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Abstract 20 
Whole Genome Sequence (WGS) data from bacterial species is used for a variety of applications 21 
ranging from basic microbiological research to diagnostics, and epidemiological surveillance. 22 
The availability of WGS data from hundreds of thousands of individual isolates of a given 23 
microbial species poses a tremendous opportunity for discovery and hypothesis-generating 24 
research, but such opportunity is limited by scalability and user-friendliness of existing pipelines 25 
for population-scale inquiry. Here, we present ProkEvo, an automated, scalable, and open-source 26 
framework for bacterial population genomics analyses using WGS data. ProkEvo was 27 
specifically developed to achieve the following goals: 1) Automating and scaling the 28 
computational analysis of many thousands of bacterial genomes starting from raw Illumina 29 
paired-ended reads; 2) Using workflow management systems (WMS) such as Pegasus WMS to 30 
ensure reproducibility, scalability, modularity, fault-tolerance, and robust file management 31 
throughout the process; 3) Utilizing high-performance and high-throughput computational 32 
platforms; 4) Generating population-based genotypic analysis at different levels of resolution 33 
using the core-genome as an input, and allelic-based or Bayesian statistical tools as classification 34 
methods; and 5) Detecting antimicrobial resistance (AMR) genes using varying databases, 35 
putative virulence factors, plasmids, and producing pan-genome annotations and data 36 
compilation that can be further utilized for analysis. The scalability of ProkEvo is shown by 37 
using two datasets with significantly different genome sizes – one with ~2,400 genomes, and the 38 
second one an order of magnitude larger containing ~23,000 genomes. Because of its modularity, 39 
the running time of ProkEvo varied from ~3-26 days depending on the dataset and the 40 
computational platform used. However, if all ProkEvo steps were ran sequentially, the running 41 
time would have varied from ~3 months to 13 years. While the running time depends on multiple 42 
factors, there is a significant advantage of using such scalable, parallelizable, and automated 43 
pipeline. ProkEvo can be used with virtually any bacterial species and the Pegasus WMS enables 44 
easy addition or removal of programs from the workflow or modification of options within them. 45 
To show this, we used ProkEvo with three important serovars of the foodborne pathogen 46 
Salmonella enterica, as well as Campylobacter jejuni and Staphylococcus aureus. These three 47 
pathogens all used different MLST scheme, and the program SISTR, which among many 48 
functions does cgMLST calls, was only applied to the S. enterica serovars. All the dependencies 49 
of ProkEvo can be distributed via conda environment or Docker image. To demonstrate 50 
ProkEvo’s applicability, we have carried a population-based analysis along with the distribution 51 
of antimicrobial-associated resistance loci across datasets, and showed how to combine 52 
phylogenies with metadata using reproducible Python and R scripts. Collectively, our study 53 
shows that ProkEvo presents a viable option for scaling and automating analyses of bacterial 54 
populations with direct applications for basic microbiology research, clinical microbiological 55 
diagnostics, and epidemiological surveillance.  56 
 57 
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Introduction 59 
Due to the advances in WGS technology, decreasing costs, and the proliferation of publicly 60 
available tools and genomics datasets, the field of bacterial genomics has evolved rapidly from 61 
comparative analysis of a few strains of a given species, to analyzing many thousands of 62 
genomes [1,2,3,5]. The applications of WGS-based genomics are many, ranging from basic 63 
research, public health, pathogen surveillance, clinical diagnostics, and ecological and 64 
evolutionary studies of pathogenic and non-pathogenic species [3,4]. Indeed, use of WGS by 65 
public health agencies is becoming the standard for epidemiological surveillance, outbreak 66 
detection, and source-tracking by providing unprecedented levels of resolution and accuracy 67 
[6,7,8]. 68 
    Within the context of public health, WGS data from populations of pathogenic bacteria such 69 
as Salmonella enterica, Campylobacter jejuni and Staphylococcus aureus (when collected 70 
temporally from clinical samples, food animals, and food production environments) also create 71 
opportunity for ecological and evolutionary inquiry at unprecedented scales of genomic 72 
resolution. Powered statistically by the large number of genomes available from surveillance, the 73 
data can also be used for complex evolutionary inquiry and predicting features of the genomic 74 
architecture that may have been fixed in certain populations due to selection and ecological 75 
adaptation in these environments [9,10]. Genomic segments under different patterns of selection 76 
or associated with distinct populations based on serovars [13,14], or genotypes at different scales 77 
of resolution [15], can further be tested in silico to predict potential functional characteristics of 78 
populations (e.g. antimicrobial resistance (AMR) [11], virulence and metabolic attributes 79 
[10,12]), leading to important hypotheses about the selective forces that are shaping these 80 
populations.  81 
    Currently, there are small number of automated pipelines available for analysis and genotypic 82 
classification of bacterial genomes: EnteroBase [17], TORMES [18], Nullarbor [19], ASA3P 83 
[20]. These pipelines each have unique advantages, but differ in the programming language used, 84 
the size and type of supported input data, the supported bioinformatics tools, and the 85 
computational platform used. Accordingly, these pipelines support different types of biological 86 
inquiry. Our work was motivated by the need for a scalable WGS pipeline that can be used 87 
broadly for population-based inquiry (ecological, evolutionary, epidemiological). To 88 
accommodate the complex combinations of multiple, sequential steps, where each step performs 89 
different task and requires different software, we developed a pipeline managed by a Workflow 90 
Management System (WMS) [21,22,23,24], which facilitates with managing massive numbers of 91 
computational operations in high-performance computing environments, including University or 92 
publicly available clusters [25,26], clouds [27], or distributed grids [28,29].   93 
    In this paper, we describe ProkEvo – an automated and user-friendly pipeline for population-94 
based inquiry of bacterial species that is managed through the Pegasus WMS and is portable to 95 
computing clusters, clouds, and distributed grids. ProkEvo works with raw paired-ended Illumina 96 
reads, and is composed of multiple sequential steps. These steps include trimming and quality 97 
control, as well as serovar prediction in the case of Salmonella, Multilocus-sequence typing 98 
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(MLST) using seven or approximately 300 loci, Bayesian genomic admixture analysis at 99 
different scales of resolution, screening for AMR and putative virulence genes, plasmid 100 
identification, and pan-genome analysis.  101 
    Here, we show the utility and adaptability of ProkEvo for basic metrics of population genetic 102 
analysis of using three serovars of the enteric pathogen S. enterica (serovars Typhimurium, 103 
Newport and Infantis), as well as foodborne pathogens C. jejuni and S. aureus. We test the 104 
scalability and modularity of ProkEvo by using two datasets with ~2,400 and ~23,000 genomes 105 
each. In order to show portability and implications to performance, these analyses were each 106 
performed on two different computational platforms, the University of Nebraska high-107 
performance computing cluster (Crane) and the Open Science Grid (OSG), a distributed, high-108 
throughput cluster. Additionally, we take an extra step and provide some initial guidance to 109 
researchers on how to utilize a few of the output files generated by ProkEvo to perform 110 
meaningful population-based analyses in a reproducible fashion using a combination of R and 111 
Python scripts. Combined, ProkEvo presents a reliable, efficient, and practical platform for 112 
researchers performing bacterial population genomics analyses that can lead to novel discoveries 113 
of candidate loci or genotypes of ecological relevance, while generating testable hypothesis 114 
related to physiological and virulence attributes of a given population. 115 
 116 
Materials & Methods 117 
 118 
Overview of ProkEvo 119 
The ProkEvo pipeline is capable of processing tens of thousands of raw, paired-end Illumina 120 
reads obtained from NCBI utilizing high-performance and high-throughput computational 121 
resources. The pipeline is composed of two sub-pipelines: 1) The first sub-pipeline performs the 122 
standard genomics analyses, such as sequence trimming, de novo assembly, and quality control; 123 
2) The second sub-pipeline uses the assemblies that have passed the quality control and performs 124 
specific population-based classifications (serotype prediction specifically for Salmonella, 125 
genotype classification at different scales of resolution, analysis of core- and pan-genomic 126 
content). Pegasus WMS manages and splits each sub-workflow into as many independent tasks 127 
as possible to take advantage of many computational resources. 128 
    A text file of SRA identifications corresponding to the raw Illumina reads deposited to the 129 
Sequence Read Archive (SRA) database in NCBI (NCBI SRA) is used as an input to the 130 
pipeline. The first step of the pipeline and the first sub-workflow is downloading genome data 131 
from NCBI SRA [30]. This is done using the package parallel-fastq-dump [31]. The SRA files 132 
are downloaded using the prefetch utility, and the downloaded files are converted into paired-end 133 
fastq reads using the program parallel-fastq-dump. While the SRA Toolkit [30] provides the 134 
same functionality, this toolkit can be slow sometimes and show intermittent timeout errors, 135 
especially when downloading many files. parallel-fastq-dump is a wrapper for SRA Toolkit that 136 
speeds the process by dividing the conversion to fastq files into multiple threads. After the raw 137 
paired-end fastq files are generated, quality trimming and adapter clipping is performed using 138 
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Trimmomatic [32]. FastQC is used to check and verify the quality of the trimmed reads [33]. 139 
FastQC is run independently for each paired-end dataset and all output files are concatenated at 140 
the end for a summary. The paired-end reads are assembled de novo into contigs using SPAdes 141 
[34]. These assemblies are generated using the default parameters. The quality of the assemblies 142 
is evaluated using QUAST [35]. The information obtained from QUAST is used to discard 143 
assemblies with 0 or more than 300 contigs, or assemblies with N50 value of less than 25,000. 144 
The filtering of the assemblies concludes the first part or first sub-pipeline of the workflow. Each 145 
of these steps is independent of the input data and each task is performed on one set of paired-146 
end reads using one computing core. This makes the analyses modular and suitable for high-147 
throughput resources with many available cores. Moreover, having many independent tasks 148 
significantly reduces the memory and time requirements while generating the same results as 149 
when the analyses are done sequentially. Theoretically, if a dataset has 2,000 paired-end reads 150 
and a computational platform has 2,000 available cores, ProkEvo can scale and utilize all these 151 
resources at the same time. Needless to say, this is extremely important for any real-time large-152 
scale population genomics analyses. 153 
    The second sub-pipeline uses the assemblies that passed the quality control to perform more 154 
specific population-based characterizations, including genotypic classifications, serovar 155 
prediction exclusively for Salmonella, gene-based annotations, and pan-genome outputs. 156 
PlasmidFinder is used to identify plasmids in the assemblies [36]. PlasmidFinder comes with 157 
curated database of plasmid replicons to identify plasmids in sequences from the 158 
Enterobacteriaceae species. SISTR is used for Salmonella only and produces serovar prediction 159 
and in silico molecular typing by determination of antigen gene and core-genome multilocus 160 
sequence typing (cgMLST) gene alleles [14]. SISTR generates multiple output files. The one we 161 
are interested the most for further downstream analyses is the primary output file named 162 
sistr_output.csv. The filtered assemblies are annotated using Prokka [37]. Prokka comes with a 163 
set of core and HMM databases for the most common bacterial species. If needed, one can 164 
customize and create their own annotation database. In addition to the other files, Prokka 165 
produces annotation files in GFF3 format that are used with Roary [38] to calculate the pan-166 
genome and generate the core-genome alignment. The produced core-genome alignment file is 167 
then used with fastbaps, an improved version of the BAPS clustering method [39], to 168 
hierarchically cluster the genetic sequences from the multiple sequence alignment in varying 169 
numbers of stratum. Multilocus-sequence typing is performed using MLST [40]. Here, the 170 
isolates are characterized by being compared to sequences of seven ubiquitous, house-keeping 171 
genes [41] using the filtered genome assemblies. In addition to these analyses, the filtered 172 
assemblies are screened for AMR and virulence associated genes using ABRicate [42]. 173 
ABRicate comes with multiple comprehensive gene-based mapping databases, and the ones used 174 
in ProkEvo are NCBI [43], CARD [44], ARG_ANNOT [45], Resfinder [46], and VFDB [47]. 175 
Prokka, SISTR, PlasmidFinder, MLST, and ABRicate are independent of each other, and they 176 
are all run simultaneously in parallel. Moreover, Prokka, SISTR and PlasmidFinder perform their 177 
computations per filtered assembly, while MLST and ABRicate require all filtered assemblies to 178 
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be used together. Running multiple independent jobs simultaneously is one of the key factors to 179 
maximize computational efficiency. At the end, once the SISTR analyses finish for all 180 
assemblies, the generated independent sistr_output.csv files are concatenated. This aggregation 181 
of files can be done because the genome annotation to serovars and cgMLST lineages done by 182 
SISTR occurs completely independent for each genome. Each tool executed in ProkEvo is run 183 
with specific options. While the options used in this paper fit the presented case studies, these 184 
options are easily adjustable and configurable in the pipeline. Because we developed ProkEvo 185 
initially for studying the bacterial pathogen Salmonella enterica, due to our specific needs, the 186 
pipeline was specifically designed to implement SISTR, which accurately assigns serovar based 187 
on the Kauffman-White scheme [56]. However, the overall pipeline is not specific to this 188 
bacterial species and other serotype prediction modules can be substituted for SISTR to 189 
accommodate user-specific needs. Additionally, MLST program can be directed to other species-190 
specific sets of genetic loci, as shown with the Campylobacter jejuni and Staphylococcus aureus 191 
datasets. Or else, the user may decide to bypass genotype-calling tools altogether, and carry out 192 
other types of analyses. ProkEvo is amenable to such modifications. 193 
    The modularity of ProkEvo allows us to decompose the analyses into multiple tasks, some of 194 
which can be run in parallel, and utilize a WMS. ProkEvo is dependent on many well-developed 195 
bioinformatics tools and databases which setup and installation are not trivial. In order to ease 196 
this process, reduce the technical complexity, and allow reproducibility, we provide two software 197 
distributions for ProkEvo. The first distribution is a conda environment that contains all software 198 
dependencies [48], and the second one is a Docker image that can be used with Singularity [49]. 199 
Both distributions are supported by the majority of computational platforms and integrate well 200 
with ProkEvo, and can be easily modified to include other tools and steps. The code for 201 
ProkEvo, and both the conda environment and the Docker image, are publicly available at our 202 
GitHub repository (https://github.com/npavlovikj/ProkEvo). 203 
 204 
Pegasus Workflow Management System 205 
ProkEvo uses the Pegasus WMS which is a framework that automatically translates abstract, 206 
high-level workflow description into concrete efficient scientific workflow, that can be executed 207 
on different computational platforms, such as clusters, grids, and clouds. The abstract workflow 208 
of Pegasus WMS contains information and description of all executable files (transformations) 209 
and logical names of the input files used by the workflow. On the other hand, the concrete 210 
workflow specifies the location of the data and the execution platform [24]. The workflow is 211 
organized as a directed acyclic graph (DAG), where the nodes are the tasks and the edges are the 212 
dependencies. Next, the workflow is submitted using HTCondor [50]. Pegasus WMS uses DAX 213 
(directed acyclic graph in XML) files to describe an abstract workflow. These files can be 214 
generated using programming languages such as Java, Perl, or Python. The high-level of 215 
abstraction of Pegasus allows scientists to ignore low-level configurations required by the 216 
underlying execution platforms. Pegasus WMS is an advanced system that supports data 217 
management and task execution in automated, reliable, efficient, and scalable manner. This 218 
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whole process is monitored, and the workflow data is tracked and staged. The requested output 219 
results are presented to the researchers, while all intermediate data can be removed or re-used. In 220 
case of errors, jobs are automatically retried. If the errors persist, a checkpoint file is produced so 221 
the job can be resubmitted and resumed. Pegasus WMS supports sub-workflows, task clustering 222 
and defining memory and time resources per task. Pegasus WMS generates web dashboard for 223 
each workflow for better workflow monitoring, debugging, and analyzing. Pegasus WMS comes 224 
with a set of useful command-line tools that help researchers to submit and analyze workflows 225 
and generate useful statistics and plots about the workflow performance, running time, and 226 
machines used. 227 
    ProkEvo uses Python to create the workflow description. Each step of the pipeline is a 228 
computational job represented as a node in the DAG. Two nodes are connected with an edge if 229 
the two jobs need to be run one after another. The input and output files are defined in the DAG 230 
as well. All the jobs that are not dependent on each other can be run concurrently. Each job uses 231 
its own predefined script that executes the program the job requires with the specified options. 232 
This script can be written in any programming language. The bioinformatics tools and programs 233 
required by ProkEvo can be distributed through conda environment [48] or Docker image [49]. 234 
The predefined scripts are already part of ProkEvo, and no further changes or modifications are 235 
needed. With the modularity of Pegasus, each job requests its own run time and memory 236 
resources. Exceeding the memory resources is a common occurrence in any bioinformatics 237 
analysis. Thus, if exceeding the memory is a reason for a job failure, Pegasus retires the job with 238 
increased requirements. Higher memory requirements may mean longer waiting times for 239 
resources, and it is really important and efficient to use high memory requirements only when 240 
needed, which is allowed by Pegasus WMS. ProkEvo is written such that supports execution on 241 
high-performance and high-throughput computational platforms. In the analyses for this paper, 242 
we use both the University cluster and OSG, and working versions for both platforms are 243 
available in our GitHub repository (https://github.com/npavlovikj/ProkEvo). 244 
     245 
Computational execution platforms 246 
Traditionally, scientific workflows have been executed on high-performance and high-247 
throughput computational platforms. While high-performance platforms provide resources for 248 
analyses that require lots of cores, time, and memory, high-throughput platforms are suitable for 249 
many small and short independent tasks. The design of ProkEvo fits University and other 250 
publicly or privately available clusters and grids, providing flexibility in the computational 251 
platform.  252 
 253 
University cluster (Crane), a high-performance computational platform 254 
University and other public clusters are shared among all users and enforce fair-share scheduling 255 
and file and disk spaces quotas. The clusters are suitable for various types of jobs, such as serial, 256 
parallel, GPU, and high memory specific jobs, thus the high-performance. Crane [25] is one of 257 
the high-performance computing clusters at the University of Nebraska Holland Computing 258 
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Center (HCC). Crane is Linux cluster, has 548 Intel Xeon nodes, with RAM ranging from 64GB 259 
to 1.5TB, and supports Slurm and HTCondor as job schedulers. In order to use Crane, one needs 260 
an HCC account associated with a University of Nebraska faculty or research group. While we 261 
use Crane as a computational platform for ProkEvo, the majority of University and publicly 262 
available high-performance clusters are administered in a similar way and can be used to run 263 
ProkEvo. 264 
    Crane has support for Pegasus and HTCondor, and no further installation is needed in order to 265 
run ProkEvo. Due to the limited resources and fair-share policy on Crane, tens to hundreds of 266 
independent jobs can be run concurrently. We provide a version of ProkEvo suitable for Crane 267 
with conda environment, which contains all required software. Crane has a shared file system 268 
where the data is accessible across all computing nodes. Depending on the supported file system, 269 
Pegasus is configured separately and handles the data staging and transfer accordingly. However, 270 
users do not need any advanced experience in high-performance computing to run ProkEvo on 271 
Crane, or any other University or publicly available cluster. Users only need to provide list of 272 
SRA identifications and run the submit script that distributes the jobs automatically as given in 273 
our GitHub repository (https://github.com/npavlovikj/ProkEvo). 274 
 275 
Open Science Grid (OSG), a distributed, high-throughput computational platform 276 
The Open Science Grid (OSG) is a distributed, high-throughput distributed computational 277 
platform for large-scale scientific research [28,29]. OSG is a national consortium of more than 278 
100 academic institutions and laboratories that provide storage and tens of thousands of 279 
resources to OSG users. These sites share their idle resources via OSG for opportunistic usage. 280 
Because of its opportunistic approach, OSG as a platform is ideal for running massive numbers 281 
of independent jobs that require less than 10GB of RAM, less than 10GB of storage, and less 282 
than 24 hours running time. If these conditions are fulfilled, in general, OSG can provide 283 
unlimited resources with the possibility of having hundreds or even tens of thousands of jobs 284 
running at the same time. The OSG resources are Linux-based, and due to the different sites 285 
involved, the hardware specifications of the resources are different and vary. Using OSG is free 286 
for academic usage. The host institution does not need to be part of OSG for a researcher to use 287 
this platform.  288 
    All steps from the population genomics analyses fulfill the conditions for OSG-friendly jobs. 289 
Thus, ProkEvo can efficiently utilize these distributed high-throughput resources, and run 290 
thousands of analyses concurrently if the resources are available. OSG supports Pegasus and 291 
HTCondor, so no installation steps are required. We provide version of ProkEvo suitable for 292 
OSG (https://github.com/npavlovikj/ProkEvo). This version uses the Docker image with all 293 
software requirements via Singularity and supports non-shared file system. In non-shared 294 
systems, the resources do not share the data. The data are read and written from a staging 295 
location, and all of this is handled by Pegasus WMS. In order to run ProkEvo on OSG, users 296 
only need to provide list of SRA identifications and run the submit script without any advanced 297 
experience in high-throughput computing. 298 
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 299 
Population genomics analyses 300 
The population-based analyses performed in this paper provide an initial guidance on how to 301 
comprehensively utilize the following output files produced by ProkEvo: 1) MLST output (.csv); 302 
2) SISTR output (.csv); 3) BAPS output (.csv); 4) Core-genome alignment file 303 
(core_gene_alignment.aln) for phylogenetic analysis; and 5) Resfinder output (.csv) containing 304 
AMR genes. We use both R and Python 3 Jupyter Notebooks for all our data analyses 305 
(https://github.com/npavlovikj/ProkEvo). The input data used for these analyses is available on 306 
Figshare (https://figshare.com/projects/ProkEvo/78612). 307 
    A first general step in this type of analysis is opening all files in the preferred environment 308 
(i.e., RStudio or JupyterHub), and merging them into a single data frame based on the SRA 309 
(genome) identification. Next, we perform quality control (QC) of the data, focusing on 310 
identifying and dealing with missing values, or cells of the data frame containing erroneous 311 
characters such as hyphens (-) and interrogation marks (?). For that, we demonstrate our 312 
approach for cleaning up the data prior to conducting exploratory analysis and generating all 313 
visualizations.  314 
    In the case of Salmonella datasets, we used an additional important “checking/filtering” step 315 
after the QC is done. Since the program SISTR provides a serovar call based on genotypic 316 
information, one can opt for keeping those genomes that do not match the original serovar 317 
identification in the analysis, or excluding them. Both approaches are justifiable with the latter 318 
one being more conservative, and it specifically assumes that the discordance between data 319 
entered in NCBI and genotypic prediction done by SISTR is accurate. However, it is important 320 
to remember that we initially expect that the dataset belongs to a particular serovar because of 321 
the keywords we used to search the NCBI SRA database, such as: "Salmonella Newport”, 322 
“Salmonella Typhimurium", or “Salmonella Infantis”. Typically, the proportion of genomes that 323 
are classified by SISTR as other serovars can be somewhat minor, but may also bias the analysis 324 
depending on the size of the dataset (~ < 3% for any given Salmonella dataset equals “miscalls”). 325 
In our case, for example, we were conservative and either filtered the “miscalls” out of the data 326 
for some analysis, or kept it as a separate group called “other serovars”. The latter approach was 327 
done for some specific analysis, such as phylogenetics, whereby the program we used required 328 
us to have all data points in place (e.g. ggtree in R). That is the case because the core-genome 329 
alignment used for the phylogeny is generated by Roary without considering the SISTR 330 
prediction for serovar calls. If that is of interest, the user can add a conditional to the pipeline to 331 
run Roary after considering SISTR results, but that only applies to Salmonella genomes. 332 
However, we do note that stringent requirements for serotype classification (i.e. filtering out 333 
“miscalls” based on SISTR predictions) could eliminate important variants that may 334 
genotypically match known populations of the serovar, but which have acquired mutations or 335 
recombination events at serotype-determining loci. The larger the datasets are, the more 336 
influential that percentage of discordant calls can be. Hence, for Salmonella specifically, this has 337 
to be considered carefully depending on the research question to be answered and database being 338 
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utilized. Our suggestion is that for any predictive analysis, one should either filter out, or at least, 339 
classify the potential miscalls as other serovars after running SISTR.  340 
    To define metrics for the S. Typhimurium and S. Newport populations for population structure 341 
analysis, the pipeline combines MLST-based genotypes at different scales of resolution with 342 
Bayesian-based predictions of genomic structure. Combining these varying genotyping 343 
approaches allows for classification and quantification of relative frequency distribution of 344 
genotypes/haplotypes, as well as the visualization of their genetic relationships. In this version of 345 
ProkEvo, we have implemented legacy MLST for ST calls using seven loci, core-genome MLST 346 
(cgMLST) that uses approximately 330 loci for MLST analysis, and a Bayesian-based BAPS 347 
haplotype classification using six layers of BAPS (BAPS1 being the lowest level of resolution 348 
and BAPS6 being the highest). We also use a hierarchical approach for exploring the relative 349 
frequencies of genotypic and genomic classifications one to another. For example, genomes can 350 
be classified based on BAPS1 and the distribution of legacy STs can be assessed relative to the 351 
BAPS-inferred genomic structures populations. Likewise, the genetic relationships of thousands 352 
of cgMLST genotypes can also be assessed with respect to the BAPS-based and ST-linked 353 
genomic architecture at different levels of resolution to infer evolutionary relationships. This 354 
hierarchical approach was possible for the S. Newport dataset of ~2,400 genomes (USA data), 355 
but the core-genome alignment step was not scalable to the 10-fold larger dataset of S. 356 
Typhimurium (~23,000 genomes – worldwide data), which required split into twenty smaller 357 
datasets during the core-genome alignment step. Basically, our empirical experience has been 358 
that Roary performs without errors and converges when having approximately up to 2,000 359 
genomes. Although random partitioning of the subsets should yield the same classifications of 360 
dominant genomic groups, the Bayesian classification algorithm (BAPS) may not necessarily 361 
assign grouping numbers for different genomic types in a standardized manner across different 362 
subsets of a larger dataset. Aggregation of the BAPS data from subsets therefore requires user-363 
based input. On the other hand, sub-setting the data is advantageous for downstream data science 364 
and machine learning analyses since they require a nested cross-validation approach for feature 365 
selection and predictive analytics. Herein, we use a random sampling approach to split the data 366 
for S. Typhimurium used with Roary. Based on the number of genomes, we created 20 groups 367 
such that each has 1,076-1,077 genomes. Next, from the GFF files produced by Prokka, we 368 
randomly selected and assigned genomes to each group using custom Bash scripts. Both Roary 369 
and fastbaps were run per group, resulting in 20 independent runs and output files. In addition to 370 
these analyses, we check the count of haplotypes within a major cgMLST (i.e. epidemiological 371 
clone) vs. others using all six layers of the BAPS clustering algorithm (BAPS1-6). A highly 372 
clonal population of a given cgMLST is expected to display very few genotypes at all six levels 373 
of BAPS. In contrast, a diverse population of a given cgMLST or highly related cgMLST 374 
genotypes may partition between different BAPS-based genomic groups. In practice, this 375 
analysis is important to examine how homogenous or heterogenous a population is, which has 376 
implications for ecological and epidemiological inference. Complementary to this population 377 
structure analysis, we demonstrated the distribution of some AMR genes within and between 378 
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Salmonella serovars, including S. Infantis (~1,700 genomes – USA data), and within them across 379 
their respective major ST populations. For that, we selected the Resfinder outputs as an example 380 
to show the identification of putative AMR genes. We arbitrarily selected genes with proportion 381 
higher than or equal to 25% for S. Newport, S. Infantis, and S. Typhimurium, for visualizations 382 
which were produced with ggplot2 in R [52]. The respective scripts are provided in our 383 
repository (see GitHub link for code).  384 
    In order to demonstrate how versatile ProkEvo can be, we also conducted a population-based 385 
analysis of C. jejuni and S. aureus datasets from USA, each containing 21,919 and 11,990 386 
genomes, respectively. For both datasets, we analyzed the population structure using BAPS1 and 387 
STs. The same hierarchical population basis described for Salmonella applies here, with BAPS1 388 
coming first and STs next in terms of population ranking. We used a random sample of ~1,000 389 
genomes of each species to demonstrate the distribution of BAPS1 and STs onto the 390 
phylogenetic structure. Phylogenies were constructed using the core-genome alignment produced 391 
by Roary, and by applying the FastTree program [53] using the generalized time-reversible 392 
(GTR) model of nucleotide evolution (see GitHub link for code). Additionally, we showed the 393 
distribution of STs within each bacterial species (only showed STs with proportion higher than 394 
1%), and the relationship between the relative frequencies of dominant STs and AMR genes. 395 
Genes with relative frequency below 25% were filtered out of the data. All visualizations were 396 
generated with ggplot2 in R, and the scripts are also provided in our repository. 397 
  398 
Results 399 
 400 
Overview of ProkEvo 401 
Figure 1 shows the overall flow of tasks performed by ProkEvo including all specific 402 
bioinformatics tools used for each task. On the other hand, Fig. 2 presents the Pegasus WMS 403 
design of ProkEvo. The DAG shown contains all independent input and output files, tasks, and 404 
the dependencies among them. The modularity of ProkEvo allows every single task to be 405 
executed independently on a single core. As seen on Fig. 2, there are approximately 10 tasks 406 
executed per one genome. When ProkEvo is used with whole bacterial populations of thousands 407 
of genomes, the number of total tasks is immense. Advanced WMS such as Pegasus allow 408 
scaling of these tasks independently and utilizing diverse computational platforms. Figure 3 409 
provides an example of running ProkEvo on the two different computational platforms used in 410 
this paper - the University of Nebraska high-performance computing cluster (Crane) and the 411 
Open Science Grid (OSG), a distributed, high-throughput cluster, using two datasets of 412 
significantly different size (~2,400 genomes [1X] vs. ~23,000 genomes [10X]). The ProkEvo 413 
code available on our GitHub page supports both platforms, and the researcher can choose which 414 
one to use. Both platforms have different structure and have their own advantages and 415 
disadvantages that are highlighted in Fig. 3.  416 
 417 
Performance evaluation 418 
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To measure the scalability and adaptability of ProkEvo, we used two datasets with significantly 419 
different genome sizes – one with ~2,400 genomes (S. Newport), and the second one an order of 420 
magnitude larger (~23,000 genomes from S. Typhimurium). We ran ProkEvo on two different 421 
computational platforms, the high-performance cluster at the University of Nebraska (Crane) and 422 
the OSG, a distributed, high-throughput cluster. Each dataset was run once on the two platforms 423 
and statistics about the Pegasus WMS workflow were generated. Of note, there may be variation 424 
in the ProkEvo runtime from project to project based on the availability of resources on each 425 
platform. As an HPC resource of the Holland Computing Center, the Crane cluster is managed 426 
by fair-share scheduling, while as an opportunistic HTC resource, the OSG resources may be 427 
dynamically de-provisioned or having intermittent issues. These factors may impact the future 428 
predictability of running time and performance of ProkEvo on both platforms. In average, on 429 
Crane we had hundred jobs running at the time, and due to the similar type of nodes available, 430 
the runtime should be similar for multiple runs of the same workflow. On the other hand, the 431 
nodes on OSG are more diverse and the runtime and the number of jobs for multiple runs can be 432 
significantly different (from few jobs running at the same time to few tens of thousand).  433 
    ProkEvo consists of two sub-workflows, with number of jobs varying from a few thousands to 434 
a few hundreds of thousands, depending on the dataset used. "pegasus-statistics" generates 435 
summary statistics regarding the workflow performance, such as the total number of jobs, total 436 
run time, number of jobs that failed and succeeded, task and facility information, etc. Some of 437 
these statistics are demonstrated in Table 1. The total distributed running time is the total running 438 
time of ProkEvo from the start of the workflow to its completion. The total sequential running 439 
time is the total running time if all steps in ProkEvo are run one after another. In case of retries, 440 
the running times of all re-attempted jobs are included in these statistics as well. Beside the 441 
workflow runtime information, Table 1 also shows the maximum total number of independent 442 
jobs ran on Crane and OSG within one day. Moreover, the total count of succeeded jobs is 443 
shown for both computational platforms and datasets. 444 
    When ran on Crane, ProkEvo with S. Newport completely finished in 3 days and 15 hours. If 445 
this workflow were run sequentially on Crane, its cumulative running time would be 115 days 446 
and 18 hours. On the other hand, ProkEvo with S. Newport finished in 7 days and 4 hours when 447 
OSG was used as a computational platform. Similarly, if this workflow were run sequentially on 448 
OSG, its cumulative running time would be 1 year and 69 days. As it can be observed, the 449 
workflow running on OSG took longer than the workflow running on Crane. OSG provides 450 
variable resources with different configuration and hardware, and depending on that, the 451 
performance may vary significantly. Also, the OSG jobs may be preempted if the resource owner 452 
submits more jobs. In this case, the preempted job is retried, but that additional time is added to 453 
the workflow wall time. While the maximum number of independent jobs ran on Crane in one 454 
day is 2,377, this number is 8,606 when OSG was used. This is where the importance of using 455 
HTC resources such as OSG can be observed - the high number of jobs and nodes that can be run 456 
and used simultaneously, which is often a limit for University clusters. The total number of 457 
successful jobs ran with ProkEvo with the S. Newport dataset is 9,281 on Crane and 16,624 on 458 
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OSG. Due to the opportunistic nature of the OSG resources, a running job can be cancelled and 459 
retried again, thus the higher number of jobs reported by OSG. Similar pattern can be observed 460 
when ProkEvo was run with the S. Typhimurium dataset. When ran on Crane, ProkEvo with S. 461 
Typhimurium completely finished in 15 days and 22 hours. If this workflow was run sequentially 462 
on Crane, its cumulative running time would be 2 years and 268 hours. On the other hand, the 463 
ProkEvo run for S. Typhimurium finished in 26 days and 6 hours, when using OSG as a 464 
computational platform. Similarly, if this workflow were run sequentially on OSG, its 465 
cumulative running time would be 13 years and 50 days. The maximum number of independent 466 
jobs ran on Crane and OSG is 12,382 and 25,540 respectively. The total number of successful 467 
jobs ran with the S. Typhimurium dataset is 217,942 on Crane and 232,422 on OSG. 468 
    Although the workflow run time was better when Crane was used as a computational platform, 469 
it can be noticed that the bigger the dataset and the more jobs are running, the higher the 470 
efficiency of using OSG is. As long as resources are available and no preemption occurs, 471 
workflows running on OSG can have a great performance. On OSG, ProkEvo ran on resources 472 
shared by thirty-four different facilities. Failures and retries are expected to occur on OSG, and 473 
their proportion may vary. From our experience, the number of failures and retries took up 474 
~0.3%-30% of the total number of jobs. However, the OSG support staff acts promptly on 475 
isolating these issues, which can also be masked by a resilient and fault-tolerant workflow 476 
management systems like Pegasus WMS. All the data, intermediate and final files generated by 477 
ProkEvo are stored under the researcher’s allocated space on the file system on Crane. 478 
Depending on the file system, it is possible that there are file count and disk space quotas. When 479 
large ProkEvo workflows are run, these quotas may be exceeded. On the other hand, due to the 480 
non-shared nature of the file system of OSG, intermediate files are stored on different sites, and 481 
exceeding the quotas is usually not an issue.  482 
    Both Crane and OSG are computational platforms that have different structure and target 483 
different type of scientific computation. All analyses performed with ProkEvo fit both platforms 484 
well. Thus, we provide an unambiguous comparison of both platforms and show their advantages 485 
and drawbacks when large-scale workflows such as ProkEvo are run. 486 
 487 
Applications 488 
In this Section, we present a diverse array of analysis carried out across three important zoonotic 489 
serovars of Salmonella, and two other widespread species of foodborne pathogens, namely C. 490 
jejuni and S. aureus. While these data were collected from a recognizably biased database that is 491 
inflated with clinical isolates, we are focusing on demonstrating some of the utilities and 492 
approaches that can result from using ProkEvo for population-based analysis. Therefore, we are 493 
limiting ourselves from making any generalizable inference about the ecology and epidemiology 494 
of these populations. However, the analytical framework is still valid and applicable for 495 
analyzing more sophisticatedly designed collections of isolates, or even doing pattern searching 496 
with publicly available databases. More specifically, our goal is to demonstrate how to conduct 497 
an initial population-based analysis with some of ProkEvo’s outputs. To achieve that objective, 498 
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we present a series of independent case studies that encapsulate some of the most common 499 
approaches for studying bacterial populations. Prior to discussing those case studies, we 500 
highlight some important concepts regarding bacterial population genetics and ecology. We have 501 
selected to work with these three species of foodborne pathogens because of our specific 502 
research interest. However, ProkEvo can be used with other bacterial species with a few 503 
limitations: 1) The MLST program only works if the target bacterial species has an allelic profile 504 
present in the database, or is incorporated by the user; and 2) SISTR is designed to only work for 505 
Salmonella, but can be easily blocked out from the pipeline by the user.  506 
  507 
Overview of the population structure and ecology for Salmonella, C. jejuni and S. aureus 508 
To understand the real applicability of ProkEvo, it is important to provide some insights 509 
regarding the most relevant aspects of the biology of the target organisms. Foodborne 510 
gastroenteritis is among the most prevalent zoonotic infectious illnesses of humans, with the 511 
pathogenic bacterial species such as S. enterica lineage I, C. jejuni, and S. aureus being one of 512 
the most prevalent causative agents worldwide [54].  513 
    Salmonella populations can be found as common inhabitants of the gastrointestinal tract in a 514 
wide range of mammals, birds, reptiles, and insects and these organisms are often transmitted to 515 
humans through contaminated animal products, vegetables, fruits, and processed foods [55]. The 516 
genus Salmonella comprises two primary species (S. enterica and S. bongori), which are 517 
believed to have diverged from their last common ancestor approximately 40 million years ago 518 
[88]. Worldwide, S. enterica is the most frequently isolated species from human clinical cases 519 
and from most environments. After the ancestral divergence from the common ancestor with S. 520 
bongori, the S. enterica lineage has further diversified into six different sub-species. The vast 521 
majority (>90%) of known human cases are caused by populations descending from a single sub-522 
species, namely S. enterica subsp. enterica (lineage I). Even within lineage I, there is still 523 
tremendous genetic and phenotypic diversity, as the lineage has diverged into a diverse array of 524 
distinct sub-types or sub-populations that have classically been differentiated by serological 525 
typing of markers on their cell surface (lipopolysaccharide molecules and major protein 526 
components of the flagellum) [56,89]. The >2,500 known, serologically-distinct serovars 527 
represent relevant biological units for epidemiological surveillance and tracking because isolates 528 
belonging to the same serovar show much less variation with respect to important traits such as 529 
range of host species, survival in the environment, efficiency of transmission to humans, and 530 
virulence characteristics, than isolates from different serovars [7,89]. Indeed, the diverse array of 531 
serotypic markers, host ranges, and human disease phenotypes are covariates with the population 532 
structure of S. enterica lineage I, with most serovars marking unique clonal lineages. Thus, 533 
different isolates of a given serotype share more recent ancestry to one another than they do to 534 
isolates of any other serotype [89]. In fact, the serotype of most isolates can be predicted 535 
accurately from ST distributions. Herein, we have decided to use an example of genomes 536 
representing the following three serovars of S. enterica lineage I: S. Infantis, S. Newport, and S. 537 
Typhimurium. These are among the top twenty-five most prevalent and important zoonotic 538 
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serovars of Salmonella according to the Center for Disease Control and Prevention [57]. All 539 
three serovars are capable of gastroenteritis in humans and their typical reservoir is livestock. 540 
Bovine appear to be the most common source for S. Infantis and S. Newport, while S. 541 
Typhimurium has a generalist life-style and can be found in swine, poultry, bovine, etc. [55]. 542 
    The population structure of Salmonella is largely clonal and hierarchical genotyping schemes 543 
such as MLST show that isolates having genetically-related core-genome MLST (cgMLST) 544 
genotypes (high-resolution based on ~330 highly conserved genes) are mostly embedded within 545 
clonally-related STs defined at lower resolution by seven-gene MLST [7]. Thus, the S. enterica 546 
lineage I population structure can be hierarchically analyzed by first identifying the serovar in 547 
question, and then breaking it down into ST and cgMLST. However, at high levels of resolution 548 
(cgMLST), inferring the phylogenetic relationships across thousands of different cgMLST 549 
genotypes is computationally not scalable, especially if having to account for horizontal gene 550 
transfer (HGT) by removing putative recombination events across divergent lineages. To 551 
overcome this problem, genotypic classification of isolates can be combined with scalable 552 
Bayesian-based computational approaches such as BAPS, which determines evolutionary 553 
relationships based on compositional features of the core-genome at different scales of 554 
resolution. Thus, evolutionary relationships of ST clonal complexes and cgMLST genotypes can 555 
be inferred efficiently by using a hierarchical classification with six BAPS levels (BAPS1 being 556 
the lowest level, and BAPS6 the highest level of resolution and population fragmentation). In our 557 
heuristic-based approach, we use the following hierarchical level of population structure analysis 558 
for Salmonella: 1) Serovar; 2) BAPS1; 3) STs; and 4) cgMLSTs. Our empirical experience has 559 
been that multiple STs can be part of the same sub-group within BAPS1, implying they have 560 
shared a common ancestor more recently than the divergent ones. This BAPS1 vs. ST 561 
hierarchical relationship has been shown before for Salmonella [58], and even for a completely 562 
unrelated species, such as Enterococcus faecium [59]. Of note, epidemiological clones, which 563 
comprise a homogenous population of isolates related to an outbreak, are typically genotyped as 564 
cgMLSTs. That happens because cgMLST offers the appropriate level of granularity to define 565 
genotypes at the highest level of resolution while considering the shared genomic variation 566 
across isolates (i.e. all shared, or >99% loci) [7]. 567 
    Besides S. enterica Lineage I, there are two major species of Campylobacter associated with 568 
gastrointestinal diseases in humans, namely C. jejuni and C. coli [60]. Campylobacter jejuni is 569 
more often associated with outbreaks in developed countries such as the USA, with poultry and 570 
dairy products being the most common sources of the pathogen [61]. As in the case of 571 
Salmonella, C. jejuni population structure can be studied using a hierarchical approach, 572 
excluding serovars, but including BAPS1, STs, and cgMLSTs. One unique aspect of C. jejuni 573 
population biology is the potential for high frequency of HGT, which not only affects the 574 
acquisition of novel loci, but also the population structure of the microorganism [60]. That is, C. 575 
jejuni is less clonal than any given serovar of S. enterica lineage I, and it contains a variety of 576 
widespread STs, for which the diversification patterns appear to be strongly affected by the host 577 
colonized with this pathogen [60,62].   578 
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    Whereas, Salmonella and C. jejuni are gram-negative bacteria that belong to the same phylum 579 
Proteobacteria, S. aureus is a gram-positive species that pertains to the phylum Firmicutes. 580 
Staphylococcus aureus can cause a diverse array of diseases in humans including skin infections, 581 
endocarditis, among others, but it is also a foodborne pathogen [63]. Gastroenteritis caused by 582 
this pathogen is due to the production of enterotoxins. Livestock are one of S. aureus reservoirs, 583 
but it can also live in human skin and nasal cavity. In the case of S. aureus-associated foodborne 584 
illnesses, humans ingest products such as milk-derivatives (e.g. cheese), and meat that are 585 
contaminated with enterotoxins produced by the pathogen, which appear to occur due to the 586 
environmental stress caused by those specimens [64]. Staphylococcus aureus population can be 587 
structured the same way as that of Salmonella and C. jejuni using BAPS1, STs, and cgMLSTs. 588 
However, this pathogen is not as diverse as C. jejuni at the ST level, but its degree of clonality is 589 
more comparable to those serovars within S. enterica lineage I. Altogether, our approach here is 590 
to use these different levels of genotypic resolutions to demonstrate some of the aspects of the 591 
population structure of these organisms, while highlighting their degree of clonality and 592 
relatedness since those may reflect important ecological characteristics of the pathogen. Also, 593 
from an epidemiological point of view, using ST and cgMLST identifications is a manner to 594 
which researchers and microbiologists can standardize the nomenclature to discuss specific 595 
aspect of a population that might be multi-drug resistance and/or a culprit in an outbreak. 596 
    In this era of systems biology and multi-omics methodologies, it is highly desirable to link 597 
genetic classifications of isolates (e.g. serovar, MLST, cgMLST genotypic classifications, and 598 
BAPS-based genetic relationships) to important phenotypes associated with resistance to 599 
antimicrobial agents, virulence, host adaptation, transmission, and environmental survival. 600 
Although linked genotypic and phenotypic data can certainly inform epidemiological 601 
surveillance, the linkage affords an even greater opportunity to identify signatures of 602 
evolutionary processes (selection) and ecological fitness of the different pathogenic populations 603 
in animal and food production environments at the molecular scale [90]. Genes and pathways 604 
marked by these processes may illuminate selective pressures and better inform risk assessments 605 
as well as development of strategies to mitigate spread. Therefore, here we provide a practical 606 
example of how to link the distribution of known AMR genes to the population structure of the 607 
organism using serovars and STs in the case of S. enterica lineage I serovars, and STs for C. 608 
jejuni and S. aureus. We chose to use known AMR loci for its association with the spread of STs 609 
and epidemiological clones worldwide, as in the case of Salmonella [65], C. jejuni [66], and S. 610 
aureus [67].   611 
 612 
Case study 1: S. Newport population structure analysis 613 
The S. enterica serovar Newport is a zoonotic pathogen that ranks among the top 25 serovars 614 
considered as emerging pathogens by public health agencies due to several recent outbreaks of 615 
foodborne gastroenteritis in humans [91]. Unlike most serovars of Salmonella enterica lineage I, 616 
which comprise worldwide populations dominated by a single ST clonal complex, the S. 617 
Newport serovar has diversified into four distinct STs (Fig. 4A). The genetic diversity detected in 618 
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S. Newport isolates is surprising given its relatively low representation in the NCBI SRA 619 
database when only selecting genomes from the USA (total of 2,392 isolates). Thus, this 620 
serotype provides a robust example for analysis of a moderately complex population structure 621 
through ProkEvo. After the pre-processing steps, assemblies from 2,365 isolates passed the 622 
filtering step. The total output data produced by ProkEvo for S. Newport was 131GB. After 623 
filtering for potentially misclassified genomes using the output of SISTR, we were left with 624 
2,317 genomes that were annotated as S. Newport and predicted as S. Newport genotypically 625 
(Fig. S2 and Fig. S3). Specifically, SISTR-based serovar predictions suggest that 2.03% of the 626 
genomes were misclassified as Newport. Using the genotypes assigned by the MLST, cgMLST, 627 
and BAPS-based genomic composition programs implemented in ProkEvo, we next defined the 628 
relative frequency of each genotype among 2,317 isolates (Fig. 4A-H). This analysis identified 629 
the expected structure with four dominant STs in the following descending order: ST118, ST45, 630 
ST5, and ST132. The cgMLST distribution identified a total of 764 unique cgMLST genotypes, 631 
with the cgMLST genotype 1468400426 representing the most frequent lineage or 632 
epidemiological clone (Fig. 4B).  633 
    To circumvent the scalability problem of phylogeny inferred from thousands of core-genome 634 
alignments, we next examined genetic relationships of cgMLST genotypes using the scalable 635 
Bayesian-based approach in BAPS to define haplotypes based on the relative degrees of 636 
admixture in the core-genome composition at different scales of resolution. As expected, BAPS-637 
based haplotypes at increasing levels of resolution (BAPS1-BAPS6) increasingly fragmented the 638 
S. Newport into: 9 sub-groups for BAPS1, 32 sub-groups for BAPS2, 83 sub-groups for BAPS3, 639 
142 sub-groups for BAPS4, 233 sub-groups for BAPS5, and 333 sub-groups for BAPS1, discrete 640 
haplotypes (Fig. 4C-H). We next used a hierarchical analysis to group the S. Newport STs and 641 
cgMLSTs based on shared genomic admixtures at BAPS level 1 (BAPS1). At BAPS1, the lowest 642 
level of resolution, there are 9 total haplotypes. This analysis showed that the dominant BAPS1 643 
haplotype (BAPS1 sub-group 8) is shared by two of the dominant STs, ST118 and ST5 (Fig. 644 
S1A). The shared BAPS haplotype implies that the two clonal complexes defined by these 645 
dominant STs are more related to each other than ST45 or ST132, which is consistent with the 646 
genetic relationships of these STs predicted by e-BURST [7]. Further analysis of the BAPS1 647 
sub-group 8 haplotype for the major cgMLST lineages also showed 307, 149, and 23 cgMLST 648 
genotypes derived from the ST118, ST5, and ST350 clonal complexes, respectively. Having 649 
more cgMLST genotypes may suggest that ST118 is a more diverse population, which can be 650 
influenced by sample bias and size. Of note, there was not a dominant cgMLST within any of 651 
BAPS1 sub-group 8 STs 118, 5, or 350. An interesting question though would be if there is a 652 
correlation between the cgMLST diversity across STs and their ecological dispersion. Perhaps 653 
more diverse clonal complexes would be able to survive more readily in distinct habitats, say for 654 
instance bovine vs. lettuce. Consistent with the genetic relationships of STs predicted by shared 655 
BAPS1 sub-group 8 haplotypes, we also found that ST45 belongs to a distinct BAPS1 haplotype 656 
(sub-group 1), with a total of 152 cgMLST genotypes, and that the most frequent cgMLST 657 
lineage is cgMLST 1468400426, which happens to be the most dominant lineage for the entire S. 658 
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Newport data. This predominance of cgMLST 1468400426 within ST45 and across STs, could 659 
be due several reasons, including, but not limited to: 1) Sampling effect; 2) Recent outbreaks; 3) 660 
Founder effect with a new introduction of a clone in a population; or 4) Selective sweep at the 661 
whole-genome level in the population due to a selective advantage. Obviously, selection or 662 
founder effects can be an explanation for the emergence of epidemiological clone capable of 663 
causing an outbreak [68,69]. Our point is that these are some of the patterns one can discover 664 
when using population-based analysis, that can generate testable hypotheses of what might have 665 
happened or is occurring. That emphasizes the importance of metadata and having a carefully 666 
designed collection of isolates, because by knowing for instance temporal patterns, we can 667 
capture potential cgMLST successions in a population that might be linked to actions previously 668 
taken in a farm or food production site.  669 
    After identifying the dominant cgMLST lineage 1468400426, we assessed the degree of 670 
clonality or genotypic homogeneity of its population when compared to all other cgMLSTs 671 
combined, exclusively within BAPS1 and ST45 population (Fig. S2A-E). We do that by 672 
examining the frequency of sub-groups within each BAPS level from 2 to 6. To visualize the 673 
partitioning, we first select only genomes belonging to BAPS1 and ST45, and then we classified 674 
the data at each level of BAPS2-BAPS6 into two groups: one group contains cgMLST 675 
1468400426 (numbered 1), while the second group contained all other cgMLSTs (numbered 0). 676 
If the dominant cgMLST 1468400426 is highly clonal, it will be present in one or only a few of 677 
the BAPS subgroups at each level of BAPS resolution. This is exactly what was observed in Fig. 678 
S2A-E, where the dominant cgMLST 1468400426 genotype was always found within a single 679 
BAPS subgroup, even at the highest level of resolution (BAPS6). Notably, at each BAPS level, 680 
there are other cgMLST genotypes that also map to the same BAPS subgroup as the dominant 681 
cgMLST 1468400426, and the frequency of these other cgMLST genotypes that share BAPS 682 
with the dominant cgMLST 1468400426 clone is essentially stable as the BAPS resolution 683 
increases. These shared BAPS subgroupings at different levels are indicative of these cgMLST 684 
genotypes sharing recent evolutionary relationships. Importantly, we are just analyzing this 685 
pattern of population stratification within BAPS1 and ST45 clonal complex. We have also found 686 
that cgMLST 1468400426 can be rarely found within ST3045 and ST4493, with only one 687 
genome of this cgMLST found in each of these two STs. That makes sense in terms of 688 
evolutionary history, because ST3045, ST3494, ST3783, and ST493 are the other STs that may 689 
have shared a recent ancestor with ST45, since they all belong to BAPS1 sub-group 1.    690 
    Collectively, this hierarchical analysis of the genomic relatedness of ST and dominant 691 
cgMLST genotypes provides a systematic way to understand population structure and 692 
evolutionary relationships of cgMLST genotypes without the need for computationally intensive 693 
phylogeny. These relationships are important as they can yield interesting hypotheses about 694 
shared ecological and epidemiological patterns among cgMLSTs that are closely related 695 
evolutionarily. It is important to reiterate that this sample of S. Newport genomes is from USA. 696 
Scaling this analysis to other continents across the globe could reveal what genotypes are 697 
predominant, what the relationships are with host and environmental variations, and ultimately 698 
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what the genomic events associated with them are and which pathways are represented in it. All 699 
the steps of these analyses are publicly available in a Jupyter Notebook 700 
(https://github.com/npavlovikj/ProkEvo), and the files used can be found on Figshare 701 
(https://figshare.com/projects/ProkEvo/78612). 702 
 703 
Case study 2: S. Typhimurium population-based analysis 704 
S. Typhimurium is the most widespread serovar of S. enterica worldwide [92]. Its dominance is 705 
partially attributed to its inherited capacity to move across a variety of animal reservoirs 706 
including poultry, bovine, swine, plants and ultimately being capable of infecting humans to 707 
cause gastroenteritis or non-Typhoidal Salmonellosis [93,94]. This serovar is phenotypically 708 
divided into biphasic and monophasic sub-populations based on their expression of major 709 
flagellin proteins from both (biphasic) or only one (monophasic) of the two major flagellin genes 710 
[92]. Monophasic S. Typhimurium is an emerging zoonotic sub-population that is often multi-711 
drug and heavy-metal (copper, arsenic, and silver) resistant [92,95,96]. Due to its relevance as a 712 
major zoonotic pathogen and its frequent isolation from clinical and environmental samples, S. 713 
Typhimurium genomes from a large number of isolates are available (23,045 genomes from 714 
various continents – not filtered for USA only). The geographical location from where the 715 
genomes were isolated could not be ascertained for this population, because of unreliability of 716 
the metadata deposited to NCBI SRA. More importantly, the S. Typhimurium dataset is a good 717 
measure of the scalability of ProkEvo, since it is an order of magnitude larger than S. Newport in 718 
the number of genomes. After the download and the pre-processing steps, 21,534 assemblies 719 
passed the filtering step. The total output data produced by ProkEvo for S. Typhimurium was 720 
1.2TB.  721 
    As with S. Newport, we also conducted an analysis of the population structure based on MLST 722 
and cgMLST. Briefly, the reason for not including the BAPS1-6 outputs is because we have 723 
divided the dataset into smaller sub-samples for computational purposes, which due to the nature 724 
of Bayesian programming requires user input as described in the Methods section. After quality 725 
controlling and filtering the data, we ended up with 20,239 genomes of S. Typhimurium biphasic 726 
and monophasic combined. In order to present various ways of conducting population-based 727 
analyses using ProkEvo, for the analysis with the S. Typhimurium dataset we use combination of 728 
three pieces of information: 1) Whether or not the genome is classified as biphasic or 729 
monophasic based on the SISTR algorithm (.csv); 2) The ST clonal complexes calls using the 730 
legacy MLST (.csv); and 3) The cgMLST genotypic classification based on SISTR (.csv) [55]. It 731 
is important to note that SISTR makes predictions of serotypes based on genotypic information 732 
solely. In Salmonella that is possible, because of the high degree of linkage disequilibrium 733 
between the clonal frame (i.e. genome backbone) and loci that generate the O and H antigens 734 
[59]. In this dataset, 72.6%, 25%, 2.4% of the quality-controlled genomes were classified as 735 
Biphasic, Monophasic, or other serovars, respectively. From the Biphasic population, 78.4%, 736 
9.62%, 5.35%, 2.09% of the isolates belonged to ST19, ST313, ST36, and ST34, respectively 737 
(Fig. 5A). Whereas, for Monophasic, 93%, 5.79%, 0.094% of the isolates belonged to ST34, 738 
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ST19, and ST36, respectively (Fig. 5A). First, it is known that the ST34 complex predominantly 739 
comprises the population of S. Typhimurium Monophasic, which reflects its high degree of 740 
clonality [65]. As for the Biphasic population, ST19 dominates and likely contains the ancestor 741 
of the other ST clonal complexes. Most likely, the ST19 dominance is a consequence of its 742 
dispersal capacity and ability to spread across a variety of reservoirs, including different species 743 
of livestock, and other environments [65]. Now, ST313 has recently emerged in Africa, and is 744 
associated with non-Typhoidal Salmonellosis in humans. This host-restriction is generally 745 
associated with gene loss and auxotrophic formation in the population of the pathogen [70]. 746 
ST36 represents a minor clonal complex within S. Typhimurium Biphasic that appears to either 747 
be restricted ecologically, or has not had the appropriate selective force facilitating its expansion 748 
in the overall population, but it is capable of causing gastroenteritis in humans [65].  749 
    In terms of cgMLST genotypic distributions, Biphasic and Monophasic had 5,162 vs. 1,161 750 
unique cgMLST genotypes, respectively. That is expected given the three-times larger estimated 751 
population size for Biphasic (~75%) vs. Monophasic (~25%). Notably, within the Biphasic 752 
population there was not a dominance pattern for the distribution of cgMLST lineages. However, 753 
in the Monophasic population, cgMLST 1652656062 and cgMLST 860079270 lineages 754 
comprised 32.33% and 19.62% of the isolates, respectively (Fig. 5B). As an attempt to explain 755 
such a scenario for Monophasic, we could list the following hypotethical reasons for such a 756 
unique pattern: 1) Founder effect – new epidemiological clones are introduced simultaneously in 757 
different locations, perhaps as part of distinct outbreaks; or 2) Parallel evolution with selection 758 
operating separately to facilitate their expansion in different reservoirs. These are important 759 
questions that we should be asking about these populations, but to switch from a hypothetical 760 
scenario to systematically developing these ideas, we need reliable metadata, and sampling done 761 
not only for clinical isolates, but also environmental ones across the food chain. For instance, if 762 
the distribution of cgMLST lineages for Biphasic were truly well-represented here, one could 763 
hypothesize that they either colonized different reservoirs or have equivalent fitness within the 764 
same environment based on their proportionality. We are using this platform to propose ideas of 765 
how we can connect computational analysis of population genomics to the biology of these 766 
microorganisms. All the steps for this analysis are shown in our Jupyter Notebook 767 
(https://github.com/npavlovikj/ProkEvo), and the input files can be found on Figshare 768 
(https://figshare.com/projects/ProkEvo/78612). 769 
 770 
Case study 3: Distribution of known AMR loci between and within S. Infantis, S. Newport, and 771 
S. Typhimurium 772 
In case study 3, we demonstrate the distribution of known AMR conferring loci based on the 773 
Resfinder database across three widely spread zoonotic serovars of S. enterica lineage I (S. 774 
Infantis, S. Newport, and S. Typhimurium). Our choice of only showing the Resfinder-specific 775 
results is due to its current utilization in the fields of ecology and genomic epidemiology [71,72]. 776 
However, as described in the Methods section, results for other databases are provided, and the 777 
researcher may choose a different one based on preference, or may even decide to report the 778 
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results comparatively since ProkEvo gives that option. One cautionary note is that just finding an 779 
AMR gene is not sufficient to predict the phenotype accurately. For instance, deleterious 780 
mutations can happen rendering the gene afunctional, or allelic variation can generate varying 781 
degrees of resistance in the population [97]. Additionally, we have used USA-only data for S. 782 
Infantis for two main reasons: 1) It has a higher degree of clonality than S. Newport and S. 783 
Typhimurium which provides a contrast for population-based comparison [7,73]; and 2) It has 784 
multi-drug resistance clones recently being associated with outbreaks linked to food products 785 
[74]. It is also important to note that we have arbitrarily chosen to show data for genes above a 786 
certain threshold (>=25%) because of its potential relevance in distribution across the population, 787 
and to facilitate visualizations. Moreover, we are not accounting for the potential correlated 788 
distribution of genes across genomes for this demonstrative analysis, but that would be important 789 
in more advanced work. Linked genomic variation can mask the differentiation between 790 
causative genes to hitchhikers when studying the underlying basis for traits such as antimicrobial 791 
resistance [16]. With that being pointed out, our goal here is to show the relationship between the 792 
population structure and independent AMR loci distribution in the population.  793 
    First, the genes demonstrated here are known to confer resistance to the following classes of 794 
antibiotics: tetracyclines (tet genes), sulfonamides (sul genes), macrolides (mdf genes), 795 
florfenicol and chloramphenicol (florR and catA genes), trimethoprim (dfrA genes), beta-796 
lactamases (bla family of genes), and aminoglycosides including streptomycin and 797 
spectinomycin (aph, ant, aadA, and aac genes) [98]. When comparing across serovars, we found 798 
72, 125, and 408 unique loci for S. Infantis, S. Newport, and S. Typhimurium, respectively. After 799 
filtering for the most frequent ones based on our threshold, three overall points stand out: 1) S. 800 
Infantis population has more loci with higher frequency (> 25%); 2) S. Typhimurium appears to 801 
have a higher diversity of genetic elements which comes with higher sparsity as well (i.e. the 802 
majority of loci are present in very low frequency in the population); and 3) The mdf(A)_1 and 803 
aac(6’)-Iaa_1 loci appear to be widespread across all serovars (Fig. 6A). Obviously, these 804 
pairwise comparisons are confounded by sample size, number of outbreaks, geographical 805 
distribution (USA vs. worldwide), etc. But if these results were representative of the overall 806 
population, it would be expected for S. Typhimurium to have a higher diversity because it is 807 
more widespread across hosts and environments, which may yield more opportunities for gene 808 
acquisition by HGT [55]. In the case of S. Infantis, its high clonality can be observed since the 809 
overall serovar distribution matches that of the most dominant clonal complex ST32 (Fig. 6B). 810 
Specifically, the total number of unique loci found in S. Infantis, or ST32 only, matched to 72 811 
genes. Interestingly, the distribution of both mdf(A)_1 and aac(6’)-Iaa_1 loci is very comparable 812 
across all serovars (Fig. 6A), and within them between major clonal complexes and others STs 813 
(Fig. 6B-D). That is an indicative that those elements are more likely to be ancestrally acquired 814 
than recently derived in these populations [75]. Overall, ST118, ST5, and ST45 have 57, 33, and 815 
84 unique loci found in them, respectively (Fig. 6C). Lastly, for S. Typhimirium, ST19, ST313, 816 
ST34, and ST36 had a total of 301, 112, 249, and 130 unique AMR loci in their populations. 817 
Given that ST19 and ST34 are the most frequent clonal complexes found in this serovar, it is not 818 
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a surprise that their repertoire of genes would be higher than the others [7,65] (Fig. 6D). 819 
Noticeably, ST32 for S. Infantis, ST45 for S. Newport, and STs 313 and 36 for S. Typhimurium 820 
have a higher frequency of the most dominant genes across their populations. That is most likely 821 
a reflex of the high degree of clonality for those clonal complexes. As stated before, high degree 822 
of population homogeneity can be an artefact of oversampling clinical isolates during outbreaks 823 
without accounting for the overall environmental diversity. Also, it is important to mention that 824 
we are not differentiating between genes present in chromosome vs. plasmids. The latter are 825 
more promiscuous and facilitate HGT between closely related, or divergent populations [99].  826 
 827 
Case study 4: Population structure and AMR loci distribution for C. jejuni and S. aureus 828 
In contrast to S. Infantis, S. Newport, and S. Typhimurium, C. jejuni has a more diverse 829 
population at the level of clonal complexes (STs) (Fig. 7A). Visibly, we can have a higher 830 
number of dominant STs which, in parts, reflect the more accentuated degree of HGT of this 831 
species compared to S. enterica and S. aureus, and the impact of host-associated diversification 832 
[60]. At least some of C. jejuni STs appear to behave similarly to S. Typhimurium by having a 833 
somewhat generalist behavior in terms of host distribution, but host-specialization can occur as 834 
well. For instance, ST21 can be found in the gastrointestinal tract of poultry and humans; 835 
whereas, ST45 can be found in the gastrointestinal tract of bovine and humans; but that does not 836 
prevent their movement across other livestock species. This potential for ecological encounter in 837 
a reservoir would facilitate the occurrence of HGT, which in turn creates a degree of admixture 838 
in the population [76,77]. By consequence, drawing true phylogenetic relationships becomes 839 
cumbersome because of the impact of recombination events on the clonal frame [78]. Of note, 840 
we chose to show STs with a proportion higher than 1% in order to facilitate visualization for 841 
both C. jejuni and S. aureus. Contrary to C. jejuni, S. aureus has a higher degree of clonality, 842 
which can be seen based on having fewer dominant STs, and with STs 8, 5, and 105 comprising 843 
more than 80% of the population (Fig. 7B). ST8 is known to be associated with community-844 
acquired infections in the form of either methicillin susceptible or resistant strains (MSSA or 845 
MRSA) [79]. ST5 can also cause skin infections and is often found as MRSA [80]; whereas, 846 
ST105 is closely related to ST5 and both can carry the SCCmec element II [81]. In terms of 847 
AMR loci, we found 256 vs. 164 unique genetic elements for C. jejuni and S. aureus, 848 
respectively. Within C. jejuni, the top 8 most frequent STs had the following total number of 849 
loci: ST353 (29), ST45 (30), ST982 (20), ST48 (24), ST50 (31), ST8 (20), ST806 (19), and 850 
ST459 (15). As for S. aureus, the top 6 most frequent STs had the following total number of loci: 851 
ST8 (88), ST5 (85), ST105 (52), ST398 (39), ST609 (20), and ST45 (24). Of note, identical ST 852 
numbers across different bacterial species do not belong to the same population. ST numbers are 853 
both data- and species-dependent.  854 
    In the C. jejuni data we can see an overall trend for widespread distribution of two genes: 855 
tet(O)_1 and blaOXA-193_1, which confer resistance to tetracyclines and beta-lactamases, 856 
respectively (Fig. 7C). A parsimonious explanation for it would be that these genes are vertically 857 
acquired by an ancestral population, and consequently lost many independent times due to drift 858 
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or selection across different clonal complexes [82]. This idea is corroborated by the diversity and 859 
dispersion shown in the overlaid disposition of the core-genome phylogeny of C. jejuni with 860 
BAPS1 and ST hierarchical groupings (Fig. 8A). BAPS1 sub-groups are comprised of unique 861 
dominant STs that are scattered around the tree, instead of having closely related STs sharing 862 
sub-groups which would indicate the presence of very recent common ancestors across them. 863 
Hence, in such scenario, genes that are in higher frequency across divergent populations are 864 
more likely to have been acquired vertically from a common ancestor, rather than independently 865 
while STs diversify in the environment. But those are not mutually exclusive scenarios, and these 866 
data cannot prove or the other. In contrast, the cfr(C)_1 locus appears uniquely in the ST806 867 
clonal complex when comparing across the dominant STs, suggesting a more recent acquisition 868 
of this gene. The cfr gene is of extreme relevance because it has a pleiotropic effects, conferring 869 
resistance to a variety of AMR classes, such as: phenicol, lincosamide, oxazolidinone, 870 
pleuromutilin, streptogramin A, and other macrolides [83]. Of note, the phylogenetic tree 871 
calculated here did not account for HGT, which can be a confounding factor for accurately 872 
estimating evolutionary relationships for highly recombining species such as C. jejuni. 873 
Removing putative recombining regions from core-genome alignment belonging to divergent 874 
STs, while scaling the analysis, is a computational problem yet to be solved.  875 
    In the case of S. aureus, we see a similar trend in the distribution of the most common AMR 876 
genes for STs 5 and 105 (Fig. 7D), which are confirmed to be more closely related to each other 877 
than the other dominant STs, based on them being part of BAPS1 sub-group 5 (Fig. 8B). ST8 878 
and ST609 also share evolutionary history, since they belong to BAPS1 sub-group 6 (Fig. 8B). 879 
Now, ST398 and ST45 pertain to BAPS1 sub-groups 1 and 4, respectively. This potential 880 
differential ancestral pattern is somewhat reflected on the overall distribution of AMR genes for 881 
S. aureus (Fig. 7D). In contract to C. jejuni, there is not a common trend across STs with the 882 
exception of the mecA_6 locus. That pattern suggests that some of these elements are being 883 
acquired independently by HGT, which includes plasmid transmission as well, and perhaps, 884 
some are acquired vertically by loss across generations. Having multiple STs as part of a single 885 
BAPS1 sub-group reinforces the knowledge that S. aureus is more clonal than C. jejuni, for 886 
instance. Another interesting statistic is that, C. jejuni contains 24 BAPS level 1 sub-groups as 887 
opposed to only 7 being present in the S. aureus population. Even though we have selected USA 888 
genomes for both species, there are many other ecological and epidemiological factors limiting 889 
our interpretation of the data. Interestingly, when compared to the three S. enterica lineage I 890 
serovars and C. jejuni, S. aureus population has some unique loci that comprise the list of most 891 
prevalent ones such as those associated to resistance to: 1) Erythromycin and streptogramin B 892 
(msr, mph, and erm genes); 2) Penicillin and methicillin (mecA and blaZ family of genes); and 3) 893 
Fosfomycin (fosD gene) [98]. To some extent that reflects the biology of those organisms with S. 894 
aureus being the only gram positive, but perhaps that could also be explained with this species 895 
being able to colonize a different ecological habitat such as the mammary gland of bovine and 896 
nasal cavity of humans and livestock [84]. It is worth reinforcing that we cannot differentiate 897 
between genetic elements present in either the bacterial chromosome or plasmid based on the 898 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.13.336479doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.13.336479
http://creativecommons.org/licenses/by-nc-nd/4.0/


analysis presented here. It would be intuitive to expect genes that are in high frequency across 899 
very divergent STs to be in the chromosome, but it is also possible that a common plasmid 900 
containing the locus is shared across them, or the gene is widespread across various distinct 901 
plasmids [99].  902 
 903 
Discussion 904 
The continuous increase in the volume of WGS data is practically driving the field of bacterial 905 
genomics towards implementing large-scale data science approaches to learn from the data. 906 
Mining bacterial population-based datasets through genomics can be very revealing of the 907 
population structure, geographical and temporal distributions, and epidemiological patterns that 908 
may reflect adaptive evolution and ecological adaptation [3,4,7,10,16]. However, scaling and 909 
automating WGS analyses can be a challenging task that comes with its own costs and benefits. 910 
The trade-off of automating is that users end-up relying on underlying "black-box" to generate 911 
data without considering parameter tuning and optimization very seriously. On the other hand, 912 
there is a large number of biology/microbiology laboratories that can immediately benefit from 913 
such automation to generate a variety of hypotheses that can then be tested more rigorously with 914 
in vitro and in vivo experimentation approaches. ProkEvo fills that gap by allowing researchers 915 
to scale the analyses from hundreds to many thousands of genomes without having to write 916 
scripts and programs from scratch. ProkEvo takes advantage of a set of well-developed and 917 
robust bioinformatics tools that combined produce a reproducible, and scalable workflow. 918 
    ProkEvo is modular – when feasible, each genome is analyzed independently. In theory, if a 919 
dataset has n genomes and a computational platform has n available cores, ProkEvo can easily 920 
scale linearly and utilize all these resources at the same time using execution platforms such as 921 
clusters and grids. By using the already existing pipeline for ProkEvo, modifying and expanding 922 
it with additional steps, tools, and databases becomes straight-forward. ProkEvo only needs a list 923 
of NCBI SRA (genome) identifications as an input, and Pegasus submit script. The 924 
computational resources used for the steps in ProkEvo are specified per tool and are not fixed. 925 
This is an important feature of ProkEvo that allows faster allocation of resources and requiring 926 
high resources only when needed. While the scripts for executing the tools in ProkEvo are 927 
written to consider possible errors with the program, such as bad data or exceptions, failures due 928 
to rare cases are still possible. In this case, only the failed job is retried, and possibly terminated. 929 
This individual failure does not affect the continuity of the pipeline and the remaining jobs keep 930 
running. This is really useful especially when analyzing large datasets, in which out of tens of 931 
thousands of genomes, few may have faulty reads and should not have an impact over the rest of 932 
the workflow. These are only a few of the advantages of ProkEvo. Most of them come as a 933 
consequence of using robust, reliable, and automated workflow management system such as 934 
Pegasus. Pegasus WMS has been used for development of small and large-scale processing and 935 
computational pipelines for various projects. Some of these projects include the LIGO 936 
gravitational wave detection analysis [51], the structural protein-ligand interactome (SPLINTER) 937 
project [85], the Soybean Knowledge Base (SOyKB) pipeline [86], the Montage project for 938 
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generating science-grade mosaics of the sky [87]. The scalability and handling large sets of data 939 
and computations, the portability to different computational platforms, and its ease of use are just 940 
few of the reasons why we chose Pegasus WMS to develop ProkEvo.  941 
    Besides ProkEvo, several other automated pipelines for analyses of bacterial genomes have 942 
been developed over the years, such as EnteroBase [17], TORMES [18], Nullarbor [19], and 943 
ASA3P [20]. EnteroBase is an online resource for identifying and visualizing bacterial species-944 
specific genotypes at scale by utilizing a high-performance cluster at the University of Warwick. 945 
TORMES is a whole bacterial genome sequencing pipeline that works with raw Illumina paired-946 
end reads, and is written in Bash. Nullarbor is a Perl pipeline for performing analyses and 947 
generating web reports of bacterial sequenced isolates for public health microbiology 948 
laboratories. ASA3P is an automated and scalable assembly annotation and analyses pipeline for 949 
bacterial genomes written in Groovy. While some of these pipelines’ future plans are to use 950 
robust workflow management systems, to the best of our knowledge none of them is using one 951 
yet. Moreover, these computational platforms have been tested using tens to a few thousands of 952 
genomes in general. This is sufficient for some research questions, and the existing pipelines can 953 
perform well on this scale. However, for understanding ecological and evolutionary patterns of 954 
populations, analyzing moderate to large scale genomic datasets of a population is needed. As of 955 
today, S. enterica, C. jejuni, and S. aureus have more than 300,000, 50,000, and 70,000 genomes 956 
available, respectively. Performing analyses on such an enormous scale, and tracking steps, data 957 
and errors is a challenging task that requires not only using scalable programming languages and 958 
advanced computational approaches, but powerful execution platforms as well. ProkEvo 959 
efficiently addresses some of these issues with using reliable and robust management system and 960 
high-throughput and high-performance computational platforms. However, future testing needs 961 
to be done to evaluate and improve ProkEvo’s performance with more than hundredths of 962 
thousands of genomes, and its portability to cloud environments such as the Amazon Web 963 
Service. Of note, one particular bottleneck is generating core-genome alignments with Roary. 964 
This step is important since it precedes population structure analysis using fastbaps or doing 965 
phylogenetics. However, this step can run indefinitely when the number of genomes is large, 966 
which is often the case. One possible workaround is to randomly divide the dataset into samples 967 
of up to 2,000 genomes, which allows ProkEvo to perform all jobs efficiently. However, that 968 
comes with some consequences: 1) fastbaps uses Bayesian computations which may prevent 969 
direct data aggregation afterwards; 2) The user will have to generate multiple phylogenetic trees; 970 
and 3) Pan-genome annotation may vary in gene identity with inconsistent callings, which 971 
particularly affects the identification of hypothetical proteins. However, there are other 972 
computational approaches that can be used for phylogenetic inference such as kmer-based 973 
construction of distance matrices using assemblies directly [100]. Although these can be hurdles, 974 
we anticipate that novel algorithmic approaches in addition to large-scale computing will 975 
facilitate the generation of novel solutions for these problems. An advantage of ProkEvo is that 976 
by using the Pegasus workflow, novel software can be added to the platform without disrupting 977 
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any pre-established tasks. Hence, users should be able to incorporate new solutions or alternative 978 
steps or programs easily.   979 
    Analyzing data more rapidly and automatically solves only part of the problem. We still, as a 980 
community, need to learn how to mine these data in light of principles of population genetics and 981 
ecology, in addition to using more modern tools such as machine learning and pattern searching 982 
algorithms [101,102,103]. Only a combination of these philosophies can accelerate our discovery 983 
rate regarding the biology of these microorganisms at the population level. As such, we provide a 984 
preliminary guidance on how to examine the population structure of bacteria using varying 985 
genotypic resolutions. Our approach shows how to find population-based patterns when 986 
analyzing the frequency distribution of genotypes at different scales. Of note, these varying 987 
levels of genotypic resolution are fundamentally based on mining the shared genomic variations 988 
present in the core-genome (i.e. ubiquitous loci spread across the entire or vast majority (> 99%) 989 
of a given species-specific bacterial population). By identifying high-frequency sub-populations 990 
we can then search for genes that are uniquely present (i.e. loci present in the accessory genome), 991 
or over-represented in them. This approach can be useful in revealing the pathways that may be 992 
essential for major epidemiological clones, pathogenic variants, or clonal complexes, to spread 993 
successfully through animal and environmental reservoirs [104]. For instance, clinical isolates of 994 
C. jejuni clonal complexes ST21 and ST45 appear to preferentially have acquired loci conferring 995 
the capacity to proliferate in the presence of oxygen, in addition to utilizing formate and 996 
savaging nucleotides, which in turn maximizes their survival and spread across the poultry food 997 
chain [10]. This is example of how specific populations can have a fitness advantage by 998 
acquiring niche-transcending genes, since aerobic respiration is not a particular attribute of a 999 
single macro- or micro-habitat. The identification of niche-transcending vs. niche-specifying 1000 
genes can be very informative of different ecological attributes present in a bacterial population. 1001 
Population-based selective sweeps (i.e. purged genomic variation at the whole genome level) can 1002 
happen by a simple acquisition of a locus or loci capable of providing novel physiological or 1003 
pathogenic capacity [75]. This could be reflected on a temporal change of cgMLST 1004 
epidemiological clones in a population, whereby a single cgMLST takes over, and comparative 1005 
population genomics links unique accessory loci to the genome backbone of that lineage. By 1006 
linking the genotypic variation to reliable epidemiological information, we might be able to 1007 
discern and experimentally test which selective factors contributed to such a dynamic. Clearly, 1008 
having reliable and accurate metadata for such a modeling approach would not only be 1009 
enriching, but crucial. Currently, we are limited to the meta information the public databases are 1010 
populated with. This is indeed a major factor that needs to be addressed by the community at 1011 
large. We need a minimal amount of useful and reliable epidemiological data while considering 1012 
data privacy and litigation issues. 1013 
    Altogether, we believe that creating an automated, robust, and scalable platform for carrying 1014 
out population-based analysis can maximize our discoveries and aid in the development of 1015 
hypothesis-driven work and epidemiological surveys of pathogens. This powerful combination 1016 
of population-based pattern searching with experimentation may provide new insights of the 1017 
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evolution of these populations, and perhaps yield novel applications for surveillance and disease 1018 
mitigation in the case of major foodborne pathogens such as S. enterica lineage I, C. jejuni, and 1019 
S. aureus. Similarly, this approach can be used for other bacterial species, such as beneficial 1020 
microbes that are or can be putative probiotic candidates. In general, our platform aims at 1021 
leveraging the microorganismal population structure to identifying patterns that can be useful for 1022 
understanding ecological and evolutionary processes shaping populations. This top-down based 1023 
analysis has the advantage of using agnostic principles and inquiries to learn from the large-scale 1024 
data in order to get novel insights about the fundamental biology of the species, while 1025 
discovering novel and practical information. However, this is only possible because ProkEvo 1026 
allows us to conduct the analysis in a reproducible, scalable and expandable fashion, permitting 1027 
us to identify novel population patterns with different levels of resolution. 1028 
 1029 
Conclusions 1030 
In this paper we present ProkEvo, which is: 1) An automated, user-friendly, reproducible, and 1031 
open-source pipeline for bacterial population genomics analyses that uses the Pegasus Workflow 1032 
Management System; 2) Pipeline that can scale the analysis from at least a few to tens of 1033 
thousands of bacterial genomes using high-performance and high-throughput computational 1034 
resources; 3) An easily modifiable and expandable pipeline to include additional steps, custom 1035 
scripts and software, user databases, and species-specific data; 4) Modular pipeline that can run 1036 
many thousands of analyses concurrently, if the resources are available; 5) Pipeline for which the 1037 
memory and run time allocations are specified per job, and automatically increases its memory in 1038 
the next retry; 6) Distributed with conda environment and Docker image for all bioinformatics 1039 
tools and databases needed to perform population genomics analyses; and ultimately includes: 7) 1040 
An initial guidance on how to perform population-based analyses using its output files with 1041 
reproducible Jupyter Notebooks and R scripts. One important advantage of ProkEvo is its 1042 
adaptability to the user needs. Also, we intend to keep on improving this pipeline to include new 1043 
computational branches that will potentially add the following functionality: 1) cgMLST 1044 
genotyping for non-Salmonella genomes; and 2) Integrating the population-based analysis and 1045 
predictive pan-genome computations to identify genes uniquely present in sub-populations 1046 
defined based on STs, cgMLSTs, etc. These functions can add tremendous value to research and 1047 
clinical microbiological purposes. First, cgMLST genotyping is directly applicable for 1048 
epidemiological surveillance of populations. Finally, an automated population-based and pan-1049 
genome analyses can allow researchers and clinical microbiologists to find unique genes that are 1050 
enriched in a target population, which may in turn reflect past selection and ecological adaptation 1051 
to a particular environment or host. Ideally, we, as a community would have access to a minimal 1052 
amount of epidemiological information that would facilitate discovering novel potential genomic 1053 
signatures associated with different environments and hosts. While the latter remains a large 1054 
issue to be dealt with, ProkEvo has the potential to be implemented as an open-source science 1055 
gateway, which remains a long-term goal.  1056 
 1057 
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Table 1: Comparison of ProkEvo’s performance on Crane and OSG with two datasets with 
significant difference in size and number of genomes.  
 
 Crane OSG Crane OSG 
Number of 
genomes 2,392 23,045 

Total distributed 
running time* 3 days 15 hours 7 days 4 hours 15 days 22 

hours 26 days 6 hours 

Total estimated 
sequential 
running time** 

115 days 18 
hours 1 year 69 days 2 years 268 days 13 years 5 days 

Maximum jobs 
ran in a day*** 2,377 8,608 12,382 25,540 

Total number of 
jobs ran 9,281 16,624 217,942 232,422 

Output data size 131 GB 1.2 TB 
* Total distributed running time is calculated when many independent tasks are executed 
simultaneously while utilizing a single core each of them. This is the default behavior of 
ProkEvo. 
** Total estimated sequential running time is calculated when all steps from the pipeline are 
assumed to be run sequentially, on a single core. 
*** The number of maximum jobs ran in a day depends on the type and length of the job, and is 
not linear, i.e. some tasks run faster than others which is directly dependent of the type of job 
being done. 
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Figure 1: Overall ProkEvo’s computational workflow. 
Top-down flow of tasks for the ProkEvo pipeline. The squares represent the steps, where the 
bioinformatics tool used for each step is shown in brackets. The pipeline starts with downloading 
raw Illumina sequences from NCBI, after providing a list of SRA identifications, and 
subsequently performing quality control. Next, de novo assembly is performed on each genome 
using SPAdes and the low-quality contigs are removed. This concludes the first part of the 
pipeline, the first sub-workflow. The second sub-workflow is composed of more specific 
population-genomics analyses, such as genome annotation and pangenome analyses (with 
Prokka and Roary) and isolate serotype predictions from genotypes in the case of Salmonella 
(SISTR), genotyping using core-genome (fastbaps, MLST, and cgMLST genotyping with 
SISTR), and identifications of genetic elements with ABRicate and Plasmidfinder. 
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Figure 2: Pegasus workflow of ProkEvo. 
Pentagons represent the input and output files, the ovals represent the tasks (jobs), and the arrows 
represent the dependency order among the tasks. Pentagons are colored in red for the input files 
used for the first and second sub-workflow, respectively. The yellow pentagons and the green 
ovals represent the input and output files, and tasks (jobs) that are part of the first sub-workflow. 
The pentagons colored in orange and the ovals colored in blue are the input and output files, and 
tasks used in the second sub-workflow. While the first sub-workflow is more modular, most of 
the tasks from the second sub-workflow are performed on all processed genomes together. Here, 
the steps of the analyses for two genomes are shown, and those steps and tasks remain the same 
regardless of the number of genomes. The number of tasks significantly increases with the 
number of genomes used, and because of the modularity of ProkEvo, each task is run on a single 
core which facilitates parallelization at large scale. Theoretically, if there are n cores available on 
the computational platform, ProkEvo can utilize all of them and run n independent tasks, 
simultaneously (1:1 correspondence).  
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Figure 3: Computational experimental approach to test the performance of ProkEvo using 
two different computational platforms with datasets of different size. 
To test how ProkEvo would perform with a small (1X) vs. moderately large (10X) datasets, in 
addition to using different computational resources, we have designed the following experiment: 
1) Selected two adequately sized datasets including genomes from S. Newport (1X – from USA) 
and S. Typhimurium (10X – worldwide); 2) Used two different types of computational 
platforms: Crane, the University of Nebraska high-performance computing cluster, and the Open 
Science Grid, as a distributed high-throughput computing cluster; 3) We then ran both datasets 
on the two platforms with ProkEvo, and collected the statistics for the performance in order to 
provide a comparison between the two different computational platforms, as well as possible 
guidance for future runs. Of note, the text in green and red correspond to advantages and 
disadvantages of using each computational platform, respectively. 
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Figure 4: Salmonella Newport (USA) population stratification by genotype classification 
using two methods: allelic calls (ST and cgMLST) and a heuristic Bayesian approach 
(BAPS).  
(A) ST distribution based on seven ubiquitous and genome-scattered loci using the MLST 
program, which is based on the PubMLST typing schemes (plot excludes STs with relative 
frequency below 1%). (B) Core-genome MLST distribution based on SISTR which uses ~330 
ubiquitous loci (plot excludes STs with relative frequency below 1%). (C-H) BAPS levels 1-6 
relative frequencies. For BAPS levels 3-6, we have excluded sub-groups that were below 1% in 
relative frequency in order to facilitate visualization. The initial number of genomes used as an 
input was 2,392, while these analyses were run with 2,365 genomes that passed the post-
assembly filtering steps.  
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Figure 5: Inter-continental distribution of Salmonella Typhimurium STs and core-genome 
MLSTs.  
(A-B) Relative frequencies of STs and core-genome MLSTs between Monophasic and Biphasic 
populations across multiple continents (STs and core-genome MLSTs with proportion below 1% 
were excluded from the graph). The initial number of genomes used as an input was 23,045, 
while these analyses were run with 21,534 genomes that passed the filtering steps. Raw 
sequences were downloaded from NCBI SRA without filtering for USA isolates exclusively. 
Hence, the name “Inter-Continental”. However, we cannot break the data down into continents, 
because the metadata was unreliable.  
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Figure 6: Antibiotic-associated resistance genes distribution between and within three 
serovars of S. enterica lineage I.  
(A) Proportion of genomes containing antibiotic-associated resistance genes within each serovar. 
(B-D) Proportion of antibiotic-associated resistance genes within major vs. other STs for S. 
Infantis, S. Newport, and S. Typhimurium, respectively. For the plots, (B-D), the population was 
initially aggregated based on the dominant STs vs. the others, prior to calculating the relative 
frequency of genomes containing each antibiotic-resistance gene. Only proportions equal to or 
greater than 25% are shown. For S. Infantis and S. Newport, only USA data were used; whereas, 
for S. Typhimurium we did not filter based on geography in order to have a larger dataset used to 
test ProkEvo’s computational performance. Datasets were not filtered for any other 
epidemiological factor. The total number of genomes used for this analysis was 1,684, 2,365, 
21,509 for S. Infantis, S. Newport, and S. Typhimurium, respectively, after filtering out all 
missing or erroneous values. Also, there were 18 and 1666 genomes for “Other STs” and ST32 
within the S. Infantis data, respectively. For S. Newport, there were 393, 800, 643, and 529 
genomes of the following groups: Other STs, ST118, ST45, and ST5, respectively. Lastly, for S. 
Typhimurium, there were 1,430, 12,477, 1,493, 5,274, and 835 genomes for either Other STs, 
ST19, ST313, ST34, or ST36, respectively. 
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Figure 7: ST-based population structure and distribution of antibiotic-associated resistance 
genes for two major foodborne pathogens.  
(A-B) Proportion of the most dominant STs within C. jejuni and S. aureus populations (only 
proportions > 1% are shown). (C-D) Proportion of genomes containing antibiotic-resistance 
genes within ST populations for C. jejuni and S. aureus (only proportions > 25% are shown). 
Both datasets only included genomes from USA and were not filtered for any other 
epidemiological factor. The total number of genomes entered in this analysis was 18,845 and 
11,597, for C. jejuni and S. aureus, respectively, after filtering out all missing or erroneous 
values. For C. jejuni, there were 886, 1,041, 940, 932, 1,108, 577, 651, and 940 genomes of the 
following groups: ST8, ST45, ST48, ST50, ST353, ST459, ST806, and ST982, respectively. 
Lastly, for S. aureus, there were 4,518, 3,801, 1,334, 276, 211, and 141 genomes for either ST8, 
ST5, ST105, ST398, ST609, or ST45, respectively. 
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Figure 8: Relationship between the core-genome phylogeny and population structure of C. 
jejuni and S. aureus.  
(A-B) Population structure using BAPS1 and ST for genotypic classifications were overlaid onto 
the core-genome phylogeny of both C. jejuni and S. aureus, respectively. BAPS1 was used as the 
first layer of classification to demonstrate how each sub-group can be comprised of multiple STs. 
For instance, STs that cluster together, and belong to the same BAPS1 sub-group, are more likely 
to have shared a most recent common ancestor. This represents a hierarchical population-based 
analysis going from BAPS1 to STs. For this analysis and visualization, we have used a random 
sample composed of 1,044 and 1,193 genomes for C. jejuni and S. aureus, respectively. 
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