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Abstract 

Deep learning models such as convolutional neural networks are able to accurately map 

biological sequences to associated functional readouts and properties by learning predictive 

de novo representations. In-silico saturation mutagenesis (ISM) is a popular feature attribution 

technique for inferring contributions of all characters in an input sequence to the model’s 

predicted output. The main drawback of ISM is its runtime, as it involves multiple forward 

propagations of all possible mutations of each character in the input sequence through the 

trained model to predict the effects on the output. We present fastISM, an algorithm that 

speeds up ISM by a factor of over 10x for commonly used convolutional neural network 

architectures. fastISM is based on the observations that the majority of computation in ISM is 

spent in convolutional layers, and a single mutation only disrupts a limited region of 

intermediate layers, rendering most computation redundant. fastISM reduces the gap between 

backpropagation-based feature attribution methods and ISM. It far surpasses the runtime of 

backpropagation-based methods on multi-output architectures, making it feasible to run ISM 

on a large number of sequences. An easy-to-use Keras/TensorFlow 2 implementation of 

fastISM is available at https://github.com/kundajelab/fastISM, and a hands-on tutorial at 

https://colab.research.google.com/github/kundajelab/fastISM/blob/master/notebooks/colab/

DeepSEA.ipynb. 

1Department of Computer Science, Stanford University 2Department of Genetics, Stanford University

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2020. ; https://doi.org/10.1101/2020.10.13.337147doi: bioRxiv preprint 

https://github.com/kundajelab/fastISM
https://colab.research.google.com/github/kundajelab/fastISM/blob/master/notebooks/colab/DeepSEA.ipynb
https://colab.research.google.com/github/kundajelab/fastISM/blob/master/notebooks/colab/DeepSEA.ipynb
https://doi.org/10.1101/2020.10.13.337147
http://creativecommons.org/licenses/by-nc/4.0/


Introduction 

High-throughput experimental platforms have revolutionized the ability to profile diverse 

biochemical and functional properties of biological sequences such as DNA, RNA and proteins. 

These datasets have powered highly performant deep learning models of biological sequences 

that have achieved state-of-the art results for predicting protein-DNA binding, protein-RNA 

binding, chromatin state, splicing, gene expression, long-range chromatin contacts, protein 

structure and functional impact of genetic variation (Zhou et al., 2018; Zhou and Troyanskaya, 

2015; Jaganathan et al., 2019; Alipanahi et al., 2015; Eraslan et al., 2019; Torrisi et al., 2020; 

Kelley et al., 2016; Avsec et al., 2019; Kelley et al., 2018; Koo et al., 2018; Fudenberg et al., 

2020). 


Convolutional neural networks (CNNs) are widely used for modeling regulatory DNA since they 

are well suited to capture known properties and invariances encoded in these sequences 

(Kelley et al., 2016; Alipanahi et al., 2015; Zhou and Troyanskaya, 2015). CNNs map raw 

sequence inputs to binary or continuous outputs by learning hierarchical layers of de-novo 

motif-like pattern detectors called convolutional filters coupled with non-linear activation 

functions. Recurrent neural networks (RNNs) (Hochreiter and Schmidhuber, 1997) are another 

class of sequential models that have been very effective for modeling protein sequences 

(Torrisi et al., 2020). However, RNNs and hybrid CNN-RNN architectures have only shown 

moderate performance improvements for modeling regulatory DNA (Quang and Xie, 2016; 

Hassanzadeh and Wang, 2016; Shen et al., 2018). Compared to recurrent architectures, CNNs 

also have the advantage of being more computationally efficient and easily interpretable. For 

example, convolutional filters are reminiscent of classical DNA motif representations known as 

position weight matrices (PWMs) (Trabelsi et al., 2019). Hence, CNNs continue to be the most 

popular class of architectures for modeling regulatory DNA sequences (Eraslan et al., 2019).


2

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2020. ; https://doi.org/10.1101/2020.10.13.337147doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.13.337147
http://creativecommons.org/licenses/by-nc/4.0/


A primary use case for these deep learning models of regulatory DNA is to decipher the de 

novo predictive sequence features and higher-order syntax learned by the models that might 

reveal novel insights into the regulatory code of the genome. Hence, several feature attribution 

methods have been developed and used to infer contribution scores (or importance scores) of 

individual characters in input sequences with respect to output predictions of neural network 

models such as CNNs. A popular class of feature attribution methods use backpropagation to 

efficiently decompose the output prediction of a model, given an input sequence, into 

character-level attribution scores (Shrikumar et al., 2017; Sundararajan et al., 2017; Lundberg 

and Lee, 2017; Simonyan et al., 2013). The gradient of the output with respect to each 

observed input character — commonly referred to as a saliency map (Simonyan et al., 2014)—

is one such method for attributing feature importance. Other related approaches such as 

DeepLIFT (Shrikumar et al., 2017) and integrated gradients (Sundararajan et al., 2017; Jha et 

al., 2020) modify the backpropagated signal to account for saturation effects and improve 

sensitivity and specificity. These attribution scores can be used to infer predictive 

subsequences within individual input sequences which can then be aggregated over multiple 

sequences to learn recurring predictive features such as DNA motifs (Shrikumar et al., 2018).  

In-silico Saturation Mutagenesis (ISM) is an alternate feature attribution approach that involves 

making systematic mutations to each character in an input sequence and computing the 

change in the model’s output due to each mutation. ISM is the computational analog of 

saturation mutagenesis experiments (Patwardhan et al., 2009) that are commonly used to 

estimate the functional importance of each character in a sequence of interest based on its 

effect size of mutations at each position on some functional read out. ISM is the de-facto 

approach to predict the effects of genetic variants in DNA sequences (Zhou and Troyanskaya, 

2015; Kelley et al., 2016; Wesolowska-Andersen et al., 2020). 
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In the context of computing feature attributions with respect to a single scalar output of a 

model, ISM can be orders-of-magnitude more computationally expensive than 

backpropagation-based feature attribution methods, since it involves a forward propagation 

pass of the model for every mutation of every position in an input sequence (Eraslan et al., 

2019). By contrast, backpropagation-based methods can compute attribution scores of all 

possible characters at all positions in an input sequence in one or a few backward 

propagations of the model. The inefficiency of ISM is particularly onerous when ISM is 

performed on a large number of sequences or for a large number of models. For example, to 

obtain robust variant effect prediction, (Wesolowska-Andersen et al., 2020) recently trained 

1000 convolutional neural networks to predict variants in chromatin regulatory features of 

pancreatic islets, and averaged the ISM scores over the trained models to confer robustness 

against heterogeneity that stems from different random parameter instantiations of the same 

model at the beginning of the training process (Wesolowska-Andersen et al., 2020). 


However, despite this gap in efficiency, ISM does offer some salient benefits over 

backpropagation-based methods. In comparison to most backpropagation-based methods 

that often use heuristic rules and approximations, ISM faithfully represents the model’s 

response to mutations at individual positions. This makes it the method of choice when 

evaluating the effect of genetic variants on the output (Zhou and Troyanskaya, 2015; Zhou et 

al., 2018; Wesolowska-Andersen et al., 2020), and it is also used as a benchmark reference 

when evaluating fidelity of other feature attribution methods (Koo and Ploenzke, 2020). Unlike 

ISM, backpropagation-based methods like DeepLIFT and Integrated Gradients rely on a 

predefined set of “neutral” input sequences that are used as explicit references to estimate 

attribution scores. The choice of reference sequences can influence the scores and so far the 

selection of reference sequences has been ad-hoc (Jha et al., 2020; Eraslan et al., 2019). ISM 

also has some benefits for models with a large number of scalar or vector outputs since each 

forward propagation performed during ISM reveals the impact of a single mutation on every 
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output of the model. For example, massively multi-task models are quite popular for mapping 

regulatory DNA sequences to multiple molecular reads outs in large collections of biosamples 

(Zhou et al., 2018; Zhou and Troyanskaya, 2015; Jaganathan et al., 2019; Alipanahi et al., 2015; 

Eraslan et al., 2019). Further, a recent class of models called profile models have been 

developed to map regulatory DNA sequences to vector outputs corresponding to quantitative 

regulatory profiles (Avsec et al., 2019; Kelley et al., 2018). These models output a vector of 

signal values often at base-resolution that can be as long as the input sequence. ISM can 

reveal how perturbing individual nucleotides in the input alters the signal across all positions in 

the output profile. By contrast, backpropagation-based importance scoring methods would 

need to perform a separate backpropagation for every output position in order to estimate 

comparable feature attributions, which would linearly increase the computational cost in the 

number of outputs. For these reasons, a computationally efficient implementation of ISM would 

be attractive.


We introduce fastISM, an algorithm that speeds up ISM for CNNs. fastISM is based on the 

observation that CNNs spend the majority of computation at prediction time in convolutional 

layers and that single point mutations in the input sequence affect a limited range of positions 

in intermediate convolutional layers. fastISM restricts the computation in intermediate layers to 

those positions that are affected by the mutation in the input sequence. fastISM cuts down the 

time spent in redundant computations in convolution layers at positions that are unaffected by 

mutations in the input, resulting in significant speedups.


We provide a fully functional and well-tested package implementing the fastISM algorithm for 

Keras models in TensorFlow 2. We benchmark the speedup obtained by running fastISM on a 

variety of architectures and show that fastISM can achieve order-of-magnitude improvements 

over standard ISM implementations. fastISM reduces the gap between ISM and 
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backpropagation-based methods in terms of runtime on single-output architectures, and far 

surpasses them on multi-output architectures. 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Results 

In-silico saturation mutagenesis for CNNs is bottlenecked by redundant computations in 

convolution layers 

Fig 1. Annotated diagram of a Basset-like architecture (Kelley et al., 2016) on an input DNA 

sequence of length 1000, with a 1 base-pair mutation at position 500 (0-indexed). Positions 

marked in red indicate the regions that are affected by the point mutation in the input. Positions 

marked in yellow, flanking the positions in red, indicate unaffected regions that contribute to 

the output of the next layer. Ticks at the bottom of each layer correspond to position indices. 

Numbers on the right in black indicate the approximate number of computations required at 

that layer for a standard implementation of ISM. For convolution layers, the numbers in gray 

and green indicate the minimal computations required. We omit layers such as activations and 

batch normalization for simplicity, as they do not change the affected regions.  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We motivate fastISM by using an example based on the multi-task Basset model (Kelley et al., 

2016) that maps DNA sequences to binary labels of chromatin accessibility across 100s of cell 

types and tissues (tasks). The Basset model consists of 3 convolution layers of kernel sizes 19, 

11 and 7, which are followed by max pool layers of size 3, 4 and 4 respectively. The output 

after the 3rd convolution and max pool is flattened. This is followed by 2 fully connected layers 

with 1000 hidden units, and a final fully connected layer that predicts the outputs. We consider 

a slight modification of the original architecture that operates on 1000bp input sequence and 

has 10 binary scalar outputs. In addition, all convolution layers are assumed to be padded 

such that the length of the output sequence is the same as the input to the layer (Fig 1).


For a single forward propagation through the network, the majority of compute time is spent in 

the convolutional layers. For a given convolution layer, the number of computations is 

proportional to kernel size, input filters, output filters and output length. For a fully connected 

layer, it is proportional to input and output lengths. The numbers in black in Fig 1 show the 

approximate computations required at each convolution and fully connected layer for a single 

forward propagation. We ignore the computation spent in intermediate layers such as 

activations, batch normalization and max pool, since they are dominated by the computational 

cost of convolutional and fully connected layers. The 3 convolutional layers require 

approximately 23M, 220M and 23M computations respectively, while the 3 fully connected 

layers require approximately 4M, 1M and 0.01M computations respectively. Thus, the 

computations required in the convolutional layers combined exceed that of the fully connected 

layers by a factor of 50x. In practice, we timed the convolutional layers and fully connected 

layers and observed that the factor is closer to 40x for the same architecture.


For a given reference input sequence, a simple implementation of ISM involves highly 

redundant computations. Typically, ISM is implemented by inserting mutations at each position 

in the input one at a time and making a forward pass through the entire model using the 
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perturbed sequences as inputs. However, local perturbations in the input only affect local 

regions in intermediate convolutional layers, while regions farther away remain identical to their 

values for the reference (unperturbed) input sequence. 


For each layer, the regions that are affected by the single base pair mutation in the input, and 

the minimal regions required to compute the output of the next layer are shown in Fig 1. 

Consider a single base pair mutation in the middle of the 1000 bp input sequence at position 

500 (0-indexed). The first convolution (layer 1) has a kernel size of 19 and the input sequence is 

padded with zeros at 9 positions on both sides. The output sequence length is thus 1000. As 

the convolution filter scans across the input sequence, the mutation at position 500 will be 

involved in 19 contiguous output positions of the next layer from positions 491-510. None of 

the other 1000-19 outputs will be affected by the mutation, and computing them is redundant. 

18 positional inputs on either side of the mutation will be involved in generating the 19 

contiguous outputs of the next layer. The first max pool (layer 2) has a size of 3, and the output 

length is 333. The affected input region from 491-510 will only affect ⌊491/3⌋-⌊510/3⌋, i.e. 

163-170 in the output of the max pool region. However, in order to compute the 163rd output, 

the max pool would also require the convolution output values at positions 489 and 490, which 

would be the same as the values for the reference (unperturbed) input sequence.


The above exercise can be extended to the next two convolution layers. For simplicity, the 

convolution and max pool layers are combined. The output of the first max pool affects 

positions 163-170. The next convolution has a kernel size of 11 and a padding of zeros at 5 

positions on both sides. The output of the convolution followed by max pool (layer 3) affects 5 

out of 83 positions, and the output of layer 4 affects 3 out of 20 positions. This output is then 

reshaped to a single vector, which is then fed through 3 fully connected layers. By design, a 

single mutation in the input sequence has the potential to affect every position in the fully-
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connected layer; thus, the activations of all subsequent layers in the network must be 

recomputed for the mutated input, as is the case with standard ISM.


Given that the majority of computation occurs before the fully-connected layer, the actual 

computations required to track the effect of a single base-pair mutation in the input are much 

smaller than the total computations in a standard forward propagation. The values on the right 

in green and gray in Fig 1 show the minimum number of computations required such that 

computations are only restricted to the regions affected by the mutation in the input. For 

saturation mutagenesis in which the above operations are repeated for perturbations at all 

positions, the amount of redundant calculations adds up and contributes to ISM’s unfavourable 

runtime. 


Since the majority of activations prior to the fully-connected layers remain unchanged by a 

single-base mutation, the activations of these layers on the unperturbed sequence can be 

computed once and reused when running ISM over the different positions in the input 

sequence. By restricting ISM computations to only positions affected by the input mutation at 

each layer, the number of computations can theoretically be reduced from approximately 23 + 

220 + 23 + 4 + 1 M = 271M to 0.5 + 8 + 2 + 4 + 1 M = 15.5M computations, down by a factor 

of 17. In practice, there may be overheads from other steps such as concatenating the 

unperturbed flanking regions at each intermediate layer, that would dampen the realised 

speedup.


These observations suggest that it should be possible to define a custom model that performs 

only the required computations for a mutation at each input position. However, it would be 

cumbersome to write an architecture specifically for the purpose of ISM for each model, and 

compute the positions required at each intermediate layer for a specific input mutation. Hence, 

we developed fastISM, a method to speed up ISM by leveraging the above mentioned 
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redundancies without requiring any explicit re-specification of the model architecture by the 

user (Supplementary Methods).


fastISM yields order-of-magnitude improvements in speed for different architectures 

fastISM takes as input any sequence model and first reduces it to a computational graph 

representation. It chunks the graph into appropriate segments that can each be run as a unit. 

The model is augmented to return intermediate outputs at the end of each segment for 

unperturbed input sequences. For a given set of input sequences, these intermediate outputs 

are cached. A second model is then initialized, that largely resembles the original model, but 

incorporates mechanisms to concatenate slices of the cached unperturbed intermediate 

outputs with the affected intermediate outputs, and compute each layer’s output on the least 

required input. fastISM processes a group of input sequences at a time. For each group of 

sequences, fastISM is run on multiple batches such that sequences in a given batch are all 

perturbed at the same position. 


We benchmarked fastISM against a standard implementation of ISM. We choose 3 types of 

models that take DNA sequence as input— the Basset architecture (Kelley et al., 2016), the 

Factorized Basset architecture (Wnuk et al., 2019) and the BPNet architecture (Avsec et al., 

2019). The first two models output scalar values for each output task, whereas the BPNet 

model outputs a profile vector of length equal to the input sequence length, and a scalar count. 

ISM is performed by recording the outputs for all 3 alternate mutations at each position. We 

benchmark the three models for 1000bp and 2000bp length inputs. 


We also compare fastISM to three backpropagation-based feature attribution methods — 

Gradient x Input (input masked gradient), Integrated Gradients (Sundararajan et al., 2017), and 

DeepSHAP (Lundberg and Lee, 2017). DeepSHAP is an extension of the DeepLIFT algorithm 
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that is implemented by overriding tensorflow gradient operators; we used DeepSHAP because 

it has a more flexible implementation than the original DeepLIFT repository. We set the number 

of steps for Integrated Gradients to 50 and a single default reference of all zeros, and the 

number of dinucleotide reference sequences for DeepSHAP to 10. For models with a single 

scalar output, the backpropagation-based methods are run with respect to the scalar output. 

For BPNet, the methods are run with respect to each output in the profile vector as well as the 

scalar output. While ISM returns one value (change in output score) for each of the 3 alternative 

nucleotides (with respect to the observed nucleotide) at each position; Integrated Gradients, 

DeepSHAP and Gradients return one value for each of the 4 possible nucleotides at each 

position.


The results are summarised in Table 1. For the Basset and Factorized Basset architectures, 

fastISM speeds up ISM by more than 10x when computing importance scores for a single 

output task, and the speedup increases with increasing input sequence length. This is 

expected since, for a fixed architecture, the length of the affected regions in the convolutional 

layers are independent of input sequence length. Remarkably, fastISM runtimes, though slower 

than Gradient x Input, are competitive with runtimes of Integrated Gradients (within 2x) and 

DeepSHAP (within 4x) for single scalar output models. Also note that fastISM and ISM provide 

importance scores with respect to every output task; computing scores for multiple output 

tasks while the backpropagation-based methods would multiply their runtime by the number of 

output tasks.


The speedup of fastISM for the BPNet architecture relative to standard ISM is more modest— 

1.6x for 1000bp input and 2.1x for 2000bp input. This can be attributed to dilated convolutions; 

since the BPNet architecture includes dilated convolutions with an exponentially increasing 

dilation rate, the receptive fields for the later dilated convolutions are very large. As a result, the 

regions affected by a single base pair change in the input span a sizable fraction of 
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intermediate layers, and the computations involved beyond those layers approach those of a 

standard implementation. 


For the BPNet architecture which outputs a profile vector, if one is interested in attributing the 

predicted value at each position in the output vector to the input nucleotides, one would need 

to run the backpropagation methods for every output position, which drastically slows them 

down. DeepSHAP and Integrated Gradients take over 50x time of the fastISM implementation. 

Thus, fastISM speeds up ISM by an order-of-magnitude and narrows the gap in compute time 

between backpropagation-based methods and ISM. 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Table 1: Comparison of fastISM with standard ISM, Gradient x Input, Integrated Gradients with 

50 steps and a single all-zeros reference, and DeepSHAP with 10 references for 3 different 

models with 1000bp and 2000bp length inputs. All times in seconds per 100 input sequences. 

Time relative to fastISM in parentheses. For BPNet models which output a profile vector as well 

as a count scalar, Gradient x Input, Integrated Gradients and DeepSHAP were computed in a 

loop with respect to each output of the profile and the count scalar (*).


Architecture Layers Input 
Size

Outputs fastISM Standard 
ISM 

Gradient x 
Input

Integrated 
Gradients

DeepSHAP

Basset 3 Conv + 3 
max pool, 3 
fully 
connected

1000 Single 
scalar

2.70 27.36 

(10.1)

0.04

 (<<1)

2.34 

(0.8)

1.75

 (0.7)

2000 6.49 100.44 

(15.4)

0.08 

(<<1)

4.61 

(0.7)

3.03 

(0.4)

Factorized 
Basset

9 Conv + 3 
max pool, 3 
fully 
connected

1000 Single 
scalar

5.47 68.97 

(12.6)

0.09

(<<1)

4.82 

(0.9)

2.64 

(0.5)

2000 18.04 262.24

 (14.5)

0.17 

(<<1)

9.47

 (0.5)

4.63 

(0.25)

BPNet 2 Conv, 9 
Dilated 
Conv, skip 
connections

1000 Profile 
(length 
1000 
vector) + 
scalar

28.97 46.09

(1.6)

41.49* 

(1.4)

4399* 

(151)

1743* 

(60)

2000 Profile 
(length 
2000 
vector) + 
scalar

81.52 173.96 

(2.1)

126.41* 
(1.5)

12440* 
(152)

6427*

 (78)
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Conclusions 

In-silico saturation mutagenesis (ISM) is an important post-hoc feature attribution method that 

has gained applicability as a tool to interpret deep learning models for genomics and to 

interrogate the effect of variants. ISM has largely been treated as a static method with 

unfavourable time complexity compared to more recent backpropagation-based model 

interpretability methods. We challenge this notion by introducing fastISM, a performant 

implementation of ISM for convolutional neural networks. fastISM leverages the simple 

observation that the majority of computations performed in a traditional implementation of ISM 

are redundant. fastISM improves runtime of ISM by over 10x for commonly used convolutional 

neural networks, and a factor of 2x for profile networks with exponentially wide dilated 

convolutions. This brings down ISM’s runtime in the ballpark of backpropagation-based 

methods such as Integrated Gradients and DeepSHAP for single-output models, and 

dramatically surpasses the runtime of backpropagation-based methods for multi-output 

methods, making it more feasible to run ISM genome-wide and on a large number of models.
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