1	
2	
3	
4	Occurrence and characterization of cyst nematode species (Globodera spp.) associated with
5	potato crops in Colombia
6	
7	
8	Daniela Vallejo ¹ , Diego A. Rojas ² , John A. Martinez ² , Sergio Marchant ³ , Claudia M. Holguin ^{4*} ,
9	Olga Y. Pérez ²
10	
11	¹ Universidad Nacional de Colombia, Sede Medellín, Colombia
12	² Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, C.I. Tibaitatá
13	Mosquera, Cundinamarca, Colombia
14	³ Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
15	⁴ Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, C.I La Selva,
16	Rionegro, Antioquia, Colombia
17	
18	
19	*Corresponding author:
20	E-mail: <u>cholguin@agrosavia.co</u> (CMH)
21	

22 Abstract

23 Potato cyst nematodes (PCN) from the genus *Globodera* spp. cause major losses in potato 24 (Solanum tuberosum) industry worldwide. Despite their importance, at present little is known 25 about the status of this plant pathogen in cultivated potatoes in Colombia. In this study, a total of 26 589 samples collected from 75 geographic localities from nine potato producing departments of 27 Colombia were assayed for the presence of potato cyst nematodes. Fifty-seven percent of 28 samples tested positive for PCN. All populations but one were identified as Globodera pallida, 29 with conspicuous morphometric variation found among populations. Based on phylogenetic 30 analysis of the internal transcribed spacer region (ITS1-5.8S-ITS2) of the rRNA gene and D2-D3 31 expansion segments of the 28S rRNA gene, G. pallida from Colombia formed a monophyletic 32 group closely related to Peruvian populations, with the lowest average number of nucleotide 33 substitutions per site (Dxy=0.002) and net nucleotide substitutions per site (Da=0.001), when 34 compared to G. pallida populations from South, North America and Europe. A single sample 35 formed a well-supported subclade along with G. rostochiensis and G. tabacum from Japan, USA 36 and Argentina. To our knowledge this is the first comprehensive survey of *Globodera* 37 populations from Colombia that includes morphological and genetic data. Our findings on 38 species diversity and phylogenetic relationships of *Globodera* populations from Colombia may 39 help elucidate the status and distribution of *Globodera* species, and lead to the development of 40 accurate management strategies for the potato cyst nematodes.

41 Introduction

42 The cyst nematodes, Globodera Skarbilovich, 1959, are one of the most limiting plant 43 parasitic nematodes around the world [1]. Within the genus, thirteen species have been 44 identified, of which G. rostochiensis, G. pallida, G. ellingtonae, and G. tabacum are important 45 for agriculture [2]. The potato cyst nematodes (PCN), Globodera rostochiensis (golden or yellow 46 potato nematode) and *Globodera pallida* (pale potato nematode) cause major losses in potato 47 (Solanum tuberosum L.) crops [3], and are also considered as official control pests in many 48 countries [4]. These species cause damage to the potato plants, by penetrating and feeding into 49 the root tissue, which causes nutritional and water deficiency that is expressed in chlorosis and 50 wilting of the leaves, and may also cause low growth, dwarfism and proliferation of small lateral 51 roots that lead to vield reduction [4]. If PCN species are left uncontrolled may reduce potato 52 yield up to 80% [5,6], representing major economic losses in the potato industry worldwide. 53 Identification of *Globodera* species based on morphological characterization of the 54 perineal area of cvsts (e.g. distance from vulva and anus and Granek's ratio) and some characters 55 of the second stage juvenile (e.g. stylet length and stylet knob shape) [4,7] may be ambiguous. 56 Morphometric measurements of these characters often show overlap among species, making 57 morphological identification of cyst nematodes time consuming and difficult, especially when 58 differentiating G. pallida from G. rostochiensis and G. tabacum species complex (G. tabacum 59 tabacum, G. tabacum solanacearum and G. tabacum virginiae) [8,9]. Therefore, molecular 60 diagnosis is a necessary and recommended complement to identify cyst nematode species [4]. 61 For plant-parasitic nematodes, molecular diagnostics not only improve speed and 62 accuracy of nematode identification, but also have allowed a better understanding of the biology 63 of nematodes as agricultural pests [10]. The genomic regions more often used to study

64	phylogenetic relationships for plant-parasitic nematodes include DNA fragments from the 28S
65	ribosomal DNA (rDNA), internal transcribed spacer (ITS), as well as mitochondrial DNA
66	(mtDNA) [2,10–15]. Ribosomal genes exhibit enough conserved inter-specific neutral genetic
67	variation as to inform species delimitation without being prone to marker saturation [15-18]. For
68	cyst identification, although several methods have been used, DNA-based approaches have
69	shown to be more accurate to separate G. pallida from G. rostochiensis and other Globodera
70	species and, ribosomal regions have also shown to be useful markers to distinguish species
71	within the genus [12,17,19–21]. For new occurrences of <i>Globodera</i> spp., sequencing of DNA
72	fragments is also recommended, especially for regions where genetic data has not been reported
73	before and for PCN species that may not follow a typical profile [17,22]. For Globodera species
74	from Colombia, genetic information including validation of currently available diagnostic DNA
75	markers and molecular phylogenetics have not been documented.
76	In Colombia, G. pallida was first identified based on morphological characters in 1970 in
77	Cumbal, municipality located in the Nariño department, at the south west extreme of the country
78	[23]. In 1971, the species was regulated under the authority of The Instituto Colombiano
79	Agropecuario (ICA) and listed as quarantine pest, limiting the access to export potato seeds from
80	Nariño and its neighbor department, Cauca, to other producing potato departments of Colombia.
81	In 1983, Nieto [24] conducted an intensive PCN survey and reported G. pallida in other
82	municipalities of Nariño (Túquerres, Pupiales, Ipiales, Gualmatán, Sapuyes, among others), as
83	well as in Cauca (Totoró, Cajibío, Silvia, Popayán, Páez, among others), with an average of 50-
84	80 cysts/100 g of soil in Nariño and 9-10 cysts/100 g of soil in Cauca. The authors also sampled
85	the nematode in Cundinamarca and Boyacá, the main producing potato departments in
86	Colombia, and other minor producing potato departments such as Caldas, Tolima, Valle del

87 Cauca, Santander and Norte de Santander, but only reported the presence of PCN in Nariño and 88 Cauca. In 2004, the species was no longer listed as an official control pest. Yet, in a survey 89 conducted from 2011 to 2012, PCN was reported in 12 out of 14 sampled fields in Tunja, 90 Samacá and Ventaquemada (municipalities of Boyacá) and Tausa, Tabio and Zipaquirá 91 (municipalities of Cundinamarca), although population densities were not registered [25]. 92 Therefore, PCN was considered as re-emerging pathogen in 2012 by the Federación Colombiana 93 de Productores de Papa (Colombian Federation of Potato Producers – FEDEPAPA), and ICA 94 [25].

95 To obtain better knowledge about Globodera spp. associated with potato crops in 96 Colombia, it is necessary to develop DNA sequence information to better characterize 97 populations from different geographic regions and to understand their distribution patterns. This 98 information will also serve as a foundation to the design of effective control measures that 99 require fast and accurate identification of species, and it is a crucial factor when searching for 100 possible sources of host-plant resistance as well as for other management strategies. Therefore, 101 the objectives of this study were to: i) survey the *Globodera* spp. populations detected in 102 cultivated potatoes in Colombia; ii) carry out a molecular characterization of these Globodera 103 populations based on sequences of the ITS1 of rRNA, partial 18S rRNA and, D2-D3 expansion 104 segments of the 28S nuclear ribosomal RNA gene; iii) study the phylogenetic relationships of 105 *Globodera* spp. from Colombia by comparison with previously published molecular data of 106 populations from other regions of the world; and iv) compare cyst morphometric measurements 107 among *Globodera* populations from Colombia and other species previously reported. 108

109 Materials and Methods

110 Ethics statement

Nematode sampling was performed under a collection permit granted by the Autoridad
Nacional de Licencias Ambientales (ANLA) [Colombian National Authority Environmental
Permits]: "Permit for collecting specimens of wild species of the biological diversity for noncommercial scientific research purposes], resolution No. 1466, expedited on December 3, 2014.

116 Nematode populations and sampling

117 From 2013 to 2017, an extensive survey was conducted throughout the main commercial 118 potato producing regions of Colombia. A total of 589 sampling sites were selected in 75 119 municipalities using a stratified sampling strategy. The strata were defined as the departments 120 with the highest potato area reported in Colombia [26], for a total of nine departments sampled: 121 Cundinamarca, Boyacá, Antioquia, Nariño, Santander, Norte de Santander, Tolima, Caldas and 122 Cauca (Fig 1, Table 1). At each department, the number of fields sampled per municipality was 123 proportional to the potato area planted and fields at each municipality were selected based on 124 established potato crops in pre-flowering and flowering stages (Fig 1, Table 1). Soil samples at 125 each field were collected from within rows, at roughly equal intervals in a line transect pattern 126 across an area of 10.000 m² or less. A soil sample consisted of 60 soil cores (1.5 cm in diameter by 5 cm deep) taken near the root of the plants. Infected roots and surrounding soil of samples 127 128 collected from each field were pooled into one composite sample. Samples were placed into 129 plastic bags, transported to the laboratory of microbiology at the Corporación Colombiana de 130 Investigación Agropecuaria (AGROSAVIA), Tibaitatá Research Center, in Mosquera, 131 Cundinamarca, and stored at 4°C until processing. Cyst nematodes were extracted from soil 132 samples using the Fenwick method [27], and cyst individuals per 100 cm³ of soil were counted

- and morphologically identified using the keys by Golden and Handoo et al. [7,28]. Additionally,
- 134 a viability test was performed by randomly selecting 10 cyst per population that were crushed
- using a huijsman homogenizer [29] to release eggs and juveniles, alive eggs and j1 were counted
- 136 under the stereoscope and viability percentage was calculated per population.
- 137
- 138

139 Fig 1. Map of the Colombian Andes showing sampling sites of PCN associated with potato

140 crops in Colombia.

- 141 Black lines represent department limits, blue lines represent rivers and lakes. Colors according
- 142 elevation map. Red dots mark the position of the sample sites that tested positive for PCN and
- 143 blue dots mark the position of the sampling sites that tested negative for PCN.

Table 1. *Globodera* species and density levels (number of individuals per 100 cm³ of soil) and prevalence (%) in cultivated 144 potato crops in Colombia. 145

146

Department	Municipality	Species	# of samples collected	# of samples with <i>Globodera</i> spp.		Average/100 cm ³ soil	Population range/100 cm ³ soil	Viability average	Potato Variety
					(%)			(%)	
Nariño	1	G. pallida	12	12	100	97,3	1 - 345	60	D_Capiro
Nariño	Ipiales	G. pallida	10	5	50	9,1	2 - 45	41	D_Capiro
Nariño	Pasto	G. pallida	15	9	60	14,7	1 - 64	60	D_Capiro
Nariño	Yacuanquer	G. pallida	2	2	100	3,5	3 - 4	45	Criolla
Nariño	Tangua	G. pallida	5	4	80	11	1 - 34	55	D_Capiro
Nariño	Ospina	G. pallida	5	4	80	47,4	5 - 93	38	D_Capiro
Nariño	Iles	G. pallida	5	1	20	16	1 - 80	59	D_Capiro
Nariño	Guachucal	G. pallida	7	7	100	21,3	1 - 84	63	Betina
Nariño	Pupiales	G. pallida	11	6	54,5	5,9	1 - 29	30	D_Capiro
Nariño	Córdoba	G. pallida	7	7	100	9,4	1 -27	44	P Suprema
Cundinamarca	Chipaque	G. pallida	4	4	100	68,3	2-168	51	P Suprema
Cundinamarca	Madrid	G. pallida	5	2	40	1,8	2 - 7	63	D_Capiro
Cundinamarca	Pasca	-	6	0	0	0	0	0	P Suprema
Cundinamarca	Sesquilé	G. pallida	9	5	55,6	10,2	1 - 25	62	P Suprema
Cundinamarca	Subachoque	G. pallida	5	1	20	4	0 - 20	52	P Suprema
Cundinamarca	Tausa	G. pallida	25	17	68	84,2	1 - 1327	51	P Suprema
Cundinamarca	Ubaque	G. pallida	4	2	50	1,8	3 - 4	58	P Superior
Cundinamarca	Ubaté	G. pallida	3	3	100	443,3	268 - 556	51	P_Pastusa
Cundinamarca	Une	G. pallida	3	3	100	3,3	1 - 5	72	Criolla
Cundinamarca	Villapinzón	G. pallida	29	18	62,1	23,4	1 - 475	74	P Suprema
Cundinamarca	Zipaquirá	G. pallida	9	5	55,6	2	2 - 10	64	P Suprema
Cundinamarca	Cajicá	G. pallida	1	1	100	1	0 - 1	80	D_Capiro
Cundinamarca	Tenjo	G. pallida	2	2	100	72,5	50-95	76	D_Capiro
Cundinamarca	Sibaté	-	8	0	0	0	0	0	Criolla

Cundinamarca	Soacha	G. pallida	3	3	100	1	0 - 1	76	D_Capiro
Cundinamarca	Cogua	G. pallida	4	4	100	1,5	1 - 2	73	Betina
Cundinamarca	San Bernardo	G. pallida	2	2	100	2,5	2 - 3	51	Criolla
Cundinamarca	Fosca	G. pallida	4	2	50	2	0 - 5	69	P Suprema
Cundinamarca	Lenguazaque	G. pallida	3	1	33,3	1,7	0	60	P_Pastusa
Cundinamarca	Simijaca	-	2	0	0	0	0 - 40	0	P Suprema
Cundinamarca	Susa	G. pallida	15	1	6,7	2,7	1 - 125	55	P Suprema
Cundinamarca	Guatavita	G. pallida	11	4	36,4	11,8	1 - 125	55	P Suprema
Cundinamarca	La Calera	-	5	0	0	0	0	0	P Suprema
Cundinamarca	Choconta	G. sp.	8	7	87,5	43	1 - 93	70	P Suprema
Boyacá	Tota	G. pallida	6	4	66,7	4,7	2 - 19	58	P_Pastusa
Boyacá	Тоса	G. pallida	10	7	70	27,3	5 - 122	51	Tocarreña
Boyaca	Tunja	G. pallida	25	17	68	47,3	1 - 411	60	D_Capiro
Boyaca	Chíquiza	G. pallida	11	9	81,8	47	1 - 142	23	Betina
Boyaca	Úmbita	G. pallida	5	1	20	2	0 - 2	20	Tocarreña
Boyaca	Samacá	G. pallida	29	22	75,9	53,2	1 - 429	24	D_Capiro
Boyaca	Oicatá	G. pallida	6	4	66,7	7,7	1 - 36	24	D_Capiro
Boyaca	Sogamoso	G. pallida	8	8	100	107,5	1 - 305	38	P_Pastusa
Boyaca	Siachoque	G. pallida	27	20	74,1	64	1 - 364	54	P_Pastusa
Boyaca	Arcabuco	G. pallida	10	5	50	122,5	1 - 873	23	P_Pastusa
Boyaca	Ventaquemada	G. pallida	15	12	80	7,9	1 - 73	53	P Suprema
Boyaca	Motavita	G. pallida	8	4	50	2,6	1 - 14	54	Betina
Boyaca	Sora	G. pallida	3	3	100	185	101 - 286	60	D_Capiro
Boyaca	Saboyá	G. pallida	16	5	31,3	1,4	1 - 15	36	P_Pastusa
Boyaca	Soracá	G. pallida	9	8	88,9	84,7	1 - 306	24	D_Capiro
Boyaca	Boyacá	G. pallida	3	1	33,3	13,7	1 - 41	35	D_Capiro
Boyaca	Viracachá	G. pallida	3	2	66,7	1,3	1 - 2	32	Rubí
Boyaca	Ciénega	-	4	0	0	0	0	0	P Suprema
Boyaca	Mongua	G. pallida	2	1	50	0,5	0 - 1	38	ICA_Única
Boyaca	Firavitoba	G. pallida	3	2	66,7	1	1 - 2	44	P_Pastusa

Boyaca	Gámeza	G. pallida	5	2	40	0,8	1 - 2	20	Tocarreña
Boyaca	Belén	G. pallida	11	7	63,6	122,3	1 - 757	40	P_Pastusa
Boyaca	Tutazá	G. pallida	12	3	25	6,9	1 - 78	49	ICA_Única
Cauca	San Sebastián	G. pallida	8	5	62,5	4,1	1 - 13	48	P_Pastusa
Cauca	Silvia	G. pallida	6	2	33,3	0,3	0 - 1	47	Criolla
Cauca	Totoró	G. pallida	6	2	33,3	4,3	1 - 23	51	Criolla
Antioquia	San Vicente	G. pallida	9	5	55,6	7,11	2 - 24	40	Criolla
Antioquia	La Unión	G. pallida	9	3	33,3	6	1 - 51	32	D_Capiro
Antioquia	Sonsón	G. pallida	9	5	55,6	7,5	1 - 29	16	Criolla
Antioquia	La Ceja	G. pallida	1	1	100	7		20	
Antioquia	Abejorral	G. pallida	6	3	50	2,17	1 - 7	15	Criolla
Antioquia	Marinilla	G. pallida	7	5	71,4	5,71	1 -26	20	Criolla
Antioquia	Santuario	G. pallida	3	2	66,7	1,33	1 - 3	20	ICA_Nevada
Norte de Santander	Pamplona	G. pallida	8	2	25	0,9	1 - 4	37	Criolla
Norte de Santander	Cácota	G. pallida	4	2	50	1	1 - 2	16	Criolla
Santander	Concepción	G. pallida	8	2	25	0,9	1 - 6	20	P_Pastusa
Santander	Carcasí	G. pallida	2	1	50	0,5	0 - 1	36	P_Pastusa
Santander	Cerrito	G. pallida	4	1	25	1	1 - 4	31	ICA_Única
Caldas	Manizales	G. pallida	7	1	14,3	0,43	1 - 3	15	P_Pastusa
Tolima	Anzoátegui	G. pallida	5	1	20	0,4	1 - 2	29	P Suprema
Tolima	Murillo	G. pallida	7	1	14,3	0,2	0 - 1	19	P_Pastusa

148 DNA extraction, Polymerase Chain Reaction and sequencing

149	For molecular characterization, from the departments that showed the highest cyst
150	nematode densities, soil samples taken per municipality were pooled according to proximity
151	distance (1 km and 5 km range), resulting in one to two samples per municipality, for a total of
152	26 populations analyzed (Table 1). From each pooled population, DNA was extracted from
153	individual cysts or juveniles using the "Sigma Extract-N-Amp Kit (XNAT2)" kit (Sigma, St.
154	Louis, MO) according to the protocol reported by Ma et al. (2011) at AGROSAVIA, La Selva
155	Research Center, Rionegro, Antioquia. The number of individuals analyzed per population
156	depended upon the cyst nematode density present in each soil sample. DNA was then stored at -
157	20°C until used.
158	PCR amplification of two genomic regions were performed using 12.5 μ l of the Extract-
159	N-AmpTM Tissue PCR kit (Sigma), 1 μ l of each primer, 4 μ l of DNA and water to complete a
160	volume of 25 μ l. The rDNA primers used for PCR and DNA sequencing are listed in Table 2.
161	The ITS region of ribosomal DNA was amplified using 94° C for 2.5 min for initial denaturation,
162	followed by 40 cycles at 94° C for 1 min, 55° C for 1 min, 72° C for 2 min, and a final extension
163	of 72° C for 5 minutes. For the 28S region, initial denaturation was 94° C for 5 min, 40 cycles of
164	94° C for 30 sec, 58° C for 30 sec, 72° C for 1 min, and a final extension of 72° C for 10 min
165	(Nunn, 1992). The products were loaded on a 1.5% agarose gel and visualized using gel red
166	(Biotium, San Francisco, CA). Sanger sequencing of the amplicons was performed in both
167	directions by CorpoGen (Bogotá, Colombia).
168	

169 Table 2. Primers used for polymerase chain reaction and DNA sequencing of *Globodera*

170 spp. individuals recovered from cultivated potatoes in Colombia.

171

Primer	Marker	Sequence (5' to 3')	Reference
F194	ITS	CGTAACAAGGTAGCTGTAG	[30]
F195	ITS	TCCTCCGCTAAATGATATG	[31]
D2A	285	ACAAGTACCGTGAGGGAAAGTTG	[31]
D3B	285	TCGGAAGGAACCAGCTACTA	[32]

172 28S= Large ribosomal RNA subunit and ITS= internal transcribed spacer 1 and 2 including 5.8S rRNA

173

174 Sequence alignment and Phylogenetic analyses

GenBank (Table 3).

175 Resulting sequences were assembled in Sequencher® software version 5.1 (Gene Codes 176 Corporation, Ann Arbor, MI USA) and manually reviewed for base calling errors. Partial 28S 177 rRNA and ITS1-2 + 5.8S rRNA gene sequences from G. pallida, G. mexicana, G. rostochiensis, 178 G. tabacum, G. ellingtonae, and G. artemisiae, were retrieved from GenBank nucleotide 179 database and included in the alignment (Table 3) [8,19,21,33-42]. Sequences of Punctodera 180 punctata and P. chalcoensis also obtained from GenBank (AF274416.1, DQ328699.1.1, 181 AY090885. 1), were used as outgroup taxa for both gene regions. After that, sequence 182 alignments were performed using Clustal W [43] and manually edited using Gene Doc v.2.7 183 [44]. To remove ambiguous regions in the alignment the program Gblocks was used with the 184 standard settings [45]. Newly generated sequences for both gene regions were deposited in 185

Table 3. Details of cyst nematode populations included in the molecular and phylogenetic studies from cultivated potatoes in
 Colombia and reported in other studies.

188

Globodera species	Location (Municipality, Department)	Specimen code	Accession number 288	Accession number ITS
Globodera pallida	La Unión, AN*	A1A	MH389939	MH389979
Globodera pallida	La Unión, AN	A1B	MH389938	MH389978
Globodera pallida	La Unión, AN	A1C	-	MH389977
Globodera pallida	Ventaquemada, BO	B2A	MH389946	MH389986
Globodera pallida	Ventaquemada, BO	B2B	MH389945	MH389985
Globodera pallida	Ventaquemada, BO	B2C	MH389944	MH389984
Globodera pallida	Ventaquemada, BO	B2D	MH389943	MH389983
Globodera pallida	Arcabuco, BO	B3D	MH389942	MH389982
Globodera pallida	Chíquiza, BO	B4D	MH389937	-
Globodera pallida	Tunja, BO	B5D	-	MH389976
Globodera pallida	Toca, BO	B6D	MH389936	MH389975
Globodera pallida	Sogamoso, BO	B7A	MH389935	MH389974
Globodera pallida	Sogamoso, BO	B7B	MH389934	-
Globodera pallida	Sogamoso, BO	B7D	MH389933	-
Globodera pallida	Sora, BO	B8A	MH389932	MH389973

Globodera pallida	Sora, BO	B8C		MH389972
Globodera pallida	Sora, BO	B8D		MH389971
Globodera pallida	Samacá, BO	B9D	MH389941	MH389981
Globodera pallida	Soracá, BO	B11A	MH389931	
Globodera pallida	Soracá, BO	B11B	MH389930	
Globodera pallida	Soracá, BO	B11C	MH389929	
Globodera pallida	Soracá, BO	B12A	MH389940	MH389980
Globodera pallida	Susa, CU	C1A	MH389928	MH389970
Globodera pallida	Susa, CU	C1B	MH389927	
Globodera pallida	Susa, CU	C1D		MH389969
Globodera pallida	Guatavita, CU	C2B	MH389926	MH389968
Globodera pallida	Guatavita, CU	C2C	MH389925	MH389967
Globodera pallida	Guatavita, CU	C3C	MH389923	MH389965
Globodera pallida	Guatavita, CU	C3D	MH389922	
Globodera pallida	Ubaté, CU	C4C	MH389921	
Globodera pallida	Ubaté, CU	C4D	MH389920	
Globodera pallida	Tausa, CU	C5A	MH389919	MH389964
Globodera pallida	Tausa, CU	C5B	MH389918	
Globodera pallida	Subachoque, CU	C6B	MH389917	

Globodera pallida	Sesquilé, CU	C8A	MH389916	
Globodera pallida	Sesquilé, CU	C8C	MH389915	MH389963
Globodera pallida	Sesquilé, CU	C8D		MH389962
Globodera pallida	Cajicá, CU	C10D		MH389961
Globodera pallida	Villapinzón, CU	C11A	MH389914	MH389960
Globodera pallida	Villapinzón, CU	C11D	MH389913	MH389959
Globodera pallida	Túquerres, NA	N2A	MH389949	MH389990
Globodera pallida	Túquerres, NA	N2B	MH389948	MH389989
Globodera pallida	Túquerres, NA	N2C		MH389988
Globodera pallida	Túquerres, NA	N2D	MH389947	MH389987
Globodera pallida	Guachucal, NA	N4A	MH389912	
Globodera pallida	Guachucal, NA	N4B	MH389911	
Globodera pallida	Guachucal, NA	N4C	MH389910	MH389958
Globodera pallida	Guachucal, NA	N4D	MH389909	
Globodera pallida	Belén, NA	N5A		MH389957
Globodera pallida	Belén, NA	N5B		MH389956
Globodera pallida	Belén, NA	N5C	MH389908	MH389955
Globodera pallida	Belén, NA	N5D	MH389907	MH389954
Globodera pallida	Ospina, NA	N8B		MH389953

Globodera pallida	Ospina, NA	N8C	MH389906	MH389952
Globodera pallida	Ospina, NA	N8D	MH389905	MH389951
Globodera pallida	Ipiales, NA	N9A	MH389904	MH389950
Globodera sp	Chocontá, CU	C3A	MH389924	MH389966
Globodera pallida	Peru			GU084813.1
Globodera pallida	Peru			GU084805.1
Globodera pallida	Chile			GU084800.1
Globodera pallida	Ukraine			AJ606687.1
Globodera pallida	England			DQ847110.1
Globodera pallida	Poland			EU855119.1
Globodera pallida	Peru			GU084804.1
Globodera pallida	Peru			GU084806.1
Globodera pallida	Peru			HQ670269.1
Globodera mexicana	Mexico			EU006707.1
Globodera mexicana	Mexico			EU006708.1
Globodera rostochiensis	USA			EF153839.1
Globodera rostochiensis	Australia			EF622524.1
Globodera rostochiensis	Canada			FJ212166.1

Globodera rostochiensis	England		EF153840.1
Globodera rostochiensis	Bolivia		GU084809.1
Globodera tabacum	Japan		AB207272.1
Globodera tabacum	USA		GQ294525.1
Globodera tabacum	USA		DQ847112.1
Globodera tabacum	Argentina		DQ097515.2
Globodera ellingtonae	USA		GQ896543.1
Globodera ellingtonae	Chile		GU084808.1
Globodera ellingtonae	USA		DQ097514.2
Punctodera punctata	Belgium		AF274416.1
Punctodera chalcoensis	Mexico		AY090885.1
Globodera pallida	France	KJ409636.1	
Globodera pallida	Slovakia	KJ409626.1	
Globodera pallida	England	JN712219.1	
Globodera pallida	Chile	JN712220.1	
Globodera pallida	France	GU338021.1	
Globodera ellingtonae	USA	JN712217.1	
Globodera tabacum	USA	GQ294492.1	
Globodera rostochiensis	Canada	JN712223.1	

Globodera rostochiensis	Slovakia	KJ409625.1	
Globodera artemisiae	Hungary	KU845472.1	

189 28S= Large ribosomal RNA subunit and ITS= internal transcribed spacer 1 and 2 including 5.8S rRNA

190 Phylogenetic relationships among partial sequences of the 28S rRNA and Internal 191 Transcribed Spacer 1 and 2 plus 5.8S rRNA genes were inferred using Bayesian Inference (BI) 192 and Maximum Likelihood (ML) methods. For both gene regions, the best sequence partition 193 strategy was identified with the Bayesian Information Criterion in PartitionFinder v.2.0 [46]. The 194 sequence partition for 28S rRNA gene was a single partition with HKY substitution model [47] 195 for each of the 3 positions of the codon. The best sequence partition for ITS1-2 + 5.8S rRNA196 gene internal transcribed spacer 1 and 2 including the 5.8S rRNA region was a partition that 197 included the first and second position of the codon with a K80 model [48] substitution model, 198 and a second partition that consisted on the third codon position under the K80 with proportions 199 of invariable sites (K80+I). Bayesian Inference analyses were performed using MrBayes v.3.1.2 200 [49], with five independent runs of four Markov chains for 1×10^6 generations and default 201 heating values, sampling every 100 generations with 2500 samples discarded as burn-in after 202 checking for convergence. Clades were considered strongly supported when values were > 0.95203 [50]. For Maximum likelihood analyses the software GARLI v.2.0 [51] was used. Bootstrap 204 support for trees was generated with 1,000 replicate searches and summarized in a consensus tree 205 using SumTrees [52], clades were considered as well/strongly supported when bootstrap was 206 >70%. In addition, in order to characterize the genetic divergence between cyst nematodes from 207 Colombia and *Globodera* species already reported, the average number of nucleotide substitution 208 per site (Dxy), net nucleotide substitutions per site (Da) and number of fixed differences (Fd)209 among genetic groups were computed using DnaSP v.6.11.01 [53].

210

211 Morphometric characterization

212	For morphometric characterization, 8 to ten cyst nematodes were taken from each of the
213	26 pooled populations obtained for molecular analysis. Cysts were cleaned and fixed in
214	formaldehyde at 3% allowing preservation in glycerin [7,28]. Then, cysts and vulval cones were
215	photographed and measured using image visualization software (iSolution lite; IMT i-Solution).
216	Morphometric measurements included body width (BW), body length excluding neck (BL),
217	L/W ratio, distance from anus to the nearest edge from fenestra (DAF), fenestra length (FL),
218	Granek's ratio (GR), and number of cuticular ridges between vulva and anus (NCR) [7,28].
219	One-way Analysis of variance (ANOVA) was performed on each morphometric variable. The
220	Tukey Studentized Range HDS (Honest Significant Difference) test was used to determine
221	significant differences among population means on the different morphometric measurements at
222	$P \leq 0.05.$
223	A linear discriminant analysis (LDA) and a stepwise discriminant analysis (SDA) were
224	also used to determine the best combination of variables that would separate populations based
225	on morphological features. These methods derive a linear combination of variables that
226	summarize between-class variation. The variables included in the initial function for both
227	methods were BW, BL, DAF, FL, NCR, LWR, and GR. The pooled within canonical structure
228	and pooled within class standardized canonical coefficients from the SDA were used to
229	determine each variable's contribution to the discriminant function. The linear and stepwise
230	discriminant analyses were performed with JMP 14.0.0 (SAS Institute Inc., Cary, NC).
231	

232 **Results**

233 Field survey

234	Of the 589 potato fields sampled, cyst nematodes were detected in 355 fields distributed
235	in 69 municipalities of Colombia, with densities ranging from 1 to 1,327 cysts per 100 cm ³ of
236	soil (Table 1). The predominant species was G. pallida, identified in 51% of the fields sampled
237	in Cundinamarca, 63.3% in Boyacá, 72.2% in Nariño, 54% in Antioquia, 45% in Cauca, 33% in
238	Norte de Santander, 29% in Santander, 17% in Tolima and 14% in Caldas, with densities ranging
239	from 1 to 1327 cysts/100 cm ³ of soil, 1 to 873 cysts/100 cm ³ of soil, 1 to 345 cysts/100 cm ³ of
240	soil, 1 to 51 cysts/100 cm ³ of soil, 1 to 23 cysts/100 cm ³ of soil, 1 to 4 cysts/100 cm ³ of soil, 1 to
241	6 cysts/100 cm ³ of soil, 1 to 3 cysts/100 cm ³ of soil and 1 to 2 cysts/100 cm ³ of soil, respectively.
242	Among municipalities, the highest mean densities were detected in Ubaté (443.3 cysts/100 cm ³
243	of soil), followed by Sora, Arcabuco, Belén, Sogamoso, Túquerres and Tausa (185, 122.5, 122.3,
244	107.5, 97.3 and 84,2 cysts/100 cm ³ of soil, respectively). Cyst nematodes were not found in
245	Pasca, Sibaté, Simijaca, and La Calera in Cundinamarca, nor in Ciénega in Boyacá (Table 1). All
246	samples positive for PCN showed cysts with viable eggs, and viability percentage ranged from
247	15 to 80%. Boyacá and Cundinamarca were the departments that had in average the higher
248	viability (Table 1).

Given host-based grouping, PCN was detected in samples taken from varieties of *Solanum tuberosum* Group *Andigena* such as Diacol Capiro (107 out of 158 samples), Betina (24
out of 30 samples), Pastusa Suprema (81 out of 167 samples), Tocarreña (10 out of 20 samples),
Rubí (2 out of 3 samples), ICA Única (4 out of 16 samples), ICA Nevada (2 out of 3 samples)
and, from varieties of *Solanum tuberosum* Group *Phureja* such as Criolla variety (32 out of 69
samples) (Table 1). A morphologically different species (under description), was only detected in
one field in Chocontá (Cundinamarca) on Suprema variety.

256

257 Molecular analysis

258	The amplification of D2-D3 expansion segments of 28S rRNA and internal transcribed
259	spacer 1, 2 including the 5.8S rRNA yielded single fragments of 609 and 848 bp, respectively.
260	Forty-two new D2-D3 of 28S rRNA gene sequences and twenty-eight new internal transcribed
261	spacer 1 and 2 including the 5.8S rRNA were obtained in the present study (Table 2).
262	Phylogenetic relationships inferred from analyses of D2-D3 expansion segments of 28S
263	rRNA of a multiple-edited alignment (57 sequences), showed two well supported major clades
264	based on BI and ML inferences (PP= 1.00, BP= 90) (Fig 2). A highly supported clade (i) (PP=
265	1.00, BP= 90), was formed by sequences of <i>G. pallida</i> from France, Chile, England, Slovakia
266	and all but one cyst nematode sequence obtained in this study from Colombia. The second major
267	clade, Clade (ii) grouped three species, G. ellingtonae and G. tabacum that formed a well-
268	supported subclade (PP=1.00, BP=83) clearly separated from a politomy formed by a single cyst
269	nematode sample (G. sp) from Colombia and G. rostochiensis from Canada and Slovakia (Fig 2).
270	
0.51	

271

Fig 2. Phylogenetic relationships within the genus *Globodera*. Bayesian 50 % majority rule

273 consensus trees as inferred from D2–D3 expansion segments of 28S rRNA as a single

- 274 partition with HKY model.
- 275 Node-support values: Left value posterior probability BI shown if >95%, right value bootstrap
- from ML analysis shown only if >70%. Newly obtained sequences in this study are in bold.

277	The 50% majority-rule BI consensus tree of the alignment generated for the 69 sequences
278	of the region conformed by the internal transcribed spacer 1 and 2 including the 5.8S rRNA
279	regions, showed two well supported major clades (PP=1.00/ BP=100) that were consistent with
280	the findings based on 28S rRNA phylogeny (Fig 3). Clade (i) was formed by G. pallida and G.
281	mexicana, and Clade (ii) was formed by G. rostochiensis, G. tabacum, G. ellingtonae and one
282	sequence from Colombia. In Clade (i) two sequences of G. pallida from Peru along with the rest
283	of sequences from Colombia formed a well-supported subclade (PP=1.00, BP=90) that was
284	clearly separated (PP=1.00, BP=94) from one sequence of <i>G. pallida</i> from Peru. The sister clade
285	of this sub-clade was formed by other sequences of G. pallida from Peru and European countries
286	such as Ukraine, England and Poland, that were separated with high support (PP= 1.00, BP= 96)
287	from sequences of <i>G. mexicana</i> and moderately support (PP= 1.00, BP= 79) of <i>G.pallida</i> from
288	Chile and Peru. In Clade (ii) a single sequence from Colombia formed a well-supported subclade
289	(PP=1.00, BP=93) along with G. rostochiensis from USA, Australia, Canada, England and
290	Bolivia that was related with G. tabacum from Japan, USA and Argentina. This subclade formed
291	a sister clade with <i>G. ellingtonae</i> from USA and Chile with high support (PP=1.00, BP=74).
292	

293

Fig 3. Phylogenetic relationships within the genus *Globodera*. Bayesian 50 % majority rule consensus trees as inferred from Internal Transcribed Spacer 1 and 2 plus 5.8S rRNA gene with first and second position with K80 substitution model, and a second partition with the third codon under K80+I model.

- Node-support values: Left value posterior probability BI shown if >95%, right value bootstrap
- from ML analysis shown only if >50%. Newly obtained sequences in this study are in bold.

300	Genetic distances among cyst nematodes sequences from Colombia and other nematodes
301	species included in the phylogenetic analyses are summarized in Table 4. Based on the 28S
302	rRNA gene sequences, all sequences from Colombia from Clade (i) had the lowest average
303	number of nucleotide substitutions per site (Nucleotide divergence - $Dxy=0.002$) and lowest
304	number of net nucleotide substitutions per site (net genetic distance - $Da=0.001$) when
305	compared to G. pallida sequences from the other countries without fixed differences among
306	groups (Table 4). The cyst nematode sequence from Colombia in Clade (ii) had the lowest
307	divergence when compared with G. rostochiensis ($Dxy=0.001$, $Da=0.000$) without showing any
308	fixed differences among groups (Table 4). In agreement with the 28S rRNA marker, the genetic
309	distances based on the internal transcribed spacer 1 and 2 including the 5.8S rRNA gene
310	sequences of cyst nematodes from Colombia in Clade (i) was lowest when compared with G .
311	pallida (Dxy= 0.014, Da= 0.008), with one fixed substitution (Fig 3, Table 4) and lowest in
312	Clade (ii) when compared with G. rostochiensis ($Dxy=0.003$, $Da=0.000$) with no fixed
313	differences among groups (Table 4).

314 Table 4. Gene divergence between potato cyst nematodes from Colombia and other species retrieved from GenBank. Dxy, Da

and Fd correspond to average number of nucleotide substitutions per site, the number of net nucleotide substitutions per site,

316 and number of fixed differences between compared groups, respectively.

317

Marker	Group 1	Group 2	Dxy	Da	Fd
28S	<i>G. pallida</i> - Colombia	G. pallida	0.00227	0.00116	0
		G. rostochiensis	0.01072	0.00988	4
		G. ellingtonae	0.01370	0.01243	6
		G. tabacum	0.01443	0.01400	6
		G. artemisiae	0.02661	0.02618	15
28S	G. sp - Colombia	G. pallida	0.01165	0.01013	6
		G. rostochiensis	0.00125	0.00000	0
		G. ellingtonae	0.00498	0.00332	2
		G. tabacum	0.00415	0.00332	2
		G. artemisiae	0.02076	0.01993	12
ITS	<i>G.pallida</i> - Colombia	G. pallida	0.01418	0.00818	1
		G. rostochiensis	0.03188	0.02871	21
		G. ellingtonae	0.02973	0.02634	18
		G. tabacum	0.02721	0.02550	20
		G. mexicana	0.02035	0.02026	16
ITS	G.sp - Colombia	G. pallida	0.03230	0.02600	20

G. rostochiensis	0.00395	0.00027	0
G. ellingtonae	0.02582	0.02189	16
G. tabacum	0.01675	0.01478	12
G. mexicana	0.03289	0.03230	27

318 28S= Large ribosomal RNA subunit and ITS= internal transcribed spacer 1 and 2 including 5.8S rRNA

319 Cyst nematodes morphometric characterization

- 320 A total of 233 cysts were examined for morphometric measurements. Considerable
- 321 degree of overlap was observed and all morphometric characters examined were significantly
- 322 variable among populations (Fig 4): BL (DF= 24, F= 7.24, P < 0.0001), BW (DF= 24, F= 7.23,
- 323 P= 0.0001), L/W ratio (DF= 24, F= 2.21, P= 0.0016), DAF (DF= 24, F= 2.39, P= 0.0005), FL
- 324 (DF= 24, F= 3.23, P < 0.0001), GR (DF= 24, F= 3.23, P= 0.0001) and NCR (DF= 24, F= 1.68,
- 325 P = 0.0297) (Fig. 4). Cysts in C10, showed the highest BL (639.42 ± 20.99 µm) and BW (637.05
- $\pm 21.42 \ \mu$ m) and A1 population had the smallest mean size (417.67 $\pm 20.99 \ \mu$ m BL, 402.34 \pm
- 327 21.43 µm BW). C3 showed significant differences on morphometric characters in the perineal
- 328 area in comparison with the other populations, with a highest mean DAF ($62.86 \pm 5.43 \mu m$), a
- lowest significant FL (18.43 \pm 1.91 um), a significant higher GR (3.6) and the highest NCR
- 330 (ranging from 10 to 16). For the other populations, DAF was in average 47.48 μm, FL was 26.45
- μ m, GR (1.8) and the NCR was 9. Nevertheless, some populations showed values outside of the
- range, for instance, B7 and B8 had the lowest mean DAF ($36.28 \pm 5.15 \mu m$ and $36.75 \pm 5.43 \mu m$)
- and B2 had a highest significant FL ($36.30 \pm 1.81 \mu m$) and lowest GR (1.3) (Fig 4).
- 334
- 335
- 336

Fig 4. Boxplots showing morphological characters variation among PCN populations from cultivated potatoes in Colombia.

- 339 Mean values shown for each population based on ANOVA (Tukey HSD test) at $P \le 0.05$). BL
- 340 (Body length (μ m): DF= 24, F= 7.24, P < 0.0001), BW (Body width (μ m): DF= 24, F= 7.23, P=
- 341 0.0001), L/W ratio: DF= 24, F= 2.21, P= 0.0016, DAF (distance from anus to the nearest edge
- 342 from fenestra (μ m): DF= 24, F= 2.39, P= 0.0005), FL (Fenestra length (μ m): DF= 24, F= 3.23, P
- < 0.0001), GR (Granek's ratio: DF= 24, F= 3.23, P= 0.0001), NCR (Number of cuticular ridges:
- 344 DF= 24, F= 1.68, P = 0.0297).

345	Two analyses were used to identify the variables that would separate species in the
346	sampled populations. The LDA showed the variance associated with the first three canonical
347	variables was 79% of the total variation and had the highest partial correlations between the
348	canonical variables and the covariates, adjusted for the group variable (Table 5). Thus, the
349	variables BW, NCR and GR in the SDA were selected in this order (Table 6). Canonical variable
350	1 had the highest correlation with BW (0.9392) followed by GR (0.2305), suggesting that
351	separation of the groups on this axis was mostly due to plastic differences in body size.
352	Canonical variable 2 had the highest correlation with GR (0.7752) followed by NCR (0.1785),
353	therefore, separation of groups on this axis was mainly to differences in characters associated
354	with features in the perineal area. Canonical variable 3 was most correlated with NCR (0.9838)
355	followed by GR (0.5881), characters often used to discriminate PCN species (Table 6). The
356	grouping and separation of populations using these three canonical variables is shown in Figure
357	5. Despite significant overlap of the 95% confidence ellipse for each population mean, canonical
358	variable 1 distinctly separated some populations pairs with populations A1 and C10 at opposite
359	sides of the axis. Canonical variable 2 distinctively separated population C3, which 95%
360	confidence ellipse only partially overlapped with population C5 (Fig 5). Interestingly, few
361	individuals from populations C11, B9, N2 and, C8 were also near population C3 95% confidence
362	level ellipse mean, as few C3 individuals were more similar to other populations 95% confidence
363	level ellipse mean (Fig 5).

Table 5. Canonical details calculated from the overall pooled within-group covariance matrix of potato cyst nematodes
 morphometric characterization.

Eigenvalue	Percent	Cum Percent	Canonical Correlation	Likelihood Ratio	Approx. F	NumDF	DenDF	Prob>F
0.9263	38.3535	38.3535	0.6934	0.1464	2.6425	168.0000	1347.3000	<.0001*
0.6019	24.9240	63.2774	0.6130	0.2820	2.0525	138.0000	1168.2000	<.0001*
0.3802	15.7407	79.0182	0.5248	0.4517	1.5764	110.0000	984.5800	0.0003*
0.1972	8.1635	87.1816	0.4058	0.6234	1.2048	84.0000	796.3800	0.1112
0.1559	6.4571	93.6387	0.3673	0.7463	1.0363	60.0000	603.4900	0.4054
0.0972	4.0254	97.6641	0.2977	0.8627	0.8186	38.0000	406.0000	0.7713
0.0564	2.3359	100.0000	0.2311	0.9466	0.6394	18.0000	204.0000	0.8658

369 Table 6. Canonical structure and standardized canonical coefficients of potato cyst

370 nematodes morphometric characterization.

371

Variable*	Pooled w	ooled within canonical structurePooled within-class standardized canonical coefficients					
	Can1	Can2	Can3	Can1	Can2	Can3	
BW	0.9392	-0.2590	0.2255	0.9663	-0.3197	0.0428	
NCR	0.0155	0.1785	0.9838	-0.4807	-0.7352	1.1574	
GR	0.2305	0.7752	0.5881	0.4335	1.3524	-0.2521	

372 373

* BW= body width; NCR = Number of cuticular ridges between vulva and anus; GR = Granek's
ratio.

375

- 376
- 377

378

379 Fig 5. Canonical plot scores and 95% confidence ellipses from stepwise discriminant

function analysis of three morphometric characteristics of PCN nematode cyst from
 Colombia.

382 Each ellipse corresponds to a 95% confidence limit for the population multivariate mean.

383 Significantly different populations have non-intersecting circles. The set of rays that appears in

the plot represents the covariates in which the length and direction of each ray indicates the

degree of association of the corresponding covariate with the first two canonical variables. The

arrow indicates C3 population 95% confidence interval. NCR, number of cuticular ridges, GR,

387 Granek's ratio, BW, body weight.

388 **Discussion**

389	Even when PCN is considered a re-emerging potato pathogen in Colombia, first
390	identified in the department of Nariño in 1970 [23], documented surveys only report PCN in
391	municipalities of Nariño, Cauca, Boyacá and Cundinamarca [24,25]. Our comprehensive study
392	that sampled 75 municipalities in 9 potato producing departments of Colombia found that 60% of
393	the tested samples were positive for PCN (355 out of 589 sampled fields), and that the pathogen
394	is widespread in all Colombian producing potato departments (Cundinamarca, Boyacá, Nariño,
395	Antioquia, Cauca, Norte de Santander, Santander, Tolima and Caldas), with cysts that contain
396	viable eggs present in all sampled departments.
397	However, there was variation in population densities among departments. The highest
398	densities were found in Cundinamarca and Boyacá, ranging from 1 to 1,327 cyts/100 g of soil
399	and 1 to 873 cysts/100 g of soil, respectively. Nieto et al. (1983) [24] surveyed these departments
400	in early 1980s, but since detected cysts were empty or contained non-viable eggs, these regions
401	were declared as PCN free. Later, Arciniegas et al (2012) [25], reported PCN in Tunja, Samacá
402	and Ventaquemada in Boyacá and Tausa, Tabio and Zipaquirá in Cundinamarca. In our study,
403	PCN was detected in new municipalities with the highest densities found in Tausa, Ubaté and
404	Villapinzón in Cundinamarca and, in Arcabuco, Belén, Tunja, Samacá, Sogamoso and Sora in
405	Boyacá (Table 1). Boyacá and Cundinamarca are the largest producers of potatoes in Colombia,
406	with 40,724 and 61,322 harvested hectares corresponding to 26% and 39% of the total potato
407	national production in 2018, respectively [26]. Potatoes are the main plant crop grown by
408	farmers and fields are usually planted in monocultures for several continuous cycles. As PCNs
409	are highly specialized, sedentary and obligate endoparasites of solanaceous plants [1,22,54], the
410	constant presence of potato crops in monocultures for several cycles may lead to persistence and

411 increase of this plant pathogen in these two regions overtime. In contrast, in Nariño department, 412 although the nematode was found in all municipalities sampled, PCN densities were lower, from 413 1 to 345 cvsts/100 g of soil, and similar ranges were found by Nieto et al (1983) [24]. Nariño 414 ranks third in production with 31,611 harvested hectares (19,35% of total potato national 415 production), in contrast to Boyacá and Cundinamarca, in this department farmers usually grow 416 different potato cultivars within a field (e.g. Diacol Capiro, Pastusa Suprema, Betina) with a crop 417 rotation scheme usually with non-host plants such as corn, cabbage, lettuce, onion and pastures, 418 and the use of biological microorganisms for the control of other pest problems has also 419 implemented [55], which reduces pesticides use. Similar potato production scheme was 420 observed in its neighbor department, Cauca, and PCN densities decreased in the latter from 23 421 cysts/100 g of soil [24] to 5,97 cysts/100 of soil in this study. Considering that G. pallida 422 requires a living potato plant to complete its life cycle [6], the management practices 423 implemented in both departments may reflect the reduction of PCN densities in these regions. 424 Our results also show G. pallida populations have spread into new regions of Colombia. 425 In the departments of Antioquia, Caldas, Tolima, Santander and Norte de Santander, PCN was 426 detected in all municipalities sampled, although with low population levels (5.97 cysts/100 of 427 soil in average in Antioquia, 0.95 cysts/100 of soil in Norte de Santander, 0.8 cysts/100 of soil in 428 Santander, 0.43 cysts/100 of soil in Caldas and 0.3 cysts/100 of soil in Tolima). To our 429 knowledge, this is the first report of the presence of G. pallida in these departments. These 430 regions represent in general, low potato growing areas with low participation in national potato 431 production (2.27% in average in 2018) [26], and were therefore considered before as PCN free. 432 The spread of PCN is mainly caused through tubers, soil or equipment contaminated with cysts 433 [54] and potato seed tubers in these departments frequently come from Boyacá and

434	Cundinamarca, which may allow the dissemination of this plant pathogen into these new regions.
435	Nevertheless, population levels in these departments are low and the extent of PCN is limited,
436	therefore, to maintain low levels and to avoid the spread into new areas, intensive monitoring
437	program for PCN should be implemented in all potato producing regions of Colombia.
438	
439	Molecular identification and phylogenetic relationships of PCN species from
440	Colombia
441	The molecular phylogeny of PCN populations based on ITS1-5.8S-ITS2 rDNA and 28S
442	D2-D3 regions supported the presence of at least two PCN species in Colombia. Globodera
443	pallida was found in all populations that resulted positive for PCN and, molecular phylogeny
444	based on the ITS1-5.8S-ITS2 rDNA grouped all G. pallida from Colombia in a single clade that
445	was closely related to P5A pathotype strains (GenBank accession number HQ670270.1) and
446	clone La Libertad (GenBank accession number GU084818) (Fig 3). This finding suggests that G.
447	pallida present in Colombia have a different origin than G. pallida present in countries such as
448	Ukraine, England and Poland that cluster as a monophyletic clade with other Peruvian strains,
449	and G. pallida present in Chile that cluster with a different Peruvian strain (Figs 2 and 3).
450	Despite that P5A peruvian strain has been considered as a different species [12,17], a recent
451	study based on ITS rRNA, COI and cytb mitochondrial regions concluded that all clades within
452	G. pallida belong to a single species [2]. The 28S D2-D3 phylogeny, although with lower level
453	of resolution, also clustered all but one PCN populations from Colombia with G. pallida around
454	the globe as a monophyletic clade (Fig 2). For both gene regions, a single sequence from the C3
455	population grouped in a distant clade along with individuals of G. rostochiensis. Genetic distance
456	analyses based on gene regions ITS1-5.8S-ITS2 and D2-D3, were congruent with these findings

457	showing G. pallida from Colombia with the smallest Da (0.8 % and 0.12% for ITS rDNA and
458	D2-D3, respectively) and the smallest <i>Dxy</i> (1.41 % and 0.23 % for ITS rDNA and D2-D3,
459	respectively) when compared with other G. pallida populations. Similarly, genetic distances
460	from C3 population showed the lowest distance when compared with G. rostochiensis (Dxy=
461	0.001, <i>Da</i> = 0.000).
462	Therefore, the ITS1-5.8S-ITS2 rDNA and 28S D2-D3 molecular analyses were able to
463	identify with high phylogenetic support G. pallida and G. rostochiensis. Additionally, ITS1-
464	5.8S-ITS2 rDNA phylogenetic resolution supports a northern Peru origin of G. Pallida present in
465	Colombia, nevertheless this hypothesis must be further investigated using additional samples and
466	molecular markers, with statistical inference such as model testing and coalescent demographic
467	reconstruction. Although with less taxa included, molecular phylogeny based on 28S D2-D3
468	gene improved the node support found in previous phylogenies between G. pallida and
469	<i>G.tabacum</i> (i.e. $PP = 54$ and 72%) (e.g.,[9,16]), and the unresolved positions for <i>G. rostochiensis</i>
470	[16]. Taken all together, both DNA markers used in this study showed to be useful to identify
471	Globodera species present in Colombia, with ITS1-5.8S-ITS2 rDNA being more informative in
472	phylogeographic perspective [12].

473

474 Morphometric identification of PCN species from Colombia

The use of stepwise and canonical analysis is an effective method for grouping and distinguishing species and populations from different taxa [56–59]. Despite a significant degree of overlap in morphometric data (Figs 4 and 5), canonical discriminant analyses identified two main groups based on cyst morphometric measurements. *Globodera pallida* individuals were observed in the canonical discriminant plot as populations were overlapping across canonical 1,

480 indicating a wide variation in BW size associated with phenotypic plasticity (Fig 5). The wide 481 morphometric variation observed within G. pallida from Colombia populations have also been 482 reported in other populations of *G. pallida* as well as for other *Globodera* species [9,17,60]. It is 483 often expected that observed morphological variation within Globodera species increases as new 484 populations are analyzed [7,17]. However, since wide morphometric variability within and 485 among populations of G. pallida was detected, future research should be performed to elucidate 486 the degree in which cryptic species and phenotypic plasticity occur among PCN associated with 487 potato crops in Colombia. On the other hand, individuals from C3 population were observed in 488 the top portion of the canonical discriminant analyses, with all but one individual outside the C3 489 95% confidence ellipse across canonical 2 (Fig 5). The presence of individuals from population 490 B9, N2 and C11 near population C3 position in the canonical space, suggests the possibility of a 491 wider distribution of G. rostochiensis associated Colombian potato crops, since morphological 492 measurements of these individuals fit in the range of G. rostochiensis. However, to confirm the 493 presence of this PCN species in Colombia, further research should include genetic and 494 morphological data from additional individuals (cysts, juveniles and males) as well as 495 pathogenicity assessment of these Colombian isolates.

496

497 **Conclusions**

This study provides new information about the status and prevalence of PCN species associated with cultivated potatoes in the main producing regions of Colombia including for the first time genetic and morphological information. Molecular phylogenies with ITS1-5.8S-ITS2 rDNA and D2/D3 28S regions and morphometric measurements of cysts were effective in the identification of *G. pallida*, the dominant species present in all departments surveyed in this 503 study, and suggest the presence of G. rostochiensis, in one municipality of Cundinamarca, which 504 is currently under description. Considering the presence of PCN species constitute a threat for 505 potato production, intensive sampling and monitoring of this plant pathogen should be conducted 506 in order to reduce and prevent the spread into new areas. The development of management 507 practices that involves the evaluation of resistant varieties for populations that tested positive for 508 PCN, as well as other practices such as crop rotations, trap crops, biofumigants, biocontrol 509 agents among others that have shown to be effective for other G. pallida populations worldwide, 510 are also a crucial step to reduce population densities of PCN in Colombia.

511

512 Acknowledgments

The authors thank the Colombian Ministry of Agriculture for funding the Project
"Recomendaciones técnicas para el manejo integrado de los problemas fitosanitarios: *Globodera pallida*, síndrome X, virus PYVV y sus posibles vectores en papa", as well as the supporting
research assistant of Corporación Colombiana de Investigación Agropecuaria, La Selva Research
Station, Mario Alonso Mesa, for greenhouse and field work.

518

519 **Contributions**

520 **Conceptualization:** Olga Y. Pérez, Claudia M. Holguin.

521 Data curation: Daniela Vallejo, Diego A. Rojas, John A. Martinez, Sergio Marchant, Claudia

522 M. Holguin, Olga Y. Pérez.

523 Formal analysis: Sergio Marchant, Claudia M. Holguin, Daniela Vallejo.

- 524 Investigation: Daniela Vallejo, Diego A. Rojas, John A. Martinez, Sergio Marchant, Claudia M.
- 525 Holguin, Olga Y. Pérez.
- 526 Methodology: Daniela Vallejo, Diego A. Rojas, John A. Martinez, Sergio Marchant, Claudia M.
- 527 Holguin, Olga Y. Pérez.
- 528 Writing original draft: Claudia M. Holguin, Sergio Marchant, Daniela Vallejo, Diego A.
- 529 Rojas, John A. Martinez, Olga Y. Pérez.
- 530 Writing review & editing: Claudia M. Holguin, Sergio Marchant, Olga Y. Pérez.
- 531

532 **References**

- Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, et al. Top 10
 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol. 2013;14: 946–
 961. doi:10.1111/mpp.12057
- Subbotin SA, Franco J, Knoetze R, Roubtsova T V., Bostock RM, Cid Del Prado Vera I.
 DNA barcoding, phylogeny and phylogeography of the cyst nematode species from the genus Globodera (Tylenchida: Heteroderidae). Nematology. 2020;22: 269–297.
 doi:10.1163/15685411-00003305
- Van Riel HR, Mulder A. Potato cyst nematodes (Globodera species) in Western Europe.
 In: Marks R, Brodie B, editors. Potato cyst nematodes: Biology, distribution and control.
 Wallingford: CAB International; 1998. pp. 271–298.
- 543 4. O.E.P.P./E.P.P.O. PM 7/40 (4) Globodera rostochiensis and Globodera pallida. EPPO
 544 Bull. 2017;47: 174–197. doi:10.1111/epp.12391
- 545 5. Talavera M, Andreu M, Valor H, Tobar A. Nematodos fitoparasiticos en areas 21
 546 productoras de patata de Motril y Salobrena. Invest Agric Prod Prot Veg. 1998;13: 87–95.
- 547 6. Contina JB, Dandurand LM, Knudsen GR. A spatiotemporal analysis and dispersal
 548 patterns of the potato cyst nematode globodera pallida in Idaho. Phytopathology.
 549 2020;110: 379–392. doi:10.1094/PHYTO-04-19-0113-R
- 550 7. Handoo ZA, Carta LK, Skantar AM, Chitwood DJ. Description of globodera ellingtonae
 551 n. sp. (Nematoda: Heteroderidae) from Oregon. J Nematol. 2012;44: 40–57.
- Skantar AM, Handoo ZA, Carta LK, Chitwood DJ. Morphological and molecular
 identification of Globodera pallida associated with potato in Idaho. J Nematol. 2007;39:
 133–144.
- 555 9. Lax P, Rondan Dueñas JC, Franco-Ponce J, Gardenal CN, Doucet ME. Morphology and
 556 DNA sequence data reveal the presence of Globodera ellingtonae in the Andean region.
 557 Contrib to Zool. 2014;83: 227–243. doi:10.1163/18759866-08304002
- 558 10. Subbotin SA, Vierstraete A, De Ley P, Rowe J, Waeyenberge L, Moens M, et al.
- 559 Phylogenetic relationships within the cyst-forming nematodes (Nematoda, Heteroderidae)

560		based on analysis of sequences from the ITS regions of ribosomal DNA. Mol Phylogenet
561		Evol. 2001;21: 1–16. doi:10.1006/mpev.2001.0998
562	11.	Blaxter ML, De Ley P, Garey JR, Llu LX, Scheldeman P, Vierstraete A, et al. A
563		molecular evolutionary framework for the phylum Nematoda. Nature. 1998;392: 71–75.
564		doi:10.1038/32160
565	12.	Subbotin SA, Prado Vera IC Del, Mundo-Ocampo M, Baldwin JG. Identification,
566		phylogeny and phylogeography of circumfenestrate cyst nematodes (Nematoda:
567		Heteroderidae) as inferred from analysis of ITS-rDNA. Nematology. Nematoda; 2011. pp.
568		805-824. doi:10.1163/138855410X552661
569	13.	Gutiérrez-Gutiérrez C, Cantalapiedra-Navarrete C, Montes-Borrego M, Palomares-Rius
570		JE, Castillo P. Molecular phylogeny of the nematode genus Longidorus (Nematoda:
571		Longidoridae) with description of three new species. Zool J Linn Soc. 2013;167: 473–500.
572		doi:10.1111/zoj.12019
573	14.	Ye W, Zeng Y, Kerns J. Molecular characterisation and diagnosis of root-knot nematodes
574		(Meloidogyne spp.) from turfgrasses in North Carolina, USA. PLoS One. 2015;10:
575		143556. doi:10.1371/journal.pone.0143556
576	15.	Archidona-Yuste A, Cantalapiedra-Navarrete C, Liébanas G, Rapoport HF, Castillo P,
577		Palomares-Rius JE. Diversity of root-knot nematodes of the genus Meloidogyne Göeldi,
578		1892 (Nematoda: Meloidogynidae) associated with olive plants and environmental cues
579		regarding their distribution in southern Spain. PLoS One. 2019;13: 198236.
580		doi:10.1371/journal.pone.0198236
581	16.	Madani M, Subbotin SA, Ward LJ, Li X, De Boer SH. Molecular characterization of
582	10.	canadian populations of potato cyst nematodes, globodera rostochiensis and G. pallida
583		using ribosomal nuclear RNA and cytochrome B genes. Can J Plant Pathol. 2010;32: 252–
584		263. doi:10.1080/07060661003740033
585	17.	Skantar AM, Handoo ZA, Zasada IA, Ingham RE, Carta LK, Chitwood DJ.
586	17.	Morphological and molecular characterization of globodera populations from oregon and
587		idaho. Phytopathology. 2011;101: 480–491. doi:10.1094/PHYTO-01-10-0010
588	18.	Li X, Maria M, Cai R, Barsalote EM, Peneva V, Zheng J. Distribution of trichodorid
589	10.	species in mainland China with description of Trichodorus hangzhouensis sp. nov.
590		(Nematoda, Triplonchida). Zookeys. 2020;945: 163–189.
591		doi:10.3897/zookeys.945.50424.suppl1
592	19.	Subbotin SA, Halford PD, Warry A, Perry RN. Variations in ribosomal DNA sequences
593	17.	and phylogeny of Globodera parasitising solanaceous plants. Nematology. 2000;2: 591–
594		604. doi:10.1163/156854100509484
595	20.	Grenier E, Bossis M, Fouville D, Renault L, Mugniéry D. Molecular approaches to the
596	20.	taxonomic position of Peruvian potato cyst nematodes and gene pool similarities in
597		indigenous and imported populations of Globodera. Heredity (Edinb). 2001;86: 277–290.
598		doi:10.1046/j.1365-2540.2001.00826.x
599	21.	Bulman SR, Marshall JW. Differentiation of Australasian potato cyst nematode (PCN)
600	21.	populations using the polymerase chain reaction (PCR). New Zeal J Crop Hortic Sci.
601 602	22.	1997;25: 123–129. doi:10.1080/01140671.1997.9513998 Grenier E, Fournet S, Petit E, Anthoine G. A cyst nematode "species factory" called the
602 603	<i>LL</i> .	Andes. Nematology. 2010;12: 163–169. doi:10.1163/138855409X12573393054942
	22	
604 605	23.	Baeza CA. El nematodo dorado (Heterodera rostochiensis Wol) en Colombia. ICA Ibagué, segunda reunión de Fitopatología y Sanidad Vegetal. 1972. p. 20.
005		segunda reamon de Phopatologia y Sanidad Vegetal. 1972. p. 20.

606	24.	Nieto, L., Varón, F., & Dees J. Reconocimiento y distribución del nemátodo quiste de la
607		papa, Globodera pallida Stone, en Colombia. Rev ICA Colomb. 1983;18: 87–94.
608	25.	Arciniegas N, Caicedo R, Árevalo E. Nematodo dorado. Rev papa. 2012; 33–36.
609	26.	AGRONET. Red de información y comunicación del sector Agropecuario Colombiano.
610		Anuario estadístico del sector agropecuario. 2020. Available: http://www.agronet.gov.co
611	27.	Fenwick DW. Methods for the recovery and counting of cysts of heterodera schachtii from
612		soil. J Helminthol. 1940;18: 155–172. doi:10.1017/S0022149X00031485
613	28.	Golden AM. Morphology and Identification of Cyst Nematodes. Lamberti F, Taylor CE,
614	-0.	editors. Cyst Nematodes. New York: Plenum Press; 1986. doi:10.1007/978-1-4613-2251-
615		1 2
616	29.	Huijsman CA. Veredeling van de aardappel op resistentie tegen Heterodera rostochiensis
617	<i>2)</i> .	Wollenweber. Verenman. 1957.
618	30.	Ferris, V.R.; Ferris, J.M.; Faghihi J. Variation in spacer ribosomal DNA in some cyst-
619	50.	forming species of plant parasitic nematodes. Fundam Appl Nematol. 1993;16: 177–184.
620	31.	Vrain T, Wakarchuk D, Levesque A, Hamilton R. Intraspecific rDNA restriction fragment
620 621	51.	length polymorphism in the Xiphinema americanum group. Fundam Appl Nematol.
622		
	22	1992;15: 563–573.
623	32.	Nunn GB. Nematode molecular evolution: an investigation of evolutionary patterns
624	22	among nematodes based upon DNA sequences. University of Nottingham. 1992.
625	33.	Quader M, Nambiar L, Cunnington J. Conventional and real-time PCR-based species
626		identification and diversity of potato cyst nematodes (Globodera spp.) from Victoria,
627	2.4	Australia. Nematology. 2008;10: 471–478. doi:10.1163/156854108784513860
628	34.	Pylypenko LA, Uehara T, Phillips MS, Sigareva DD, Blok VC. Identification of
629		Globodera rostochiensis and G. pallida in the Ukraine by PCR. Eur J Plant Pathol.
630	~ -	2005;111: 39–46. doi:10.1007/s10658-004-2732-9
631	35.	Riepsamen AH, Blok VC, Phillips M, Gibson T, Dowton M. Poly(T) variation within
632		mitochondrial protein-coding genes in Globodera (Nematoda: Heteroderidae). J Mol Evol.
633		2008;66: 197–209. doi:10.1007/s00239-007-9064-2
634	36.	Ferris VR, Miller LI, Faghihi J, Ferris JM. Ribosomal DNA comparisons of globodera
635		from two continents. J Nematol. 1995;27: 273–27383.
636	37.	Szalanski AL, Sui DD, Harris TS, Powers TO. Identification of cyst nematodes of
637		agronomic and regulatory concern with PCR-RFLP of ITS1. J Nematol. 1997;29: 255-
638		267.
639	38.	Blok VC, Malloch G, Harrower B, Phillips MS, Vrain TC. Intraspecific variation in
640		Ribosomal DNA in populations of the potato cyst nematode Globodera pallida. J Nematol.
641		1998;30: 262–274.
642	39.	Širca S, Urek G. Morpometrical and ribosomal DNA sequence analysis of Globodera
643		rostochiensis and Globodera achilleae from Slovenia. Russ J Nematol. 2004;12: 161-168.
644	40.	Uehara T, Kushida A, Itou K, Narabu T, Momota Y. Discrimination of three cyst-forming
645		nematodes of the genus Globodera (Nematode: Heteroderidae) from Japan based on PCR-
646		RFLP of ribosomal DNA. Appl Entomol Zool. 2005;40: 537–543.
647		doi:10.1303/aez.2005.537
648	41.	Knoetze R, Malan AP, Mouton C. Differentiation of South African potato cyst nematodes
649		(PCN) by analysis of the rDNA internal transcribed spacer region. African Plant
650		Protection. African Plant; 2006. Available:
651		http://search.sabinet.co.za.ez.sun.ac.za/WebZ/images/ejour/plantpro/plantpro v12 a11.pd

651 http://search.sabinet.co.za.ez.sun.ac.za/WebZ/images/ejour/plantpro/plantpro_v12_a11.pd

652 f?sessionid=01-45646-708396483&format=F 653 42. Plantard O, Picard D, Valette S, Scurrah M, Grenier E, Mugniéry D. Origin and genetic 654 diversity of Western European populations of the potato cyst nematode (Globodera 655 pallida) inferred from mitochondrial sequences and microsatellite loci. Mol Ecol. 2008;17: 656 2208-2218. doi:10.1111/j.1365-294X.2008.03718.x 657 Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustalX 43. 658 windows interface: flexible strategies for multiple sequence alignment aided by. 659 44. Nicholas KB, Nicholas HBJ. GeneDoc: a tool for editing and annotating multiple 660 sequence alignments. 1997. Distrib by author. 1997;4: 14. 661 45. Castresana J. Selection of conserved blocks from multiple alignments for their use in 662 phylogenetic analysis. Mol Biol Evol. 2000;17: 540-552. doi:10.1093/oxfordjournals.molbev.a026334 663 664 Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. Partitionfinder 2: New 46. 665 methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2017;34: 772-773. doi:10.1093/molbev/msw260 666 667 Hasegawa M, Kishino H, Yano T aki. Dating of the human-ape splitting by a molecular 47. 668 clock of mitochondrial DNA. J Mol Evol. 1985;22: 160–174. doi:10.1007/BF02101694 669 48. Kimura M. A simple method for estimating evolutionary rates of base substitutions 670 through comparative studies of nucleotide sequences. J Mol Evol. 1980;16: 111–120. 671 doi:10.1007/BF01731581 49. 672 Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed 673 models. Bioinformatics. 2003;19: 1572-1574. doi:10.1093/bioinformatics/btg180 674 50. Alfaro ME, Zoller S, Lutzoni F. Bayes or bootstrap? A simulation study comparing the 675 performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in 676 assessing phylogenetic confidence. Mol Biol Evol. 2003;20: 255-266. 677 doi:10.1093/molbev/msg028 678 Zwickl DJ. Genetic algorithm approaches for the phylogenetic analysis of large biological 51. 679 sequence datasets under the maximum likelihood criterion. Philosophy. 2006. p. 115. 680 doi:(http://www.zo.utexas.edu/faculty/antisense/garli/Garli.html) 681 52. Sukumaran J, Holder MT. DendroPy: A Python library for phylogenetic computing. 682 Bioinformatics. 2010;26: 1569–1571. doi:10.1093/bioinformatics/btg228 Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism 683 53. 684 analyses by the coalescent and other methods. Bioinformatics. 2003;19: 2496–2497. 685 doi:10.1093/bioinformatics/btg359 686 Dandurand LM, Zasada IA, Wang X, Mimee B, De Jong W, Novy R, et al. Current Status 54. 687 of Potato Cyst Nematodes in North America. Annu Rev Phytopathol. 2019;57: 117–133. 688 doi:10.1146/annurev-phyto-082718-100254 689 55. Lucero AM, Peña LA, Cultid L, Bolaños MA. Manejo integrado de chisas en fincas de 690 minifundio del departamento de Nariño (Colombia). Corpoica Cienc y Tecnol Agropecu. 691 2006;7: 70. doi:10.21930/rcta.vol7 num1 art:63 692 Ye W, Robbins RT. Stepwise and canonical discriminant analysis of Longidorus species 56. 693 (Nematoda: Longidoridae) from Arkansas. J Nematol. 2004;36: 449-456. 694 57. Humphreys-Pereira DA, Williamson VM, Coyne DL, Salazar L, Gómez-Alpízar L, Lee S. 695 Molecular and morphological characterisation of Scutellonema bradys from yam in Costa 696 Rica and development of specific primers for its detection. Nematology. 2014;16: 137-697 147. doi:10.1163/15685411-00002752

- 58. Tiroesele B, Skoda SR, Hunt TE, Lee DJ, Ullah MI, Molina-Ochoa J, et al. Morphological
 and genetic analysis of four color morphs of bean leaf beetle. J Insect Sci. 2018;18: 39.
 doi:10.1093/jisesa/iey016
- 59. Dashinov D, Czerniejewski P, Balshine S, Synyshyn C, Tasheva-Terzieva E, Stefanov T,
 et al. Variation in external morphology between the native and invasive populations of the
 round goby, Neogobius melanostomus (Actinopterygii: Gobiidae). Zoomorphology.
- 704 2020;139: 361–371. doi:10.1007/s00435-020-00480-7
- 705 60. Thiéry M, Fouville D, Mugniéry D. Intra- and interspecific variability in Globodera,
- 706 parasites of Solanaceous plants, revealed by Random Amplified Polymorphic DNA
- 707 (RAPD) and correlation with biological features. Fundam Appl Nematol. 1997;20: 495–
 708 504.
- 708 709

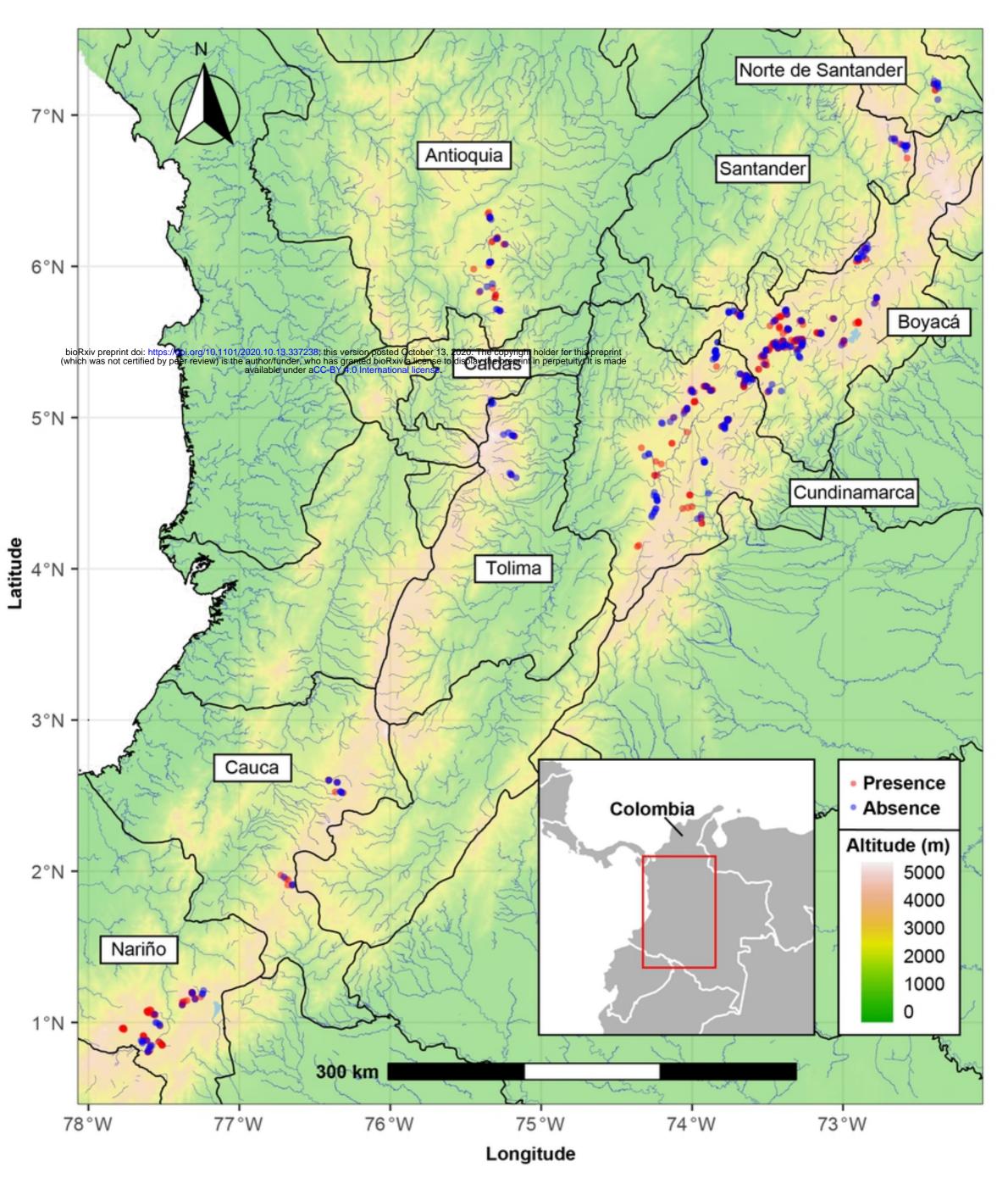
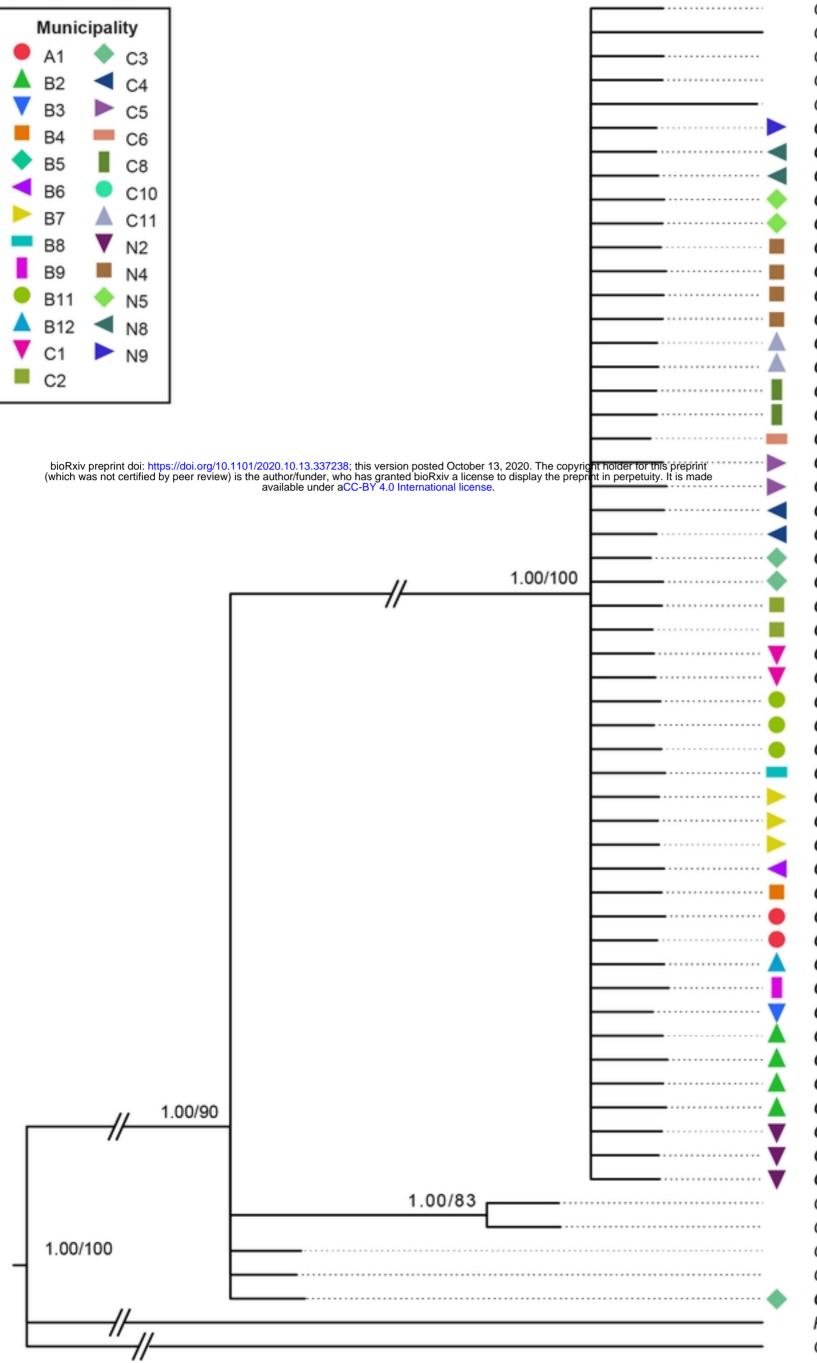



Figure 1

G.pallida-France-KJ409636.1 G.pallida-Slovakia-KJ409626.1 G.pallida-England-JN712219.1 G.pallida-Chile-JN712220.1 G.pallida-France-GU338021.1 G.pallida-Colombia-N9A-MH389904 G.pallida-Colombia-N8D-MH389905 G.pallida-Colombia-N8C-MH389906 G.pallida-Colombia-N5D-MH389907 G.pallida-Colombia-N5C-MH389908 G.pallida-Colombia-N4D-MH389909 G.pallida-Colombia-N4C-MH389910 G.pallida-Colombia-N4B-MH389911 G.pallida-Colombia-N4A-MH389912 G.pallida-Colombia-C11D-MH389913 G.pallida-Colombia-C11A-MH389914 G.pallida-Colombia-C8C-MH389915 G.pallida-Colombia-C8A-MH389916 G.pallida-Colombia-C6B-MH389917 G.pallida-Colombia-C5B-MH389918 G.pallida-Colombia-C5A-MH389919 G.pallida-Colombia-C4D-MH389920 G.pallida-Colombia-C4C-MH389921 G.pallida-Colombia-C3D-MH389922 G.pallida-Colombia-C3C-MH389923 G.pallida-Colombia-C2C-MH389925 G.pallida-Colombia-C2B-MH389926 G.pallida-Colombia-C1B-MH389927 G.pallida-Colombia-C1A-MH389928 G.pallida-Colombia-B11C-MH389929 G.pallida-Colombia-B11B-MH389930 G.pallida-Colombia-B11A-MH389931 G.pallida-Colombia-B8A-MH389932 G.pallida-Colombia-B7D-MH389933 G.pallida-Colombia-B7B-MH389934 G.pallida-Colombia-B7A-MH389935 G.pallida-Colombia-B6D-MH389936 G.pallida-Colombia-B4D-MH389937 G.pallida-Colombia-A1B-MH389938 G.pallida-Colombia-A1A-MH389939 G.pallida-Colombia-B12A-MH389940 G.pallida-Colombia-B9D-MH389941 G.pallida-Colombia-B3D-MH389942 G.pallida-Colombia-B2D-MH389943 G.pallida-Colombia-B2C-MH389944 G.pallida-Colombia-B2B-MH389945 G.pallida-Colombia-B2A-MH389946 G.pallida-Colombia-N2D-MH389947 G.pallida-Colombia-N2B-MH389948 G.pallida-Colombia-N2A-MH389949 G.ellingtonae-USA-JN712217.1 G.tabacum-USA-GQ294492.1 G.rostochiensis-Canada-JN712223.1 G.rostochiensis-Slovakia-KJ409625.1 G.sp-Colombia-C3A-MH389924 P.punctata-Belgium-DQ328699.1 G.artemisiae-Hungary-KU845472.1

0.0006

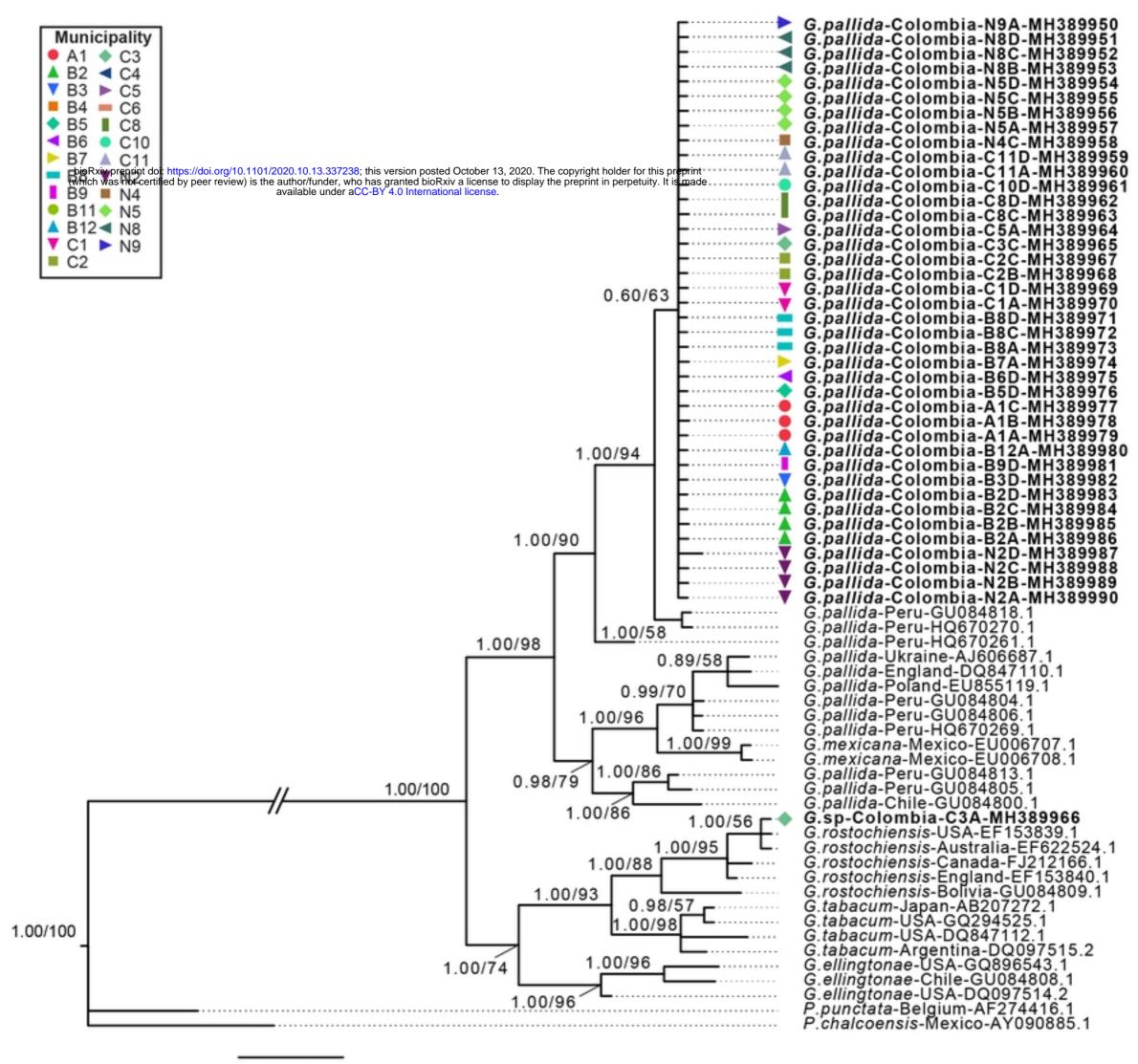
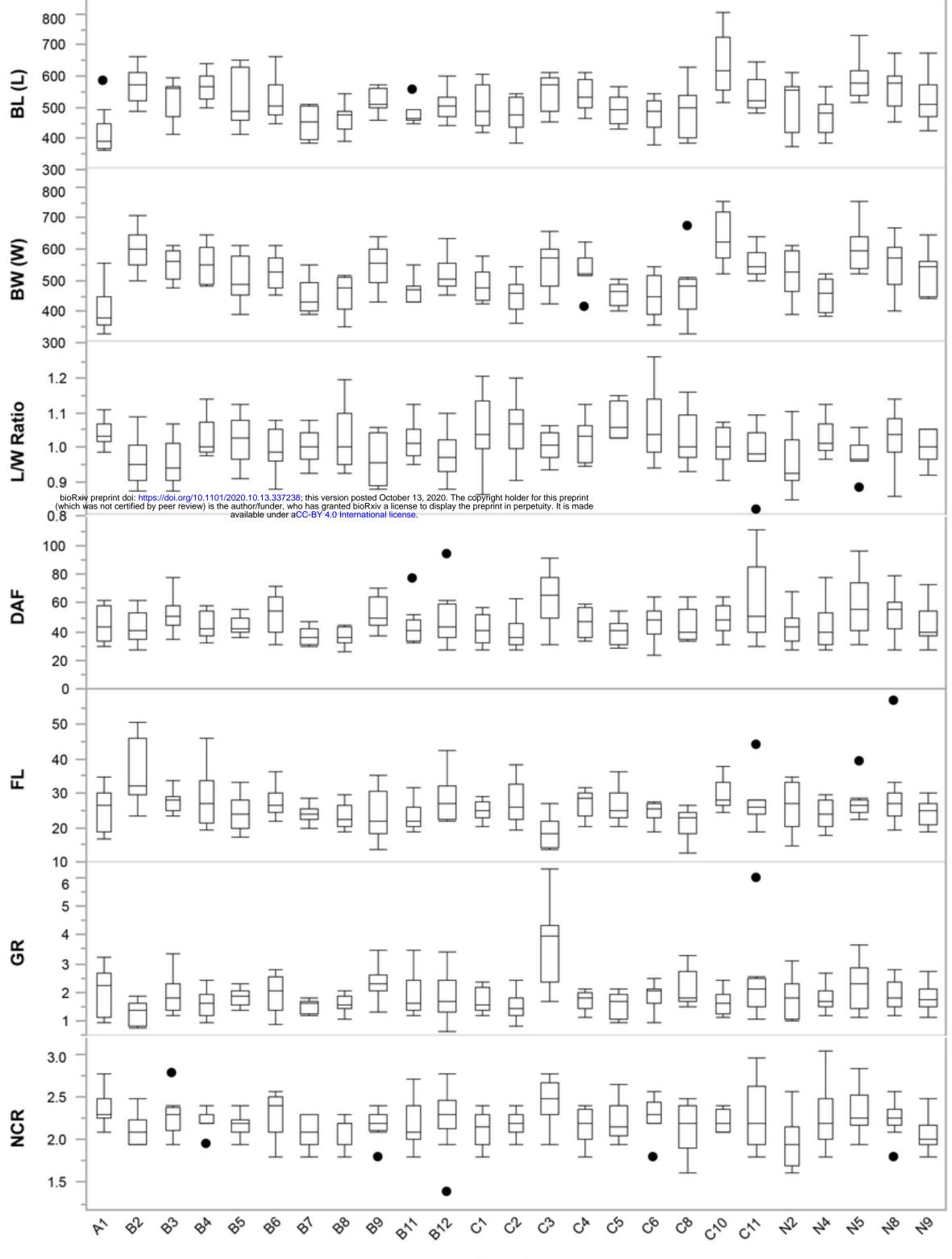



Figure 3

Sample

Figure 4

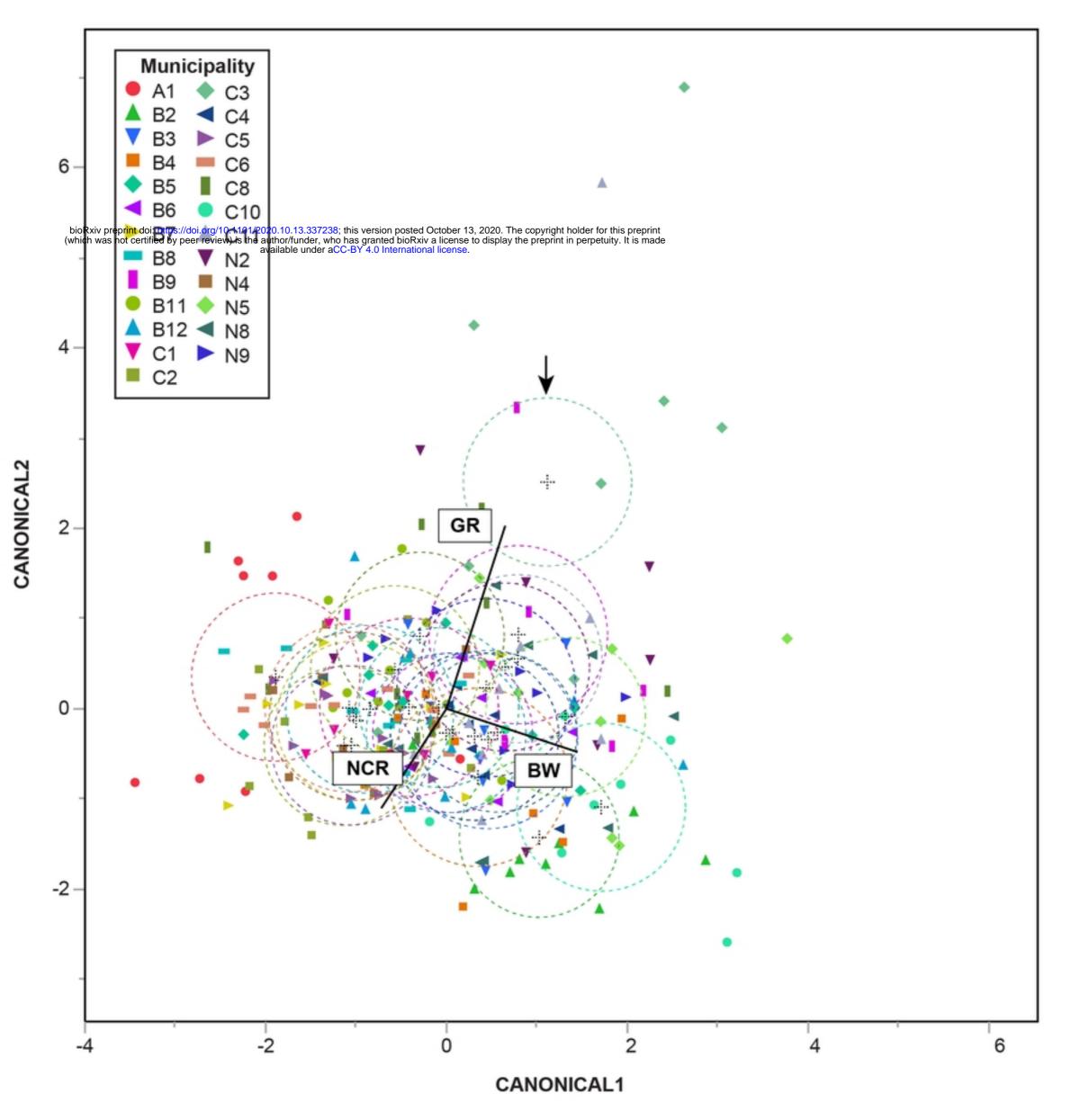


Figure 5