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Abstract

We propose a novel, scalable, and accurate automated method for detecting neuronal
ensembles from a population of spiking neurons. Our approach offers a simple yet
powerful tool to study ensemble activity. It allows the participation of neurons in
different ensembles, has few parameters to tune and is computationally efficient. We
used spike trains of retinal ganglion cells obtained from multi-electrode array recordings
under a simple ON-OFF light stimulus to test our method. We found a consistent
stimuli-evoked ensemble activity intermingled with spontaneously active ensembles and
irregular activity. Our results suggest that the early visual system activity is already
organized in clearly distinguishable functional ensembles. To validate the performance
and generality of our method, we generated synthetic data, where we found that our
method accurately detects neuronal ensembles for a wide range of simulation
parameters. Additionally, we found that our method outperforms current alternative
methodologies. Finally, we provide a Graphic User Interface, which aims to facilitate
our method’s use by the scientific community.

Author summary

Neuronal ensembles are strongly interconnected groups of neurons that tend to fire
together (Hebb 1949). However, even when this concept was proposed more than 70
years ago, only recent advances in multi-electrode arrays and calcium imaging,
statistical methods, and computing power have made it possible to record and analyze
multiple neurons’ activities spiking simultaneously, providing a unique opportunity to
study how groups of neurons form ensembles spontaneously and under different stimuli
scenarios. Using our method, we found that retinal ganglion cells show a consistent
stimuli-evoked ensemble activity, and, when validated with synthetic data, the method
shows good performance by detecting the number of ensembles, the activation times,
and the core-cells for a wide range of firing rates and number of ensembles accurately.
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1 Introduction 1

Donald Hebb predicted more than 70 years ago that ensembles would naturally arise 2

from synaptic learning rules, where neurons that fire together would wire together [1]. 3

However, despite the long history of this idea, only recently the simultaneous recordings 4

and computational analysis from hundreds of cells have turned out to be possible [2]. 5

Recent advances in recording technology of neuronal activity combined with 6

sophisticated methods of data analysis have revealed significant synchronous activity 7

between neurons at several spatial and temporal scales [3–5]. Theses groups of neurons 8

that have the tendency to fire together known as neuronal ensembles (also called cell 9

assemblies) are hypothesized to be a fundamental unit of neural processes and form the 10

basis of coherent collective brain dynamics [1, 6–8]. 11

The idea that the coding units of information are groups of neurons firing together 12

(not single neurons) represented a paradigm shift in the field of computational 13

neuroscience [6]. Neuronal ensembles have been proposed as a fundamental building 14

block of the whole-brain dynamics, and relevant to cognitive functions, in particular, as 15

ensemble activity could implement brain-wide functional integration and segregation [3]. 16

Large-scale neuronal recordings techniques such as multi-electrode arrays (MEA) or 17

calcium imaging, allow for the recording of the activity of hundreds and even thousands 18

of neurons simultaneously [5,9–12]. These recent technological advances provide a fertile 19

ground for analyzing neuronal ensembles and investigating how collective neuronal 20

activity is generated in the brain. Recent studies using multi-neuronal recording 21

techniques have revealed that a hallmark of population activity is the organization of 22

neurons into ensembles, generating new insights and ideas about the neural 23

code [9, 13–15]. In particular, the activation of specific ensembles has been shown to 24

correlate with spontaneous and stimuli evoked brain function [16]. The brain-wide 25

alterations present in neurological and mental impairments disrupt population activity 26

patterns and therefore affect the neuronal ensembles. Indeed, neuronal ensembles are 27

susceptible to epileptic seizures and schizophrenia as shown in in vivo two-photon 28

calcium imaging data in mouse [17,18], in medically-induced loss of consciousness in 29

mice and human subjects [19] and in a mice model of autism [20]. 30

However, identifying and extracting features of ensembles from high-dimensional 31

spiking data is challenging. Neuronal ensembles have different sizes and have different 32

activity rates. Some neurons may not participate in ensemble activity, while others may 33

participate in many, and not all neurons within an ensemble fire when the ensemble is 34

active. Ensembles can exhibit temporal extension, overlap, or display a hierarchical 35

organization, making it difficult to distinguish between them [2]. 36

Sophisticated statistical and computational tools are needed to extract relevant 37

features of neuronal activity. Detecting neuronal ensembles can be posed as a clustering 38

problem, where the binary population patterns (one-time bin of the spike train) 39

generated by the neural population are the variables to cluster. Given the probabilistic 40

nature of spiking activity, the challenge is to distinguish between core and non-core cells, 41

i.e., cells that belong to the ensemble and cells that do not, respectively. 42

There exists a wide variety of techniques and ideas that have been used to detect 43

and interpret neuronal ensembles (see Refs. [13, 21,22] for reviews), for example, 44

previous works have applied different methodologies such as principal component 45

analysis [23–26], correlation between neurons [26–28], correlation between population 46

spiking patterns [16], statistical evaluation of patterns [29–32] and non-negative matrix 47

factorization [25,33]. Among them, only the one based on the correlation between 48

population patterns, and the one based on non-negative matrix factorization, fit with a 49

definition of ensembles. Under this definition, neurons may participate in many 50

ensembles, and ensembles have a specific duration in time. However, these methods are 51

computationally expensive, and require tuning several parameters, which hinder their 52
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application by the scientific community. 53

We exemplify our method’s advantages on spiking neuronal data recorded using 54

MEA from mouse in vitro retinal patch, from which the spiking activity of hundreds of 55

retinal ganglion cells (RGCs) is obtained during a simple ON-OFF stimuli, i.e. 56

consequtive changes between light and darkness. 57

In brief, the vertebrate retina is part of the central nervous system composed of 58

thousand of neurons of several types [34–36], organized in a stratified way with nuclear 59

and plexiform layers [37]. This neural network has the capability to process several 60

features of the visual scene [38], whose result is conveyed to the brain through the optic 61

nerve, a neural tract composed mainly by the axons of the RGCs. In fact, the 62

physiological mechanisms involved in many of those processes are starting to become 63

clear with the development of new experimental and computational methods [36,37, 39]. 64

One of the most remarkable, and simple, example of retinal processing is the ON-OFF 65

responses of RGCs, a stereotypical increase or decrease in firing rate when confronted to 66

changes light intensity. In this case, the connectivity between RGCs and Bipolar cells 67

(Bc) in the Inner Plexiform Layer (IPL) plays a major role, determining the tendency of 68

RGC to preferentially fire when the light increased, decreased, or both [37]; this 69

property is often called polarity [40], and represents the broadest functional 70

classification of RGCs into ON, OFF, and ON-OFF cell types. 71

We hypothesize that retinal ensembles could also exhibit this property as a whole. 72

Our analysis revealed the existence of diverse ON and OFF retinal ensembles with a 73

specific stimulus preference as functional units, which suggests that a stimulus tuning 74

preference is a property of the ensembles as a whole, and not a simple inheritance from 75

their corresponding core-cells. Besides, we validated our method on synthetic data 76

where ensembles were artificially generated, showing a remarkable detection 77

performance for the ensemble number, the ensemble activation sequence, and the 78

core-cells detection over a wide range of parameters. 79

Thus, we tested and validated our method using biological and synthetic data, 80

showing its accuracy and broad applicability to different scenarios. To facilitate our 81

method’s use by the community, we provide a Graphic User Interface and the codes that 82

implement our algorithm that aim to provide a fast, scalable, and accurate solution to 83

the problem of detecting neuronal ensembles in multi-unit recordings. 84

2 Results 85

Detection of ensembles on RGC under a simple ON-OFF 86

stimulus 87

We show our method’s usefulness on a parallel recording of a mouse retinal patch in 88

vitro using MEA. We analyzed the spike response of retinal ganglion cells (RGCs) under 89

a simple ON-OFF light stimulus, where neuronal ensembles are detected without prior 90

information about the stimulus. Their functional role is evaluated in terms of stimulus 91

tuning preference. As expected for RGCs, the sum of all the emitted spikes in a given 92

time bin (population activity) is tightly locked to the stimulus, transiently increasing 93

each time the stimulus changes (Fig. 1A, top panel). After this harsh response, the 94

population activity decays exponentially until it reaches a stable point. However, the 95

population activity evoked by the ON-stimulus is different in amplitude and shape from 96

the ones evoked by the OFF-stimulus. 97

These different evoked responses led us to expect at least four types of ensembles: 98

two ensembles related to transitions (one for the ON-OFF and one for the OFF-ON) 99

and two ensembles related to the decaying-stable activity after the ON-OFF and 100

OFF-ON transition, respectively. To test this hypothesis, we applied our ensemble 101
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detection algorithm (see Methods for details and parameters) on the spiking activity of 102

319 RGCs during 120 seconds of MEA recording. 103

We found ten ensembles comprising ∼ 68% of the spike patterns in the analyzed 104

recording. Their activity was highly locked to the stimulus (Fig. 1A, D, middle and 105

bottom panel). We found two transiently active ensembles (one for the ON-OFF and 106

one for the OFF-ON transition), whose activity was only evoked by the stimulus 107

transition, showing no activity either before the stimulus start (black arrow in Fig. 1A) 108

or during the decaying or stable response. The other eight ensembles were active before 109

stimulus presentation, but at a lower rate, and during the decaying or stable response. 110

Notably, four of them (Ens. 7-10) are preferentially active in the OFF stimulus, and the 111

other four during the ON stimulus (Ens. 2-5). 112

These results show that the detected retinal ensembles are preferentially tuned to 113

the features of the stimulus, showing that without any stimulus-related information, our 114

method can obtain ensembles whose activity is functionally coupled with the stimulus. 115

Functional properties of RGC ensembles 116

We detect the ensembles and their core-cells i.e. cells whose correlation with a given 117

ensemble is statistically significant(see Methods for details). On average, each core-cell 118

participated in 2.7 ± 1.3 ensembles, and only four RGCs were considered non-core, 119

considering all the ensembles. Three cells participated in six ensembles, indicating that 120

some cells may participate in both ensemble classes. 121

The two transiently active ensembles, namely Ens. 1 (ON) and Ens. 6 (OFF), have 122

257 and 222 core-cells, respectively, while the rest of the ensembles have, on average, 123

47.2 ± 17.9 core-cells (Fig. 1E). This result is consistent with the increased population 124

activity evoked by stimulus transition, where many cells are firing, and decaying 125

responses where many cells become silent. 126

Using the RGC responses to the repeated ON-OFF stimulus (20 trials) and an 127

automated RGC functional classification algorithm (see Methods for details), we 128

obtained 44 ON, 23 OFF, 205 ON-OFF, and 47 Null (no significant preference) RGCs. 129

All the ensembles were composed of ON-OFF core-cells, but the ON ensembles were 130

dominated by ON RGCs while OFF ensembles by OFF RGCs, as shown by the spatial 131

distribution of the RGCs receptive field centers in Fig. 1B (see Methods for details). 132

Null cells showed significant participation in some ensembles, despite their lack of 133

preference according to the classification algorithm Then, in this simple setup, we found 134

that the ensemble’s classification is consistent with their corresponding core-cells’ 135

dominant classes. 136

The detection of core-cells allows us to investigate if the tuning preferences of 137

ensembles are inherited from their core-cells or if the ensembles have a specific tuning 138

preference as a functional unit. To evaluate this for each ensemble, we averaged the 139

peri-stimulus time histogram (PSTH) of their corresponding core-cells grouped by RGC 140

class Fig. 1C, obtaining one average PSTH per cell class. 141

Since ON-OFF cells are present in all ensembles, the core-cells of each ensemble, as a 142

group, have a preference for both light transitions, despite the precise stimulus tuning of 143

the ensembles (Fig. 1D). 144

The PSTH for each ensemble was also computed to provide the detailed tuning of 145

each ensemble and compare the core-cells tuning preferences and the ensemble tuning 146

preference. 147

We conclude that the ensemble tuning preference cannot be completely derived from 148

their core-cells’ tuning preference, providing evidence in favor of neuronal ensembles as 149

whole functional units. 150
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Fig 1. Stimulus-evoked retinal ensembles. (A) Top. Population activity (spikes per bin) of 319 RGC’s in
time during ON light stimulation (white background) and OFF (gray background). The black arrow shows the ON
stimulus started. As expected for the retina, the population activity transiently increases when the stimulus switches
and then decays and stabilizes. Middle. Each spiking pattern is colored according to the ensemble to which they
belong. Bottom. The activation of each ensemble in time is represented by a colored dot (matching the spike
pattern color code). The method detects a consistent stimulus-locked ensemble activity with ON (ensembles from 1
to 5) and OFF (ensembles from 6 to 10) ensembles. Ensemble 0 represents all the spiking patterns that were
discarded according to rejection criteria (see Methods). (B) The estimated receptive field centers of all the RGCs are
shown. The color indicates the RGC cell type (ON red, OFF blue, ON-OFF magenta, and Null grey), and the size of
the dot indicates if the cell is core (big dot) or non-core (small dot) for each ensemble. ON ensembles are dominated
by ON and ON-OFF cells, while the OFF ensembles are dominated by OFF and ON-OFF cells. (C) For each
ensemble, the average PSTHs of their corresponding core-cells grouped by cell type shows no clear tuning preference.
(D) The PSTH for each ensemble shows the stimulus preference of the ON and OFF ensembles. The different cell
responses can be classified as transient and sustained within each ensemble, showing detailed stimulus tuning. (E)
The colored matrix shows the RGCs in rows and the ensembles in the columns. Each column is colored in the entries
corresponding to their core-cells, according to which ensemble they belong (A).

Method overview 151

Before a systematic evaluation of the performance of our method, we summarize its core 152

elements using the example shown in Fig. 2, and refer the reader to the Methods section 153

for further details. 154

First, we discard any population pattern of the spike trains (Fig. 2A) with less than 155

three spikes, and then perform a principal component analysis (PCA) using the 156

population patterns as observations (Fig. 2B). Then, we computed the Euclidean 157
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Fig 2. Methodological scheme. (A) Synthetic spike trains of 50 neurons during 100-time bins. Four ensembles
were artificially generated (see Methods for details). (B) PCA is performed on all the spike patterns of more than
three spikes. For visualization purposes, we plot each of them as a point in the 3D space spanned by the first three
principal components (PC). The points tend to group in clusters. (C) The Euclidean distance between all the points
on the PC coordinates is computed. The density of each data point ρ and its distance to the next data point with a
higher density of δ is obtained. The points above the threshold (blue dashed line, see Methods for details) are
considered cluster centroids. (D) All points are assigned to their closest centroid, building up the clusters of spiking
patterns. (E) The correlation matrix between neurons and clusters, corr(n, e) is represented by the symmetric
red-blue color map. (F) A threshold matrix is computed to define the significance of corr(n, e) values. (G)
Core-cells are detected based on corr(n, e) values that exceed the threshold (red if core, white otherwise). (H) The
inner-cluster mean correlation is compared against a threshold of non-core cell correlation, discarding any cluster
below this threshold (cluster 1, in this case). This final filtering yields the set of ensembles. (I) Each spike pattern
shown in A is colored according to the cluster to which they belong. Black patterns were discarded by the minimum
number of spikes or the threshold rejection criteria. (J) The detected ensemble sequence is represented as an integer
sequence, where the color corresponds to the spike pattern color in I. Note that the rejection criteria discarded cluster
1, so only ensembles 2-5 are shown, and black circles denote non-clustered spike patterns.
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distance between all the patterns projected on a small subset of the first principal 158

components (from three to six), generating a distance matrix, from which the local 159

density, ρ, and the distance to the next denser point, δ, is computed for each population 160

pattern. Based on these two measures, and a power-law fit to the ρ vs. δ curve, we 161

automatically detect the cluster centroids (Fig. 2C), and assign the rest of the patterns 162

to their closest centroid, building up the clusters (Fig. 2D). Since the core of our 163

algorithm is the density-based clustering procedure, we call it Density-based. 164

To find the core-cells, we computed corr(n, e), the correlation between the spike 165

train of neuron n and the activation sequence of cluster e (Fig. 2E), and test its 166

significance using a threshold associated with a null hypothesis obtained from shuffled 167

versions of data (Fig. 2F). If corr(n, e) is above the threshold, neuron n is considered a 168

core-cell of cluster e (Fig. 2G). 169

Finally, to obtain the ensembles, the pairwise correlation between all the core-cells of 170

a given cluster are computed and averaged, representing the within-cluster average 171

correlation. 172

To define a cluster be an ensemble, we compared the within-cluster average 173

correlation to the average pairwise correlation of the whole network (Fig. 2H). If the 174

within-cluster if significantly higher (based on a threshold), we considered an ensemble 175

to be present; otherwise, the cluster is discarded due to the lack of internal correlation. 176

With this procedure, we were able to split the population patterns into an ensemble 177

and non-ensemble patterns (Fig. 2I), and to obtain the activation sequence of different 178

ensembles in time (Fig. 2J) with their corresponding core-cells. 179

Detection of ensembles on synthetic data 180

To test our method, we designed an algorithm to generate synthetic data where 181

neuronal ensembles’ activity can be parametrically controlled (see Methods for details). 182

We assessed the detection performance of our method concerning known ground truth 183

(GT). We illustrate our results with a simple example shown in Fig. 3, where different 184

spike trains were generated using a network of N = 100 neurons and T = 5000 bins (the 185

figure shows just 200 bins to improve the visualization). We created seven ensembles 186

defining the temporal sequence of the ensembles, whose global temporal activity 187

comprised 80% of the sample (Fig. 3E), and the core-cells, whose participation 188

comprised from 20 to 40 neurons (Fig. 3I). Then, we randomly added or removed spikes 189

to each neuron in order to satisfy a given firing probability for each neuron, P (n), which 190

controls the spike trains density (Fig. 3B, C, D). 191

We found two ensembles more than expected (seven) for the low-density spike-trains 192

(Fig. 3F, red asterisks), while for the medium and high-density ones we found the 193

expected number of ensembles (Fig. 3G, H, respectively). 194

Then, we compared the ensemble sequence of the GT (Fig. 3E) and the detected 195

ensemble sequence in each density scenario (Fig. 3F, G, H), finding almost perfect 196

agreement between both, with the exception of a few false positives in the case of low 197

and high density. Finally, we compared the detected core-cells with the GT (Fig. 3J, K, 198

L), finding good agreement between both. Despite the over-detection in the low-density 199

regime (red asterisk), the other ensembles were in good agreement with the GT 200

core-cells. 201

With this example, we show that our method can detect the ensemble number, the 202

temporal sequence, and the core-cells of neuronal ensembles in noisy spike trains with 203

different densities. In the next section, we evaluate the detection of three features, i.e., 204

ensemble number, temporal ensemble sequence, and core-cells, for a different sample 205

and network sizes. 206
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Fig 3. Robust ensemble detection on synthetic data under different density regimes (A) The spatial
(core-cells) and temporal (sequence) properties of seven ensembles are synthetically generated on a spike train of 100
neurons. The right panel shows the firing probability of each neuron at each time bin denoted by P (n). Each
ensemble is colored differently. (B-D) Based on the ground truth (GT) spike trains, three spike trains with different
densities were generated: low B, medium C and high density D. The firing probability of each neuron is shown at
the right as in A. Spike patterns are colored as in A. Black dots are spike patterns that do not belong to any
ensemble. (E) Temporal sequence of the GT ensembles. Color corresponds with A. (F-H) The detected ensemble
sequence for the three spike trains with different densities, sorted to match the GT indexing and their colors. At low
density, the method detects two extra ensembles, denoted by a colored asterisk. The green vertical region shows an
example of ensemble that was correctly detected for the three spike trains. The red vertical region shows an example
where the method correctly detects the GT pattern for Medium density, but partially fails in the other two cases. (I)
GT core-cells are sorted in descending order according to the number of core-cells. Each column represents an
ensemble, where red indicates a core-cell. (J-L) Detected core-cells for the three cases. Despite the two extra
ensembles found in J (8 and 9, asterisks), core-cells are in good agreement with GT.

Scaling performance and comparison with an alternative 207

method 208

To systematically quantify and evaluate the performance of our method (Density-based), 209

we generated synthetic data with different network and sample sizes and compared our 210

algorithm to a current state-of-the-art ensemble detection method published by Carrillo 211

et al. (SVD-based) [16]. Due to the latter method’s computational cost, we only 212

compared the scaling with the sample size for both methods, while for the former, we 213

also computed the scaling of performance with network size. Both methods were 214

applied using default parameters provided by their respective computational codes. 215

First, we generated a synthetic spike train with fixed network size (N = 300), 216

number of ensembles (E = 12), number of core-cells equal to 35, ensemble probability 217

(PE = 0.8), and medium density. Then, we varied the recording length from T = 500 to 218

T = 104, finding that both methods increased the computational time with the sample 219
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size, as expected, but the SVD-based method scaled exponentially, while the 220

Density-based method is two orders of magnitude faster for T = 104 (Fig. 4A). 221

Regarding the ensemble activity, our method accurately detects the number of 222

ensembles for samples as small as T = 1000, while the SVD-based method converges to 223

underestimation of the ensemble number (Fig. 4B). Once the detected ensembles were 224

matched to their closest GT ensemble (see Methods for details), we measured the 225

correlation between both sequences, finding that our method detects the GT with 226

excellent performance over the whole range of sample sizes. The SVD-based method, in 227

turn, systematically fails to detect the global sequence (Fig. 4C). 228

Furthermore, we measured the average correlation between the detected and GT 229

individual sequences, and between the detected and GT core-cells, finding again that 230

our method achieved excellent performance for both features even for small sample sizes 231

(Fig. 4D, E, respectively). 232

Finally, to evaluate the performance for different network sizes, we fixed the sample 233

size, while also keeping the other parameters fixed (number of ensembles, of core-cells 234

and PE), and varied the network size from N = 50 to N = 1000, finding that our 235

method slightly overestimated the ensemble number for small N , but yielded accurate 236

results for the larger N (Fig. 4F, G). 237

We conclude that our method reliably performs on a wide range of sample and 238

network sizes, giving a more scalable and accurate solution to the ensemble detection 239

problem than the alternative SVD-based method. 240

Reliable performance over a wide range of spike-train 241

parameters 242

Here, we show the performance of our method when the number of ensembles and the 243

number of core-cells vary independently. 244

We generated synthetic spike-trains with fixed network size (N = 300), sample size 245

(T = 5000), ensemble probability (PE = 0.8), and medium density while the number of 246

ensembles and core-cells varied, as shown on Fig. 5. We found a wide combination of 247

these parameters where the method detects the number of ensembles with a small 248

relative error (Fig. 5A), accurately detects the global ensemble sequence (Fig. 5B), and 249

the corresponding core-cells (Fig. 5C). Further explorations of other parameters and 250

combinations of the same are considered work to be developed. To this end, we provide 251

the computational codes and a GUI at 252

https://github.com/brincolab/NeuralEnsembles. This GUI allows one to perform 253

all the analyses presented here on multi-variate recordings of single events (e.g., spiking 254

data, calcium events, arrival times in a sensor). 255

Materials and methods 256

Synthetic Spike Trains 257

We consider binary spike trains arranged in a matrix SN×T where N corresponds to the 258

number of neurons and T the number of time bins. The entries of the matrix denoted 259

by Sn,t are equal to one of the n-th neuron is active on the t-th time bin, and zero 260

otherwise. At each time bin t, there is a binary population pattern of active and silent 261

neurons (S1,t, . . . ,SN,t). 262

We generated a set of ensembles E characterized by their core-cells and an activation 263

sequence of ensembles. Each ensemble was composed of a fixed number of core cells 264

randomly drawn from the whole population of neurons, allowing the repetition of 265
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core-cells among ensembles. We generated for each ensemble, a column binary vector ce 266

of dimension N , with ce(n) = 1 if neuron n is a core-cell of ensemble e and 0 otherwise. 267

The activation sequence of each ensemble e ∈ E follows a time homogeneous 268

Bernoulli process with parameter pe, denoted B(pe). We generate a row binary vector 269

denoted by ae of dimension T with ae(t) = 1 if ensemble e is active on time bin t and 0 270

otherwise. We allowed at most one active ensemble per bin. To implement this idea, we 271

first drew the first ensemble’s activation times at random and then removed these times 272

from the list of possible time points available for the second ensemble. We proceeded 273

this way until reaching PE . 274

With the core-cells and the activation sequence of each ensemble defined, a spike
train was generated by the product ceae (matrix) of dimension N × T .

SE(n, t) =
∑
e∈E

ce(n)ae(t).

In order to preserve the probabilistic nature of spiking neurons, the firing rates of each 275

neuron was drawn from a rectified Gaussian distribution (only positive values) with 276

variable standard deviation (s.d.). The larger the s.d., the higher the firing rates are 277

present on the spike train. This parameter allowed for the control of the density of the 278

spike train (the total number of spikes respect to the spike train duration). 279

We randomly added/removed spikes to/from each neuron’s spike train until matched 280

the target firing rate P (n). In removing spikes, the spike pattern located on the time 281

bins where a given ensemble was active, end up having less active neurons than defined; 282

on the other hand, if we added spikes, the opposite effect occurred. We used three 283

different spike train densities: low (s.d. = 0.05), medium (s.d. = 0.1) and high 284

(s.d. = 0.2). For the low-density case, matching the target firing rates usually required 285

the removal of spikes. This method corrupted the patterns related to ensemble activity 286

by underrepresenting their core-cells. In the medium case, we had a balance between 287

adding and removing spikes, and, in the last case, most neurons required the addition of 288

spikes to match the desired firing rate, making neurons participate in ensembles they 289

did not belong by construction. 290

In summary, we generated a spike train from the following procedure: 291

1. Generate E ensembles characterized by spike patterns built from their core-cells. 292

2. Fill a spike train with the patterns of active ensembles following a 293

time-homogeneous Bernoulli process for each ensemble considering the proportion 294

of PE of the complete set of spike patterns. The remaining spike patterns are 295

filled with the spike pattern consisting only of silent neurons. 296

3. Draw the firing rates of each neuron from a rectified positive Gaussian 297

distribution. 298

4. Randomly add/remove spikes to/from each neuron’s spike train until it matches 299

the target firing rate of each neuron. 300

This procedure yields a random spike train built from the ensemble activity. 301

Ensemble Detection 302

Feature Extraction using PCA 303

To detect neuronal ensembles from data, we used Principal Component Analysis (PCA) 304

over a subset of population patterns. PCA extracts a set of orthogonal directions 305

capturing the most significant variability observed on the spike patterns. We discarded 306

the spike patterns with less than three spikes and projected the spike patterns on the 307
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first six principal components (PCs). Using four to seven principal components yielded 308

no difference in the clustering procedure. However, the optimal number of PCs may 309

vary depending on the data, so it is considered a free parameter in the GUI. We 310

computed the Euclidean distance between all binary patterns projected on the first six 311

principal components to guide close patterns’ clustering. 312

Centroid detection 313

Two parameters characterized each data point (i.e., a population pattern): i) ρ the 314

density and ii) δ the minimum distance to a point with higher density. The density of 315

each pattern i was given by ρi = 1/di,v, where di,v was the average distance from point 316

i to its closest neighbors. Typically, we considered 2% of the closest neighbors. This 317

choice can be tuned with a parameter we denoted dc. Spike patterns with relatively 318

high values of ρ and δ were candidates of centroids. The rationale is that points with 319

relatively high ρ and δ (respect to the rest of the points) have the highest number of 320

points in their vicinity and are far from other points with high density. The procedure 321

to find the centroids of the clusters follows [41], which is a modified version of the 322

method developed in [42]. To automatically detect the cluster centroids, we fit a 323

power-law to the δ vs. ρ curve, using the 99.9% upper confidence boundary as a 324

threshold. We considered centroids to be all points falling outside this boundary. The 325

rest of the points were assigned to their closest centroids. Thus, each binary pattern 326

with more than three spikes was assigned to a cluster, obtaining, in this way, their 327

corresponding activation times. 328

Core-cell detection 329

Once the candidate clusters and centroids were identified, the Pearson correlation 330

coefficient between the activation times of neuron n and cluster e, denoted by corr(n, e), 331

was computed for each pair (n, e). This correlation is 1 if neuron n and cluster e were 332

always active in the same time bins, and is -1 if they are never active at the same time 333

bins. The intermediate values represented combinations of neurons and clusters with a 334

tendency to be active either in the same or in different time bins. 335

To distinguish between a core and a non-core cell, we set a threshold obtained from 336

a null hypothesis built from shuffled versions of the (n, e) pair. For each cluster, e ∈ E, 337

the number of times in which it was active is kept fixed, but the temporal sequence was 338

randomly shuffled, obtaining a new temporal sequence of activation that we denoted er. 339

We repeated this procedure 5000 times for each cluster, obtaining a distribution of 340

corr(n, er) for neuron n in cluster e, which represented the null hypothesis distribution 341

associated with the correlation between a neuron and a cluster given by chance. A 342

significance threshold was then defined as the 99.9-th percentile of this distribution; 343

therefore, we set p < 0.001 as threshold θe. Then, if corr(n, e) > θe, we considered that 344

n was a core-cell of cluster e, as their correlation was above the significance level. 345

Ensemble selection criteria 346

Following [43], we used two criteria: i) minimum cluster size and ii) within-cluster 347

average correlation. The first criterion considered as candidates for neuronal ensembles 348

clusters whose number of core-cells was above three. The second criterion compared the 349

average pairwise correlation between all the core-cells of the same cluster to the average 350

pairwise correlation of the whole population plus a threshold. This way, we kept only 351

clusters with a minimum size (in terms of core-cells) and with relatively (concerning the 352

population) high within-cluster average correlation. If a cluster failed to pass any of 353
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these two criteria, we discarded it from the analysis. Otherwise, we considered the 354

cluster as an ensemble. 355

Matching detected ensembles with ground truth ensembles 356

To evaluate our method with synthetic data, we matched the GT ensembles with the 357

detected ones. This was implemented by computing the correlation between the GT’s 358

activation sequence and the detected ensembles. Thus, we looked for the detected 359

ensemble that maximized the correlation with the GT ensembles. 360

Discussion 361

We introduced a scalable and computationally efficient method to detect neuronal 362

ensembles from spiking data. Using simple clustering techniques [42], and suitable 363

statistical tests, we were able to develop a simple, fast and accurate method. On the 364

one hand, our example of mouse retinal ganglion cells provides evidence for an expected 365

causal relationship between stimuli and RGC ensembles. On the other hand, the 366

simulated data examples show that our method provides accurate results for a wide 367

range of neural activity scenarios, outperforming existing tools for ensemble detection in 368

terms of accuracy and computation time. 369

Our method detects neural ensembles considering three general properties of them: 370

transient activation (spontaneous and/or stimuli-evoked), the same neurons may 371

participate in different ensembles, and the correlation between the core-cells 372

(within-ensemble correlation) of a given ensemble should be high, compared to the rest 373

of the population. Other methods for ensemble detection fulfill other criteria, e.g., 374

finding communities between spiking neurons along time [26,44], or using event-related 375

activity [43]. Despite the usefulness of these methods in their context, our analysis is 376

more general. It relies on grouping the population spiking patterns with no 377

event-related information, allowing us to segment a spiking network’s temporal activity 378

under both spontaneous and stimuli-evoked conditions. 379

Regarding the SVD-based method [9], we acknowledge the insights that its 380

application has provided to the study of neural networks. However, it has limitations in 381

terms of computational cost (for relatively small sample sizes, Fig. 4) and parameter 382

tuning. Further, the SVD-based method extracts the temporal sequence of ensembles 383

from the spectral decomposition of the similarity matrix between population patterns, 384

aiming to detect groups of linearly independent patterns. Instead, we use a subset of 385

the first principal components to embed the population patterns and cluster them into 386

that space, with no need to find linear independence between the clusters. Finally, the 387

SVD-based method has no explicit implementation for the evaluation of the 388

within-ensemble correlation, which, in our case, is a critical step to distinguish between 389

a noisy cluster and an ensemble cluster. 390

There is room for further improvement of our method. For example, non-linear spike 391

correlations may produce spurious results in ensemble detection methods that depend 392

on PCA. Alternative approaches can be adapted to other measures of spike train 393

similarity besides linear correlations [45]. In our example of RGCs, while we use the 394

standard bin size for mammalian RGCs, the bin size used to create the spike trains may 395

influence the detected ensembles, and thus different bin sizes can yield different results. 396

Finally, we provided novel evidence in favor of the existence of retinal ensembles that 397

are functionally coupled to the stimuli. However, our purpose was to exemplify our 398

method on a biological spiking network rather than explaining the possible mechanisms 399

involved in the activity of retinal ensembles or their functional implications. Indeed, we 400

consider the study of retinal ensembles as an exciting new research avenue that needs to 401
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be developed in the way to understand vision, sensory systems, and more generally, the 402

nervous system. In line with this perspective, we delivered a method that is general 403

enough to be applied to any multi-variate binary data set. Furthermore, it is intuitive 404

and can generate results that are easy to visualize, which should favor their 405

comprehension and general use by the scientific community. Matlab codes and a GUI 406

implementing our new method accompany this article. 407

Supplementary Material 408

Code 409

The GUI and the codes used to validate the method using synthetic data can be found 410

at https://github.com/brincolab/NeuralEnsembles. 411

Ethics Statement 412

Animal manipulation and breeding and corresponding experiments were approved by 413

the bioethics committee of the Universidad de Valparaiso, in accordance with the 414

bioethics regulation of the National Agency for Research (ANID, Ex-CONICYT) and 415

international protocols. 416

Animals and RGC Recordings 417

The experimental mice were maintained in the animal facility of the Universidad de 418

Valparáıso, at 20–25°C on a 12-h light-dark cycle, with access to food and water 419

ad-libitum. These recordings were performed for other experimental purposes, and for 420

the present work only one recording was used. The corresponding methods of MEA 421

recording have previously been described [46]. In brief, animals were euthanized under 422

deep isofluorane or halothane anesthesia and both eyes were extracted. Then, one of the 423

extracted retinas was diced into quarters while the other was stored in oxygenated (O2 424

95% CO2 5%) AMES medium at 32°C in the dark for further experiments. The same 425

AMES media was used for continuous perfusion during extracellular recordings. For 426

MEA recordings (MEA USB-256, 20kHz sample, Multichannel Systems GmbH, 427

Germany), one piece of retina was mounted onto a dialysis membrane then placed into a 428

ring device mounted in a traveling (up/down) cylinder, which was moved to contact the 429

electrode surface of the MEA recording array. Data were processed off-line using the 430

Spiking-Circus spike sorting algorithm [41] with default parameters. 431

Visual Stimuli 432

Visual stimuli were generated by a custom software created with PsychoToolbox 433

(Matlab) on a MiniMac Apple computer and projected onto the retina with an LED 434

projector (PLED-W500, Viewsonic, USA) equipped with an electronic shutter (Vincent 435

Associates, Rochester, USA) and connected to an inverted microscope (Lens 4x, Eclipse 436

TE2000, NIKON, Japan). The image was conformed by 380 x 380 pixels, each covering 437

5µm2. To estimate the RGC receptive fields, a checkerboard stimulus (visual white 438

noise) with a block size of 50µm was presented at a rate of 60 Hz for 20 mins, with each 439

block independently taking 0 or 255 (max value) in the pixel value scale. To classify 440

the RGC, a green ON-OFF light stimulus was presented, where each part lasted three 441

seconds, repeated 21 times. For the classification analysis, the first trial was discarded. 442
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Automated RGC classification 443

RGCs were automatically classified as ON, OFF, ON-OFF, and Null depending on their 444

preference to the light stimulus, using the statistical approach presented in Ref [47]. We 445

computed the peri-stimulus time histogram (PSTH) for each RGC and compared the 446

maximum activity in the ON and OFF part of the stimulus. Then, we set a threshold 447

based on the average of the PSTH plus 2 s.d., and if only the maximum in the ON 448

(OFF) part was above this threshold, we considered this RGC as ON (OFF); if both 449

maxima were above the threshold, we considered the RGC as ON-OFF. Otherwise, the 450

RGC was classified as Null due to its lack of preference for the stimulus. 451

RGC receptive fields estimation 452

The spike-triggered average (STA) of each RGC, defined as the average stimulus 453

preceding a spike, was computed by the reverse correlation method using the 454

checkerboard stimulus (see Methods subsection 2) aggregating the 18 frames previous to 455

any emitted spike in a matrix as in Ref [48]. This STA matrix was decomposed using 456

SVD, which estimates the temporal and spatial components of the receptive field, where 457

the former represented the average stimulus fluctuation previous to a spike. In contrast, 458

the latter represented the preferred location of the RGC in the stimuli space. Then, an 459

ellipse was fitted to the spatial component to estimate the RGC receptive field. 460
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10. Buzsáki G. Large-scale recording of neuronal ensembles; 2004.

11. Einevoll GT, Franke F, Hagen E, Pouzat C, Harris KD. Towards reliable
spike-train recordings from thousands of neurons with multielectrodes. Current
opinion in neurobiology. 2012;22(1):11–7. doi:10.1016/j.conb.2011.10.001.

12. Watanabe K, Haga T, Tatsuno M, Euston DR, Fukai T. Unsupervised detection
of cell-assembly sequences by similarity-based clustering. Frontiers in
Neuroinformatics. 2019;doi:10.3389/fninf.2019.00039.

13. Harris KD. Neural signatures of cell assembly organization. Nature reviews
Neuroscience. 2005;6(5):399–407. doi:10.1038/nrn1669.

14. Carrillo-Reid L, Yang W, Kang Miller Je, Peterka DS, Yuste R. Imaging and
Optically Manipulating Neuronal Ensembles. Annual Review of Biophysics.
2017;doi:10.1146/annurev-biophys-070816-033647.

15. See JZ, Atencio CA, Sohal VS, Schreiner CE. Coordinated neuronal ensembles in
primary auditory cortical columns. eLife. 2018;doi:10.7554/eLife.35587.

16. Carrillo-Reid L, Miller JEK, Hamm JP, Jackson J, Yuste R. Endogenous
Sequential Cortical Activity Evoked by Visual Stimuli. Journal of neuroscience.
2015;35(23):8813–28. doi:10.1523/JNEUROSCI.5214-14.2015.

17. Wenzel M, Hamm JP, Peterka DS, Yuste R. Acute Focal Seizures Start As Local
Synchronizations of Neuronal Ensembles. The Journal of neuroscience : the
official journal of the Society for Neuroscience.
2019;doi:10.1523/JNEUROSCI.3176-18.2019.

18. Hamm JP, Peterka DS, Gogos JA, Yuste R. Altered Cortical Ensembles in Mouse
Models of Schizophrenia. Neuron. 2017;doi:10.1016/j.neuron.2017.03.019.

19. Wenzel M, Han S, Smith EH, Hoel E, Greger B, House PA, et al. Reduced
Repertoire of Cortical Microstates and Neuronal Ensembles in Medically Induced
Loss of Consciousness. Cell Systems. 2019;8(5):467 – 474.e4.
doi:https://doi.org/10.1016/j.cels.2019.03.007.

20. Fang WQ, Yuste R. Overproduction of Neurons Is Correlated with Enhanced
Cortical Ensembles and Increased Perceptual Discrimination. Cell Reports.
2017;doi:10.1016/j.celrep.2017.09.040.
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