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16

17 Abstract

18 Mould is a common phenomenon in stored wheat. First, mould will decrease the quality 

19 of wheat kernels. Second, the mycotoxins metabolized by mycetes are very harmful for humans. 

20 Therefore, the fast and accurate examination of wheat mould is vitally important to evaluating its 

21 storage quality and subsequent processing safety. Existing methods for examining wheat mould 

22 mainly rely on chemical methods, which always involve complex and long pretreatment 

23 processes, and the auxiliary chemical materials used in these methods may pollute our 

24 environment. To improve the determination of wheat mould, this paper proposed a type of green 

25 and nondestructive determination method based on biophotons. The specific implementation 

26 process is as follows: first, the ultra-weak luminescence between healthy and mouldy wheat 

27 samples are measured repeatedly by a biophotonic analyser, and then, the approximate entropy 

28 and multiscale approximate entropy are separately introduced as the main classification features. 

29 Finally, the classification performances have been tested using the support vector 

30 machine(SVM). The ROC curve of the newly established classification model shows that the 

31 highest recognition rate can reach 93.6%, which shows that our proposed classification model is 

32 feasible and promising for detecting wheat mould.

33

34

35

36
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39 Introduction

40 Wheat, as a type of global grain, is one of the staple foods that human beings and animals 

41 rely on throughout the world. The history of wheat cultivation can be traced back to ten thousand 

42 years ago, and it has become the second most cultivated crop in the world due to its high 

43 productivity and strong adaptability [1]. As the world population has increased over the last 

44 decade, the consumption of wheat has also increased [2], which can be seen in Fig. 1.

45 Fig. 1. Global Consumption of Wheat and Year-on-Year Percentage from 2009 to 2018.

46 When a suitable surrounding moisture and temperature is achieved, microorganisms 

47 make great contributions to the wheat mould phenomenon, thus affecting the quality and quantity 

48 of stored wheat [3]. Since mould is inevitable during the wheat storage period, the health of 

49 human beings will be extremely threatened once certain edible food that is made using mouldy 

50 wheat as raw materials are available in their daily lives [4]. Many mycotoxins are metabolized by 

51 mouldy wheat, among which aflatoxin B1 (AFB1) is the most striking contaminant and has the 

52 strongest carcinogenicity [5]. Nearly one quarter of crops in the world are contaminated by 

53 aflatoxins before or during their storage period according to the Food and Agriculture 

54 Organization (FAO). Once feeds and foods are made of mouldy kernels, the AFB1 carried within 

55 will cause a series of illnesses, such as retarded growth, immune suppression, human or animal 

56 death, and so on [6]. Therefore, the development of fast and green techniques for detecting AFB1 

57 in stored wheat kernels is very necessary to ensure human and animal safety.

58 The study of biological photons can be traced to 1923 when the Russian biologist 

59 Gurwitsch used biological detectors to test the roots of onions and found a special phenomenon: 

60 onion cells can produce faint light that can stimulate other cells to accelerate their cell division 

61 [7]. The Italian scientist Coli placed some plant buds on detectors with photomultiplier tubes for 
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62 measurement and observed an ultra-weak light emission phenomenon [8]. In the later 1970s, led 

63 by West German physicians, biophoton research conducted many experiments and made striking 

64 progress [9]. In the 1980s, biophoton technology was applied to spontaneously detect various 

65 plant seeds, including wheat, celery, soybean, and others, and obtained fruitful achievements. 

66 Subsequently, the scientific team represented by Veselova analysed in detail the quality and 

67 performance of various crop seeds (soybean, barley, sunflower, etc.) using the delayed radiation 

68 of biophotons and found that there is a negative correlation between seed vigour and a delayed 

69 luminescence signal [10]. In recent decades, the research of biophoton technology has made 

70 tremendous development. A large number of experiments have proved that biophoton radiation 

71 is a common life phenomenon that is related to biological and physiological activities, the 

72 generation and synthetization of DNA, and other information exchange or energy transmission 

73 processes. The higher the level of an organism is, the greater intensity of the photon radiation 

74 that is emitted. The research applying of biophoton technology has been mainly conducted in 

75 medical fields, such as medical information diagnosis [11], cancer classification [12], analysis of 

76 brain activities [13], and others. In the cereal storage field, however, biophoton studies mainly 

77 focus on insect intrusion rather than on wheat mould. Duan et al. [14] have applied the 

78 permutation entropy algorithm to analyse the biophoton signals of wheat kernels and then use a 

79 BP network to test the experimental effects. Their proposed algorithm not only improves the 

80 detection rate by 10% but also saves the sample training time [14]. Regarding the detection 

81 process of insect intrusion, spontaneous biophoton emission, which is also known as ultra-weak 

82 luminescence (UWL), has been proven to be a sensitive index at reflecting the mould among 

83 wheat kernels. The main achievements in this paper are that we have measured the UWL of 

84 healthy and mouldy wheat kernels separately using biophotonic technology, calculated the 
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85 approximate entropy and multiscale approximate entropy as the main classification parameters, 

86 and then, we sued the SVM to test the classification performance of newly established model.

87

88 Materials and methods

89

90 Materials

91

92 Wheat kernel samples

93 The experimental wheat kernels were offered by the Yuda grain barn, Zhumadian city, 

94 Henan Province in 2019. Some pretreatment, such as finding foreign materials and imperfect or 

95 damaged kernels, washing the kernels several times using distilled water, drying the samples to a 

96 certain degree of moisture using special equipment and so on, is very necessary. Subsequently, 

97 the wheat sample is divided into two parts: one is the healthy samples, and the other part is sent 

98 to the College of Biological Engineering to cultivate the mould in the sample with 50% 

99 Aspergillus flavus. Regarding the healthy wheat samples, we prepared 240 subsamples weighing 

100 20.00±0.01 g. We use 120 subsamples as the training group (experimental group), and the 

101 remaining 120 subsamples form the testing group. Regarding the mouldy wheat samples, 120 

102 subsamples are used as the training group, and the other 120 subsamples are used as the testing 

103 group. Meanwhile, protective measures should be taken during this process due to the strong 

104 poisonous of AFB1.

105

106 Equipment
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107 The BPCL-2-ZL, manufactured by Beijing Jianxin Lituo Technology Co., Ltd., was used 

108 to measure the biophotons of healthy and mouldy wheat samples.

109 Fig. 2 shows the whole analysis system, which consists of three parts: ① a detection 

110 chamber, where the tested samples are input; ② a biophoton analyser, mainly including the 

111 photon counting and optical hi-voltage converter device; and ③ computer equipment, which 

112 displays results from the corresponding software on a monitor. The calculated average 

113 background noise of the instrument is 28 counts per second, The high voltage for the test is set as 

114 1030 V, and the testing temperature is 25.0±0.5℃.

115 Fig. 2. Instrumentation Used in the Experiment.

116

117 Methods

118 The whole detection process consists of two parts. One part is selecting the right 

119 environmental parameters. Since the experimental result may be influenced by surrounding 

120 factors, all the experiments should be conducted under the same conditions to minimize the 

121 environmental influences, including the same environmental temperature (20±1℃), humidity 

122 (25±6%), and measuring time (8:00 am~18:30 pm). The other part is choosing suitable 

123 experimental parameters. Before testing, each sample was placed for 30 min in a dark space to 

124 decrease the interference from ambient parasitic light. Since the spontaneous biophotonic 

125 radiation of wheat kernels is not strong enough, the sampling interval is set to 10 s in order to 

126 collect ample numbers of biophotons. To better reflect the properties of the UWL signals of the 

127 two types of wheat samples, the total sampling time is extended over 15,000 s. Then, the UWL 

128 signals of the healthy and mouldy wheat kernel samples are measured separately.
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129 Results

130

131 Biophotonic data analysis

132 One hundred and twenty groups of healthy and mouldy wheat samples were measured by 

133 the above processes. Owing to the nonlinear and random characteristics of the number of 

134 biophotons, we calculated the average numbers of photons for all the samples for both types, and 

135 the results are shown in Fig. 3. Table 1 shows their statistical characteristics, such as the mean, 

136 variance and standard deviation. As Table 1 shows, the statistical biophotonic characteristics of 

137 mouldy wheat are larger than those of healthy wheat. This difference occurs because the 

138 Aspergillus fungi that colonized the wheat kernels have much stronger metabolism and 

139 respiration. The large number of biophotons in mouldy wheat also provides a convincing 

140 explanation, which coincides with physiological regularity such that the higher the level of an 

141 organism is, the greater the intensity of the biophotons it emits.

142 Fig. 3. Average UWL Data of Healthy and Mouldy Wheat.

143 Table 1. UWL Data Statistical Characteristics of Two Types of Wheat.

                               Mouldy wheat kernels in 2019                 Healthy wheat kernels in 2019

Mean                                         84.22                                                             71.11

Variance                                5830.37                                                         3533.45

Standard deviation                76.36                                                             59.44

144 To effectively distinguish between healthy wheat and mouldy wheat based on UWL data, 

145 we will use the approximate entropy (ApEn) and multiscale approximate entropy (MApEn) 

146 algorithm, and then comparing their performances.

147
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148 Approximate entropy

149 The approximate entropy (ApEn) algorithm was proposed by the scholar Pincus to 

150 measure the characteristics of random series [15]. The more complex an initial time series is, the 

151 larger its corresponding ApEn. The ApEn is suitable for analysing the biophoton signals of 

152 wheat kernels because of its more robust performance. Two prominent advantages of the ApEn 

153 are its lower dependency on the length of the initial time series and strong resistance to the noise 

154 contained in the original data.

155 The complete computing process of the ApEn is [16]:

156 Divide the original series  into an m-dimensional vector , 

157 which is shown as follows:

158                                                        (1)

159 Here,  represents the dimension of the pattern vector, and  denotes the initial length 

160 of the time series.

161 1) Calculate the distance  between vector  and vector  using formula 2.

162                (2)

163 2) Count the numbers of , where  , which is known as the similar tolerance

164  threshold value, is a positive real number. Then, calculate the proportion between 

165  and the total number of vectors, which is labelled as  in equation 3.

166                            (3)

167 1) Calculate the logarithm of , and then, obtain its mean using equation 4. Here, the 

168 mean is labelled as .
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169 (4)

170 2) By increasing the dimension from  to  and repeating steps 2~4,  can be 

171 obtained.

172 3) The definition of the ApEn can be given as:

173  (5)

174 If  is finite, formula 5 is rewritten as:

175 (6)

176

177 Multiscale approximate entropy

178 To improve upon ApEn, the multiscale approximate entropy (MApEn) based on ApEn 

179 has been proposed to improve the robust and accuracy of model. Furthermore, the MApEn 

180 algorithm, overcomes the limitations of ApEn [17]. Interestingly, compared with only one 

181 feature obtained by ApEn, these MApEn values reflected by different scales are able to be used 

182 as a cluster of classification parameters for the subsequent SVM training model. The concrete 

183 steps of the MApEn algorithm are as follows [17]:

184 1) Assume the initial discrete series is , and its length is N.

185 2) Construct a coarse time series , where  represents the scale factor, and then, the 

186 scaling time series can be expressed as:

187  (7)

1
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188 Equation 7 is the same as the original sequence provided that the scale factor . 

189 Furthermore, each coarse-graining series can be regarded as evenly dividing the original series, 

190 and each segmentation length is .

191 By combining multiscales with the approximate entropy to generate MApEn, the MApEn 

192 algorithm is able to characterize the nonlinear information of series more effectively. Fig. 4 

193 exhibits the detailed flowchart.

194 Fig. 4. Flowchart of Multiscale Approximate Entropy Algorithm.

195

196 MApEn algorithm and its performance

197

198 Fast ApEn algorithm and setting parameters

199 First, we can calculate the ApEn according to the abovementioned equations 2~6. There 

200 is plenty of redundant computing in some steps; however, it is time-consuming and cannot be 

201 used for real-time determination. Bo et al. [18] proposed a type of fast ApEn algorithm that can 

202 shorten the running time by nearly 5 times. The main steps are as follows:

203 First step: The distance matrix  for the initial points time sequence is 

204 calculated, and the element in the  row and  column can be denoted as . The rules for 

205 calculating  are based on the following algorithm:

206 (8)

207 Second step: assuming the dimension of the pattern vector , we can easily obtain 

208 the values of  and  using equation 9.

=1
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209

210 (9)

211 Third step: According to the values of  and , then we get  and .

212 Fourth step: The ApEn value can be calculated by equations 5~6.

213 Four parameters are involved in the MApEn algorithm: the length of the input signal , 

214 the dimension of the pattern vector , the similar tolerance threshold value , and the time 

215 scale factor . For the ApEn algorithm, choosing the right parameters is of extreme importance 

216 to the algorithm.

217 After simulating several experiments, we finally select  as 

218 our experimental parameters, where STD represents the standard deviation of initial time series. 

219 The ApEn values of the UWL signal of the two types of wheat at different tolerance thresholds 

220 were simulated using Matlab 2018a, and the results are shown in Fig. 5. As shown in Fig. 5, the 

221 ApEn values of the two types of wheat vary depending on different tolerance thresholds . 

222 Although the ApEn values of the two types of wheat are small, the differences between the 

223 healthy and mouldy wheat are obvious based on the ApEn values, where  varies from 0.1 to 

224 0.19. In addition, another conclusion from the experimental results is that the smaller ApEn 

225 value of the mouldy wheat reflects that the activities of Aspergillus fungi are more regular and 

226 intensive than the healthy wheat itself, and thus, the value can be used as a classification feature 

227 to recognize mouldy wheat.

228 Fig. 5. ApEn Values for Different Tolerance Thresholds of UWL Signals of Healthy and 

229 Mouldy Wheat.
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230 Discussions

231

232 Performance analysis of the MApEn algorithm

233 The ApEn algorithm only offers one classification feature; therefore, in order to 

234 overcome this shortcoming and get more classification feature values, the MApEn algorithm is 

235 introduced in this paper. For ApEn algorithm, the parameters  are 

236 finally chosen and simulated via experiments. In addition to the parameters mentioned above, the 

237 scale factor is a decisive factor in the performance of the MApEn algorithm. Due to the limited 

238 length of the initial time series,  is usually assigned a value from 2 to 10. The curve of the 

239 MApEn value at different scale factors is shown in Fig. 6.

240 Fig. 6. MApEn Values for Different Scale Factors of UWL Signals of Healthy and Mouldy 

241 Wheat.

242 Observing Fig. 6, the following conclusions can be achieved:

243 ① The MApEn values of the UWL of the two types wheat sample shows an inverse trend;

244 ② Compared with ApEn, the MApEn algorithm can offer several classification features that 

245 can be used at the same time under different scales rather than only one feature gained by 

246 ApEn algorithm.

247

248 Bipartition classification and performance assessment by SVM

249 To solve the classification problem between healthy and mouldy wheat, the SVM is 

250 introduced in this work. The SVM, proposed by Cortes and Vapnik [16] in 1995, is a type of 

251 linear classifier based on classification boundaries. Computationally, the striking points of the 

1500, 2, 0.12N m r STD   
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252 SVM are how to choose the penalty and kernel parameters, and the kernel parameter impacts the 

253 nonlinear transformation of the input feature space from a lower-dimensional to a higher-

254 dimensional space. In other words, this problem can be considered to be an optimization problem 

255 in which we seek to help the kernel function to find the optimal plane, by which we can conduct 

256 linearly separated classification based on a nonlinear transformation [19]. Although the training 

257 samples are not large enough, the SVM can achieve a good classification performance [20]. 

258 Currently, the SVM has become one of most widely used learning algorithm, and it has been 

259 applied in various fields [21,22].

260 Based on the SVM method and the purpose of the classification, the three parameters in 

261 Table 1 and the ApEn value act as the classification features. The UWL signals of total groups of 

262 the two types wheat kernels have been trained, and then, the abovementioned 120 healthy and 

263 mouldy wheat samples are separately used as the testing group. Adopting the SVM training 

264 model offered by Lin’s group from Taiwan University, the main parameters of the SVM are set 

265 as follows. The type of kernel function is a radial basis function, and the error value that 

266 terminates the iteration is 0.001. The ROC curve represents the classification result and is 

267 illustrated in Fig. 7, where the blue curve represents the classification performance of the 

268 MApEn algorithm, and the red curve represents the classification performance of the ApEn 

269 algorithm.

270 Fig. 7. The ROC Curves of Two Classification Models.

271 From the ROC curves, Tables 2 and 3 can be calculated, where AUC, S.E., C.I., and PA 

272 represent the area under the curve, the standard error of the area, the confidence interval and the 

273 performance of the classifier, respectively. Comparing Table 2 with Table 3 shows that the 

274 classification accuracy rate based on MApEn has been improved obviously. In addition, the 
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275 standard error decreases by introducing the MApEn algorithm. The experimental results validate 

276 that the MApEn values can act as a cluster of main classification features to recognize wheat 

277 kernels as healthy or mouldy.

278 Table 2. Classification Result Using ApEn as the Main Classification Feature.

AUC                                       S.E.                               95% C.I.                                 PA

0.8693                                 0.0272                       [0.8260  0.9226]                   Good
279 Table 3. Classification Result Using MApEn as the Main Classification Features.

AUC                                       S.E.                               95% C.I.                                 PA

0.8874                                   0.0246                        [0.8392  0.9356]                       Good

280

281 Conclusions

282 The UWL signals from different conditions of wheat kernels can reflect their inner 

283 physiological and pathological changes; therefore, it can be used as an environmentally friendly 

284 and nondestructive method to assess wheat quality. Since the UWL signal is so sensitive to 

285 environmental factors and the inner states of wheat kernels, further studies and experiments 

286 seeking to minimize these influences caused by these factors need to be conducted.

287 Multiscale approximate entropy is introduced to analyse the UWL signals in this paper. 

288 Subsequently, we have used an SVM to establish the classification model. The results of the 

289 simulations via an experiment show that the MApEn algorithm is efficient and effective at 

290 analysing random UWL signals. One main deficiency is that we only establish a binomial 

291 classification model in this work due to the limited experimental data, and the MApEn algorithm 

292 fails to exhibit its advantages. Furthermore, recognizing mouldy wheat kernels is a continuous 

293 process during their storage period; therefore, establishing a multiclassification model to classify 

294 and recognize the degree of mould is of extreme significance to help the operators to acquire 
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295 accurate information about the degree of mould and make scientific choices, which requires 

296 further research to improve the precision of the established model.

297
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