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C) Model based vs. Model free - Exp. 1 

 

Fig. S2. Decision Classification Boundaries (BCD) of the participants in Exp. 1. Black 

dashed lines correspond to the model-based DCB, and the red ones correspond to the model-

free DCB. 
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Model based vs. Model free - Exp. 2 

 

Fig. S3. Decision Classification Boundaries (BCD) of the participants in Exp. 2. Black 

dashed lines correspond to the model-based DCB, and the red ones correspond to the model-

free DCB. 
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D) DCB modulation by stimulus consistency – Exp. 1 

 

Fig. S4. Decision boundaries for all trials (blue) and high consistency trials (red) of 

all participants in Exp. 1 (numerical stimuli). The boundaries were extracted using the 

model-free method. 
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DCB modulation by stimulus consistency – Exp. 2 

 

Fig. S5. Decision boundaries for all trials (blue) and high consistency trials (red) of 

all participants in Exp. 2 (numerical stimuli). The boundaries were extracted using the 

model-free method. 
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DCB modulation by stimulus consistency – Quantitative comparison 

In order to quantitatively compare the Decision-Classification Boundary (DCB) of high 

consistency trials with that of all trials, we computed the difference of the area below the 

boundary (i.e., the area between the upper boundary and the x-axis) for the two conditions 

and normalized it by dividing by the sum of the areas: 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑎𝑟𝑒𝑎 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

=  
𝐴𝑟𝑒𝑎𝑎𝑙𝑙 𝑡𝑟𝑖𝑎𝑙𝑠 −  𝐴𝑟𝑒𝑎ℎ𝑖𝑔ℎ 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑡𝑟𝑖𝑎𝑙𝑠

𝐴𝑟𝑒𝑎𝑎𝑙𝑙 𝑡𝑟𝑖𝑎𝑙𝑠 +  𝐴𝑟𝑒𝑎ℎ𝑖𝑔ℎ 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑡𝑟𝑖𝑎𝑙𝑠
 

Eq. S1. 

If participants require less evidence to reach a decision in high consistency trials, then the 

decision boundary of these trials should be lower than the decision boundary of all trials, 

resulting in normalized area difference higher than 0. A single-sample t-tests (against 0) 

confirmed that this was the case in Exp. 1, t(26) = 2.67, p = .01 (Fig. S6A), as well as in 

Exp. 2, t(26) = 3.91, p < .001 (Fig. S6B).  

(A)  

 

(B)  

 

Fig. S6. (A) Normalized area differences of the participants in (A) Exp. 1 and (B) Exp. 

2. 

We then tested that this DCB separation (consistent trials vs. all trials) takes place in syn-

thetic data for which choices are generated by the stimulus-consistency model, but not 

when generating data from the full-integration model. Toward this aim, we simulated the 
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full-integration and the stimulus-consistency models using sequences with the same statis-

tical properties as the ones in Exp. 1 & 2, and with the best fitted parameters of each par-

ticipant. The DCB of each synthetic participant was extracted using the same procedure as 

the one used for the empirical data. Fig. S7A-B shows that the DCB separation effect is 

only predicted by the stimulus-consistency model, t(26) = 2.45, p = .02 (Exp. 1) and t(26) 

= 2.77, p = .009 (Exp. 2), and not by the full-integration model, t(26) = 0.75  p = .45 (Exp. 

1) and t(26) = -0.61, p = .54 (Exp. 2). 

(A) 

 

(B) 

 

Fig. S7. Mean normalized area difference of the stimulus consistency and the full inte-

gration models in (A) Exp. 1 and (B) Exp. 2. Error bars correspond to standard-error of 

the mean.  
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E) Temporal clustering effects 

In Exp. 3 we generated consistent and inconsistent trials (Fig. 4A), by manipulating the 

difference between the number of frames with evidence favoring the two alternatives. This 

manipulation, however, is correlated with the number of frequent winners, which modu-

lates choices in the selective-integration (SI) model (Tsetsos et al., 2016). Thus, although 

the stimulus-consistency (SC) model provided better fit for the data (Fig. 5), the con-

sistency effect in Exp-3 can also be accounted for by the SI model (Fig. 4C). To distinguish 

between the two models, we used another measure of consistency – LTC (larger temporal 

cluster of the evidence, see Table S1). For each participant, we calculated the LTC measure 

of each trial, and divided the trials into high/low LTC trials by performing a median split. 

Then, to quantify the sensitivity of the participants to temporal clustering, we computed 

the difference in mean accuracy of high and low LTC trials (accuracyhigh LTC – accuracylow 

LTC). This difference should be higher for a participant whose bias mechanism is modulated 

by the consistency of each frame with previous ones, as presenting the positive evidence 

in an as large cluster as possible enhances the overall integrated evidence.  

Fig. S8A shows the differences in goodness of fit (deviance =-2∙LogLikelihood) between 

the SI and the SC models (positive values indicate a better fit of the SC model). As can be 

seen, the SC model provides better fit than the SI-model (for all except four participants). 

Fig. S8B shows the correlation between differences in the goodness of fit of the models 

and the effect of temporal clustering (each point represents a single participant). As can be 

seen, the SC model provide a better fit for the data, specifically for participants who showed 

higher sensitivity to temporal clustering. 
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(A) 

 

(B) 

 

Fig. S8. (A) Comparison between the SC and SI models across the 22 participants in 

Exp. 3. (B) Correlation between differences in goodness of fit of  the SI and the SC models 

and the effect of temporal clustering; each point represents a single participant. 
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F) Confidence-resolution  

In order to account for the differences in confidence resolution in Exp. 3 (Fig 4D), we 

simulated the stimulus-consistency model using pairs of consistent and inconsistent trials, 

that were created using the same generating distributions as in Exp. 3 (i.e., with the same 

evidence content for each pair). Fig. S9A shows 25 pairs of trials (blue – consistent vs. red 

– inconsistent), which were simulated using the mean fitted parameters: 

𝜃𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = 1.75 and 𝜆 = 0.21. The stimulus-consistency model predicts that 

the bias in favor of consistent evidence would increase the accumulated evidence of con-

sistent compared with inconsistent trials (even though both types of trials have the same 

evidence). Fig. S9B shows the distributions of accumulated evidence of 100,000 consistent 

and inconsistent trials simulated using the stimulus-consistency model (using the mean in-

ternal noise obtained in the empirical data, 𝛽 = .05). The mean distance from the criterion 

(0) of correct consistent trials is higher than for correct inconsistent trials t = 3.55, p < .001. 

For inconsistent trials, however, the differences in the mean distances from the criterion of 

the incorrect consistent and incorrect inconsistent trials did not reach statistical, t = 0.25, p 

= .79. Based on the distributions presented in Fig. S9B we predicted the mean confidence 

response for each condition of the stimulus consistency. To this end, we computed the 

absolute mean value of the accumulated evidence (i.e., distance from 0) of the correct and 

incorrect responses separately for consistent and inconsistent response. Then, using linear 

regression we mapped these values to the mean confidence level of each condition (Fig. 

S9C, dashed lines). 
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(A) 

 

(B) 

 

(C) 

 

Fig. S9. Confidence-resolution in Exp. 3. (A) Twenty-five pairs of trials (consistent and 

inconsistent) were simulated using the same generating distributions as in Exp. 3 (with-

out internal noise; blue – consistent trials, red - inconsistent). The stimulus-consistency 

model predicts that the bias in favor of consistent evidence would increase the accumu-

lated evidence of consistent trials compared with inconsistent ones. (B) The distributions 

of accumulated evidence of consistent (blue) and inconsistent (red) trials simulated using 

the stimulus-consistency model (with internal noise). Solid blue and red vertical bars 

correspond to the mean of each distribution. (C) Confidence as a function of difficulty 

and consistency for correct (blue lines) and incorrect (red lines) responses. Data are 

shown with solid lines and circle symbols and model predictions are shown with dashed 

lines and diamond symbols. Error bars are within-subjects SE. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.10.12.335943doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.12.335943

