [16]. Here we investigated whether the list of core nodes could also be identified 137

from time series transcriptomics. We determined that quantifiable features from 138

time-series gene expression measurements can be used to identify 139

experimentally-inferred core nodes from model systems across taxa (yeast cell cycle, 140

mouse circadian cycle, plant circadian cycle). 141

We consider two quantifiable characteristics of dynamic transcript abundance 142

profiles, measured in multiple ways, and assess the capacity of each to differentiate core 143

from non-core regulatory elements. Because the dynamic phenotypes of interest are 144

rhythmic, e.g. sleep-wake cycles, cell division, etc., it is natural to ask to what extent, 145

relative to all genes, will the core elements driving these processes be endowed with 146

periodicity that matches the observed cycling at the level of their transcript abundance? 147

Moreover, since the core elements are by definition those TFs governing the dynamics of 148

gene expression, to what extent will the strength of the regulatory signal be reflected in 149

the dynamics of transcript abundance? 150

Dynamic transcript abundance features identify regulatory 151

elements in core networks. 152

We first examined the list of dynamic features, used both individually and in various 153

combinations (see Table 1) to distinguish core TFs from among all TFs. To provide a 154

unified measure of performance across datasets we considered the AP of each metric’s 155
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ranking of transcripts. When restricting to TFs, using both periodicity and regulation 156

strength features together yields significantly higher AP scores than the baseline for 157

each of the six datasets examined (Fig. 2A). Even using just one of the two types of 158

dynamic features, we see remarkable improvement over baseline, although generally 159

lower AP scores, than the combined metrics, across all six datasets (Fig. 2B). These 160

results are significant since the datasets considered in this study represent organisms 161

from three different kingdoms, undergoing two ostensibly mechanistically distinct 162

periodic dynamic processes. The complete set of metrics scoring all genes in all datasets 163

are available in Dataset S4 and the complete precision-recall curves for all datasets and 164

all metrics are available in Figs. S1–S6. 165
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Fig 2. Identifying Core Genes Among Transcription Factors. Average
precision of classifiers identifying core from non-core TFs among all TFs by combined
metrics (A) and individual metrics (B) (Table 1) as well as the baseline average
precision of a random classifier, for each dataset (Table 2).

From the viewpoint of an experimentalist interested in understanding the entirety of 166

a core network, it is encouraging to observe the enrichment of the top 25 TFs with core 167

genes. Among the top 25 TFs ranked by the measure DL×JTK, 13 (12) of the possible 168

17 S. cerevisiae core genes are identified using the microarray (RNASeq) data. Similarly, 169

10 (4) core M. musculus genes from the possible list of 15 (14) core genes, are among 170

the top 25 transcription factors as ranked by DL×JTK using microarray (RNASeq) 171

data. Finally, A. thaliana LDHC and LL LDHC datasets contain 4 and 5 core genes, 172

respectively, from among the 11 possible core, in the top 25. Perhaps even more 173

amazingly, 9 of the top 10 M. musculus TFs and 6 of the top 10 S. cerevisiae TFs are 174

core when the high temporal resolution microarray datasets are ranked using DL×JTK. 175

These results are given in Table 3. 176

We emphasize the skill of dynamic gene expression features to identify core TFs in 177

Fig. 3, which gives the distribution of core TF DL×JTK ranks among all TFs for S. 178

cerevisiae (see also Tab. S1) and heatmaps of microarray gene expression grouped by 179

DLxJTK rankings. The top 25 genes are clearly seen to robustly oscillate at 180

approximately the specified period (94 min) and among these are 13 of the 17 core 181

genes. 182

The recall of core genes by DL×JTK among the top 25 TFs is as much as 76.5% of 183

the core yeast cell-cycle transcriptional regulatory network, up to 66.67% for the mouse 184

October 11, 2020 7/20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.10.12.328658doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.12.328658
http://creativecommons.org/licenses/by/4.0/


Table 3. Top 25 transcription factors ranked by DL×JTK metric.

Rank
S. cerevisiae M. Musculus A. thaliana

MA RNA MA RNA LDHC LL LDHC

1 SWI5* TOS4* ARNTL* DBP* COL1 STH
2 YOX1* HST4 DBP* NPAS2* HB-12 AT1G26790
3 HST3 HST3 NPAS2* CDX4 TGA3 CCA1*
4 ASF1 SWI5* NR1D1* ARNTL* RVE1 BBX18
5 ACE2* YOX1* NR1D2* EGR1 MYBL2 COL1
6 RTT107 RTT107 BHLHE41* GM14401 LHY* CDF1
7 STB1* WTM2 CLOCK* GM14305 CO COL2
8 HCM1* ASH1* NFIL3* POU4F1 PIL6 CDF3
9 RME1 FKH1* RFXANK EN2 AT2G28200 AT2G28200
10 FKH1* ASF1 RORC* DMRTA2 COL2 RVE1
11 PLM2* ACE2* TEF* LHX1 CCA1* LHY*
12 SWI4* POG1 CREM GM20422 PRR7* COL5
13 NDD1* SWI4* EGR1 GM14444 HYH PIF4
14 ASH1* RME1 PPARD OVOL2 BBX18 PIL6
15 YHP1* PLM2* ZBTB21 GM4969 RVE8* BBX16
16 TOS4* RLF2 NFIC HOXC4 PRE1 LUX*
17 EDS1 NDD1* AHCTF1 FOXO6 BZS1 PRR7*
18 RIF1 HCM1* ATF5 MESP1 EPR1 CDF2
19 SIP4 GAT1 LITAF AI854703 CDF3 LZF1
20 FHL1* TEC1 KLF10 NR1D1* RVE2 HB-12
21 NUT1 STB1* KLF13 BNC2 AT1G26790 RVE8*
22 ASG1 YHP1* ESR1 NPAS3 BBX16 ATCTH
23 TBF1 RPI1 STAT5B 2210418O10RIK COL9 MYBL2
24 SNF5 MTH1 SREBF1 HOXC6 LZF1 ARF11
25 WTM2 RIF1 MAFB TBX1 ARF10 RL6

Recall 76.5% 70.6% 66.7% 28.6% 36.4% 45.5%

LL LDHC: Constant light and temperature; LDHC: 24 hour cycling light and temperature; MA:
Microarray; RNA: RNAseq
* Core transcription factors in Dataset S2

circadian clock with well-sampled data, and 45.45% for the core plant circadian network 185

under circadian conditions. Meaning, by using only the dynamics of transcript 186

abundance and a list of TFs, an experimentalist would identify three-quarters of the 187

known core cell-cycle TFs in yeast, two-thirds of the core circadian TFs in mice, and 188

almost half of the core circadian TFs in plants from among the top 25 TFs when ranked 189

using a combined measure of periodicity and regulation strength. Other combined 190

measures perform skillfully when examining the top 25 ranked TFs, although not as 191

consistently well across all the datasets as DL×JTK (Tables S2 and S3). 192

The ability of dynamic characteristics to identify core TFs from among all TFs may 193

depend on the data collection modality and will certainly depend on the number of time 194

points per cycle collected. This is made apparent by comparing the S. cerevisiae 195

RNASeq and microarray datasets and, separately, M. musculus RNASeq and 196

microarray datasets. We expect that the reduced DL×JTK classifier performance is 197

largely due to the sensitivity of the JTK algorithm to the number of timepoints per 198

cycle [26], although we cannot conclusively rule out the impact of the data type. 199

At the same time, quantitative measures of rhythmicity in transcript abundance and 200

strength of regulation both independently improve the skill of a classifier above random. 201

Thus, the functional regulatory elements driving very different biological processes 202

exhibit common characteristics in the dynamics of their transcript expression. 203
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Fig 3. Transcript abundance dynamics across DL×JTK rankings of
transcription factors. (A) Distribution of DL×JTK ranks of core S. cerevisiae TFs
among all TFs and time series expression of two core TFs: NDD1, which is highly
ranked (rank 13), and MCM1, which is not highly ranked (rank 266). NDD1 and MCM1
act in a complex to regulate downstream targets. (B) Heatmaps of standardized gene
expression profiles of the genes ranked (left) 1-25, (middle) 76-100, and (right) 276-300
by DL×JTK. Within each subpanel, genes are ranked by peak expression.

Dynamic transcript abundance characteristics remain adept at 204

identifying core regulatory elements, even in the absence of 205

prior knowledge of transcription factors. 206

The organisms chosen for this study are model organisms in mammalian, plant, and 207

fungi research which have been extensively studied. Thus, for these organisms, there are 208

reliable annotations of gene function and comprehensive lists of TFs. If studying a 209

non-model organism, evidence of gene function may be much weaker, for example 210

relying on sequence-based inferences. We ask, to what extent do the dynamic 211

characteristics of transcript abundance that distinguish core TFs from non-core TFs 212

continue to distinguish core from all genes? In this way, we assess the capacity for gene 213

expression dynamics to reduce hypothesis space in the absence of any prior biological 214
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knowledge. Note, this is an extremely lofty goal given the minuscule fraction of these 215

genomes occupied by core transcriptional regulator elements. 216

For each dataset in Table 2 we ranked all transcript abundance profiles using the 217

methods in Table 1. We have chosen to be very conservative in our labelling of core 218

genes: only 17 out of nearly 6000 transcripts in S. cerevisiae, 14 out of close to 20,000 219

genes in M. Musculus, and 11 of over 22,000 genes in A. thaliana. As expected, AP 220

scores are greatly reduced across all datasets. However, the APs remain significantly 221

above baseline in most cases (Fig. 4). Examining the top 25 genes ranked by the 222

measure DL×JTK, at least one core TF remained in the top 25 for all datasets, except 223

the A. thaliana LDHC microarray dataset (Dataset S4). Remarkably, six of the 15 core 224

mouse circadian TFs (recall of 40%) are identified among the top 25 genes ranked by 225

DL×JTK in the M. Musculus liver microarray dataset. 226
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Fig 4. Identifying Core Genes Among All Genes. Average precision of
classifiers identifying core from non-core TFs among all genes by combined metrics and
individual metrics (Table 1) as well as the baseline average precision of a random
classifier, for each dataset (Table 2).

The dynamic transcript abundance characteristics of core 227

regulatory elements are not overrepresented among 228

transcription factors. 229

It is certainly possible that the dynamic features under investigation are characteristic 230

of TFs themselves, and thus our filtering on TFs causes us to already select for these 231

features. To investigate the possibility that the dynamic metrics in this study are 232

overrepresented in TFs and not just core transcriptional regulatory elements, we 233

assessed the ability of the dynamic characteristics of transcript abundance to identify 234

TFs from among all transcripts. In line with our hypothesis, all methods listed in 235

Table 1 performed poorly as each method’s AP dropped to near or below the AP 236

baseline (Fig. 5). Said another way, TFs within these organisms are effectively 237

randomly distributed in the rankings of all genes by periodicity and variability of 238

transcript abundance. The inability of the methods to identity TFs in each dataset 239
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demonstrates that these dynamic features are not characteristic of TFs in general, 240

although they are indicative of core regulatory elements. 241
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Fig 5. Identifying Transcription Factors Among All Genes. Average precision
of classifiers identifying TFs from non-TFs among all genes by combined metrics and
individual metrics (Table 1) as well as the baseline average precision of a random
classifier, for each dataset (Table 2).

Statistical significance measures are not required to skillfully 242

rank core genes. 243

A major concern with the DL methods for determining significance is that they require 244

the generation of empirical null distributions derived from the periodicity and regulator 245

metrics of many synthetic expression profiles generated by repeated sampling of the 246

experimental data. As the number of genes and/or the number of time points increases, 247

the background distributions of potential random synthetic abundance profiles grows 248

rapidly. As a result, in general, many more synthetic profiles must be generated and 249

characterized to improve estimates of these p-values. If too few random curves are 250

analyzed, there may be ambiguity in the final rankings due to repeated p-values caused 251

by the resulting coarse discretization of possible estimates. Additionally, the choice of a 252

background distribution has a large impact on statistical significance [27] and gives poor 253

results when assumptions of the background distribution do not match the reality of the 254

data (see the discussion of the malaria data set in [28]). 255

Is it necessary to compute a significance value in order to skillfully rank core TFs? 256

We address this question by ranking genes according to DL’s “naive” measurements for 257
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periodicity and regulation, individually (DL Per Score and DL Reg Score in Table 1, 258

respectively) and in combination (PerReg). These naive measurements are calculated 259

quickly with no permutations or random sampling required, and thus greatly reduce the 260

computational time required to rank genes. When used individually, the naive DL 261

measurements perform equally well or better than the empirical p-values at identifying 262

core, as measured by AP (Fig. 2B). Indeed, there is a striking difference across all 263

datasets in the ranking of core genes using DL’s naive periodicity score rather than its 264

associated empirical p-value, which is particularly expensive to compute for large gene 265

sets. 266

When combined, the naive measures also skillfully rank genes well above baseline 267

across all datasets. In fact, there is a notable increase in AP over the other combined 268

metrics, which are derived from p-values, for the A. thaliana data in both conditions 269

(Fig. 2A). We expect that this, along with the generally lower performance of these 270

metrics on A. thaliana data compared to the other datasets, may be due to the fact 271

that the A. thaliana transcript abundance profiles reflect gene expression in multiple 272

tissue types, making it difficult to collect accurate empirical p-values. 273

Much like DL×JTK, PerReg shows skillful recall at identifying core genes among the 274

top 25 TFs (Table S3), identifying at least 4 and at most 10 core TFs among the top 25, 275

across all datasets considered in this study. 276

Several high ranking non-core genes display regulatory 277

relationships with core genes. 278

The lists of core TFs used in this study are conservative since 1) a lack of strong 279

evidence supporting a gene as a core regulator is not proof that it is not core and 2) 280

many functional regulators are also known to be transcriptional co-regulators and 281

post-transcriptional modifiers; we labelled the latter as non-core to ensure fair 282

assessment of the performance of the ranking methods. Thus, our binary labels may 283

contain false negatives (core labeled as non-core) due to a lack of strong experimental 284

evidence, and certainly contain false negatives due to our restriction to TFs. We ask, 285

what are the identities of the most highly ranked non-core TFs, and does there exist any 286

evidence that they target the activity of and/or are targeted by our core TFs? 287

Utilizing the curated list of regulatory relationships in YEASTRACT [22] and 288

PlantTFDB [21], as well as a literature search for M. musculus TF interactions, we 289

indeed observe evidence that several yeast, plant, and mouse genes among the top 25 290

TFs ranked by the measure DL×JTK target core and/or are targeted by core (Table 4). 291

For example, we find that among the top 25 S. cerevisiae TFs ranked by DL×JTK in 292

either MA or RNASeq datasets, that 40% (9/23) of the genes have existing evidence of 293

both regulating and being regulated by core. This observation suggests that genes that 294

appear highly ranked by our combined measures, but were not labeled as core due to a 295

lack of existing evidence, may in fact be core nodes. 296

Within the top 25 of all genes, as ranked by DL×JTK, we observe a number of 297

regulatory elements that are known to be essential to produce the given periodic 298

program of gene expression, but which are not strictly TFs, and therefore do not qualify 299

in our definition as a core gene. Examples include the mouse transcriptional 300

co-regulators Period 3 (PER3) [37] and Cryptochrome 1 (CRY1) [38] and the plant 301

post-transcriptional gene Gigantea (GI) [39] (Table 4), which are known or proposed to 302

be transcriptional co-regulators and post-transcriptional elements. This supports our 303

conclusion that core elements, even beyond the TFs, can be identified by quantifiable 304

features in their transcript abundance dynamics. Improvement in the annotation of 305

non-TF regulatory elements is needed before we can reliably quantify the extent to 306

which these dynamic characteristics are exhibited by all nodes of these networks at the 307
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Table 4. Interaction relationships∗ between core TFs and non-core that appear in the
top 25 TFs as ranked by DL×JTK†.

S. cerevisiae M. musculus A. thaliana
Gene Targeted by Targets Gene Targeted by Targets Gene Targeted by Targets

ASG1 FHL1 NDD1 EGR1 ARNTL [29] ARNTL [30] EPR1 RVE4 PRR5
EDS1 FHL1 TOS4 KLF10 ARNTL [31] ARNTL [32] PIF4 CCA1 LHY
GAT1 ACE2 ACE2 NFIC HLF [33] PIL6 CCA1 LHY
MTH1 FHL1 STB1 ATF5 CLOCK [34] ARF11 CHE
RME1 ACE2 ASH1 ESR1 CLOCK [35] CO CCA1
RPI1 FHL1 NDD1 SREBF1 BHLHE40/41 [36] COL1 CHE
SIP4 FHL1 STB1 COL9 CHE
TEC1 SWI4 ASH1 MYBL2 CHE
WTM2 ACE2 STB1 CDF2 LHY
ASF1 SWI4 RVE1 PRR5
HST3 FKH1 RVE2 CCA1
HST4 MBP1
POG1 MCM1
RLF2 MBP1

RTT107 MCM1
SNF5 ACE2
TBF1 FHL1

∗ S. cerevisiae and A. thaliana interactions determined respectively by database searches of [22]
and [21] and represent a range of direct and indirect evidence types, including the presence of binding
motifs in regulatory regions and response to TF over-expression. M. musculus interactions determined
by evidence gathered in the associated citation.
†M. musculus non-core TFs drawn from MA dataset only, while non-core S. cerevisiae and A. thaliana
TFs were drawn from the unions of each pair of analyzed datasets.

level of transcript abundance. 308

External periodic signals do not significantly alter the skill of 309

transcript abundance dynamics at identifying core genes. 310

Implicit in the definitions of the core transcriptional regulatory networks considered in 311

this study is that they are free-running and can support rhythmic oscillations in the 312

absence of external periodic stimuli due to their mutual regulatory interactions with 313

other core elements. Is necessary to collect time series transcriptomics in the absence of 314

external circadian stimuli to skillfully identify core regulatory elements? 315

To address this question, we compared the skill of dynamic expression features to 316

identify the core TFs for A. thaliana in 1) periodically fluctuating light and 317

temperature (diurnal) conditions (LDHC) and 2) constant light, (circadian) conditions 318

(LL LDHC). For the details on the precise experimental setup see [14]. 319

One might expect that the transcript dynamics of diurnal non-core genes—those 320

that are strictly driven by periodic light-dark and/or temperature cycles—would reduce 321

the capacity of dynamic gene expression features to distinguish core regulatory elements. 322

We find that the signal of core genes is not degraded in the presence of external periodic 323

stimuli in these experiments, since all combined quantitative measures show nearly 324

identical skill at identifying core genes across both conditions (Fig. 2A). Even more 325

striking is the consistency in the individual ranks of core genes across diurnal and 326

circadian conditions, as shown for DL×JTK in Table S1. 327
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Conclusion 328

Elucidating the underlying GRNs driving dynamic biological processes, such as 329

cell-division and sleep-wake cycles, is crucial if we are to leverage existing control 330

mechanisms for synthetic biology applications, understand the evolution of biological 331

networks, and inform experiments to discover new drug targets. However, 332

experimentally identifying the core regulatory elements of these gene networks can be 333

costly, time consuming and daunting, even for the simplest organisms, due to the large 334

hypothesis space. We have shown that many core transcriptional regulators, appearing 335

in organisms separated by millions of years of evolution, share common features in their 336

transcript abundance dynamics. We demonstrated the use of several metrics that 337

quantify and combine these dynamic features. The outcome is a substantial reduction in 338

hypothesis space, a prioritization of gene targets for experimental validation, and a 339

facilitation of network modeling via the identification of control variables. 340

High degrees of periodicity and strong regulation signals appear to be characteristic 341

features of many core TFs involved in generating periodic biological processes. However, 342

not all known core regulatory TFs strongly exhibit the dynamic features quantified here 343

at the level of their transcript abundance. For instance, the abundance profile of the 344

core S. cerevisiae TF NDD1 is highly periodic with a precise match to cell-cycle period 345

and exhibits large dynamic range, but MCM1 does not show convincing oscillations at 346

the cell-cycle period (Fig. 3A). MCM1 is the only core TF to not rank in the top 70 347

TFs in at least one of the two S. cerevisiae datasets using DL×JTK (Table S1). 348

However, MCM1 acts in complex with other rhythmically-expressed genes like 349

NDD1 [40,41], so it can still be part of a highly periodic TF complex without itself 350

exhibiting highly periodic signatures in transcript abundance. It is enticing to imagine 351

there may be other features captured in the gene or protein expression profiles, as well 352

as features not related to gene expression, such as sequence-based and protein 353

interaction features that could be used to more accurately capture all core genes, 354

including those identified in TF complexes. 355

It is known in the circadian field that several core clock genes have tissue-specific 356

periodic properties in mice [13]. Thus, we expect not all core genes will rise to the top 357

of our rankings in every tissue. For example, within the three retinoid-related orphan 358

receptors (RORs) TFs, RORA, RORB, and RORC, only RORC is known to display 359

periodic gene expression in mouse liver [42]. Indeed, only RORC was ranked in the top 360

25 TFs ranked by DL×JTK (Table 3) in the mouse liver microarray dataset. Another 361

example is the mouse core clock gene ARNTL2, which is not ranked highly in the mouse 362

liver datasets. Most studies suggest ARNTL2 has brain-specific circadian expression 363

with lower levels of expression in the liver in mammals [43–45]. There is also growing 364

evidence for genes to exhibit tissue-specific dynamics in plants [46]. 365

Our ability to identify plant core genes appears generally lower than the other 366

organisms we considered. This may be due to the fact that samples were taken from the 367

whole leaf and thus contained a mixture of multiple tissue types such as mesophyll, 368

epidermis, and vasculature [14]. The abundance and periodicity of any particular 369

transcript might therefore appear muted as genes are likely expressed differentially 370

across tissues. Consistent with this hypothesis, several studies have shown that 371

tissue-specific clocks in plants can be asymmetrically coupled [47], have different period 372

lengths [48], or have different levels of gene expression for core components [49,50]. 373

Naturally it is more difficult to identify a core component whose observed dynamics is 374

either a convolution of multiple dissimilar abundance profiles derived from multiple 375

tissues or has specificity to an under-represented tissue in a mixture of tissue types. 376

Interestingly, the dominant tissue type in whole leaf samples is mesophyll, and 377

morning-expressed clock genes (CCA1, PRRs, and LHY ) are highly expressed in the 378

mesophyll [47, 51]. These morning-expressed genes are mostly the only plant core genes 379
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ranked highly in this study (Table 3). 380

Broadly speaking, our findings herein suggest that even naive measures of periodicity 381

and regulatory strength can be used to skillfully rank genes. We conclude that 382

classifiers are likely dependent on the dynamic characteristics of the the transcript 383

abundance profiles, and perhaps less so than on the particular quantification of these 384

characteristics. Thus, broad recommendations for thresholds that reliably identify core 385

nodes are currently not possible. That said, with the availability of proper experimental 386

controls across organism, platform, sampling density, etc., it might be possible to 387

compare the various metrics to make a more prescriptive recommendation of which 388

particular method to use for a given dataset. 389

The use of naive metrics rather than empirical p-values does not suffer from 390

ambiguous rankings caused by insufficient sampling of the null distribution, as may be 391

the case with DL’s method of measuring significance. It is possible to reduce the 392

ambiguity of a ranking by increasing the sampling of the null distribution at the cost of 393

increased compute time. The disambiguation of empirical regulator p-values computed 394

by the DL metric through increased sampling is visualized in Fig. S7. Similarly, 395

combining several p-values derived from different dynamic characteristics into combined 396

metrics can eliminate ambiguous rankings that may be present in one of these features. 397

We have demonstrated the importance of reliable genome annotation of TF genes, 398

but many organisms of interest currently lack comprehensive gene annotations. Thus it 399

is desirable to have methods that can leverage high-throughput technologies to provide 400

evidence of gene function. Additional evidence such as identifying DNA-binding 401

domains and/or orthology to known TFs in other organisms are two such methods that 402

could be used to provide putative TF lists for poorly-annotated genomes. 403

Here we demonstrate that dynamic features of transcriptomes appear to be 404

conserved across kingdoms and networks that appear to serve disparate functions such 405

as cell-cycle or circadian clocks. It is possible that the conservation of these features 406

results from a fundamental property of GRNs, where a transcriptional signal is 407

developed within a core set of nodes and that the signal degrades as it is propagated 408

through effector nodes that control downstream gene expression. Alternatively, the 409

conservation of features could reflect an evolutionary conservation of network topologies 410

that produce rhythmic behaviors during circadian and cell cycles. 411

Supporting Information 412

Fig. S1. Precision-recall curves of classifiers identifying core from non-core genes in 413

the S. cerevisiae microarray dataset. 414

Fig. S2. Precision-recall curves of classifiers identifying core from non-core genes in 415

the S. cerevisiae RNASeq dataset. 416

Fig. S3. Precision-recall curves of classifiers identifying core from non-core genes in 417

the M. Musculus microarray dataset. 418

Fig. S4. Precision-recall curves of classifiers identifying core from non-core genes in 419

the M. Musculus RNASeq dataset. 420

Fig. S5. Precision-recall curves of classifiers identifying core from non-core genes in 421

the A. thaliana microarray, diurnal condition dataset. 422
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Fig. S6. Precision-recall curves of classifiers identifying core from non-core genes in 423

the A. thaliana microarray, circadian condition dataset. 424

Fig. S7. Plot of the number of unique DL Reg p-values as a function of the number 425

of permutations used in the calculation. 426

Table S1 Ranks of all core genes among transcription factors using DL×JTK score. 427

Table S2 Top 25 transcription factors, ranked by DL score. 428

Table S3 Top 25 transcription factors, ranked by PerReg score. 429

Dataset S1 Gene Expression Data. An EXCEL file containing gene expression 430

profiles for each dataset used in this study. 431

Dataset S2 Core Genes. An EXCEL file containing lists of core genes for all 432

organisms. 433

Dataset S3 Transcription Factors. An EXCEL file containing lists of 434

transcription factors for all organisms. 435

Dataset S4 Gene Rankings. An EXCEL file containing the rankings of all genes 436

by each metric for all datasets. 437

Code and Data Availability 438

All data and code used to process and analyze the data, and generate figures are 439

provided in a public repository at [52]. 440
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