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Abstract 14 

The recent COVID-19 pandemic has sparked a global public health crisis. Vital to the development of 15 

informed treatments for this disease is a comprehensive understanding of the molecular interactions 16 

involved in disease pathology.  One lens through which we can better understand this pathology is 17 

through the network of protein-protein interactions between its viral agent, SARS-CoV-2, and its human 18 

host. For instance, increased infectivity of SARS-CoV-2 compared to SARS-CoV can be explained by 19 

rapid evolution along the interface between the Spike protein and its human receptor (ACE2) leading to 20 

increased binding affinity. Sequence divergences that modulate other protein-protein interactions may 21 

further explain differences in transmission and virulence in this novel coronavirus. To facilitate these 22 

comparisons, we combined homology-based structural modeling with the ECLAIR pipeline for interface 23 

prediction at residue resolution, and molecular docking with PyRosetta. This enabled us to compile a 24 

novel 3D structural interactome meta-analysis for the published interactome network between SARS-25 

CoV-2 and human. This resource includes docked structures for all interactions with protein structures, 26 

enrichment analysis of variation along interfaces, predicted ΔΔG between SARS-CoV and SARS-CoV-27 

2 variants for each interaction, predicted impact of natural human population variation on binding affinity, 28 

and a further prioritized set of drug repurposing candidates predicted to overlap with protein interfaces†. 29 

All predictions are available online† for easy access and are continually updated when new interactions 30 

are published. 31 

 32 

† Some sections of this pre-print have been redacted to comply with current bioRxiv policy restricting 33 

the dissemination of purely in silico results predicting potential therapies for SARS-CoV-2 that have not 34 

undergone thorough peer-review. The results section titled “Prioritization of Candidate Inhibitors of 35 

SARS-CoV-2-Human Interactions Through Binding Site Comparison,” Figure 4, Supplemental Table 9, 36 

and all links to our web resource have been removed. Blank headers left in place to preserve structure 37 

and item numbering. Our full manuscript will be published in an appropriate journal following peer-38 

review. 39 
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Main Text 40 

Introduction 41 

The ongoing global COVID-19 pandemic caused by the infection of SARS-CoV-2 has to date infected 42 

more than 30 million people and caused more than 940,000 deaths worldwide1. Coronaviruses are a 43 

family of enveloped viruses that cause respiratory and/or enteric tract infections in a wide range of avian 44 

and mammalian hosts2. To date, seven well characterized coronaviruses infect humans3-5 with severity 45 

ranging from a mild respiratory illness to severe pneumonia and acute respiratory distress syndrome 46 

(ARDS). Among these, SARS-CoV-2 is unique in its characteristics being both highly transmissible and 47 

capable of causing severe disease in a subset of individuals; whereas other human coronaviruses are either 48 

highly transmissible yet generally not highly pathogenic (e.g. HCoV-229E, HCoV-OC43) or highly 49 

pathogenic but poorly transmissible (SARS-CoV and MERS-CoV). SARS-CoV-2 is also unique in its range 50 

of infection and pathogenesis6, 7. While the vast majority of infected individuals (~25-35%) experience only 51 

mild or minimal symptoms, ~1-2% of infected patients die primarily from severe respiratory failure and acute 52 

respiratory distress syndrome8, 9. The differences in morbidity, hospitalization, and mortality among different 53 

ethnic groups—particularly Blacks and Hispanics10-15—could not be fully explained by cardiometabolic, 54 

socioeconomic, or behavioral factors, suggesting that human genetic variation may significantly impact 55 

SARS-CoV-2 pathogenicity. Therefore, insights into the evolution of SARS-CoV-2, its markedly elevated 56 

transmission rate relative to SARS-CoV, and dynamic range of symptoms are currently of key areas of 57 

interest. These traits are likely driven by differences in the mechanism of pathology and interactions 58 

between the virus and its host cells, but their specific causes are yet to be characterized. 59 

One avenue to better understand the mechanisms of either viral- or bacterial- infection and 60 

pathology is through studying the network of protein-protein interactions that occur between a pathogen 61 

and its host. Viral-human interactome maps have previously been compiled for SARS-CoV16, HIV17, 62 

Ebola virus18, and Dengue and Zika viruses19 among others. Recently, an affinity-purification mass-63 

spectrometry approach has been applied to 29 SARS-CoV-2 proteins uncovering 332 viral-human 64 

interactions20. These inter-species interactions play central roles in  disease progression including, 65 

acting as facilitators of pathogen entry into host cells21-26, inducing an inhibitory effect on host response 66 

proteins and pathways27-29, and hijacking cell signaling or metabolism to accelerate cellular—and 67 
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consequentially viral—replication30-32. Understanding the structure and dynamics of these interactions 68 

can provide critical insights into their effect on the cell. For instance, determination of the structure of 69 

an interaction between poxvirus chemokine inhibitor vCCI and human MIP-1β revealed that the viral-70 

human binding interface occluded domains vital to chemokine homodimerization, receptor binding, and 71 

interactions with GAG, thus explaining how this interaction elicits an inhibitory effect on chemokine 72 

signaling29. Additionally, the dynamics of an interaction between a herpesvirus cyclin and human cdk2 73 

revealed that although the binding interface was distinct from that between human cyclin A and cdk2, 74 

the net conformational impact on cdk2 effectively mimicked that of the native interaction leading to 75 

dysregulated cell cycle progression31. 76 

Because protein-protein interactions are responsible for mediating the majority of protein 77 

function33-35, targeted disruption of these interactions by small molecule inhibitors that compete for the 78 

same binding site can offer a precise toolkit to modulate cellular function33, 35-38. For example, BCL-2 79 

inhibitors that displace bound anti-apoptotic BCL-X interactors can treat chronic lymphocytic leukemia 80 

pathogenesis39, 40. Targeted disruption of protein interactions can be particularly effective in viral 81 

networks due to their small proteomes with highly optimized function, and potent inhibitors of key 82 

interactions have been developed against viral proteins. Targeted disruption of viral complexes—83 

particularly those responsible for viral replication—has been successful in vaccinia virus41 and human 84 

papilloma virus therapies42, 43. In particular, disruption of viral-host protein-protein interactions explicitly 85 

involved in early viral infection is an important therapeutic strategy. Discovery that a population variant in 86 

the membrane protein CCR5 conferred resistance to HIV-1 by disrupting its interaction with the viral 87 

envelope glycoprotein led to the development of Maraviroc as an FDA approved treatment for HIV-1 88 

that functions by blocking the interface for this interaction23, 44. 89 

Here we apply a comprehensive interactome modeling framework to construct a 3D structural 90 

interactome between SARS-CoV-2 and human protein based on the current interactome map published 91 

by Gordon et al.20 Our framework consists of homology modeling to maximize structural coverage of the 92 

SARS-CoV-2 proteome, applying our previous ECLAIR classifier45 to identify interface residues for the 93 

whole SARS-CoV-2-human interactome, followed by atomic resolution interface modeling through 94 

guided docking in PyRosetta46. We additionally carried out in-silico scanning mutagenesis to predict the 95 
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impact of mutations on interaction binding affinity and performed a comparison of protein-protein and 96 

protein-drug binding sites. We compile all results from our structural interactome into a user-friendly 97 

web server allowing for quick exploration of individual interactions or bulk download and analysis of the 98 

whole dataset. Further, we explore the utility of our interactome modeling approach in identifying key 99 

interactions undergoing evolution along viral protein interfaces, highlighting population variants on 100 

human interfaces that could modulate the strength of viral-host interactions to confer protection from or 101 

susceptibility to COVID-19, and prioritizing drug candidates predicted to bind competitively at viral-102 

human interaction interfaces. 103 

 

Results 104 

Enrichment of divergence between SARS-CoV and SARS-CoV-2 at spike-ACE2 binding interface 105 

To highlight the utility of computational and structural approaches to model the SARS-CoV-2-human 106 

interactome, we first examined the interaction between the SARS-CoV-2 spike protein (S) and human 107 

angiotensin-converting enzyme 2 (ACE2) (Fig 1.a). This interaction is key for viral entry into human 108 

cells3 and is the only viral-human interaction with solved crystal structures available in both SARS-CoV47 109 

and SARS-CoV-248-50. Comparison between SARS-CoV and SARS-CoV-2 revealed that sequence 110 

divergence of the S protein was highly enriched at the S-ACE2 interaction interface (Fig 1.a; 111 

Log2OddsRatio=2.82, p=1.97e-5), indicating functional evolution around this interaction. To explore the 112 

functional impact of these mutations on this interaction, we leveraged the Rosetta energy function51 to 113 

estimate the change in binding affinity (ΔΔG) between the SARS-CoV and SARS-CoV-2 versions of the 114 

S-ACE2 interaction (Fig 1.b and 1.c). The predicted negative ΔΔG value of -14.66 Rosetta Energy Units 115 

(REU) indicates an increased binding affinity using the SARS-CoV-2 S protein driven by better optimized 116 

solvation and hydrogen bonding potential fulfillment along the ACE2 interface. Our result is consistent 117 

with the hypothesis that increased stability of the S-ACE2 interaction is one of the key reasons for 118 

elevated transmission of SARS-CoV-252. Moreover, recent experimental energy kinetics assays have 119 

shown that SARS-CoV-2 S protein binds ACE2 with 10-20-fold higher affinity than that of SARS-CoV S 120 

protein53 supporting the conclusions from our computational modeling. 121 
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 Medical experts have also noted a wide range in severity of and susceptibility to SARS-CoV-2 122 

among individuals6, 7, 54. Several hypotheses for genetic predisposition models have been proposed 123 

including that expression quantitative trait loci (eQTLs) may up- or down-regulate host response genes 124 

and that functional coding variants may alter viral-human interactions55, 56. For instance, a recent RNA-125 

sequencing analysis suggested that higher expression of ACE2 in Asian males effectively provides more 126 

routes of entry for the virus and could explain increased susceptibility among this population57. 127 

Alternatively, missense population variants in ACE2 could modulate susceptibility to infection by 128 

strengthening or weakening the S-ACE2 interaction. A total of six missense population variants reported 129 

in gnomAD58 localize to the S-ACE2 interface. Using a mutation scanning pipeline in PyRosetta59, 60 we 130 

predicted the impact on binding affinity for each variant (Fig 1.d). The three population variants 131 

predicted to have the largest impact on S-ACE2 binding affinity— ACE2_E37K (ΔΔG=1.50), ACE2_M82I 132 

(ΔΔG=2.95), and ACE2_G326E (ΔΔG=5.74)—were all consistent with previous experimental screens 133 

which identified them as putative protective variants exhibiting decreased binding of ACE2 to S61, 62. 134 

Cumulatively, our results highlight the usefulness of a 3D structural interactome modeling approach in 135 

identifying interactions and mutations important for viral infection, pathogenesis, and transmission. 136 

 

Constructing the 3D Structural SARS-CoV-2-Human Interactome 137 

After successfully applying our modeling approaches to recapitulate the effect of mutations along the S-138 

ACE2 interface, we expanded our efforts to compile a complete 3D structural interactome between 139 

SARS-CoV-2 and human proteins. An early interactome screen by Gordon et al.20 uncovered 332 viral-140 

human interactions that provide the foundation for our 3D interactome. To model these interactions, we 141 

first constructed homology models for 18 of 29 SARS-CoV-2 proteins with suitable templates 142 

(Supplemental Figure 1). Then, we predicted the interface residues for each interaction using our 143 

Ensemble Classifier Learning Algorithm to predict Interface Residues (ECLAIR) framework45. In total, 144 

our pipeline identified 692 interface residues across 18 SARS-CoV-2 proteins with an average 24.7 145 

residues per interface and 6,763 across 190 human proteins with an average 20.3 residues per 146 

interface. A summary of the classifier utilization, prediction confidences, and interface size is provided 147 

in Supplemental Figure 2. 148 
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 In order to add a structural component to our interactome map, and thereby enable modeling of 149 

the binding affinity for these interactions, we additionally performed docking in PyRosetta using our 150 

ECLAIR interface likelihood predictions to refine the search space (Supplemental Figure 3). Structural 151 

models were available for both the human and SARS-CoV-2 proteins in 250 out of 332 interactions 152 

(75%) making them amenable to guided docking experiments. After performing up to 50 independent 153 

docking experiments for each interaction and retaining the top-scored conformation we report 959 154 

interface residues across 18 SARS-CoV-2 proteins with an average 18.2 residues per interface and 155 

4,483 across 250 human proteins with an average 17.9 residues per interface (Supplemental Figure 156 

2.g). For all analyses, interface annotations provided from docking experiments were prioritized over 157 

our ECLAIR predictions. The full interface annotations from our ECLAIR and docking predictions are 158 

available in Supplemental Table 1 and Supplemental Table 2 respectively. 159 

 

Perturbation of Human Proteins by Disease Mutations and Binding of SARS-CoV-2 Interactions Occur 160 

at Distinct Sites 161 

After constructing the 3D interactome between SARS-CoV-2 and human, we first looked for evidence 162 

of interface-specific variation by mapping both gnomAD58 reported human population variants 163 

(Supplemental Table 3) and sequence divergences between SARS-CoV and SARS-CoV-2 164 

(Supplemental Table 4) onto the predicted interfaces. In general, conserved residues have been shown 165 

to cluster at protein-protein interfaces63, and a recent analysis of SARS-CoV-2 structure and evolution 166 

likewise concluded that highly conserved surface residues were likely to drive protein-protein 167 

interactions64. Consistent with these prior findings at an interactome-wide level, we observed significant 168 

depletion for both viral and human variation along the predicted interfaces comparable to that observed 169 

on solved human-human interfaces (Fig 2.a).  170 

Nonetheless, considering each interaction individually, our analysis uncovered a 13 interaction 171 

interfaces enriched for human population variants (Fig 2.b), and 7 enriched for recent viral sequence 172 

divergences (Fig 2.c). A breakdown of variant enrichment on each interface is provide in Supplemental 173 

Table 5. The individual viral interfaces showing an unexpected degree of variation may—like the 174 

previously discussed S-ACE2 interface—be indicative of recent functional evolution around the viral-175 
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human interaction. Considering the slower rate of evolution in humans, enrichment of population 176 

variants along the human interfaces is unlikely to be a selective response to the virus. Rather, these 177 

interfaces with high population variation along the interfaces may represent edges in the interactome 178 

whose strength may fluctuate among individuals or between populations. Alternatively, enrichment and 179 

depletion of variation along the human-viral interfaces could help distinguish viral proteins that bind 180 

along existing—and therefore conserved—human-human interfaces from those that bind using novel 181 

interfaces—that would be less likely to be under selective pressure. 182 

To further explore the functional impact of naturally occurring variants on the human interactors 183 

of SARS-CoV-2, we considered variants with phenotypic associations as reported in HGMD65, ClinVar66  184 

or the NHGRI-EBI GWAS Catalog67. Interactors of SARS-CoV-2 were significantly more likely than the 185 

rest of the human proteome to harbor phenotypic variants in each of these databases (Fig 2.d). Notably, 186 

among the individual disease categories enriched in this gene set, several were consistent with reported 187 

comorbidities including heart disease, respiratory tract disease, and metabolic disease68, 69 (Fig 2.e; 188 

Supplemental Table 6). Disruption of native protein-protein interactions is one mechanism of disease 189 

pathology, and disease mutations are known to be enriched along protein interfaces70, 71. Human 190 

population variants on the predicted human-viral interface were more likely to be annotated as 191 

deleterious by SIFT72 and PolyPhen73 but showed identical allele frequency distributions compared to 192 

those off the interfaces (Supplemental Figure 4). However, mapping annotated disease mutations onto 193 

the protein interfaces only revealed significant enrichment along known human-human interfaces; no 194 

such enrichment was found on human-viral interfaces (Fig 2.f). This is likely because unlike with human-195 

human interactions, mutations disrupting human-viral interactions would not disrupt natural cell function, 196 

and therefore would be unlikely to be pathogenic. Our finding that disease mutations and viral proteins 197 

affect human proteins at distinct sites is consistent with a two-hit hypothesis of comorbidities whereby 198 

proteins whose function is already affected by genetic background may be further compromised by viral 199 

infection. 200 
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Analysis of Binding Affinity Changes Between SARS-CoV and SARS-CoV-2 Helps Identify Key Interactions 201 

We next sought to explore the impact of sequence divergence in SARS-CoV-2 relative to SARS-CoV on 202 

viral-human interactions. Mutations between the two viruses were identified by pairwise alignment and the 203 

impacts of these mutations on the binding energy (ΔΔG) for 250 interactions amenable to docking were 204 

predicted using a PyRosetta pipeline46, 59, 60. Although the binding energy for most interactions was 205 

unchanged—either because no mutations occurred near the interface or because the mutations that did 206 

had marginal effect—we observed an increased likelihood of the divergence from SARS-CoV to SARS-207 

CoV-2 resulting in decreased binding energy (i.e. more stable interaction) (Fig 3.a; Supplemental Table 208 

7). The significant outliers in these ΔΔG predictions can help pinpoint key differences between the viral-209 

human interactomes of SARS-CoV and SARS-CoV-2. We further note a wide range of affinity impacts 210 

among various human interactors of a single viral protein (Fig 3.d) and hypothesize that these differences 211 

may help identify the most important interactions. 212 

 To further explore the significance of these changes in interaction affinity, we considered those 213 

interactions with the largest decrease in binding energy; corresponding to the largest predicted increase in 214 

affinity. Specifically, we highlight the interaction between coronavirus orf9c and human mitochondrial NADH 215 

Dehydrogenase (Ubiquinone) 1 Alpha Subcomplex, Assembly Factor 1 (NDUFAF1) (Fig 3.e; ΔΔG=-21.7 216 

REU). Two mutations contribute to the increased stability of this interaction in SARS-CoV-2. During the 217 

transition from the unbound to bound states of orf9c, His-34 rotates inwards to accommodate NDUFAF1 218 

resulting steric tensions with orf9c residue 61. The mutation from the bulkier Val-61 (SARS-CoV) to Ala-61 219 

(SARS-CoV-2) helps alleviate this tension resulting in overall more favorable energy state transition. 220 

Second, the mutation from the polar Glu-60 (SARS-CoV) to the nonpolar Met-60 (SARS-CoV-2) contributes 221 

to overall better solvation energy along the interface involving residue 60 of orf9c and the Ser-148, Glu-222 

149, Val-150 stretch of NDUFAF1. 223 

Although the precise role of coronavirus orf9c (sometimes annotated as orf14) has not yet been 224 

characterized, experiments in SARS-CoV have shown that it localizes to vesicular components74 and 225 

interactome data from SARS-CoV-2 reveal that it targets host mitochondrial proteins and could impact 226 

proteins responsible for modulating IkB kinase and NF-kB signaling pathways20. NDUFAF1 is a chaperone 227 

protein involved in the assembly of the mitochondrial complex I75, 76. RNAi screens have associated 228 
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knockdown of NDUFAF1 with increased vaccinia virus infection77. Moreover, properly assembled 229 

mitochondrial complex I—including NDUFAF1—has been shown to be indispensable for reactive oxygen 230 

species based signaling to trigger expression of interleukins 2 and 4 and activate signaling of TLR778, a 231 

SARS-CoV-2 ARDS predisposition gene79. Recent reports have suggested that the virus may hijack host 232 

metabolism through complex I to increase replication80. Additionally, NDUFAF1 harbors disease mutations 233 

for complex I deficiency and hypertrophic cardiomyopathy that may be linked to SARS-CoV-2 comorbidities. 234 

Our result predicting increased stability of the interaction between orf9c and NDUFAF1 in SARS-CoV-2 235 

relative to SARS-CoV suggests a stronger impact on complex I assembly and potential disruption of 236 

downstream pathways. 237 

 We further identified several interactions with significantly altered binding energy in SARS-CoV-2 238 

with potential links to cellular response to viral infection. In orf9c we additionally predicted increased affinity 239 

with a Golgi signaling protein, TMED5 (ΔΔG=-21 REU). Phenotypic screens have linked TMED5 to altered 240 

viral infectivity77, 81, 82 and decreased interleukin 8 secretion83. Although no known mechanisms directly link 241 

TMED5 to immune response, one of its interactors, TMED284, is known to potentiate interferon response 242 

to viral infection85. Interaction with TMED5 may additionally be linked to viral transport within and secretion 243 

from its host86. Finally, the mitochondrial protein TOMM70 was predicted to bind orf9b with greater affinity 244 

(ΔΔG=-11 REU) in SARS-CoV-2. TOMM70 has been linked to mitochondrial antiviral signaling through 245 

downstream activation of interferon regulatory factors87. 246 

 

Predicting the Impact of Human Populations Variants on SARS-CoV-2-Human Protein Interactions 247 

A dynamic range of patient responses and symptoms have been reported for SARS-CoV-2 infection. In 248 

previously studied viruses including HIV, underlying genetic variation can explain up to 15% of variation in 249 

patient response and overall viral load88. Moreover, previous high-throughput experiments suggest that, up 250 

to 10.5% of missense population variants can disrupt native protein-protein interactions89. Therefore, we 251 

hypothesize that some fraction of patient response to SARS-CoV-2 can be explained by missense 252 

variations and their impact on viral-human interactions. To explore this hypothesis, we performed in-silico 253 

scanning mutagenesis along all docked interfaces in PyRosetta. We identified as binding energy hotspot 254 

mutations all mutations with a predicted ΔΔG at least one standard deviation away from the mean for 255 
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identical amino acid substitutions across the rest of the interface. In total, out of 2,241 population variants 256 

on eligible interfaces, 161 (7.2%) were identified as hotspots predicted to disrupt interaction stability, and 257 

116 (5.2%) were identified as hotspots predicted to contribute to interaction stability (Fig 3.b). Most of the 258 

hotspot mutations were predicted to be driven by solvation or repulsive forces, with disruptive hotspots 259 

primarily being driven by repulsive forces and stabilizing hotspots primarily being driven by solvation forces 260 

(Fig 3.c). Results summarizing the predicted impact of all 2,241 population variants on the docked 261 

interfaces are provided in Supplemental Table 8. 262 

 

Prioritization of Candidate Inhibitors of SARS-CoV-2-Human Interactions Through Binding Site Comparison 263 

 

A Web Server to Present the SARS-CoV-2-Human 3D Structural Interactome 264 

In order to present the results from our experiments as a comprehensive easy-access resource to the 265 

general public, we constructed the SARS-CoV-2 human structural interactome web. All structures used 266 

for modeling, interface predictions, raw docking outputs, mutation binding impacts, and analyses 267 

described herein are directly available for download through our downloads page. Our homepage allows 268 

users quick navigation through the reported interactome to view results summarizing specific 269 

interactions of interest. Aside from providing a 3D view of the interaction and predicted interface 270 

residues, our results page provides four main functionalities (Fig 5). 271 

The interface comparison panel (Fig 5 top left) provides a linear representation of protein 272 

sequence with interface annotations. Linear representations of all other known or predicted interfaces 273 

from the same protein are shown for comparison along with navigation links to explore other interaction 274 

partners either within the site (for viral-human interactions) or through InteractomeINSIDER45 (for 275 

human-human interactions). In particular, from the human perspective, this comparison may reveal 276 

biologically meaningful insights about the interface overlap and possible competition between viral and 277 

human interactors. 278 

The mutations panel (Fig 5 top right) provides information on variation in each interaction 279 

partner. For the viral side, mutations are reported based on divergence from the SARS-CoV version of 280 

the protein. For the human side, all known population variants as reported in gnomAD are listed58. 281 
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Additionally, we provide a log odds ratio describing the enrichment or depletion of variation along the 282 

interface. These results may help highlight interactions undergoing functional evolution along the viral 283 

interface. 284 

For each interaction amenable to docking, the ΔΔG Information panel (Fig 5 lower left) 285 

compiles the results from our in-silico scanning mutagenesis to report binding affinity predictions for all 286 

possible mutations across the docked interface. Individual mutations and colored by their z-score 287 

normalized ΔΔG prediction. The results can be toggled to only show the impacts of known variants. On 288 

the viral side, a cumulative ΔΔG value is provided describing the predicted change in binding affinity 289 

between the SARS-CoV and SARS-CoV-2 versions of the protein. 290 

The current version of the SARS-CoV-2 human structural interactome web server describes 332 291 

viral-human interactions reported by Gordon et al.20. We will continue support for the web server with 292 

periodic updates as additional interactome screens between SARS-CoV-2 and human are published. 293 

As we update, a navigation option to select between the current or previous stable releases of the web 294 

server will be provided. 295 

 

Discussion 296 

Overall, we present a comprehensive resource to explore the SARS-CoV-2-human protein-protein 297 

interactome map in a structural context. Analysis through this framework allows us to consider the recent 298 

evolution of SARS-CoV-2 in the context of its interactome map and to prioritize for further functional 299 

characterization key interactions. Likewise, our consideration of underlying variation in the human 300 

proteins that interact with SARS-CoV-2 may be valuable in explaining differences in response to 301 

infection. We particularly note that our observation that perturbation from underlying disease mutations 302 

and viral protein binding occur at distinct sites on the protein is of clinical interest. Further investigation 303 

into the combined role of these two sources of perturbation to better understand the mechanisms linked 304 

to comorbidities is warranted. 305 

 However, our work is not without limitation. Firstly, we note that although structural coverage 306 

from our homology modelling of SARS-CoV-2 proteins was robust (Supplemental Figure 1), the same 307 

could not be universally said of the human proteins. Although guided molecular docking was always 308 
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done to orient the most likely interface residues on each structure towards each other, protein-protein 309 

docking using incomplete protein models introduces some bias and low coverage may exclude some 310 

true interface residues. For this reason, the initial ECLAIR interface annotations—which are less subject 311 

to structural coverage limitations—may provide orthogonal value. We additionally note that direct 312 

quantitative interpretation of predicted ΔΔG values using the Rosetta scoring function is often difficult 313 

since different term weights can be used in different setups. Although the same scoring function was 314 

used for all predictions described here, the relative magnitude of each term may change based on the 315 

size and composition of different proteins between interactions. For these reasons, we only employ a 316 

relative qualitative comparison of similar predictions when interpreting our scanning mutagenesis 317 

results. Moreover, the structure optimization after each mutation is applied focuses on side-chain 318 

repacking, therefore, our results focus only on mutations at or near the interface where the impact of 319 

side-chain repacking could be measured. We expect there may be some mutations with significant 320 

impact on binding affinity that act through refolding or other allosteric effects that are missed by our 321 

method. 322 

Perhaps most importantly, we emphasize the importance of further experimental 323 

characterization to confirm the predictions made here. Nonetheless we believe our 3D Structural SARS-324 

CoV-2-human Interactome web server will prove to be a key resource in informing hypothesis driven 325 

exploration of the mechanisms of SARS-CoV-2 pathology and host response. The scope, and potential 326 

impacts of our webserver will continue to grow as we incorporate the results of ongoing and future 327 

interactome screens between SARS-CoV-2 and human. Additionally, we note that our 3D structural 328 

interactome framework can be rapidly deployed to analyze future viruses. 329 
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Online Methods 330 

Generation of Homology Models for SARS-CoV-2 Proteome 331 

Homology-based modeling of all 29 SARS-CoV-2 proteins was performed in Modeller90 using a multiple 332 

template modeling procedure. In brief, a list of candidate template structures for each protein to be 333 

modelled was obtained by running BLAST91 against a reference containing all sequences in the Protein 334 

Data Bank (PDB)92. Templates were filtered to only retain those with at least 30% identify to the protein 335 

to be modelled, and the remaining templates were ranked using a weighted combination of percent 336 

identity and coverage as described previously93. To compile the final set of overlapping templates for 337 

modeling, first the top ranked template was selected as a seed. Overlapping templates were iteratively 338 

added to the set so long as 1) the new template increased the overall coverage by at least 10%, and 2) 339 

the new template retained a total percent identity no more than 25% worse than the initial seed template. 340 

Pairwise alignments between the protein to be modelled and the template set were generated using a 341 

Modeller alignment object with default settings. Alignments were manually trimmed to remove any 342 

regions with large gaps (at least 5 gaps in the alignment in a 10 residue window). Finally, alignment was 343 

carried out using the Modeller automodel function. 344 

 This approach generated suitable homology models for 18 out of 29 proteins. A visual 345 

representation of each structure and templates used is provided in Supplemental Figure 1.  346 

 

Phase One Interface Prediction Using ECLAIR 347 

Interface predictions for all 332 interactions reported by Gordon et al.20 were made in two phases. In 348 

phase one, we leveraged our previously validated Ensemble Classifier Learning Algorithm to 349 

predict Interface Residues (ECLAIR)45 to perform an initial prediction of likely interface residues across 350 

all interactions. ECLAIR compiles five sets of features; biophysical, conservation, coevolution, 351 

structural, and docking. In brief, biophysical features are compiled using a windowed average of several 352 

ExPASy ProtScales94, conservation features are derived from the Jensen-Shannon divergence95, 96 353 

across all available homologs for each protein, coevolution features between interacting proteins are 354 

derived from direct coupling analysis (DCA)97 and statistical coupling analysis (SCA)98 among paired 355 

homologs, structural features are obtained by calculating the solvent accessible surface area of 356 
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available PDB92 or ModBase99 models using NACCESS100, and docking features are derived from an 357 

average of docking predictions made using Zdock101. 358 

To accommodate predictions between SARS-CoV-2 and human, slight alterations were made. 359 

First calculation of coevolution features was impossible because the calculation of SCA and DCA 360 

requires analysis of multiple sequence alignments from paired homologs of both interacting proteins 361 

across at least 50 species. Because we here consider inter-species interaction, no one species could 362 

contain homologs of both the viral and human proteins. Second, the calculation of conservation features 363 

for the viral proteins were modified to account for conservation between both related viral species and 364 

various strains that have been sequenced in a single species. We typically only include one homolog 365 

per species in these calculations, but expanded our criteria here because availability of the protein 366 

conservation feature is a requirement for all of our higher-confidence classifiers. Finally, the calculation 367 

of structural features for the viral protein were overruled to use the manually provided homology models 368 

instead of pulling structures from the PDB or ModBase. A visual summary of the ECLAIR interface 369 

predictions is presented in Supplemental Figure 2 and the initial prediction results are provided in 370 

Supplemental Table 1. 371 

 

Phase Two Interface Prediction Using Guided PyRosetta Docking 372 

Interface predictions for all 332 interactions reported by Gordon et al.20 were made in two phases. In 373 

phase two, we generated atomic resolution models of 250 interactions by leveraging the Rosetta scoring 374 

function51 and prior probabilities obtained from ECLAIR predictions to perform guided docking. The 375 

remaining 82 interactions were missing reliable 3D models for at least one of their members and 376 

therefore were not amenable to docking. A schematic summary of our docking methodology is presented 377 

in Supplemental Figure 3. 378 

 Using the predicted interface probabilities reported by ECLAIR, we set up the initial docking 379 

conformation to explore a restricted search space for each docking simulation. In cases where multiple 380 

structures were available for the human protein, all structures were weighted based on the ECLAIR 381 

scores for the covered residues in each structure to maximize both coverage age inclusion of likely 382 

interface residues. For each protein in the interaction, we performed a linear regression classification in 383 
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scikit-learn102 to optimally separate the likely interface residues from likely non-interface residues. The 384 

plane defined by this linear regression served as a reference to orient the structures along the y-axis 385 

with their most probable interface sides facing each other. The two chains were centered at (0, 0) along 386 

the x-z plane and separated a distance of 5 Å along the y-axis. For each docking attempt, a series of 387 

random perturbations from these initial conformations were made to search the nearby space. First, the 388 

human protein was rotated up to 360° along the y-axis to allow full exploration of different rotations of 389 

the two interfaces relative to each other. Second, to apply some flexibility to the plane predicting the 390 

interface vs. non-interface sides of each protein, up to 30° of rotation along the x- and z- axis were 391 

allowed for both the viral and human proteins. Finally, a random translation up to 5 Å in magnitude was 392 

applied to the human protein along the x-z plane so that the docking could explore contact points other 393 

than the center of masses along these axes. 394 

 After initializing these guided starting conformations, docking was simulated in PyRosetta46 395 

using a modified version of the protein-protein docking methodology provided by Gray 2006103. The 396 

initial demo (https://graylab.jhu.edu/pyrosetta/downloads/scripts/demo/D100 Docking.py) takes two 397 

chains from a co-crystal structure, applies a random perturbation, and re-docks them. Because 398 

randomized initial orientation was already handled as described previously, these steps were removed 399 

from our docking runs. In brief, the protein models were converted to centroid representation, slid into 400 

contact using the “interchain_cen” scoring function, and converted back to full atom representation, 401 

before having their side-chains optimized using the predefined “docking” and “docking_min” scoring 402 

functions. Up to 50 iterations of this guided docking were performed for each interaction, and the docked 403 

conformation resulting in the lowest Rosetta energy score was retained. The final docked interface 404 

annotations are provided in Supplemental Table 2. 405 

 

Definition of Interface Residues 406 

To annotate interface residues from atomic resolution docked models, we used a previously described 407 

and established definition for interface residues45. In brief, the solvent accessible surface area (SASA) 408 

for both bound and unbound docked structures was calculated using NACCESS.100 We define as 409 

interface residue, any residue that is both 1) at the surface of a protein (defined as ≥ 15% relative 410 
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accessibility) and 2) in contact with the interacting chain (defined as any residue whose absolute 411 

accessibility decreased by ≥ 1.0 Å2). 412 

 

Compilation of Viral SARS-CoV to SARS-CoV-2 Mutations and Human Population Variants 413 

For analysis of genetic variation that may impact the viral-human interactome, two sets of mutations 414 

were compiled; 1) viral mutations between SARS-CoV and SARS-CoV-2, and 2) human population 415 

variants on proteins shown to interact with viral proteins. 416 

For viral mutations, variations between SARS-CoV and SARS-CoV-2 versions of each proteins 417 

were collected. The representative sequences used for the 16 proteins in the SARS-CoV proteome were 418 

taken from the Proteomes section of UniProt (ID UP000000354)104, 105. Sequences for 29 SARS-CoV-2 419 

proteins were obtained from the annotations by Gordon et al.20 based on genbank accession 420 

MN985325106, 107. Notably, UniProt accessions for the SARS-CoV proteome report two sequences for 421 

the uncleaved ORF1a and ORF1a-b which correspond to NSP1 through NSP16 in SARS-CoV-2. 422 

Variations between SARS-CoV and SARS-CoV-2 were reported after pairwise Needleman Wench 423 

alignment108, 109 (using Blosum62 scoring matrix, gap open penalty of 10 and gap extension penalty of 424 

0.5) between the corresponding protein sequences in each species. A total of 1,003 missense variants 425 

were detected among 23 SARS-CoV-2 proteins. No variations were reported for orf3b, orf8, or orf10 426 

because no suitable alignment could be made with a SARS-CoV sequence. Additionally, orf7b, nsp3, 427 

and nsp16 were excluded from this set because they were not involved in any viral-human interactions. 428 

The full list of SARS-CoV-2 mutations is reported in Supplemental Table 4. 429 

Human population variants in all 332 human proteins shown to interact with SARS-CoV-2 430 

proteins were obtained from gnomAD58. Programmatic queries to fetch all variants for a given gene were 431 

performed using gnomAD’s graphQL API. For details on performing gnomAD queries in this manner see 432 

the gnomad-api github page (https://github.com/broadinstitute/gnomad-433 

browser/tree/master/projects/gnomad-api). Population variants were filtered to only retain missense 434 

variants. In order to map these gnomAD DNA-level SNPs to equivalent protein-level UniProt 435 

annotations, we used the Ensembl Variant Effect Predictor (VEP)110. After all mapping was completed, 436 

all variants were parsed to make sure that the reported reference amino acid and position matched up 437 
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with the UniProt sequence. Roughly 95.6% of cases matched and the remaining variants that could not 438 

reliably be mapped to UniProt coordinates were dropped from our dataset. In total 127,528 human 439 

population variants were curated. The full list of human population variants from GnomAD is reported in 440 

Supplemental Table 3. 441 

 

Log Odds Enrichment Calculations 442 

In order to determine if viral mutations or human populations variants were enriched at predicted 443 

interaction interfaces, odds ratios were calculated as described previously111. All odds ratios were log2 444 

transformed to maintain symmetry between enriched and depleted values. For this particular use case, 445 

the equation for the odds ratio was… 446 

𝑂𝑂𝑂𝑂 =  log2
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 / 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 / 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
 447 

where “Variant” vs. “NonVariant” distinguishes positions in a protein sequence that respectively did and 448 

did not overlap with the set of variants, and “InterfaceResidues” vs. “NonInterfaceResidues” 449 

distinguishes positions in a protein sequence that respectively did and did not overlap with the predicted 450 

interface for a given interaction. To avoid arbitrary odds ratio inflation or depletion from missing data, in 451 

all cases where the interface residues were predicted by molecular docking, the odds ratio was altered 452 

to only account for positions that were included in the structural models used for docking. Enrichment 453 

calculations for disease mutations and overlap between drug and protein binding sites were calculated 454 

in the same manner with appropriately adjusted case and exposure categories. 455 

 

Curation of Disease Associated Variants 456 

To explore whether human proteins interacting with SARS-CoV-2 proteins were enriched for disease or 457 

trait associated variants, three datasets were curated; the Human Gene Mutation Database (HGMD)65, 458 

ClinVar66, and the NHGRI-EBI GWAS Catalog67. Disease annotations from HGMD and ClinVar were 459 

obtained directly from their respective downloads pages and mapped to UniProt. For overall enrichment 460 

of individual disease terms among all human proteins interacting with SARS-CoV-2, disease terms were 461 

linked in an ontology based on the NCBI MedGen term relationships 462 

(https://ftp.ncbi.nlm.nih.gov/pub/medgen/MGREL.RRF.gz). When calculating enrichment, counts for 463 
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each term were propagated through all parent nodes up to a singular root node. Significant terms were 464 

reported as the most general term with no more significant ancestor term (Supplemental Table 6, sheet 465 

1). Raw enrichment values for all terms are also predicted (Supplemental Table 6, sheet 2). 466 

 For curation of disease and trait associations from NHGRI-EBI GWAS Catalog 467 

(http://www.ebi.ac.uk/gwas/)67, lead SNPs (p-value<5e-8) for all diseases/traits were retrieved on June 468 

16, 2020. Proxy SNPs in high linkage disequilibrium (LD) (Parameters: R2 > 0.8; pop: “ALL”) for 469 

individual lead SNPs were obtained through programmatic queries to the LDproxy API112, which used 470 

phase 3 haplotype data from the 1000 Genomes Project as reference for calculating pairwise metrics 471 

of LD. Both lead SNPs and proxy SNPs were filtered to only retain missense variants. 472 

Gene-level enrich calculations for disease / trait associated mutations in known interactors for 473 

SARS-CoV-2 and variant-level enrichment at the predicted interaction interfaces (either human-human 474 

interactions or human-viral interactions) were performed as described above. 475 

 

Estimation of ΔΔG from variation at the interfaces 476 

In order to predict the impact of variation at viral-human interaction interfaces on binding affinity, two 477 

sets of ΔΔG predictions were made using PyRosetta46. First, to explore the overall binding energy 478 

contributions of each interface residue, and to predict the impact of all possible mutations along the 479 

interface, a scanning mutation ΔΔG approach was implemented based on protocols described 480 

previously59, 60. The implementation is essentially identical to a demo provided by the PyRosetta 481 

documentation (https://graylab.jhu.edu/pyrosetta/downloads/scripts/demo/D090 Ala scan.py) with one 482 

major exception: interface residues in the original demo are defined using an 8.0 Å inter-chain distance 483 

cutoff, which we overrule with our definition described above. In brief, we iterate over all interface 484 

residues for a given docked structure. For each position, the binding for the interaction from the wildtype 485 

structure is first estimated. The energy for the complex state is estimated following a 486 

PackRotamersMover optimization constrained to only adjust the side-chains of residues within 8.0 Å of 487 

the residue to be mutated. To estimate energy from the unbound state, the chains are first separated 488 

500.0 Å to eliminate any interchain energy contributions, the structures are then optimized and scored 489 
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identically to the complex state. The difference between these two values provides the binding energy 490 

for the wildtype structure. 491 

∆𝐺𝐺𝑊𝑊𝑊𝑊 = 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢 492 

To estimate the binding energy for all 19 amino acid mutations possible at the given position, each 493 

mutation is made iteratively, and the ΔGMut is estimated identically to the wildtype except using the 494 

mutated structures. Finally, the overall impact on binding energy for each mutation is calculated as the 495 

difference between these two binding energies. 496 

∆∆𝐺𝐺 =  ∆𝐺𝐺𝑀𝑀𝑢𝑢𝑀𝑀 −  ∆𝐺𝐺𝑊𝑊𝑊𝑊 497 

The scoring function used for these calculations is as described previously59 using the following weights; 498 

fa_atr=0.44, fa_rep=0.07, fa_sol=1.0, hbond_bb_sc=0.5, hbond_sc=1.0. To account for the 499 

stochasticity of the PackRotamersMover optimization between trials, all ΔΔG values are reported from 500 

an average of 10 independent trials which yielded overall low standard deviation between trials. To 501 

check whether an individual mutation’s average ΔΔG was significantly non-zero, a two-sided z-test 502 

between the 10 independent trials was performed. To account for average impact other same amino 503 

acid mutations at other positions along the interface, each average ΔΔG was z-normalized relative to 504 

the rest of the interface and outliers were called at ≥ 1 standard deviation away from the mean. Mutations 505 

that passed both criteria were identified as significant interface binding affinity hotspots. 506 

 Second, estimates of the overall impact of the cumulative set of mutations between SARS-CoV 507 

and SARS-CoV-2 were made using the same general framework. For each interaction, the binding 508 

energy for the SARS-CoV-2 version of the interaction was estimated identically to the wildtype binding 509 

energy. The binding energy for the SARS-CoV version of the interaction was estimated after applying 510 

all mutations between the two viruses (for simplicity, only amino acid substitutions were applied, a 511 

minority of mutations that comprised insertions or deletions could not be modelled). The only difference 512 

compared to the single mutation ΔΔG calculation was that multiple mutations were applied at once, and 513 

consequentially, the interface packing was done allowing side-chain rotamer optimization for all residues 514 

within 8.0 Å of any of the mutated residues. The ΔΔG values were calculated such that an interaction 515 

predicted to be more stable (lower binding energy) in the SARS-CoV-2 version of the interaction 516 

compared to the SARS-CoV version of the interaction would have a negative ΔΔG. 517 
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∆∆𝐺𝐺 =  ∆𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆2 −  ∆𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆1 518 

To account to stochasticity between trials for these predictions (which notably had a much larger impact 519 

likely due to the decreased constraints on rotamer optimization in these cases), this set of ΔΔG values 520 

was reported as an average of 50 trials. Significant outliers for overall binding affinity change from 521 

SARS-CoV to SARS-CoV-2 were called based on similar criteria to the individual mutations, except the 522 

z-score normalization was performed relative to all other interactions. 523 

 

Protein-ligand Docking Using Smina 524 

The previous viral-human interactome screen by Gordon et al.20 reported 76 candidate drugs targeting 525 

the 332 human proteins. In order to further prioritize this list and search for drugs that share a binding 526 

site with the viral interactor, we performed protein-ligand docking. Among this list, 71 interaction-drug 527 

pairs involving 49 unique drugs that were amenable to docking were identified. To prep for docking, 3D 528 

structures for all ligands were first generated using Open Babel113 and the command: 529 

obabel -:”[SMILES_STRING]” --gen3d -opdb -O [OUT_FILE] -d 530 

Protein-ligand docking was executed using smina114 with the following parameters. The autobox_ligand 531 

option was turned on and centered around the receptor PDB file with an autobox_add border size of 10 532 

Å. The exhaustiveness was set to 40 to increase the number of independent stochastic sampling 533 

trajectories and increase the likelihood of identifying a global minimum. The num_modes was set to 534 

1000 to so that a multitude of lower ranked models could be compared for internal purposes. To reduce 535 

real wall time each docking process was run using 5 CPU cores, although it should be noted runtime is 536 

affected in a strictly linear manner and CPU cores has no impact on net CPU time. Finally, each protein-537 

ligand docking command was repeated 45 times with a unique seed on each interaction. The final smina 538 

command used was as follows: 539 

smina -r [RECEPTOR] -l [LIGAND] --autobox_ligand [RECEPTOR] --autobox_add 10 540 

-o [OUT_FILE] --exhaustiveness 40 --num_modes 1000 --cpu 5 --seed [SEED] 541 

Multiple trials for the same docking problem were performed in order to saturate the ligand binding 542 

search space as thoroughly as possible. Practically speaking this batched docking approach was only 543 

taken so that time spent docking would cycle through each protein-drug pair equally, thus producing 544 
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results from each pair at an even rate. The net effect is merely as if one docking process had been run 545 

for each protein-drug pair with exhaustiveness parameter set to ~2,000. It should be noted that this level 546 

of sampling was overkill relative to common practices and usually a single run with exhaustiveness 547 

ranging from 30-50 would be suffifient114. Docked conformation from all iterations on each protein-drug 548 

pair were compiled into a final set of up to 10 of the best scoring poses. To retain poses that cover 549 

different low-energy binding sites, these poses were selected such that the center of mass of each 550 

docked pose added must be at least 1 Å away from the center of mass of any of the higher ranked 551 

poses. All results described in this manuscript are reported based on only the top ranked pose for each 552 

protein-drug pair. Protein residues involved in the drug binding site were annotated using the same 553 

criteria used to define interface residues. Of note, to include ligand molecules as part of the NACCESS 554 

solvent accessible surface area calculations, the Record Type for all ligand atoms must be manually 555 

changed from HETATM to ATOM. 556 

 

References 

1. COVID-19 Dashboard by the Center for Systems Science and Engineering at Johns 
Hopkins University. 2020  [cited 2020 August 26, 2020]; Available from: 
https://coronavirus.jhu.edu/map.html. 

2. Fehr, A.R. and S. Perlman, Coronaviruses: an overview of their replication and 
pathogenesis. Methods Mol Biol, 2015. 1282: p. 1-23. 

3. Zhou, P., et al., A pneumonia outbreak associated with a new coronavirus of probable 
bat origin. Nature, 2020. 579(7798): p. 270-273. 

4. McIntosh, K. and S. Perlman, Coronaviruses, Including Severe Acute Respiratory 
Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). Mandell, Douglas, 
and Bennett's Principles and Practice of Infectious Diseases, 2015: p. 1928-1936.e2. 

5. Zhou, H., et al., A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains 
Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Curr Biol, 2020. 
30(11): p. 2196-2203 e3. 

6. Gupta, A., et al., Extrapulmonary manifestations of COVID-19. Nat Med, 2020. 26(7): p. 
1017-1032. 

7. Wang, D., et al., Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel 
Coronavirus-Infected Pneumonia in Wuhan, China. JAMA, 2020. 

8. Yang, X., et al., Clinical course and outcomes of critically ill patients with SARS-CoV-2 
pneumonia in Wuhan, China: a single-centered, retrospective, observational study. 
Lancet Respir Med, 2020. 8(5): p. 475-481. 

9. Zhou, F., et al., Clinical course and risk factors for mortality of adult inpatients with 
COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020. 395(10229): p. 
1054-1062. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2020. ; https://doi.org/10.1101/2020.10.13.308676doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.13.308676
http://creativecommons.org/licenses/by-nc-nd/4.0/


10. Palaiodimos, L., et al., Severe obesity, increasing age and male sex are independently 
associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort 
of patients with COVID-19 in the Bronx, New York. Metabolism, 2020. 108: p. 154262. 

11. Ferdinand, K.C. and S.A. Nasser, African-American COVID-19 Mortality: A Sentinel 
Event. J Am Coll Cardiol, 2020. 75(21): p. 2746-2748. 

12. Killerby, M.E., et al., Characteristics Associated with Hospitalization Among Patients 
with COVID-19 - Metropolitan Atlanta, Georgia, March-April 2020. MMWR Morb 
Mortal Wkly Rep, 2020. 69(25): p. 790-794. 

13. Raisi-Estabragh, Z., et al., Greater risk of severe COVID-19 in Black, Asian and Minority 
Ethnic populations is not explained by cardiometabolic, socioeconomic or behavioural 
factors, or by 25(OH)-vitamin D status: study of 1326 cases from the UK Biobank. J 
Public Health (Oxf), 2020. 

14. Moore, J.T., et al., Disparities in Incidence of COVID-19 Among Underrepresented 
Racial/Ethnic Groups in Counties Identified as Hotspots During June 5-18, 2020 - 22 
States, February-June 2020. MMWR Morb Mortal Wkly Rep, 2020. 69(33): p. 1122-
1126. 

15. Mahajan, U.V. and M. Larkins-Pettigrew, Racial demographics and COVID-19 
confirmed cases and deaths: a correlational analysis of 2886 US counties. J Public 
Health (Oxf), 2020. 42(3): p. 445-447. 

16. Pfefferle, S., et al., The SARS-coronavirus-host interactome: identification of cyclophilins 
as target for pan-coronavirus inhibitors. PLoS Pathog, 2011. 7(10): p. e1002331. 

17. Jager, S., et al., Global landscape of HIV-human protein complexes. Nature, 2011. 
481(7381): p. 365-70. 

18. Batra, J., et al., Protein Interaction Mapping Identifies RBBP6 as a Negative Regulator of 
Ebola Virus Replication. Cell, 2018. 175(7): p. 1917-1930 e13. 

19. Shah, P.S., et al., Comparative Flavivirus-Host Protein Interaction Mapping Reveals 
Mechanisms of Dengue and Zika Virus Pathogenesis. Cell, 2018. 175(7): p. 1931-1945 
e18. 

20. Gordon, D.E., et al., A SARS-CoV-2 protein interaction map reveals targets for drug 
repurposing. Nature, 2020. 583(7816): p. 459-468. 

21. Niemann, H.H., et al., Structure of the human receptor tyrosine kinase met in complex 
with the Listeria invasion protein InlB. Cell, 2007. 130(2): p. 235-46. 

22. Hoffmann, M., et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is 
Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020. 181(2): p. 271-280 e8. 

23. Xu, G.G., J. Guo, and Y. Wu, Chemokine receptor CCR5 antagonist maraviroc: 
medicinal chemistry and clinical applications. Curr Top Med Chem, 2014. 14(13): p. 
1504-14. 

24. Hayouka, Z., et al., Inhibiting HIV-1 integrase by shifting its oligomerization equilibrium. 
Proc Natl Acad Sci U S A, 2007. 104(20): p. 8316-21. 

25. Peat, T.S., et al., Small molecule inhibitors of the LEDGF site of human 
immunodeficiency virus integrase identified by fragment screening and structure based 
design. PLoS One, 2012. 7(7): p. e40147. 

26. Maginnis, M.S., Virus-Receptor Interactions: The Key to Cellular Invasion. J Mol Biol, 
2018. 430(17): p. 2590-2611. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2020. ; https://doi.org/10.1101/2020.10.13.308676doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.13.308676
http://creativecommons.org/licenses/by-nc-nd/4.0/


27. Daczkowski, C.M., et al., Structural Insights into the Interaction of Coronavirus Papain-
Like Proteases and Interferon-Stimulated Gene Product 15 from Different Species. J Mol 
Biol, 2017. 429(11): p. 1661-1683. 

28. Yao, J., et al., Mechanism of inhibition of retromer transport by the bacterial effector 
RidL. Proc Natl Acad Sci U S A, 2018. 115(7): p. E1446-E1454. 

29. Zhang, L., et al., Solution structure of the complex between poxvirus-encoded CC 
chemokine inhibitor vCCI and human MIP-1beta. Proc Natl Acad Sci U S A, 2006. 
103(38): p. 13985-90. 

30. Jonker, H.R., et al., Structural properties of the promiscuous VP16 activation domain. 
Biochemistry, 2005. 44(3): p. 827-39. 

31. Card, G.L., et al., Crystal structure of a gamma-herpesvirus cyclin-cdk complex. EMBO 
J, 2000. 19(12): p. 2877-88. 

32. Smith, M., R. Honce, and S. Schultz-Cherry, Metabolic Syndrome and Viral 
Pathogenesis: Lessons from Influenza and Coronaviruses. J Virol, 2020. 

33. Vidal, M., A unifying view of 21st century systems biology. FEBS Lett, 2009. 583(24): p. 
3891-4. 

34. Robinson, C.V., A. Sali, and W. Baumeister, The molecular sociology of the cell. Nature, 
2007. 450(7172): p. 973-82. 

35. Barabasi, A.L., N. Gulbahce, and J. Loscalzo, Network medicine: a network-based 
approach to human disease. Nat Rev Genet, 2011. 12(1): p. 56-68. 

36. Scott, D.E., et al., Small molecules, big targets: drug discovery faces the protein-protein 
interaction challenge. Nat Rev Drug Discov, 2016. 15(8): p. 533-50. 

37. Arkin, M.R., Y. Tang, and J.A. Wells, Small-molecule inhibitors of protein-protein 
interactions: progressing toward the reality. Chem Biol, 2014. 21(9): p. 1102-14. 

38. Rooklin, D., et al., AlphaSpace: Fragment-Centric Topographical Mapping To Target 
Protein-Protein Interaction Interfaces. J Chem Inf Model, 2015. 55(8): p. 1585-99. 

39. Lampson, B.L. and M.S. Davids, The Development and Current Use of BCL-2 Inhibitors 
for the Treatment of Chronic Lymphocytic Leukemia. Curr Hematol Malig Rep, 2017. 
12(1): p. 11-19. 

40. VENCLEXTA combination regimens for CLL work through 2 distinct cytotoxic 
mechanisms of action. 2019; Available from: 
https://www.venclextahcp.com/cll/venclexta-efficacy/mechanism-of-action.html. 

41. Schormann, N., et al., Identification of protein-protein interaction inhibitors targeting 
vaccinia virus processivity factor for development of antiviral agents. Antimicrob Agents 
Chemother, 2011. 55(11): p. 5054-62. 

42. White, P.W., et al., Inhibition of human papillomavirus DNA replication by small 
molecule antagonists of the E1-E2 protein interaction. J Biol Chem, 2003. 278(29): p. 
26765-72. 

43. Goudreau, N., et al., Optimization and determination of the absolute configuration of a 
series of potent inhibitors of human papillomavirus type-11 E1-E2 protein-protein 
interaction: a combined medicinal chemistry, NMR and computational chemistry 
approach. Bioorg Med Chem, 2007. 15(7): p. 2690-700. 

44. Brito, A.F. and J.W. Pinney, Protein-Protein Interactions in Virus-Host Systems. Front 
Microbiol, 2017. 8: p. 1557. 

45. Meyer, M.J., et al., Interactome INSIDER: a structural interactome browser for genomic 
studies. Nat Methods, 2018. 15(2): p. 107-114. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2020. ; https://doi.org/10.1101/2020.10.13.308676doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.13.308676
http://creativecommons.org/licenses/by-nc-nd/4.0/


46. Chaudhury, S., S. Lyskov, and J.J. Gray, PyRosetta: a script-based interface for 
implementing molecular modeling algorithms using Rosetta. Bioinformatics, 2010. 26(5): 
p. 689-91. 

47. Kirchdoerfer, R.N., et al., Stabilized coronavirus spikes are resistant to conformational 
changes induced by receptor recognition or proteolysis. Sci Rep, 2018. 8(1): p. 15701. 

48. Wang, Q., et al., Structural and Functional Basis of SARS-CoV-2 Entry by Using Human 
ACE2. Cell, 2020. 181(4): p. 894-904 e9. 

49. Wrobel, A.G., et al., SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform 
on virus evolution and furin-cleavage effects. Nat Struct Mol Biol, 2020. 27(8): p. 763-
767. 

50. Walls, A.C., et al., Structure, Function, and Antigenicity of the SARS-CoV-2 Spike 
Glycoprotein. Cell, 2020. 181(2): p. 281-292 e6. 

51. Alford, R.F., et al., The Rosetta All-Atom Energy Function for Macromolecular Modeling 
and Design. J Chem Theory Comput, 2017. 13(6): p. 3031-3048. 

52. Shang, J., et al., Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020. 
581(7807): p. 221-224. 

53. Wrapp, D., et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion 
conformation. Science, 2020. 367(6483): p. 1260-1263. 

54. Jordan, R.E. and P. Adab, Who is most likely to be infected with SARS-CoV-2? The 
Lancet Infectious Diseases, 2020. 20(9): p. 995-996. 

55. Cao, Y., et al., Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-
CoV-2) receptor ACE2 in different populations. Cell Discov, 2020. 6: p. 11. 

56. Darbeheshti, F. and N. Rezaei, Genetic predisposition models to COVID-19 infection. 
Med Hypotheses, 2020. 142: p. 109818. 

57. Zhao, Y., et al., 2020. 
58. Karczewski, K.J., et al., The mutational constraint spectrum quantified from variation in 

141,456 humans. Nature, 2020. 581(7809): p. 434-443. 
59. Kortemme, T. and D. Baker, A simple physical model for binding energy hot spots in 

protein-protein complexes. Proc Natl Acad Sci U S A, 2002. 99(22): p. 14116-21. 
60. Shulman-Peleg, A., et al., Spatial chemical conservation of hot spot interactions in 

protein-protein complexes. BMC Biol, 2007. 5: p. 43. 
61. Stawiski, B. and T. Kania, Tests of Concrete Strength across the Thickness of Industrial 

Floor Using the Ultrasonic Method with Exponential Spot Heads. Materials (Basel), 
2020. 13(9). 

62. Procko, E., The sequence of human ACE2 is suboptimal for binding the S spike protein of 
SARS coronavirus 2. bioRxiv, 2020. 

63. Guharoy, M. and P. Chakrabarti, Conserved residue clusters at protein-protein interfaces 
and their use in binding site identification. BMC Bioinformatics, 2010. 11: p. 286. 

64. Gupta, R., et al., SARS-CoV2 (COVID-19) Structural/Evolution Dynamicome: Insights 
into functional evolution and human genomics. bioRxiv, 2020. 

65. Stenson, P.D., et al., Human Gene Mutation Database (HGMD): 2003 update. Hum 
Mutat, 2003. 21(6): p. 577-81. 

66. Landrum, M.J., et al., ClinVar: improving access to variant interpretations and 
supporting evidence. Nucleic Acids Res, 2018. 46(D1): p. D1062-D1067. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2020. ; https://doi.org/10.1101/2020.10.13.308676doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.13.308676
http://creativecommons.org/licenses/by-nc-nd/4.0/


67. Buniello, A., et al., The NHGRI-EBI GWAS Catalog of published genome-wide 
association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res, 
2019. 47(D1): p. D1005-D1012. 

68. Killerby, M.E., et al., Characteristics Associated with Hospitalization Among Patients 
with COVID-19 - Metropolitan Atlanta, Georgia, March-April 2020. MMWR Morb 
Mortal Wkly Rep, 2020. 69(25): p. 790-794. 

69. Yang, J., et al., Prevalence of comorbidities and its effects in patients infected with SARS-
CoV-2: a systematic review and meta-analysis. Int J Infect Dis, 2020. 94: p. 91-95. 

70. Sahni, N., et al., Widespread macromolecular interaction perturbations in human genetic 
disorders. Cell, 2015. 161(3): p. 647-660. 

71. Wang, X., et al., Three-dimensional reconstruction of protein networks provides insight 
into human genetic disease. Nat Biotechnol, 2012. 30(2): p. 159-64. 

72. Sim, N.L., et al., SIFT web server: predicting effects of amino acid substitutions on 
proteins. Nucleic Acids Res, 2012. 40(Web Server issue): p. W452-7. 

73. Adzhubei, I.A., et al., A method and server for predicting damaging missense mutations. 
Nat Methods, 2010. 7(4): p. 248-9. 

74. von Brunn, A., et al., Analysis of intraviral protein-protein interactions of the SARS 
coronavirus ORFeome. PLoS One, 2007. 2(5): p. e459. 

75. Vogel, R.O., et al., Human mitochondrial complex I assembly is mediated by NDUFAF1. 
FEBS J, 2005. 272(20): p. 5317-26. 

76. Janssen, R., et al., CIA30 complex I assembly factor: a candidate for human complex I 
deficiency? Hum Genet, 2002. 110(3): p. 264-70. 

77. Sivan, G., et al., Human genome-wide RNAi screen reveals a role for nuclear pore 
proteins in poxvirus morphogenesis. Proc Natl Acad Sci U S A, 2013. 110(9): p. 3519-
24. 

78. Kaminski, M.M., et al., Mitochondrial reactive oxygen species control T cell activation 
by regulating IL-2 and IL-4 expression: mechanism of ciprofloxacin-mediated 
immunosuppression. J Immunol, 2010. 184(9): p. 4827-41. 

79. van der Made, C.I., et al., Presence of Genetic Variants Among Young Men With Severe 
COVID-19. JAMA, 2020. 

80. Tutuncuoglu, B., et al., The Landscape of Human Cancer Proteins Targeted by SARS-
CoV-2. Cancer Discov, 2020. 10(7): p. 916-921. 

81. Lipovsky, A., et al., Genome-wide siRNA screen identifies the retromer as a cellular 
entry factor for human papillomavirus. Proc Natl Acad Sci U S A, 2013. 110(18): p. 
7452-7. 

82. Filone, C.M., et al., The master regulator of the cellular stress response (HSF1) is 
critical for orthopoxvirus infection. PLoS Pathog, 2014. 10(2): p. e1003904. 

83. Warner, N., et al., A genome-wide small interfering RNA (siRNA) screen reveals nuclear 
factor-kappaB (NF-kappaB)-independent regulators of NOD2-induced interleukin-8 (IL-
8) secretion. J Biol Chem, 2014. 289(41): p. 28213-24. 

84. Huttlin, E.L., et al., Architecture of the human interactome defines protein communities 
and disease networks. Nature, 2017. 545(7655): p. 505-509. 

85. Sun, M.S., et al., TMED2 Potentiates Cellular IFN Responses to DNA Viruses by 
Reinforcing MITA Dimerization and Facilitating Its Trafficking. Cell Rep, 2018. 25(11): 
p. 3086-3098 e3. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2020. ; https://doi.org/10.1101/2020.10.13.308676doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.13.308676
http://creativecommons.org/licenses/by-nc-nd/4.0/


86. Sicari, D., et al., Role of the early secretory pathway in SARS-CoV-2 infection. J Cell 
Biol, 2020. 219(9). 

87. Liu, X.Y., et al., Tom70 mediates activation of interferon regulatory factor 3 on 
mitochondria. Cell Res, 2010. 20(9): p. 994-1011. 

88. Fellay, J., et al., A whole-genome association study of major determinants for host 
control of HIV-1. Science, 2007. 317(5840): p. 944-7. 

89. Fragoza, R., et al., Extensive disruption of protein interactions by genetic variants across 
the allele frequency spectrum in human populations. Nat Commun, 2019. 10(1): p. 4141. 

90. Eswar, N., et al., Comparative protein structure modeling using Modeller. Curr Protoc 
Bioinformatics, 2006. Chapter 5: p. Unit-5 6. 

91. Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3): p. 403-
10. 

92. Berman, H.M., et al., The Protein Data Bank. Nucleic Acids Res, 2000. 28(1): p. 235-42. 
93. Mosca, R., A. Ceol, and P. Aloy, Interactome3D: adding structural details to protein 

networks. Nat Methods, 2013. 10(1): p. 47-53. 
94. Gasteiger, E., et al., Protein Identification and Analysis Tools on the ExPASy Server. (In) 

John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press (2005), 2005: 
p. 571-607. 

95. Lin, J., Divergence measures based on the Shannon entropy. IEEE Transactions on 
Information Theory, 1991. 37(1): p. 145-151. 

96. Capra, J.A. and M. Singh, Predicting functionally important residues from sequence 
conservation. Bioinformatics, 2007. 23(15): p. 1875-82. 

97. Morcos, F., et al., Direct coupling analysis for protein contact prediction. Methods Mol 
Biol, 2014. 1137: p. 55-70. 

98. Lockless, S.W. and R. Ranganathan, Evolutionarily conserved pathways of energetic 
connectivity in protein families. Science, 1999. 286(5438): p. 295-9. 

99. Pieper, U., et al., ModBase, a database of annotated comparative protein structure 
models and associated resources. Nucleic Acids Res, 2014. 42(Database issue): p. D336-
46. 

100. Lee, B. and F.M. Richards, The interpretation of protein structures: estimation of static 
accessibility. J Mol Biol, 1971. 55(3): p. 379-400. 

101. Pierce, B.G., Y. Hourai, and Z. Weng, Accelerating protein docking in ZDOCK using an 
advanced 3D convolution library. PLoS One, 2011. 6(9): p. e24657. 

102. Pedregosa, F., et al., Scikit-learn: Machine Learning in Python. Journal of Machine 
Learning Research, 2011. 12(1532-4435): p. 2825–2830. 

103. Gray, J.J., High-resolution protein-protein docking. Curr Opin Struct Biol, 2006. 16(2): 
p. 183-93. 

104. UniProt, C., UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res, 2019. 
47(D1): p. D506-D515. 

105. He, R., et al., Analysis of multimerization of the SARS coronavirus nucleocapsid protein. 
Biochem Biophys Res Commun, 2004. 316(2): p. 476-83. 

106. Wu, F., et al., A new coronavirus associated with human respiratory disease in China. 
Nature, 2020. 579(7798): p. 265-269. 

107. Chan, J.F., et al., Genomic characterization of the 2019 novel human-pathogenic 
coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg 
Microbes Infect, 2020. 9(1): p. 221-236. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2020. ; https://doi.org/10.1101/2020.10.13.308676doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.13.308676
http://creativecommons.org/licenses/by-nc-nd/4.0/


108. Needleman, S.B. and C.D. Wunsch, A general method applicable to the search for 
similarities in the amino acid sequence of two proteins. J Mol Biol, 1970. 48(3): p. 443-
53. 

109. Henikoff, S. and J.G. Henikoff, Amino acid substitution matrices from protein blocks. 
Proc Natl Acad Sci U S A, 1992. 89(22): p. 10915-9. 

110. McLaren, W., et al., The Ensembl Variant Effect Predictor. Genome Biol, 2016. 17(1): p. 
122. 

111. Szumilas, M., Explaining odds ratios. J Can Acad Child Adolesc Psychiatry, 2010. 19(3): 
p. 227-9. 

112. Machiela, M.J. and S.J. Chanock, LDlink: a web-based application for exploring 
population-specific haplotype structure and linking correlated alleles of possible 
functional variants. Bioinformatics, 2015. 31(21): p. 3555-7. 

113. O'Boyle, N.M., et al., Open Babel: An open chemical toolbox. J Cheminform, 2011. 3: p. 
33. 

114. Koes, D.R., M.P. Baumgartner, and C.J. Camacho, Lessons learned in empirical scoring 
with smina from the CSAR 2011 benchmarking exercise. J Chem Inf Model, 2013. 53(8): 
p. 1893-904. 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2020. ; https://doi.org/10.1101/2020.10.13.308676doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.13.308676
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Table Headings 557 

Supplemental Table 1. List of ECLAIR predicted interface residues. 558 

Supplemental Table 2. List of guided docking annotated interface residues. 559 

Supplemental Table 3. List of human population variants reported by gnomAD. 560 

Supplemental Table 4. List of sequence divergences between SARS-CoV and SARS-CoV-2. 561 

Supplemental Table 5. Enrichment for sequence variation on SARS-CoV-2-human interfaces. 562 

Supplemental Table 6. Enrichment for individual disease terms in human interactors of SARS-563 

CoV-2. 564 

Supplemental Table 7. Predicted ΔΔG between SARS-CoV and SARS-CoV-2 versions of all 565 

docked interactions. 566 

Supplemental Table 8. Predicted ΔΔG impact of all human population variants at the interface. 567 

Supplemental Table 9. List of all predicted drug-target binding sites . 568 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2020. ; https://doi.org/10.1101/2020.10.13.308676doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.13.308676
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2020. ; https://doi.org/10.1101/2020.10.13.308676doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.13.308676
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Enrichment and predicted impact of divergences between SARS-CoV and SARS-CoV-2 569 

along the S-ACE2 interface. 570 

a, Co-crystal structure of the interaction between SARS-CoV-2 Spike protein (S) with human ACE2 571 

(PDB 6LZG). All 15 sequence divergences between SARS-CoV and SARS-CoV-2 Spike protein 572 

interfaces are highlighted as red spheres while all 6 population variants  on the ACE2 protein interface 573 

are highlighted as green (ACE2_S19P), cyan (ACE2_T27A), blue (ACE2_E35K), purple (ACE2_E37K), 574 

yellow (ACE2_M82I), and orange (ACE2_G326E) spheres. Enrichment of these variants on the interface 575 

are reported for SARS-CoV-2 (Log2OR=2.82, p=1.97e-5) and human (Log2OR=0.38, p=0.30) shown to 576 

the right. Error bars indicate ± SE. b, c, Zoomed in interface views for the SARS-CoV S-ACE2 structure 577 

(PDB 6CS2) and SARS-CoV-2 S-ACE2 structure (PDB 6LZG). Sequence divergences between the two 578 

Spike proteins are highlighted as red sticks. Inter-protein polar contacts that contribute to stabilizing the 579 

interaction are shown as yellow dashed lines. The binding energy (ΔG) of each interaction was 580 

estimated using PyRosetta and the change in this binding energy (ΔΔG) is reported. The negative value 581 

(ΔΔG=-14.66 Rosetta Energy Units (REU)) indicates the interaction is more stable (lower energy) in the 582 

SARS-CoV-2 version of the interaction. d, Comparison of the impact of each of the ACE2 population 583 

variants. Mutated structures containing the population variant are shown over the original structure 584 

(magenta). The mutated residue is shown as sticks. Residues whose predicted impact on binding energy 585 

was affected are colored from blue (decreased ΔΔG) to white (no change) to red (increased ΔΔG). The 586 

gnomAD reported allele frequency and predicted ΔΔG for each mutation are reported. Outlines of each 587 

structures are consistent with the spheres in a. 588 
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Figure 2. Enrichment of sequence divergences and disease mutations across all SARS-CoV-2-589 

Human interaction interfaces. 590 

a, Overall enrichment for viral sequence divergence along viral-human (V:H, Log2OR=-0.37, p=9.76e-591 

3) interfaces and human population variants along human-viral (H:V, Log2OR=-0.16, p=3.47e-5) or 592 

human-human (H:H, Log2OR=-0.13, p=2.67e-3) interfaces at an interactome level. Error bars indicate 593 

± SE. b, c, Individual enrichment for human population variants and viral sequence divergences 594 

respectively on all SARS-CoV-2-human interaction interfaces. Interactions are sorted from most 595 

depleted to most enriched. The x-axis is skewed to compress non-significant interactions. Only 596 

interfaces with statistically significant enrichment or depletion are shown as bars and labeled. The 597 

remainder are shown as Log2OR (line) and error bars (colored area). Error bars indicate ± SE. d, 598 

Comparison of the percentage of human genes that interact with (green) or do not interact with (orange) 599 

SARS-CoV-2 that contain disease annotations in HGDM (Log2OR=0.57, p=1.70e-4), ClinVar 600 

(Log2OR=0.64, p=1.05e-4), and GWAS (Log2OR=0.89, p=4.54e-5) respectively. Genes targeted by 601 

SARS-CoV-2 proteins were significantly more likely to harbor disease mutations than non-interactors. 602 

Error bars indicate ± SE. e, A sample of individual disease terms enriched in human genes targeted by 603 

SARS-CoV-2. Full results are reported in Supplemental Table 6. Error bars indicate ± SE. f, 604 

Comparison of the enrichment of HGDM, ClinVar, and GWAS annotated mutations on human-vial 605 

interfaces or human-human interfaces for the same gene set. Although disease mutations were enriched 606 

on human-human interfaces (HGMD, Log2OR=0.82, p<1e-20; ClinVar, Log2OR=-0.13, p=0.24), no 607 

enrichment was observed on human-viral interfaces (HGMD, Log2OR=0.21, p=0.13; ClinVar, 608 

Log2OR=0.51, p<e-20). The GWAS category was removed from this analysis because most lead GWAS 609 

SNPs occurred in non-coding regions. Error bars indicate ± SE. 610 
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Figure 3. Predicted impact of sequence divergences on the binding affinity of SARS-CoV-2-611 

Human interactions. 612 

a, Predicted changes in binding affinity from sequence divergences between SARS-CoV and SARS-613 

CoV-2 on SARS-CoV-2-human interactions were predicted in PyRosetta. An overall representation of 614 

these ΔΔG predictions is reported (mean=-1.40 REU, std=6.16 REU) with interactions sorted from those 615 

with the largest decrease in binding energy (most stabilized relative to SARS-CoV) to those with the 616 

largest increase in binding energy (most destabilized relative to SARS-CoV). Outlier interactions with 617 

the change in binding energy at least one standard deviation from the mean are labeled. b, Distribution 618 

of the predicted binding affinity change from all human population variants on a SARS-CoV-2-human 619 

interface. Values were z-score normalized across each interface. Interface binding energy hotspots 620 

were binned as strongly disruptive (z-score ≥ 2, n=74), disruptive (1 ≤ z-score < 2, n=87), stabilizing (-621 

2 < z-score ≤ -1, n=85), or strongly stabilizing (z-score ≤ -2, n=31). All other population variants (-1 < z-622 

score < 1, n=1,964) showed minimal impact of binding affinity. c, Breakdown of the contribution of each 623 

term in the PyRosetta energy function used for in-silico scanning mutagenesis for all population variants. 624 

Distributions for each term are shown on the left. A breakdown of which term contributed most heavily 625 

to the classification of all 277 interface hotspot population variants is shown on the right. d, Individual 626 

SARS-CoV-2-human interactions involving the same viral protein can have distinct interfaces with 627 

distinct predicted changes in binding affinity between SARS-CoV and SARS-CoV-2 versions of the 628 

protein. An example involving orf9b is highlighted where some interactions (e.g. TOMM70 and PTBP2) 629 

are predicted to be more stabilized in SARS-CoV-2 whereas others (e.g. BAG5, SLC9A3R1, and 630 

MARK2) are predicted to me unaffected. e, Docked structure for the interaction between SARS-CoV-2 631 

orf9c and human NDUFAF1, alongside comparisons of the predicted interface using SARS-CoV (top) 632 

or SARS-CoV-2 (bottom) orf9c. Interface residues are colored by their predicted energy contribution 633 

from blue (stabilizing) to white (no impact) to red (destabilizing). Residues that differ between SARS-634 

CoV and SARS-CoV-2 are labeled in red, while other residues with a major contribution to the binding 635 

affinity are labeled in green (NDUFAF1) or blue (orf9c). The overall predicted change in binding energy 636 

(ΔΔG=-21.7 REU) suggests the interaction is more stable (lower energy) in the SARS-CoV-2 version of 637 

the interaction.  638 
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Figure 4. Drug Docking and Prioritization of SARS-CoV-2-Human Interaction Inhibitors  639 
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Figure 5. 3D-SARS2 Structural Interactome Browser Overview. 640 

Overview of the main results page for exploring a given interaction in our 3D-SARS2 structural 641 

interactome browser. The main display contains information for both the SARS-CoV-2 and human 642 

proteins including structural displays for either the docked or single crystal structures as well as a table 643 

summarizing the interface residues for both proteins. Interface residues are colored dark blue and dark 644 

green for the viral and human proteins respectively. By default the page will display the docked structure 645 

if available. The display can be toggled between docked structures and single structures using the 646 

button in the bottom middle. When single structures display is selected residues will instead be colored 647 

based on the initial ECLAIR interface definition. Four categories of expandable panels containing 648 

additional analyses are provided. upper left, The interface view shows a linear representation of the 649 

protein sequence with interface residues annotated in dark blue or dark green. Interfaces for other 650 

interactors of the protein are shown underneath for easy comparison. upper right, The mutations panel 651 

summarizes either human population variants or viral sequence divergences on the protein. Mutations 652 

on the interface are labeled. lower left, The ΔΔG information panel summarizes the results from in-653 

silico mutagenesis scanning along the interface. Results for each mutation are z-score normalized 654 

relative to the rest of the interface and colored on a blue (negative ΔΔG, stabilizing) to yellow (minimal 655 

impact) to red (positive ΔΔG, destabilizing). The heatmap can be filtered to only show values 656 

corresponding to known mutations on the interface. 657 
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Supplemental Figure 1. Homology modeling for SARS-CoV-2 proteins. 658 

a-r, Homology models for 18 SARS-CoV-2 proteins amenable to homology modeling. The first bar under 659 

each model indicates the overall coverage of the SARS-CoV-2 protein. The underlying bars indicate 660 

template utilization across the structure. The template bars are colored based on the alignment between 661 

the template and the corresponding SARS-CoV-2 where green indicates identical sequence, blue 662 

indicates a mismatch with positive BLOSUM substitution score, and red indicates a mismatch with a 663 

negative BLOSUM substitution score. 664 
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Supplemental Figure 2. Summary of ECLAIR and guided docking interface predictions. 665 

a, Breakdown of best ECLAIR classifier used in interface prediction per interaction. The top section 666 

indicates which features are used by each classifier. The total breakdown of classifier usage for 667 

prediction of viral interfaces (blue) and human interfaces on human-viral (green) or native human-human 668 

(orange) interactions are shown either in bar plot (middle) or as pie charts (bottom). b, Identical 669 

breakdown, but reported at a per-residue rather than per-interaction level. c, d, Summary of ECLAIR 670 

prediction scores across viral, human, and native human-human interfaces presented as either a raw 671 

distribution or a cumulative density respectively. Plots are colored based on corresponding ECLAIR 672 

confidence bins in each range of the plot. e, Breakdown of the overall ECLAIR confidence bin 673 

representation among the three classes. Overall, ECLAIR classification predictions were generally 674 

similar between the three classes of interface, although a higher fraction of predictions made on viral 675 

interfaces were made with high or medium confidence. f, Distribution of the size of all interfaces defined 676 

by ECLAIR compared among the three classes. g, Distribution of viral or human interfaces defined by 677 

guided docking. 678 
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Supplemental Figure 3. Visual representation of the guided docking protocol used. 679 

For each SARS-CoV-2-human interaction with 3D structure available for both proteins, 50 independent 680 

guiding docking trials were used to select a final docked configuration. The structure for the viral protein 681 

is colored from white to blue with darker blue corresponding to higher ECLAIR prediction. The structure 682 

for the human protein is colored similarly using a green to white gradient. Initial semi-random docked 683 

configurations were generated using five steps. First a plane separating ECLAIR predicted likely 684 

interface from likely non-interface residues was drawn to divide each protein. Second, the two protein 685 

chains were separated 5 Å apart on the y-axis using the previously defined plane to orient the likely 686 

interface sides of each protein towards each other. Third, the human protein was randomly rotated up 687 

to 360° along the y-axis to sample different orientations of the two interfaces relative to each other. 688 

Fourth, the human protein was randomly rotated up to 30° along the x- and z-axes with the point of 689 

rotation centered on the viral protein. Fifth a random translation up to 5 Å was applied to the human 690 

protein along the x- and z-axes. The first two steps constitute the ECLAIR-based guiding of the docking 691 

space. The last three steps serve to randomly perturb the initial docking configurations to sample the 692 

space near the ECLAIR predicted interface. After this initial perturbation docking is performed using a 693 

combination of low resolution and high-resolution scoring. During the low-resolution scoring, the proteins 694 

are initially converted to a centroid representation and slid into contact. During the high-resolution 695 

scoring, the proteins are converted back to a full-atom representation and the contact and side-chain 696 

packing is optimized. The best (lowest) scored docked pose is retained and used for docked interface 697 

definition. 698 
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Supplemental Figure 4. Summary of human population variant frequency and deleteriousness. 699 

a, b, Summary of allele frequency for human population variants either on or off the predicted human-700 

viral interface presented as either a raw distribution or a cumulative density respectively. Variants in 701 

either category had roughly identical allele frequency distributions. c, d, Summary of the SIFT 702 

deleteriousness score for human population variants either on or off the predicted human-viral interface 703 

presented as either a raw distribution or a cumulative density respectively. Plots are colored based on 704 

the split between SIFT tolerated and deleterious categories. e, Pie chart breakdown of these categories. 705 

Pie char outlines distinguish interface (green) from non-interface (orange). Population variants on the 706 

interface were significantly more likely to be classified deleterious. f, g, Summary of the PolyPhen 707 

deleteriousness score for human population variants either on or off the predicted human-viral interface 708 

presented as either a raw distribution or a cumulative density respectively. Plots are colored based on 709 

the split between PolyPhen benign, possibly damaging, and probably damaging categories. e, Pie chart 710 

breakdown of these categories. Pie char outlines distinguish interface (green) from non-interface 711 

(orange). Population variants on the interface were significantly more likely to be classified probably 712 

damaging. 713 
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